

University of Isfahan

Course outline Water Resources Management Graduate

Programme

Department of Civil Engineering Faculty of Civil and Transportation Engineering University of Isfahan

Isfahan, Iran

January 2022

No.	Units	Name	Туре
3016330	3	Water resources system analysis I	Core
3016389	3	Hydroinformatics	Core
3016385	3	Advanced Groundwater	Core
3016328	3	Advanced hydrology	Core
3016090	2	Seminar & research method	Core
3016327	3	Advanced open channel hydraulics	Elective
3016446	3	Flood and drought management	Elective
3016441	3	Advanced hydrogeology	Elective
3016352	3	Economics of water resources projects	Elective
3016431	3	Environmental impact assessment	Elective
3016476	3	Water resources system analysis II	Elective
3016443	3	Urban water management	Elective
3016447	3	Water quality management	Elective

Table 1. General courses for Water Resources Management graduate programme.

WATER RESOURCE SYSTEM ANALYSIS-I

BASIC INFORMATION Course prefix, title and semester: Water resource system analysis-I Number of credits: 3

COURSE PREREQUISITES:

COURSE CO-REQUISITES:

-

TEACHERS:

Person in charge:-**Office location**: Department of Civil Engineering and Transportation **Phone Number:**+98 (31) 3793----**Email Address:-----**

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

Students are expected to:

 \checkmark become familiar with the methods of modeling, analysis and evaluation of various issues in the field of water resources engineering and management

REQUIRED STUDENT RESOURCES

Textbooks and References:

1. D. P. Loucks, J.R. Stedinger, D.A. Haith, Water resource systems planning and analysis, Englewood Cliffs, N.J. : Prentice-Hall, First edition, 1981.

2. W. Hall, J. Darcup, Water resource system engineering, McGraw-Hill, NewYork, 1970.

3. L.W. Mays, Y.K. Tung, Hydro systems engineering and management, McGraw-Hill, NewYork, 1972.

4. C. Revelle, Optimizing reservoir resources: including a new model for reservoir reliability, John Wiley & Sons, NewYork, 1st edition, 1999.

5. J. Arora, Introduction to optimum Design, McGraw-Hill, 2004.

6. G. Hadley, Linear programming, Addison Wesley publishing company Inc., 1994.

7. N. Buros, Scientific allocation of water resources: water resources development and utilization-a rational approach, American Elsevier Publishing Company, 52 Vanderbilt Avenue, New York, 1971.

8. Dreyfus S.E., Averill, M.L., The art and theory of dynamic programming, Academic Press, 1977.

9. A.O. Esogbue, Dynamic programming for optimal water resources systems analysis, Prentice Hall Advanced Reference Series: Engineering, Englewood Cliffs, N.J. : Prentice-Hall, 1989. 10. C. Revelle, Optimizing reservoir resource: Including a New Model for Reservoir Reliability, John Wiley & Sons, INC. NewYork etc., 1999.

Web links: -Computer Software: Matlab, LINDO, LINGO, GAMS, MODSIM, WEAP, MIKE-BASIAN, HEC-ResPRM

COURSE SCHEDULE/OUTLINE/CALENDAR OF EVENTS

Week	Торіс	Reading /Assignment
16		
1	Presenting the syllables and policy regarding class	-
	absence, Generality (basic concepts of water	
	components)	
2	Generality (Systematic approach, Integrated water	-
	resources management (IWRM), index definition	
	(such as sustainability)	
3	System modeling (water resource system modeling	-
	challenges and advances, different methods of	
	modeling, simulation and optimization methods)	
4	Modeling steps, real examples of water resource	-
	management models (including surface and	
	underground resource, qualitative and qualitative	
~	models)	
5	Classical optimization (principles of optimization	-
	and optimality conditions, linear programming (LP)	
	I incorrection models)	
6	Craphical mathed simpley mathed Big M and H	
0	phase methods. Dual model sensitivity analysis	-
7	Network models: Basis and importance of network	
/	models. Shortest path model. Maximum flow	-
	model. Minimum spanning tree model. Critical	
	nodel, Winning use model, ernear	
8	Nonlinear optimization and nonlinear	-
0	programming (NLP) method (Lagrange method.	
	Kuhn-Tucker condition, Necessary condition,	
	constrained optimization problem)	
9	Mixed integer linear and nonlinear programming	-
	methods, binary (Zero-one) problem	
10	Dynamic programming (DP) method: basis of DP	-
	method and its theory, methodology of solving	
	classical problem, forward and backward methods	
11	Dynamic Programming (DP) method: inverted and	-
	non inverted forms, traveling salesman problem	

	(TSP), water allocation problem, reservoir	
12	Water storage volume determination of dam reservoir (Dead storage, active storage, surplus	-
	(flood) storage)	
13	Active storage determination (simple methods,	-
	mass curves, Ripple, sequential peak method,	
	simulation and optimization)	
14	Water resource modeling (different water resource	-
	definition, single and multi objective models,	
	single and multi purpose models)	
15	Reservoir rule curves determination (standard	-
	operation policy (SOP), simulation, optimization)	
16	Primary familiarized related software such as	-
	LINGO, LINDO, GAMS, MODSIM, WEAP,	
	MIKE-BASIAN, HEC-ResPRM	

EVALUATION PROCEDURES AND GRADING CRITERIA

HWs (10%), Project (20%), Midterm (30%), Final (50%)

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTSWITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

HYDROINFORMATICS

BASIC INFORMATION Course prefix, title and semester: Hydroinformatics Number of credits: 3

COURSE PREREQUISITES:

COURSE CO-REQUISITES:

TEACHERS:

Person in charge: Dr. Mohammadali Alijanian **Office location**: Department of Civil Engineering and Transportation **Phone Number:** +98 (31) 3793 5317 **Email Address: m.alijanian@eng.ui.ac.ir**

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

Students are introduced to different methods of data mining, working with databases, machine learning, artificial intelligence, and soft computing, and utilizing them in water resources studies.

REQUIRED STUDENT RESOURCES

Textbooks and References:

1- Larose, D. T., Larose, C., D., (2014), Discovering Knowledge in Data: An Introduction to Data Mining, Wiley.

2- Dean, J., (2014), Big Data, Data Mining, and Machine Learning, Wiley

3- Kumar, P., Alameda, J., Bajcsy, P., Folk, M., Markus, M., (2006), Hydroinformatics:

Data Integrative Approaches in Computation, Analysis, and Modeling, CRC Press.

4- Goubesville, P., Cunge, J., A., Caignaert, G., (2014), Advances in Hydroinformatics, SIMHYDRO, Springer.

Web links:

Computer Software: MTLAB, R, MINITAB, EASYFIT

COURSE SCHEDULE/OUTLINE/CALENDAR OF EVENTS

Week	Торіс	Reading
16		/Assignment
1	Introduction to Hydroinformatics	-
2	Data preprocessing	HW 1
3	Soft Computing- Supervised Classification- knn method	HW 2
4-6	Soft Computing- Supervised Classification- PCA method	HW 3
7	Soft Computing- Unsupervised Classification- k-means clustering	HW 4
8-10	Soft Computing- ANN-GA	HW 5
11-12	Fuzzy Logic	HW6
13-14	Hydrologic Models	HW7
15-16	Geostatistics	HW8

EVALUATION PROCEDURES AND GRADING CRITERIA

HWs (30%), Midterm (30%), Final (40%)

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, which need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct has occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

ADVANCED GROUNDWATER

BASIC INFORMATION

Place in Curriculum, title and semester: Core, Advanced Groundwater, Q2

Number of credits: 3

COURSE LEVEL: M.Sc. civil, Water Resources Management COURSE PREREQUISITES:

COURSE CO-REQUISITES:

TEACHERS:

Dr. Mahmoud Hashemi **The person in charge**: Dr. Mahmoud Hashemi **Office location**: Civil Engineering department, Faculty of Civil Engineering & Transportation, University of Isfahan, Hezar-Jerib av., Isfahan, Iran **Phone Number:** +98 (31) 37935086 **Homepage:** http://eng.ui.ac.ir/~m.hashemi **Email Address:** <u>m.hashemi@eng.ui.ac.ir</u>

Other instructors:

Dr. Hosein Abedian (TA)

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	1 h	-	1 h

COURSE OBJECTIVES

The course is aimed to make student familiar with the types of aquifers, basic concepts of groundwater flow, groundwater hydraulics in steady and unsteady conditions near the wells, analysis, modelling, attenuation and remediation of groundwater pollution.

Students are expected to learn:

 \checkmark General and basic concepts: history, types of porous media (unconsolidated, jointed, karst), types of aquifers (unconfined, confined, leaky, perched) and their characteristics, history of exploiting groundwater with emphasis on Iranian qanat system

 \checkmark Introduction on the modelling: continuum approach in porous media, hydrologic cycle, groundwater budget equation, groundwater data and how to measure, record and report it

 \checkmark Concepts of groundwater flow: concepts of porosity, hydraulic conductivity, storage, permeability, heterogeneity and anisotropy in aquifers

✓ General groundwater flow: Darcy law and its application in one-dimensional groundwater flow problems, Dupuit-Forchheimer assumptions and their application in unconfined aquifer flow

Analysis of groundwater flow: General groundwater equation in unconfined and confined aquifers, application of groundwater flow equation in steady one-dimensional groundwater flow problems, application of groundwater flow equation in unsteady one-dimensional groundwater flow problems, potential theory and flow nets, two-dimensional steady groundwater flow

 \checkmark Hydraulics of groundwater flow in unconfined aquifer well: hydraulics of groundwater steady flow in aquifer well, hydraulics of groundwater unsteady flow in aquifer well, pumping-out test, flow near boundaries, image well method

 \checkmark Hydraulics of groundwater flow in confined aquifer well: hydraulics of groundwater steady flow in aquifer well, hydraulics of groundwater unsteady flow in aquifer well, Theis equation, Cooper-Jacob method, recovery method, hydraulics of groundwater unsteady flow in leaky aquifer well, multiple well systems, partially penetrating wells

✓ Groundwater pollution: natural quality of groundwater, salinity of groundwater and its sources, physical, chemical and biological characteristics of groundwater, municipal, industrial and agricultural irrigation sources of groundwater pollution, solved and dissolved pollutants of groundwater, light non-aqueous phase liquids LNAPLs and non-aqueous phase liquids DNAPLs, methods for attenuation and remediation of groundwater pollution

 \checkmark Analysis of groundwater pollution: advection-dispersion equation, groundwater pollutants, analytical solution for advection-dispersion equation

 \checkmark Remediation of groundwater pollution: monitoring quality and quantity of groundwater, methods for remediation of aquifers with emphasis on conventional pump and treatment method

 \checkmark Saline water intrusion: types of water salinity problems in aquifers, island and coastal aquifers, Ghyben-Herzberg relation for estimation of fresh-saline waters interface, effect of well in form of freshsaline waters interface (Strack relation), upconing of fresh-saline waters interface due to well pompage, equation of fresh-saline waters interface in oceanic island aquifers, control of saline water intrusion

 \checkmark Numerical modelling of groundwater flow: various numerical models for solution of flow and solute transport equations, finite-difference method for solution of flow in steady and unsteady conditions, finite-difference method for solution of solute transport equation, introduction on MODFLOW and MT3DMS softwares, their related packages and applications

REQUIRED STUDENT RESOURCES

Textbooks:

1. Todd, D.K., Mays, L.W., Groundwater Hydrology, John Wiley & Sons, Inc. 2005. London, 273 p.

References:

- 1. Charbeneau, R.J., Groundwater Hydraulics and Pollutant Transport, Prentice-Hall, 2006.
- 2. Fetter, C.W., Applied Hydrogeology, Prentice-Hall, 2001.

3. Bedient, P.B., Rifai, H.S., Newell, C.J., Ground water contamination: transport and remediation, Prentice Hall 1994/1999.

4. Bear, J., Hydraulics of Groundwater, McGraw-Hill, New York, 1979.

Web links for Required Computer Softwares:

MODFLOW 6 v.6.2.2: USGS Modular Hydrologic Model

https://www.usgs.gov/software/modflow-6-usgs-modular-hydrologic-model

MT3D-USGS: Groundwater Solute Transport Simulator for MODFLOW

https://www.usgs.gov/software/mt3d-usgs-groundwater-solute-transport-simulator-modflow

The Groundwater Toolbox: A Graphical and Mapping Interface for Analysis of Hydrologic Data <u>https://www.usgs.gov/software/groundwater-toolbox-graphical-and-mapping-interface-analysis-hydrologic-data</u>

PEST++, a Software Suite for Parameter Estimation, Uncertainty Analysis, Management Optimization and Sensitivity Analysis https://pesthomepage.org/

COURSE SCHEDULE/OUTLINE/CALENDAR OF EVENTS

Week	Торіс	
1	General and basic concepts: history, types of porous media	
	(unconsolidated, jointed, karst), types of aquifers (unconfined,	
	confined, leaky, perched) and their characteristics, history of	
	exploiting groundwater with emphasis on Iranian qanat system	
2	Introduction on the modelling: continuum approach in porous	
	media, hydrologic cycle, groundwater budget equation,	
	groundwater data and how to measure, record and report it	
3	Concepts of groundwater flow: concepts of porosity, hydraulic	
	conductivity, storage, permeability, heterogeneity and	
4	anisotropy in aquifers	
4	dimensional groundwater flow, problems, Dupuit Forchheimer	
	assumptions and their application in unconfined aquifer flow	
5	Analysis of groundwater flow: General groundwater equation in	
5	unconfined and confined acuifers application of groundwater	
	flow equation in steady one-dimensional groundwater flow	
	problems, application of groundwater flow equation in unsteady	
	one-dimensional groundwater flow problems, potential theory	
	and flow nets, two-dimensional steady groundwater flow	
6	Hydraulics of groundwater flow in unconfined aquifer well:	
	hydraulics of groundwater steady flow in aquifer well,	
	hydraulics of groundwater unsteady flow in aquifer well,	
	pumping-out test, flow near boundaries, image well method	
7	Hydraulics of groundwater flow in confined aquifer well:	
	hydraulics of groundwater steady flow in aquifer well,	
0	hydraulics of groundwater unsteady flow in aquifer well,	
0	aguation Cooper Jacob method, recovery method, hydraulics of	
	groundwater unsteady flow in leaky aquifer well, multiple well	
	systems, partially penetrating wells	
9	Groundwater pollution: natural quality of groundwater, salinity	
	of groundwater and its sources, physical, chemical and	
	biological characteristics of groundwater, municipal, industrial	
	and agricultural irrigation sources of groundwater pollution,	
10	Groundwater pollution: solved and dissolved pollutants of	
	groundwater, light non-aqueous phase liquids LNAPLs and non-	
	aqueous phase liquids DNAPLs, methods for attenuation and	
11	remediation of groundwater pollution	
11	Analysis of groundwater pollutants analytical solution for	
	advection-dispersion equation	
12	Remediation of groundwater pollution: monitoring quality and	
12	quantity of groundwater, methods for remediation of aquifers	
	with emphasis on conventional pump and treatment method	
13	Saline water intrusion: types of water salinity problems in	
	aquifers, island and coastal aquifers, Ghyben-Herzberg relation	
	for estimation of fresh-saline waters interface, effect of well in	
	form of fresh-saline waters interface (Strack relation)	
14	Saline water intrusion: upconing of fresh-saline waters interface	
	due to well pompage, equation of fresh-saline waters interface	
	in oceanic island aquifers, control of saline water intrusion	

15	Numerical modelling of groundwater flow: various numerical models for solution of flow and solute transport equations, finite-difference method for solution of flow in steady and unsteady conditions
16	Numerical modelling of groundwater flow: finite-difference method for solution of solute transport equation, introduction on MODFLOW and MT3DMS softwares, their related packages and applications

EVALUATION PROCEDURES AND GRADING CRITERIA

Assignments & reports (attendance required in laboratory and field visits)	10 points
Mid-Term Exam	4 points
Final Exam	<u>6 points</u>
Total Points	20 points

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

ADVANCED HYDROLOGY

BASIC INFORMATION Course prefix, title and semester: Advanced hydrology Number of credits: 3

COURSE PREREQUISITES:

COURSE CO-REQUISITES:

TEACHERS:

Person in charge: Asst. Prof. Shervin Jamshidi **Office location**: Department of Civil Engineering and Transportation **Phone Number:** +98 (31) 37932426 **Email Address:** sh.jamshidi@eng.ui.ac.ir

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	-

COURSE OBJECTIVES

Students are expected to:

- \checkmark become familiar with the hydrological equations and factors.
- \checkmark become familiar with the statistical hydrology and calculations
- \checkmark become familiar with the engineering approaches on evaluating runoffs

REQUIRED STUDENT RESOURCES

Textbooks and References:

 \checkmark Handbook of engineering hydrology: Environmental hydrology and water management, Saeid Eslamian (2014)

✓ Hydrology and Hydroclimatology: Principles and applications, Mohammad Karamouz (2013)

✓ Applied Hydrology, Ven Chow (1988)

Web links: -

Computer Software: -

COURSE SCHEDULE/OUTLINE/CALENDAR OF EVENTS

Week 16	Торіс	Reading /Assignment
1	Hydrological cycles	-
2	Watershed specifications	-
3	Hydrometry and monitoring network	-
4	Precipitation (intensity, frequency)	HW1
5	Losses (infiltration, interception and impoundments)	HW2
6	Evaporation and Evapotranspiration	HW3
7	Hydrograph and runoff estimation (SCS method)	HW4
8	Mid-term	-
9	Unit hydrograph and synthetic unit hydrograph	HW5
10	Intense unit hydrographs (IUHs)	HW6
11	Flood routing and Muskingum method	HW7
12	Statistical hydrology	-
13	Statistical hydrology/2	HW8
14	Hydrological design criteria (PMP, PMF)	-
15	Drought and time series	-
16	Final Exam	-

EVALUATION PROCEDURES AND GRADING CRITERIA

HWs (20%), Mid-term (30%), Final exam (50%)

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

SEMINAR AND RESEARCH METHODS

BASIC INFORMATION Course prefix, title and semester: Seminar and research methods Number of credits: 2

COURSE PREREQUISITES:

COURSE CO-REQUISITES:

TEACHERS:

Person in charge: Asst. Prof. Shervin Jamshidi **Office location**: Department of Civil Engineering and Transportation **Phone Number:** +98 (31) 37932426 **Email Address:** sh.jamshidi@eng.ui.ac.ir

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
2 h	-	-	-

COURSE OBJECTIVES

Students are expected to:

- \checkmark become familiar with the scientific searching and indexing.
- \checkmark become familiar with the methods of presentation and scientific speech.
- \checkmark become familiar with the principles of writing research proposals and thesis.

REQUIRED STUDENT RESOURCES

Textbooks and References: www.clarivate.com www.scimagojr.com

Web links: -

Computer Software: -

Week 16	Торіс	Reading /Assignment
1	Definitions	-
2	Introducing research steps	HW1
3	Types of publications and research outcomes	-
4	Types of references and indexing	-
5	Indices for evaluation of research	-
6	Keys to searching and literature review	-
7	Keys to develop an introduction	HW2
8	Types of material and methods (in Engineering)	HW3
9	Keys to prepare scientific results	HW4
10	Keys to develop discussion, abstract or	HW5
	conclusions	
11	Keys to prepare a presentation	HW6
12	Reviewing process and keys to prepare	-
	responses	
13	Seminar by students	-
14	Seminar by students	-
15	Seminar by students	-
16	Presenting proposals	-

COURSE SCHEDULE/OUTLINE/CALENDAR OF EVENTS

EVALUATION PROCEDURES AND GRADING CRITERIA

HWs (30%), Seminar (40%), Proposal (30%)

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

ADVANCED OPEN CHANNEL HYDRAULICS

<u>BASIC INFORMATION</u> Place in Curriculum, title and semester: Elective, Advanced Open Channel Hydraulics, Q2

Number of credits: 2

<u>COURSE PREREQUISITES:</u> Fluid Mechanics, Open Channel Hydraulics

COURSE CO-REQUISITES:

-

TEACHERS:

The person in charge: Dr. Ahmad Shanehsazzadeh Office location: Room no. 1, Building no. 2, Faculty of Civil Engineering and Transportation, University of Isfahan, Azadi Squ., Isfahan, Iran Phone Number: +98 (31) 37935328 Homepage: http://eng.ui.ac.ir/~a.shanehsazzadeh Email Address: <u>a.shanehsazzadeh@eng.ui.ac.ir</u>

Other instructors:

NA

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

Flow in open channel is part of fluid mechanics and the knowledge is applied in many civil engineering practices including design of hydraulic structures, river engineering, culverts, coastal and ocean engineering,

By the end of the course students are expected to:

- \checkmark Understand the definition, physics and behavior of flow in open channels
- \checkmark Apply the fluid mechanics basic laws in the open channels
- \checkmark Solve the problems of steady and unsteady flows in open channels
- ✓ Calculate the water surface profile of gradually varied flow and flood routing
- \checkmark Get familiar with the physics of various phenomena in open channels and the method of solutions

 \checkmark Know the principles of numerical modeling the open channel flow and work with the related software.

References:

- 1. Open Channel Flow, Henderson.
- 2. Open Channel Hydraulics, Ven Te Chow
- 3. Open-Channel Hydraulics, Richard H. French

Web links:

COURSE SCHEDULE/OUTLINE/CALENDAR OF EVENTS

Week	Торіс	
1	Introduction	
2	Review the concepts, definitions and basic principles	
3	Application of fluid mechanics principles in open channel	
	flow	
4	Application of Specific energy and specific force	
5	Steady flow- uniform and gradually varied flow	
6	Spatially varied flow-inflow	
7	Spatially varied flow-outflow	
8	Unsteady flow- introduction	
9	Unsteady flow- Saint Venant equations	
10	Computation of Saint Venant equations	
11	Rapidly unsteady flow, surges and waves	
12	Rapidly unsteady flow-dam break	
13	Sediment transport- modes of transport	
14	Estimate of sediment rate	
15	Student research presentations: water hummer, transitions,	
	scouring, spillways, stilling basins, wave theories	
16	Open channel flow software (HEC-RAS)- student project	

EVALUATION PROCEDURES AND GRADING CRITERIA

Assignments	10 points
Mid-Term Exam	15 points
Student research work	10 points
Software projects	15 points
<u>Final Exam</u>	<u>50 points</u>
Total Points	100 points

ECONOMICS OF WATER RESOURCES PROJECTS

BASIC INFORMATION Course prefix, title and semester: Economics of water resources projects Number of credits: 3

COURSE PREREQUISITES:

COURSE CO-REQUISITES:

TEACHERS:

Person in charge: Dr. Hamed Yazdian **Office location**: Department of Civil Engineering and Transportation **Phone Number:** +98 (31) 3793 5326 **Email Address: h.yazdian@eng.ui.ac.ir**

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

The purpose of this course is to acquaint students with the basic concepts of water resources economics, as well as economic evaluation of projects and water valuation in different sectors of consumption.

REQUIRED STUDENT RESOURCES

Textbooks and References:

1- Soltani Gholamreza (2018) ,Economics of Water Resources

2- Ostrom, E. (2005). Understanding Institutional Diversity. Princton University Press, UK.

3- Instructions for Economic Studies of Water Resources Development Projects - Journal 285 of the Management and Planning Organization of Iran

4- Ronald C. Griffin, (2005), Water Resource Economics: The Analysis of Scarcity, Policies, and Projects (MIT Press)

Web links:

-

Computer Software: COMFAR

COURSE SCHEDULE/OUTLINE/CALENDAR OF EVENTS

Week	Торіс	Reading
16		/Assignment
1,2	Familiarity with the concepts of water resources economics	-
3,4	Fundamentals of Engineering Economy	
5	Application of engineering economy in water resources projects	
6	Justification of water resources projects	
7,8	Basics of water valuation	
9	Valuation of domestic water	
10	Agricultural water valuation	
11	Industrial water valuation	
12,13	Calculate the cost of water	
14	Indicators of economic evaluation of water resources development	
	projects	
15	Unconventional water sources	
16	The concept of virtual water	

EVALUATION PROCEDURES AND GRADING CRITERIA

HWs (50%), Midterm (0%), Final (50%)

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, which need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct has occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

ENVIRONMENTAL IMPACT ASSESMENT

BASIC INFORMATION

Place in Curriculum, title and semester: Optional, Environmental Impact assessment, first or second semester (for M.Sc. and Ph.D.)

Number of credits: 3

COURSE PREREQUISITES: without prerequisites

COURSE CO-REQUISITES: -

TEACHERS:

The person in charge: Dr. Ali Dehnavi Course language: currently in Persian Office location: Civil Engineering department, Faculty of Civil Engineering & Transportation, University of Isfahan, Hezar-Jerib av., Isfahan, Iran Phone Number: +98 (31) 37934226 Homepage: http://eng.ui.ac.ir/~a.dehnavi Email Address: <u>a.dehnavi@eng.ui.ac.ir</u>, <u>dehnavi115@yahoo.com</u>

Other instructors: NA

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

List the objectives, goals, aims, and/or outcomes for the course.

Students are expected to:

 \checkmark Understand the various dimensions of the environment, environmental challenges and the need for environmental assessment as a management tool

✓ Be aware of the legislation, regulations and requirements of environmental assessment.

 \checkmark Learning the effects and environmental consequences of civil and construction projects on the environment.

 \checkmark Familiarize with the methods of projects environmental assessment

REQUIRED STUDENT RESOURCES

List books, lab manuals, technology, supplies, calculators, and any other materials required or recommended for the student to complete the course requirements.

Textbooks:

In English:

1. Anji Reddy Mareddy, "Environmental Impact Assessment: Theory and Practice", 1st Edition, Butterworth-Heinemann publisher, 2017.

2. John Glasson, Riki Therivi and Andrew Chadwick, "Introduction to Environmental Impact Assessment (Natural and Built Environment Series), 4th Edition, Routledge publisher, 2012.

In Persian:

1. Masoud Monavariri, "Environmental Impact Assessment", 2nd Edition, Mitra publisher, 2008.

2. Mahmoud Shariat and Masoud Monavariri, "Introduction to environmental impact assessment", published by DOE, 1997.

References in Persian:

DOE, Human's Environmental Laws, Regulation Criteria and Standards, Department of Environment (DOE), 2012.
PBO, Guide to Strategic Environmental Assessment for Civil Projects, Criterion No. 690, Planning and Budget Organization (PBO), 2015.

7. DOE, Environmental Impact Assessment of Civil Projects, Department of Environment (DOE), Deputy of Education and Research, 2008.

Web links: <u>http://research.wrm.ir</u> <u>http://waterstandard.wrm.ir</u>

COURSE SCHEDULE/OUTLINE/CALENDAR OF EVENTS

Provide students with a tentative projected outline of significant events that occur throughout the semester, including assignments, projects, examinations, field trips, guest speakers, etc. *For example:*

Week	Торіс
1	Introduction to the lesson and its general presentation
2	General and the need for environmental protection (with
	emphasis on water resources as a case study)
3	Development and sustainable development
4	Systems thinking approach for development (with emphasis on
	water resources as a case study)
5	Introduction to Ecosystems
6	Water Quality indicators
7	Air and Soil quality indicators
8	Acquaintance to important strategies of water resources
9	development projects: problems and solutions (by emphasizing
	important aspects in EIA)
10	Environmental Economics and Environmental Auditing
11	Presenting the generals of EIA, history in the world and Iran
12	Sections of the EIA report
13	Dresentation of EIA methods
14	riesentation of EIA methods
15	Presenting student projects
16	Presenting student projects

EVALUATION PROCEDURES AND GRADING CRITERIA

Indicate how students are evaluated, including tests, quizzes, papers, assignments, the weight of the assignments, etc. Clearly identify how the course grades are determined.

Total Semester exercises	10 points
EIA project	25 points
Final Exam	65 points
Total Points	100 points

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance

is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

FLOOD and DROUGHT MANAGEMENT

<u>BASIC INFORMATION</u> Course prefix, title and semester: Flood and Draught management

Number of credits: 3

COURSE PREREQUISITES:

COURSE CO-REQUISITES:

TEACHERS:

Person in charge: Dr. Ramtin Moeini and Dr. Mohammadali Alijanian **Office location**: Department of Civil Engineering and Transportation **Phone Number**: +98 (31) 3793 5293 and +98(31)37935317 **Email Address: r.moeini@eng.ui.ac.ir and m.alijanian@eng.ui.ac.ir**

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	-

COURSE OBJECTIVES

Familiarities with the concepts, principles, and governing laws on flood and drought are expected. Furthermore, identifying different methods of flood and drought controlling and managing will be considered in this course.

REQUIRED STUDENT RESOURCES

Textbooks and References:

5- Duivendijk, J.V. (2005). Manual on Planning of Structural Approaches to Flood Management, International Commission on Irrigation and Drainage (ICID).

6- Mishra, A., Singh, V., (2011). Drought Modeling- A review, Journal of Hydrology, 403, 157–175.

7- Wilhite, D., (1993). Drought Assessment, Management, and Planning: Theory and Case Studies, Springer.

Web links:

Computer Software: MTLAB, R, MINITAB, EASYFIT, HECs

COURSE SCHEDULE/OUTLINE/CALENDAR OF EVENTS

Week 16	Торіс	Reading /Assignment
_		
1	Introduction of the course; its application, generalities, and principles	-
	of flood management (presented by Dr. Moeini)	
2	Types of floods, flood damages, flood management approaches	HW 1
	(presented by Dr. Moeini)	
3	Hydrology and hydraulics of floodplain, precipitation model, runoff,	HW 2
	flood trend finding, flood flood histogram (presented by Dr. Moeini)	
4	Reservoir operation management in flood conditions (presented by	HW 3
	Dr. Moeini)	
5	Structural methods of flood control (reservoir, pit, sealing wall) -	HW 4
	(Presented by Dr. Moeini)	
6	Non-structural methods of flood control (flood warning system) -	HW 5
	(Presented by Dr. Moeini)	
7	Crisis Management, Student Seminars - (Presented by Dr. Moeini)	-
8	Definitions of Drought, Types of Droughts, Importance of Drought	-
	Survey - Causes and Effects - (Presented by Dr. Alijanian)	
9	Drought Characteristics - Drought Parameters and Indices, Univariate	HW6
	and Multivariate Indices (Presented by Dr. Alijanian)	
10	Spatial analysis and zoning of drought - Models of regional drought	HW7
	analysis - Temporal analysis of drought (Presented by Dr. Alijanian)	
11	Risk analysis and uncertainty (basics and definitions of risk,	HW8
	hydrological and economic uncertainties) - (Presented by Dr.	
	Alijanian)	
12	Probability Drought Analysis (Return and Frequency Analysis	HW9
	Period, Intensity-Area-Frequency Models) - (Presented by Dr.	
	Alijanian)	
13-14	Probabilistic Drought Analysis (Copula Multivariate Drought	HW10
1 7 1 -	Analysis) - (Presented by Dr. Alijanian)	
15-16	Drought Forecasting	HW11

EVALUATION PROCEDURES AND GRADING CRITERIA

HWs (30%), Midterm (30%), Final (40%)

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, which need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct has occurred in an instructional context. Students found guilty of academic misconduct are

subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

WATER RESOURCE SYSTEM ANALYSIS-II

BASIC INFORMATION Course prefix, title and semester: Water resource system analysis-II Number of credits: 3

COURSE PREREQUISITES:

COURSE CO-REQUISITES:

-

TEACHERS:

Person in charge:-Office location: Department of Civil Engineering and Transportation **Phone Number:**+98 (31) 3793----**Email Address:-----**

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

Students are expected to:

 \checkmark become familiar with the methods of modeling, analysis and evaluation of various issues in the field of water resources engineering and management especially hydropower generation problems and swarm intelligent methods

REQUIRED STUDENT RESOURCES

Textbooks and References:

1. D.P. Loucks, E. van Beek, Water Resource Systems Planning and Management, Springer International Publishing, 2017

2. D. P. Loucks, J.R. Stedinger, D.A. Haith, Water resource systems planning and analysis, Englewood Cliffs, N.J. : Prentice-Hall, 1981

3. W.A. Hall, J.A. Darcup, J.A. Water resource system engineering, McGraw-Hill, NewYork, 1970.

4. L.W. Mays, Y.K. Tung, Hydro systems engineering and management, McGraw-Hill, NewYork, 2002

5. C. Revelle, Optimizing reservoir resources: Including a New Model for Reservoir Reliability, John Wiley & Sons, New York, 1999.

6. K.L. Du, M.N.S., Swamy, Neural Networks and Statistical Learning, Springer Science & Business Media, 2013.

7. D. Simon, Evolutionary Optimization Algorithms, John Wiley & Sons, NewYork, 2013.

8. J. Arora, Introduction to optimum Design, 4th Edition, Elsevier Science, 2017.

9. A.O. Esogbue, Dynamic programming for optimal water resources systems analysis, Prentice Hall, 1989. 10. J. Figueria, S. Greco, M. Ehrgott, M., Multiple Criteria Decision analysis, state of the art surveys, international series in operation research & management science, Frederick S. Hillier, Series Editor, Stanford University, 2016.

11. L.H. Tsoukalas, R.E. Uhrig, Fuzzy and neural approaches in engineering, 1st edition, John Wiley & Sons, NewYork, 1997.

12. G. J. Klir, Folger, T.A. Fuzzy sets, uncertainty and information, 1st edition, Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1988.

13. J. Figueria, S. Greco, M. Ehrgott, Multiple Criteria Decision analysis, state of the art surveys, International series in operation research & management science, Frederick S. Hillier, Series Editor, Stanford University, 2016.

Web links: -Computer Software: Matlab, GAMS, MODSIM, WEAP

COURSE SCHEDULE/OUTLINE/CALENDAR OF EVENTS

Week	Торіс	Reading /Assignment
16		
1	Presenting the syllables and policy regarding class	-
	absence, Generality (basic concepts of water	
	resources planning)	
2	Introduction to different methods of simulation and	-
	optimization	
3	Introduction to artificial neural networks (ANN)	-
4	Bayesian network, application of artificial neural	-
	networks for modeling water engineering problems	
	(including reservoir rule curve determination)	
5	Introduction to genetic algorithm (GA)	-
6	Introduction to ant colony optimization algorithm	-
7	Generalities and introduction of other meta-	-
	heuristic algorithms (including particle swarm	
	optimization (PSO) algorithm, simulated annealing,	
	etc.), application of meta-heuristic algorithms in	
	solving water resources problems (including	
	reservoirs operation problem)	
8	Introduction to deterministic modeling in water	-
	resources systems, Introduction to dam reservoir,	
	different parts, objectives and structure	
9	Reservoir design methods (simple methods, mass	-
	curve, consecutive peaks, simulation and	
	optimization), determination of dead capacity in	
	the reservoir, methods of calculation and	
	determination of flood control capacity	
10	Introduction to hydropower systems, modeling,	-
	design and operation of hydropower systems	

11	Stochastic modeling in water resources, stochastic	-
	dynamic programming (SDP)	
12	Introduction to Fuzzy Logic	-
13	Multi-criteria decision making methods (AHP,	-
	ELECTRE, TOPSIS)	
14	Introduction to multi-purpose multi-reservoir	-
	system	
15	Reservoir rule curves determination (standard	-
	operation policy (SOP), simulation, optimization)	
16	Primary familiarized related software such as	-
	GAMS, MODSIM, WEAP	

EVALUATION PROCEDURES AND GRADING CRITERIA

HWs (10%), Project (20%), Midterm (30%), Final (50%)

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTSWITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

URBAN WATER MANAGEMENT

BASIC INFORMATION Course prefix, title and semester: Urban water management Number of credits: 3

COURSE PREREQUISITES:

COURSE CO-REQUISITES:

-

TEACHERS:

Person in charge:-Office location: Department of Civil Engineering and Transportation **Phone Number:**+98 (31) 3793----**Email Address:-----**

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

Students are expected to:

- \checkmark become familiar with the design of water distribution network and related software.
- \checkmark become familiar with the methodology of urban water management

REQUIRED STUDENT RESOURCES

Textbooks and References:

1. A. K. Sharma, Design of Water Supply Pipe Networks, Wiley-Interscience, 2008.

B. S.N. Raju, Water supply and wastewater engineering, New Dehli Publisher: Tata McGraw-Hill, 2000.
B.E. Larock, R.W. Jeppson and G.Z. Watters, Hydraulics of pipeline systems- CRC Press, 1999.

4. D.D. Baumann, J.J. Boland, W.M. Hanemann, Urban water Demand management and planning,

McGraw-Hill, NewYork, 1997. 5. A. Chiplunkar, K. Seetharam, C.K. Tan, K.Y. Lee, Good practice in urban water management, National university of Singapore, 2012.

6. H.H.G. Saveniye, Vander Zaag, Demand Management and water as an economic good, IHE Netherlands, 2001.

7. D.V. walski, D. Chose, D. Savis, W.M., Greyman, S. Beckwith, E. Koelle, Advance water distribution modeling and management, Heasted Methods, 2000.

Web links: -

Computer Software: EPANET, WaterCAD, WaterGEMS

COURSE SCHEDULE/OUTLINE/CALENDAR OF EVENTS

Week	Торіс	Reading /Assignment
1	Presenting the syllables and policy regarding class absence, fundamental concepts, generalities and principles of urban water management and planning	-
2	Investigation of water supply, transmission and distribution system	-
3	Became familiar with components of urban water supply and distribution systems (pipe, valve, pump, tank, reservoir)	-
4	A review of fluid mechanics concepts and generalities (continuity, momentum and energy equations)	-
5	Presenting different calculation methods for pressure flow	-
6	Simulation of urban water system (design period, population, consumption, peak coefficients, design discharge, velocity and pressure limitations)	-
7	The principles of designing and formulating branching and looped networks and solving methods (simple iterative, linear theory, Newton- Raphson, Hardy Cross)	-
8	Optimization of urban water system (objective function and constraints definition, methodology of solving)	-
9	Water use (consumption) management and analysis of urban water system	-
10	Water demand management and analysis of urban water system	-
11	Comprehensive management of urban water (leakage and water loss determination and management)	-
12	Comprehensive management of urban water (burst and background losses, physical and non physical losses, authorized and unauthorized consumption, unbilled authorized consumption)	-
13	Comprehensive management of urban water (district metered area (DMA), FAVAD theory)	-
14	National and international urban water management challenges	-

15	Reliability and risk analysis of water supply	-
	networks	
16	Primary familiarized design software such as	-
	EPANET, WaterCAD, SewrCAD, WaterGEMS,	
	SewerGEMS	

EVALUATION PROCEDURES AND GRADING CRITERIA

HWs (10%), Project (10%), Midterm (30%), Final (50%)

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTSWITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

WATER QUALITY MANAGEMENT

BASIC INFORMATION Course prefix, title and semester: Water quality management Number of credits: 3

COURSE PREREQUISITES:

COURSE CO-REQUISITES:

TEACHERS:

Person in charge: Asst. Prof. Shervin Jamshidi **Office location**: Department of Civil Engineering and Transportation **Phone Number:** +98 (31) 37932426 **Email Address:** sh.jamshidi@eng.ui.ac.ir

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	-

COURSE OBJECTIVES

Students are expected to:

- \checkmark become familiar with pollution and environmental protection policies.
- \checkmark become familiar with the types of emission sources.
- ✓ become familiar with the principles of advection-diffusion of pollutants
- \checkmark become familiar with the principles of surface water quality modeling
- \checkmark become familiar with the advances in water quality management

REQUIRED STUDENT RESOURCES

Textbooks and References:

 \checkmark Eckenfelder W.W., Hansard W.N. (2004), Understanding water quality management-Technology and applications, DEStech publications

✓ Chapra S.C. (1997), Surface Water Quality Modeling, McGraw Hill.

✓ Thomann R.V. and Mueller J.A. (1987), Principals of Surface Water Quality Modeling and Control, Pearson

Web links: -

Computer Software: -

COURSE SCHEDULE/OUTLINE/CALENDAR OF EVENTS

Week 16	Торіс	Reading /Assignment
1	Definitions	-
2	Water quality parameters	-
3	Standards of water quality monitoring/TMDLs	HW1
4	Types of water resources and modeling	-
5	Types of pollutants and emission sources	-
6	Lake and reservoir quality management (Eutrophication)	-
7	Lake and reservoir quality management (Thermal	HW2
	stratification)	
8	Mid-term	-
9	Groundwater quality management and indices	-
10	Kinetics and equations of river quality modeling	-
11	Mass balance and advection-diffusion equations	HW3
12	River quality management and modeling (QUAL2K)	-
13	Toxics and bio-indicators	-
14	Advances in water quality management	-
15	Water quality trading	HW4
16	Final Exam	-

EVALUATION PROCEDURES AND GRADING CRITERIA

HWs (10%), Mid-term (30%), Project (20%), Final exam (40%)

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES