

University of Isfahan

Course Outline Structural Engineering Graduate Programme

Department of Civil Engineering
Faculty of Civil and Transportation Engineering
University of Isfahan
Isfahan, Iran
www.ui.ac.ir

January 2020

Table 1. General courses for Structural Engineering graduate programme.

No.	Units	Name	
3016478	3	Advanced Concrete Technology	
3016451	3	Advanced Design of Steel Structures	
3016219	3	Advanced engineering mathematics	
3016359	3	Advanced Engineering Mathematics II	
3016385	3	Advanced Groundwater	
3016327	3	Advanced hydraulics	
3016441	3	Advanced hydrogeology	
3016328	3	Advanced hydrology	
3016474	3	Advanced statistics	
3016344	2	Advanced Statistics and Probability	
3016455	3	Advanced Structural Dynamics	
3016470	3	Advanced Topics in Elasticity	
3016262	2	Advanced Water and Wastewater	
3016480	3	Advanced Water and Wastewater Engineering	
3016466	3	Analysis and Design of Adobe Structures	
3016372	3	Blast Theory and Design of Structures	
3016363	3	Boundary element	
3016464	3	Boundary Element Method	
3016452	3	Bridge Design	
3016442	3	Climate change and global warming	
3016378	6	Comprehensive exam	
3016347	3	Computational hydraulics	
3016469	3	Computational Plasticity	
3016449	3	Construction of Dams and Hydraulic Structures	
3016448	3	Design of Hydraulic Structure Elements	
3016453	3	Design of Industrial Structures	
3016357	3	Design of shell and membrane	
3016461	3	Destruction of Buildings	
3016098	3	Earth Dams	
3016352	3	Economics of water resources projects	
3016431	3	Environmental impact assessment of civil engineering projects	
3016265	3	Erosion and sediment engineering	

3016439	3	Erosion and watershed management
3016456	3	Experimental Analysis of Structures and Laboratory
3016361	3	Finite element II
3016375	3	Fracture Mechanics
3016481	3	Fundamentals of Coastal Engineering
3016437	3	Groundwater flow and pollution modeling
3016124	3	Hydraulic Sturctures Design
3016440	3	Hydro-climatology
3016331	3	Hydrodynamics
3016389	3	Hydro-informatics
3016341	3	Hydrologic modeling
3016444	3	Hydropower Systems
3016468	3	Lifelines earthquake engineering
3016446	3	Management of flood and drought
3016445	3	Management of groundwater and aquifers
3016369	3	Mechanics of Composite Materials
3016425	3	Meteorology and climate change
3016471	3	Micro and Nano-Mechanics of Solids
3016377	3	Micro-Mechanics
3016362	3	Nonlinear analysis of structures
3016368	3	Nonlinear Finite Element
3016364	3	Nonlinear Structural Programming
3016373	3	Nuclear power plants
3016391	3	Numerical methods in water engineering
3016467	3	Pathology and Restoration Technology of Traditional Structures
3016348	3	Perfromance Based Design of Structures
3016477	3	Prestressed concrete
3016465	3	Random Vibrations
3016367	3	Reliability Analysis of Structures
3016473	1	Research methods
3016399	3	Risk analysis, uncertainties, and reliability
3016214	3	River Engineering
3016433	3	RS and GIS application in civil engineering (water resources) & laboratory
-		

3016458	3	Seismic Design of Structures
3016459	3	Seismic Rehabilitation of Existing Structures
3016395	3	Soft Computation
3016479	3	Special Topics in Civil Engineering
3016374	3	Special Topics in Mechanics of Materials
3016419	3	Stochastic hydrology
3016424	3	Stochastic processes in hydrology
3016366	3	Structural Control
3016360	3	Structural Dynamics II
3016460	3	Structural health monitoring
3016432	3	Surface water flow and quality modeling
3016370	3	Tall Buildings
3016450	3	Theory of Elasticity
3016462	3	Theory of Plates
3016463	3	Theory of Shells
3016365	3	Theory of wave propagation
3016371	3	Underground structures
3016443	3	Urban water management
3016447	3	Water quality management
3016475	3	Water resource identification and extraction
3016343	2	Water resource recognition and production
3016330	3	Water resources system analysis I
3016476	3	Water resources system analysis II
3016376	3	Wind Engineering

COURSE TITLE: ADVANCED DESIGN OF CONCRETE STRUCTURES

BASIC INFORMATION

Course prefix, title and semester: Advanced Design of Concrete Structures, Optional.

Number of credits: 3.

COURSE PREREQUISITES:

The necessary background is:

• Reinforced concrete design 2

COURSE CO-REQUISITES:

TEACHERS:

Person in charge: Office location: Phone Number: Email Address Others:

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

Students are expected to:

- ✓ Be familiar with advanced concrete constructional systems and technology
- ✓ Design of specific concrete structures

REQUIRED STUDENT RESOURCES

Textbooks:

- 1- C. K. Wang, C. G. Salmon, J. A. Pincheira, "Reinforced Concrete Design", 7th edition, Wiley; 2006.
- 2- T. T. C. Hsu, "Unified Theory of Reinforced Concrete", 2nd edition, CRC-Press; 2010.
- 3- J. C. McCormac and R. H. Brown, "Design of Reinforced Concrete", 9 th edition, Wiley; 2013.

References:

Web links:

Computer Software:

Week (16)	Торіс
1	Introduction to advanced design of concrete structures
2	Analyze and design of precast concrete
3	Introductory to analyses and design of pre-stressed concrete beam
4	Analyze and design a grid floor system
5	Analyze and design of high-strength concrete
6	Analyze and design a flat slab system
7	Analyze and design a grid floor system
8	Analyze and design of concrete shell structures
9	Analyze and design of underground and elevated water storage tank
10	Analyze and design of chimneys
11	Analyze and design of bunkers and silos
12	Introductory to analyze and design of bridges
13	Ductile detailing of frames for seismic forces
14	Deflection of reinforced concrete beams and slabs
15	Estimation of crack width in reinforced concrete members

Assignments 20% of final grade
Mid-Term Exam 40% of final grade
Final Exam 40% of final grade

100%

ATTENDANCE STATEMENT

This is according to the UI's general policies.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible.

APPROVED ACADEMIC HONESTY STATEMENT

The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

COURSE TITLE: ADVANCED ENGINEERING MATHEMATICS

BASIC INFORMATION

Course prefix, title and semester: Advanced Engineering Mathematics, compulsory.

Number of credits: 3.

COURSE PREREQUISITES:

• None

COURSE CO-REQUISITES:

• None

TEACHERS:

Person in charge:
Office location:
Phone Number:
Email Address:
Others:

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

The preparation of this course has been inspired by the following objectives:

- Advanced topics in engineering and applied mathematics
- Topics in differential equations, complex numbers theory, tensors and functional analysis

REQUIRED STUDENT RESOURCES

Textbooks:

- 1- P. V. O'Neil, "Advanced Engineering Mathematics", 7th edition, Cengage-Engineering; 2011.
- 2- D. G. Zill and W. S. Wright, "Advanced Engineering Mathematics", 4th edition, Jones & Bartlett Pub; 2009.
- 3- M. Greenberg, "Advanced Engineering Mathematics", 2nd edition, Prentice Hall; 1998.
- 4- E. Kreyszig, "Advanced Engineering Mathematics", 10th edition, Wiley, New York, 2011.
- 5- Hildebrand, FB. Methods of Applied Mathematics, Dover Publications, 1992.

References:

Web links:

Computer Software:

Week (16)	Торіс
1	course introduction, objectives, references, assignments; preliminary definitions; Fourier series; Euler's formula
2	Fourier series convergence theorem; periodic functions of arbitrary period; Fourier series for even and odd functions; half-range expansion; solution of differential equations with Fourier series
3	approximation with trigonometric polynomials; Gibb's phenomenon; Sturm-Liouville problems; orthogonality of functions; Fourier-Bessel and Fourier-Legendre series
4	Fourier integral; Fourier sine and cosine integral; Fourier transform; Fourier sine and cosine transforms; Fourier transform of derivatives of a function
5	complex Fourier integral; complex Fourier transform; introduction to partial differential equations; definitions for linear, non-linear, homogenous, inhomogeneous differential equations
6	wave equation; separation of variables method; D'Alembert's method; heat transfer equation; Dirichlet and Neumann problems; solution of heat transfer problems with Fourier series
7	solution of heat transfer problems with Fourier integral; solution of membrane problem (2D wave equation); 2D Fourier series
8	mid-term exam; complex numbers in Cartesian and polar coordinates; basic algebra on complex

	numbers; integer powers of a complex number; integer roots of a complex number
9	limits and derivatives of complex functions; analytic function; Cauchy-Riemann equations; exponential function; trigonometric functions; logarithm and general power
10	an introduction to complex integration; indefinite integration; Cauchy integral theorem; derivatives of analytic functions
11	series and sequences; convergence tests; power series; convergence of power series; functions given by power series
12	Taylor series; Maclaurin series; Taylor series convergence; functions given by Taylor series; uniform convergence
13	residue theorem; residue integration method; residue integration of real integrals; residue integration of improper integrals
14	conformal mapping; properties of conformal mappings in harmonic equations; using conformal mapping in solution of partial differential equations
15	an introduction to tensor calculus; properties of tensors; indicial notation; Cartesian tensors; tensor operations
16	an introduction to functional analysis; Euler-Lagrange equation; application of functional analysis in numerical methods such as Rayligh-Ritz

Assignments 10% of final grade
Mid-Term Exam 40% of final grade
Final Exam 50% of final grade

100%

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

COURSE TITLE: ADVANCED DESIGN OF STEEL STRUCTURES

BASIC INFORMATION

Course prefix, title and semester: Optional, Advanced Design of Steel Structures, Q1 or Q2

Number of credits: 3

COURSE PREREQUISITES AND CO-REQUISITES: -

TEACHERS: Dr Amoushahi

Person in charge: Dr Amoushahi

Office location: Department of Civil and Transportation Engineering, University of Isfahan, Hezar-Jerib av., Isfahan, Iran

Phone Number: +98 (31) 37935285 Email Address: h.amoushahi@eng.ui.ac.ir

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

In this lesson, students learn the basics of designing steel structures such as the principles of stability of compression components, bending and plates.

- ✓ The principles of stability of compressive components in elastic and inelastic buckling, the effect of residual stresses, the design of the compressive members, the effective length of the compression components, the study of the basics of the rules and codes
- ✓ Torsion in beams, Torsion in different sections and profiles
- ✓ Torsional buckling, Torsional-bending buckling, statues of columns design
- ✓ Plastic analysis
- ✓ Lateral-torsional buckling, the basis of the rules of the codes
- Principles of stability of plates in elastic and inelastic buckling, examination of the basics of the rules of the codes
- ✓ Local buckling of steel sections, shear buckling, rules of regulations
- ✓ Beam-column design, methods for analyzing the stability of members in different axial load conditions and lateral loads, examination of rules of regulations
- √ the design of columnar columns with variable cross-section
- ✓ Design and analysis of prequalified moment frame joints
- ✓ Design and attention to fatigue, member and joints design
- ✓ Reminder notes about industrial structures: heavy industrial halls, bunkers and silos, tanks stable high-pressure tanks

REQUIRED STUDENT RESOURCES

Textbooks:

- 1. Azhari M., Amoushahi H., Mirghaderi R., Design of Steel Structures, Vol.5, 16th edition, Arkan Danesh Pub., 2016.
- 2. Steel profiles tables, Stahl.

References:

- **3.** 1- C. G. Salmon, J. E. Johnson and F. Malhas, Steel Structures: Design and Behavior, 5th edition, Prentice Hall; 2013
- **4.** 2- L. F. Geschwindner, Unified Design of Steel Structures, 2nd edition, Wiley; 2011.
- **5.** 3- N. S. Trahair, M. A. Bradford, D. Nethercot and L. Gardner The Behaviour and Design of Steel Structures to EC3, 4th edition, Taylor & Francis; 2008.
- **6.** 4- E. H. Gaylord, C. N. Gaylord and J. E. Stallmeyer, Design of Steel Structures, 3rd edition, McGraw-Hill Companies; 1991.

Week	Topic
16	
1	Principle of design of steel structures
2	The principles of stability of compressive components in elastic and inelastic buckling
3	The effect of residual stresses, the design of the compressive members
4	Design of compressive members
5	Torsion in beams, Torsion in different sections and profiles
6	Torsional buckling, Torsional-bending buckling, statues of columns design
7	Plastic analysis
8	Lateral-torsional buckling
9	Lateral-torsional buckling
10	Local buckling of steel sections, shear buckling, rules of regulations
11	Midterm exam
12	Methods for analyzing the stability of members in different axial load conditions and lateral loads
13	Beam-column design
14	Design and analysis of prequalified moment frame joints
15	Design and attention to fatigue, member and joints design
16	Projects presentation

Assignment 15% of final grade
Project 25% of final grade
Mid-Term Exam 30% of final grade
Final Exam 30% of final grade

100%

COURSE TITLE: COLD FORMED STEEL STRUCTURES

BASIC INFORMATION

Course prefix, title and semester: Cold formed steel structures, Optional.

Number of credits: 3.

COURSE PREREQUISITES:

The necessary background is available through the usual courses required of civil engineering undergraduates. These include:

- Static analysis of structures, including statically indeterminate structures and matrix formulation of analysis procedures
- Structural design
- Rigid-body dynamics
- Mathematics: ordinary differential equations, linear algebra

COURSE CO-REQUISITES:

TEACHERS:

Person in charge: Dr Mehran Zeynalian

Office location: Room 43, Bld 1, School of Civil Engineering and Transportation.

Phone Number: +983137935270

Email Address: m.zeynalian@eng.ui.ac.ir

Others:

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

Students are expected to:

- ✓ Be familiar with the construction methods of cold formed steel (CFS) structures
- ✓ Design cold formed steel structures including: structural members, connections, lateral bracing systems, and etc.
- ✓ Inspect the manufactured steel structures according to available codes and standards

REQUIRED STUDENT RESOURCES

Textbooks:

- 1. Yu, W.W. and R.A. LaBoube, Cold-Formed Steel Design. 2010: Wiley.
- 2. Hancock, G.J., D.S. Ellifritt, and T.M. Murray, Cold-Formed Steel Structures to the AISI Specification. 2001: Marcel Dekker Incorporated.
- 3. Ghersi, A., R. Landolfo, and F.M. Mazzolani, Design of Metallic Cold-Formed Thin-Walled Members. 2002: Spon Press

References:

AISI Standards, ASTM Standards

Web links:

Computer Software: CUFSM

Week (16)	Topic
1	Introduction, advantages and disadvantages of CFS structures
2	Construction styles of CFS buildings
3	Mechanical properties of CFS sections, residual stress, imperfections
4	Local buckling in CFS sections
5	Distortional and global buckling in CFS elements
6	Introducing available codes and standards on CFS structures worldwide; different approach to design CFS structures
7	Design of CFS Elements – Tension and compression
8	Design of CFS Elements – Bending
9	Design of CFS Elements – Shear
10	Design of CFS Elements – Torsion
11	Design of lateral resistant systems for CFS structures
12	Screwed connection design

13	Riveted connection design
14	Welded connection design
15	Technical issues of CFS structures (design and construction)
16	Introducing some available software related to CFS structures

Assignments 10% of final grade
Course project 20% of final grade
Mid-Term Exam 30% of final grade
Final Exam 40% of final grade

100%

ATTENDANCE STATEMENT

This is according to the UI's general policies.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible.

APPROVED ACADEMIC HONESTY STATEMENT

The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

COURSE TITLE: COMPUTATIONAL PLASTICITY

BASIC INFORMATION

Course prefix, title and semester: Computational plasticity, selective.

Number of credits: 3.

COURSE PREREQUISITES:

• None (for PhD students)

COURSE CO-REQUISITES:

• None (for PhD students)

TEACHERS:

Person in charge:
Office location:
Phone Number:
Email Address:
Others:

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

The preparation of this course has been inspired by the following objectives:

- An introduction to materially non-linear behavior of structures
- Using the finite element method in solution of elastoplastic problems of solid mechanics and structures

REQUIRED STUDENT RESOURCES

Textbooks:

- 1- W. F. Chen, D. J. Han, "Plasticity for Structural Engineers", Springer New York, 2011.
- 2- D. R. J. Owen and E. Hinton, "Finite Elements in Plasticity Theory and practice", Pineridge Press, Swansea, 1980.
- 3- M. A. Crisfield, "Non-linear Finite Element Analysis of Solids and structures", John Wiley & Sons, 2012.
- 4- J. Chakrabarty, "Theory of Plasticity", 3rd Edition, Butterworth-Heinemann; 2006.
- 5- J. C. Simo and T. Hughes, "Computational Inelasticity", Springer, 2000.

References:

Web links:

Computer Software:

Week (16)	Торіс
1	course introduction, objectives, references, assignments; preliminary definitions; governing equations; stiffness and softness methods; different causes for non-linear behavior of structures
2	Equilibrium equation; real and pseudo time; incremental analysis; Newton-Raphson method; Newton-Raphson method in solution of system of equations resulting from finite element method
3	introduction to theory of plasticity; literature; one-dimensional problems (loading, unloading, reloading, reverse loading); Bauschinger effect; incremental constitutive equations; hardening
4	Haigh-Westergaard stress space; yield function; yield functions independent of hydrostatic stress; Tresca yield function; von-Misses yield function
5	yield functions dependent on hydrostatic stress; Rankine yield function; Mohr-Coulomb yield function; Drucker-Prager yield function
6	constitutive equations for elastic materials; Hook's law in different forms; constitutive equations for non- linear elastic materials; internal energy density; complementary internal energy density
7	Drucker's stability postulate; stable and unstable materials; normality, convexity, existence and uniqueness of solution; incremental constitutive equations for elastic materials
8	introduction of perfect plastic materials; loading and unloading criteria; plastic potential; flow rule; associated flow rule for von-Mises, Tresca, Mohr-Coulomb

9	normality, convexity, existence and uniqueness of solution; example; incremental constitutive equations
	for perfect plastic materials; Prandtl-Reuss theory; Drucker-Prager theory; isotropic material
10	mid-term exam; work-hardening materials; loading surface; hardening rule; Drucker's stability postulate;
	normality, convexity, existence and uniqueness of solution; non-associated flow rule
11	effective stress; effective strain; incremental constitutive equations for work-hardening materials; loading
	criterion as a function of strain increment; example
12	introduction to computational plasticity; elastoplastic matrix for 2D and 3D problems; an overview of the
	finite element formulation
13	formulation of finite element method for elastoplastic problems; numerical methods for solution of non-
	linear systems of equations; convergence criteria
14	numerical implementation of elastoplastic constitutive equations; related algorithms; integration of
	constitutive equations
15	satisfaction of consistency condition in numerical implementation; step-by-step algorithm for numerical
	solution of plasticity problems
16	an introduction to programming the finite element method in linear and non-linear problems; discussion
	of the final project

Assignments	10% of final grade
Mid-Term Exam	30% of final grade
Final Exam	30% of final grade
Final project	30% of final grade

100%

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

COURSE TITLE: CONTINUUM MECHANICS

BASIC INFORMATION

Course prefix, title and semester: Continuum Mechanics

Number of credits: 3

COURSE PREREQUISITES:

Strength of Materials

COURSE CO-REQUISITES:

-

TEACHERS:

Person in charge: -

Office location: Department of Civil Engineering and Transportation

Phone Number: +98 (31) 3793----

Email Address: -----

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

Students are expected to:

- ✓ become familiar with the vector and tensor representation of the traction, stress, and strain; and to be able to work with tensor operations
- ✓ become familiar with the description of large deformation in solids, and various stress measures
- ✓ become familiar with the fundamental principles including energy conservation

REQUIRED STUDENT RESOURCES

Textbooks and References:

- 1. M. Lai, E. Krempl, D. Ruben, Introduction to Continumm Mechanics, 4th ed., Elsevier, 2010.
- 2. J. N. Reddy, An Introduction to Continuum Mechanics with Applications, Cambridge University Press, 2008.

Web links: -

Computer Software: ABAQUS

Week 16	Topic	Reading /Assignment
1	Vectors and tensors, summation convention	-
2	Tensors, basis vectors, transformation of the basis	-
	vectors, operation of a tensor on a vector, tensorial	

	operations	
3	Dot, cross and dyadic products of two vectors:	-
	examples, Kronecker delta, and permutation symbol	
4	Invariants of a tensor, Eigenvalues and Eigenvectors	-
5	Vector field, Divergence and curl in Cartesian and	-
	curvilinear coordinates	
6	Kinematics: reference and current configurations,	-
	Eulerian and Lagrangian descriptions, displacement,	
	velocity, acceleration	
7	Rate of change of a material element, Rate of	-
	deformation tensor, Spin tensor	
8	Infinitesimal deformation, strain, rotation,	-
	compatibility conditions	
9	Deformation gradient tensor, Polar decomposition,	-
	Left and right Cauchy-Green deformation tensor:	
	examples	
10	Right and left Cauchy deformation tensor: examples	-
11	Lagrangian and Eulerian strain measures for large	-
	deformation	
12	Area and volume elements, Continuity equation	-
13	Stress measures: Cauchy, first and second PK stress	-
	tensors	
14	Stress power, energy equation	-
15	Rate of heat flow, second law of thermodynamics	-
16	Elastic solids, Navier equations	-

HWs (10%), Project (10%), Midterm (30%), Final (50%)

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

COURSE TITLE: CONTROL OF STRUCTURES

BASIC INFORMATION

Course prefix, title and semester: Optional, Control of Structures, Q1 or Q2

Number of credits: 3

COURSE PREREQUISITES AND CO-REQUISITES: -

TEACHERS: Dr Hossein Tajmir Riahi

Person in charge: Dr Hossein Tajmir Riahi

Office location: Department of Civil and Transportation Engineering, University of Isfahan, Hezar-Jerib av.,

Isfahan, Iran

Phone Number: +98 (31) 37935307 Email Address: tajmir@eng.ui.ac.ir

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

In this course, students will learn theories governing a variety of structures control methods. This course also explains the principles governing various structures control systems including passive control, semi-active control, active control and hybrid control.

REQUIRED STUDENT RESOURCES

Textbooks and References:

- 1- I. Takewaki, "Building Control with Passive Dampers: Optimal Performance-based Design for Earthquakes", Wiley; 2009.
- 2- F. Y. Cheng, H. Jiang and K. Lou, "Smart Structures: Innovative Systems for Seismic Response Control", CRC Press; 2008.
- 3- S. Y. Chu, T. T. Soong and A. M. Reinhorn, "Active, Hybrid, and Semi-active Structural Control: A Design and Implementation Handbook", Wiley; 2005.
- 4- T. T. Soong and M.C. Costantinou, "Passive and Active Structural Vibration Control in Civil Engineering", Springer; 2002.

Web links: -

Computer Software: -

Week	Topic	Reading / Assignment
16		
1	General concepts of structural control including passive control, semi-active control, active control and hybrid control	-
2	Investigation of the performance of viscous dampers	-

Design of structures equipped with viscous dampers	-
Investigation of the performance of viscoelastic dampers	-
Design of structures equipped with viscoelastic dampers	-
Investigation of the performance of metallic dampers	-
Design of structures equipped with metallic dampers	-
Investigation of friction damper performance	-
Design of structures equipped with friction dampers	-
Study of passive control mechanisms such as TMD and TLD	-
Base-isolation systems	-
Design of structures equipped with base-isolation	-
Active control, classical control theory	-
Optimal classical control theory for various situations such as	-
Open-Loop, Closed-Loop, Open-Closed-Loop, numerical solution of	
the corresponding equations	
Instantaneous optimal control theory for Open-Loop and Closed-	-
Loop, numerical solution of related equations	
Semi-active control, performance evaluation of MR and ER	-
dampers, smart materials such as piezoelectric materials and SMA	
	Investigation of the performance of viscoelastic dampers Design of structures equipped with viscoelastic dampers Investigation of the performance of metallic dampers Design of structures equipped with metallic dampers Investigation of friction damper performance Design of structures equipped with friction dampers Study of passive control mechanisms such as TMD and TLD Base-isolation systems Design of structures equipped with base-isolation Active control, classical control theory Optimal classical control theory for various situations such as Open-Loop, Closed-Loop, Open-Closed-Loop, numerical solution of the corresponding equations Instantaneous optimal control theory for Open-Loop and Closed-Loop, numerical solution of related equations Semi-active control, performance evaluation of MR and ER

HWs (20%), Project (30%), Final (50%)

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

COURSE TITLE: DYNAMICS OF STRUCTURES

BASIC INFORMATION

Course prefix, title and semester: Dynamics of Structures, compulsory.

Number of credits: 3.

COURSE PREREQUISITES:

The necessary background is available through the usual courses required of civil engineering undergraduates. These include:

- Static analysis of structures, including statically indeterminate structures and matrix formulation of analysis procedures
- Structural design
- Rigid-body dynamics
- Mathematics: ordinary differential equations, linear algebra

COURSE CO-REQUISITES:

TEACHERS:

Person in charge:
Office location:
Phone Number:
Email Address:
Others:

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

The preparation of this course has been inspired by several objectives:

- Relate the structural idealizations studied to the properties of real structures.
- Present the theory of dynamic response of structures in a manner that emphasizes physical insight into the analytical procedures.
- Illustrate applications of the theory to solutions of problems motivated by practical applications.
- Interpret the theoretical results to understand the response of structures to various dynamic excitations, with emphasis on earthquake excitation.
- Apply structural dynamics theory to conduct parametric studies that bring out several fundamental issues in the earthquake response, design, and evaluation of multistory buildings.

REQUIRED STUDENT RESOURCES

Textbooks:

- 1- J. L. Humar, "Dynamics of Structure", 3nd edition, Taylor & Francis; 2012.
- 2- A. K Chopra, "Dynamics of Structures", 4th edition, Prentice Hall; 2011.
- 3- W. Leigh and M. Paz, "Structural Dynamics: Theory and Computation", 5th edition, Springer; 2006.
- 4- R. W. Clough and J. Penzien, "Dynamics of Structures", 2nd edition, Computers & Structures, Inc.; 2010.
- 5- M. Paz and W. Leigh, "Structural Dynamics: Theory and Computation", 5th Edition, Springer, 2005.

References:

Web links:

Computer Software:

Week (16)	Торіс		
1	PART I SINGLE-DEGREE-OF-FREEDOM SYSTEMS		
	Equations of Motion, Problem Statement, and Solution Methods		
	Simple Structures		
	Single-Degree-of-Freedom System		
	Force–Displacement Relation		
	Damping Force		
	Equation of Motion: External Force		
	Mass–Spring–Damper System		
	Equation of Motion: Earthquake Excitation		
	Problem Statement and Element Forces		
	Combining Static and Dynamic Responses		
	Methods of Solution of the Differential Equation		
	Study of SDF Systems: Organization		
2	Free Vibration		
	Undamped Free Vibration		
	Viscously Damped Free Vibration		
	Energy in Free Vibration		

	Coulomb-Damped Free Vibration
3	Response to Harmonic and Periodic Excitations
	Part A: Viscously Damped Systems: Basic Results
	Harmonic Vibration of Undamped Systems
	Harmonic Vibration with Viscous Damping
4	Part B: Viscously Damped Systems: Applications
	Response to Vibration Generator
	Natural Frequency and Damping from Harmonic Tests
	Force Transmission and Vibration Isolation
5	Response to Ground Motion and Vibration Isolation
	Vibration-Measuring Instruments
	Energy Dissipated in Viscous Damping
	Equivalent Viscous Damping
6	Part C: Systems with Nonviscous Damping
В	
	Harmonic Vibration with Rate-Independent Damping
	Harmonic Vibration with Coulomb Friction
	Part D: Response to Periodic Excitation
	Fourier Series Representation
	Response to Periodic Force
7	Response to Arbitrary, Step, and Pulse Excitations
	Part A: Response to Arbitrarily Time-Varying Forces
	Response to Unit Impulse
	Response to Arbitrary Force
	Part B: Response to Step and Ramp Forces
	Step Force
	Ramp or Linearly Increasing Force
	Step Force with Finite Rise Time
8	Part C: Response to Pulse Excitations
	Solution Methods
	Rectangular Pulse Force
	Half-Cycle Sine Pulse Force
	Symmetrical Triangular Pulse Force
	Effects of Pulse Shape and Approximate Analysis for Short Pulses
	Effects of Viscous Damping
	Response to Ground Motion
9	Numerical Evaluation of Dynamic Response
	Time-Stepping Methods
	Methods Based on Interpolation of Excitation
	Central Difference Method
	Newmark's Method
	Stability and Computational Error
	Nonlinear Systems: Central Difference Method
	Nonlinear Systems: Newmark's Method
10	Generalized Single-Degree-of-Freedom Systems
	Generalized SDF Systems
	Rigid-Body Assemblages
	Systems with Distributed Mass and Elasticity
11	Lumped-Mass System: Shear Building
**	Natural Vibration Frequency by Rayleigh's Method
	Selection of Shape Function
1.5	Appendix 8: Inertia Forces for Rigid Bodies
12	PART II MULTI-DEGREE-OF-FREEDOM SYSTEMS
	Equations of Motion, Problem Statement, and Solution Methods
	Simple System: Two-Story Shear Building
	General Approach for Linear Systems
	Static Condensation
	Planar or Symmetric-Plan Systems: Ground Motion
	One-Story Unsymmetric-Plan Buildings
	Multistory Unsymmetric-Plan Buildings
	Multiple Support Excitation
	Inelastic Systems
	Problem Statement
L	

	Element Forces
	Methods for Solving the Equations of Motion: Overview
13	Free Vibration
	Part A: Natural Vibration Frequencies and Modes
	Systems without Damping
	Natural Vibration Frequencies and Modes
	Modal and Spectral Matrices
	Orthogonality of Modes
	Interpretation of Modal Orthogonality
	Normalization of Modes
	Modal Expansion of Displacements
	Part B: Free Vibration Response
	Solution of Free Vibration Equations: Undamped Systems
	Systems with Damping
	Solution of Free Vibration Equations: Classically Damped Systems
14	Damping in Structures
	Part A: Experimental Data and Recommended Modal Damping Ratios
	Vibration Properties of Millikan Library Building
	Estimating Modal Damping Ratios
	Part B: Construction of Damping Matrix
	Damping Matrix
	Classical Damping Matrix
	Nonclassical Damping Matrix
15	Dynamic Analysis and Response of Linear Systems
	Part A: Two-Degree-of-Freedom Systems
	Analysis of Two-DOF Systems Without Damping
	Vibration Absorber or Tuned Mass Damper
	Part B: Modal Analysis
	Modal Equations for Undamped Systems
	Modal Equations for Damped Systems
	Displacement Response
	Element Forces
1.5	Modal Analysis: Summary
16	Part C: Modal Response Contributions
	Modal Expansion of Excitation Vector $\mathbf{p}(t) = \mathbf{s}p(t)$
	Modal Analysis for $\mathbf{p}(t) = \mathbf{sp}(t)$
	Modal Contribution Factors Madal Responses and Required Number of Modes
	Modal Responses and Required Number of Modes

Assignments 10% of final grade
Mid-Term Exam 40% of final grade
Final Exam 50% of final grade

100%

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

COURSE TITLE: FINITE ELEMENT METHOD

BASIC INFORMATION

Course prefix, title and semester: Finite Element Method, compulsory.

Number of credits: 3.

COURSE PREREQUISITES:

- Static analysis of structures, including statically indeterminate structures and matrix formulation of analysis procedures
- Theory of elasticity, advanced strength of materials
- Mathematics: ordinary differential equations, partial differential equations, linear algebra

COURSE CO-REQUISITES:

TEACHERS:

Person in charge: Office location: Phone Number: Email Address: Others:

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

The preparation of this course has been inspired by several objectives:

- Relate the structural idealizations studied to the properties of real structures.
- Present the theory of dynamic response of structures in a manner that emphasizes physical insight into the analytical procedures.
- Illustrate applications of the theory to solutions of problems motivated by practical applications.
- Interpret the theoretical results to understand the response of structures to various dynamic excitations, with emphasis on earthquake excitation.
- Apply structural dynamics theory to conduct parametric studies that bring out several fundamental issues in the earthquake response, design, and evaluation of multistory buildings.

REQUIRED STUDENT RESOURCES

Textbooks:

- 1- O. C. Zienkiewicz and R. L. Taylor, "The Finite Element Method", 7th edition, Butterworth-Heinemann; 2013.
- 2- O. C. Zienkiewicz and R. L. Taylor, "The Finite Element Method for Solid and Structural Mechanics", 7th edition, Butterworth-Heinemann; 2013
- 3- K. H. Huebner and D. L. Dewhirst, "The Finite Element Method for Engineers", 4th edition, Wiley-Interscience; 2001.
- 4- I. M. Smith and D. V. Griffiths, "Programming the Finite Element Method", 4th edition, Wiley; 2004.

References:

Web links:

Computer Software:

Week (16)	Торіс
1	Introduction to the FEM
2	Mathematical preliminaries
3	Different methods for function approximation
4	Approximate solution of differential equations
5	Weak form formulation of problems
6	2D & 3D elasticity formulation
7	Variational and energy methods
8	Shape functions, continuity, connectivity,
9	Mapping and Jacobian
10	1D, 2D and 3D shape functions
11	Error in finite element method
12	Numerical integration

	13	Domain and boundary integration
_	1.0	Domain and boundary integration
	14	Plates and shells
	15	Axisymmetric problems
	16	FEM programing

Assignments 10% of final grade
Mid-Term Exam 30% of final grade
Final Exam 30% of final grade
Final project 30% of final grade

100%

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

COURSE TITLE: FRACTURE MECHANICS

BASIC INFORMATION

Course prefix, title and semester: Fracture Mechanics

Number of credits: 3

COURSE PREREQUISITES:

Strength of Materials, Theory of Elasticity

COURSE CO-REQUISITES:

-

TEACHERS:

Person in charge: -

Office location: Department of Civil Engineering and Transportation

Phone Number: +98 (31) 3793----

Email Address: -----

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

Students are expected to:

- ✓ be able to describe the general principles governing structural fracture subject to mechanical loading
- ✓ be able to apply the fundamental principles of fracture mechanics to predict crack growth
- ✓ become familiar with various fracture mechanics models

REQUIRED STUDENT RESOURCES

Textbooks and References:

- 1. Gdoutos E. E. Fracture Mechanics: An introduction, 2nd ed. Springer, 2005.
- 2. T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd ed., Taylor & Francis, 2005.

Web links: -

Computer Software: ABAQUS

Week	Topic	Reading /Assignment
16		
1	Elementary concepts, stress concentration around an	-
	elliptic hole, Inglis problem, energy considerations	
2	Elasticity solution for a wedge, Williams problem,	-
	square root stress singularity	
3	K-filed solutions for displacement and stresses, mode I	-
	and II cracks	
4	Potential energy, Free energy, Surface energy, Griffith	-

fracture criterion, Fracture energy	
Potential energy calculations subject to fixed-loading	-
or fixed-grips conditions	
Surface energy, implications in liquids and solids	-
Giffith's experiments, size effects, theoretical strength	-
vs. experimentally measured strength	
Griffith fracture criterion applied to elastic solids, G-K	-
Irwin's relationship	
Applications of Griffith criterion: double-cantilever	-
beam, and other examples	
Application of Griffith criterion for fracture energy	-
calculations	
Small-scale yielding, Irwin-Orowan correction to the	-
Griffith conditions, fracture process zone	
Size of the plastic zone ahead of a crack tip, Strip yield	-
model, Cohesive zone models, Equivalence of the	
Griffith criterion and cohesive models	
Mode III fracture problem, Anti-plane elasticity	-
problems, Laplace eqauion and its solutions using	
complex potentials, K-field solution in terms of	
complex potentials	
Solution of some anti-plane problems in fracture	-
mechanics using complex methods	
J-integral and applications	-
Empirical Paris law for fatigue and life prediction	-
	Potential energy calculations subject to fixed-loading or fixed-grips conditions Surface energy, implications in liquids and solids Giffith's experiments, size effects, theoretical strength vs. experimentally measured strength Griffith fracture criterion applied to elastic solids, G-K Irwin's relationship Applications of Griffith criterion: double-cantilever beam, and other examples Application of Griffith criterion for fracture energy calculations Small-scale yielding, Irwin-Orowan correction to the Griffith conditions, fracture process zone Size of the plastic zone ahead of a crack tip, Strip yield model, Cohesive zone models, Equivalence of the Griffith criterion and cohesive models Mode III fracture problem, Anti-plane elasticity problems, Laplace eqauion and its solutions using complex potentials, K-field solution in terms of complex potentials Solution of some anti-plane problems in fracture mechanics using complex methods J-integral and applications

HWs (10%), Project (10%), Midterm (30%), Final (50%)

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

COURSE TITLE: MECHANICS OF COMPOSITE MATERIALS

BASIC INFORMATION

Course prefix, title and semester: Mechanics of Composite Materials

Number of credits: 3

COURSE PREREQUISITES:

_

COURSE CO-REQUISITES:

_

TEACHERS:

Person in charge: -

Office location: Department of Civil Engineering and Transportation

Phone Number: +98 (31) 3793----

Email Address: -----

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	-

COURSE OBJECTIVES

Students are expected to:

✓ become familiar with governing principles on behaviour of composite materials

REQUIRED STUDENT RESOURCES

Textbooks and References:

- 1. R. M. Christensen, "Mechanics of Composite Materials", Dover Publicaitons, 2005.
- 2. R. F. Gibson, "Principles of Composite Materials Mechanics", 3rd Editions, CRC Press, 2016.
- 3. L. P. Kollár, and G. S. Springer, G. S., "Mechanics of Composite Materials", Cambridge University Press, 2009.

Web links: -

Week	Topic	Reading /Assignment
16		
1	Fibre reinforces polymers (FRP), types of ribres, types of matrices	-
2	Ply stiffness analysis: isotropic ply, specially orthotropic ply, generally orthotropic ply, transformation of elastic constants, elastic properties	-
3	Ply stiffness analysis: isotropic ply, specially	-

	T	T
	orthotropic ply, generally orthotropic ply,	
	transformation of elastic constants, elastic properties	
4	Ply strength analysis: isotropic ply, orthotropic ply,	-
	failure criteria, choice of failure criterion, strength	
	properties	
5	Ply strength analysis: isotropic ply, orthotropic ply,	-
	failure criteria, choice of failure criterion, strength	
	properties	
6	Layered laminate: laminate constitutive equation,	-
_	laminate notation, equivalent elastic constants	
7	Layered laminate: laminate constitutive equation,	-
	laminate notation, equivalent elastic constants	
8	Laminate stiffness analysis: stiffness formulation	-
	procedure, laminate configuration types (isotropic,	
	specially orthotropic, generally orthotropic plies,	
	cross-ply, angle-ply, quasi-orthotropic, antisymmetric	
_	plies, estimated membrane elastic constants)	
9	Laminate stiffness analysis: stiffness formulation	-
	procedure, laminate configuration types (isotropic,	
	specially orthotropic, generally orthotropic plies,	
	cross-ply, angle-ply, quasi-orthotropic, antisymmetric	
_	plies, estimated membrane elastic constants)	
10	Laminate stiffness analysis: stiffness formulation	-
	procedure, laminate configuration types (isotropic,	
	specially orthotropic, generally orthotropic plies,	
	cross-ply, angle-ply, quasi-orthotropic, antisymmetric	
	plies, estimated membrane elastic constants)	
11	Laminate stiffness analysis: stiffness formulation	-
	procedure, laminate configuration types (isotropic,	
	specially orthotropic, generally orthotropic plies,	
	cross-ply, angle-ply, quasi-orthotropic, antisymmetric	
	plies, estimated membrane elastic constants)	
12	Laminate strength analysis: first-ply-failure in	-
	symmetric laminate (membrane load, bending load)	
	first-ply-failure in unsymmetric laminate (membrane	
	load), last-ply-failure procedure, complete ply failure	
	(membrane load, bending load), partial ply failure	
	(membrane load), estimated laminate strength	
13	Laminate strength analysis: first-ply-failure in	-
	symmetric laminate (membrane load, bending load)	
	first-ply-failure in unsymmetric laminate (membrane	
	load), last-ply-failure procedure, complete ply failure	
	(membrane load, bending load), partial ply failure	
	(membrane load), estimated laminate strength	
14	Laminate strength analysis: first-ply-failure in	-
	symmetric laminate (membrane load, bending load)	
	first-ply-failure in unsymmetric laminate (membrane	
	load), last-ply-failure procedure, complete ply failure	
	(membrane load, bending load), partial ply failure	
	(membrane load), estimated laminate strength	
15	Laminate strength analysis: first-ply-failure in	-
	symmetric laminate (membrane load, bending load)	

	first-ply-failure in unsymmetric laminate (membrane load), last-ply-failure procedure, complete ply failure (membrane load, bending load), partial ply failure (membrane load), estimated laminate strength	
16	Laminate strength analysis: first-ply-failure in symmetric laminate (membrane load, bending load) first-ply-failure in unsymmetric laminate (membrane load), last-ply-failure procedure, complete ply failure (membrane load, bending load), partial ply failure (membrane load), estimated laminate strength	-

HWs (10%), Project (20%), Midterm (30%), Final (40%)

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

COURSE TITLE: PERFORMANCE-BASED DESIGN OF STRUCTURES

BASIC INFORMATION

Course prefix, title and semester: Optional, Performance-Based Design of Structures, Q1 or Q2

Number of credits: 3

COURSE PREREQUISITES AND CO-REQUISITES: -

TEACHERS: Dr Hossein Tajmir Riahi

Person in charge: Dr Hossein Tajmir Riahi

Office location: Department of Civil and Transportation Engineering, University of Isfahan, Hezar-Jerib av.,

Isfahan, Iran

Phone Number: +98 (31) 37935307 Email Address: tajmir@eng.ui.ac.ir

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

In this course, students will learn the general principles of performance-based seismic design of structures including structural modeling, various methods of analysis, and new systems available to achieve this goal.

REQUIRED STUDENT RESOURCES

Textbooks and References:

- 1- ASCE, "Seismic Evaluation and Retrofit of Existing Buildings: ASCE/SEI 41-13", American Society of Civil Engineers, 2014.
- 2- M. N. Fardis, "Advances in Performance-Based Earthquake Engineering", Springer; 2010.
- 3- S. Chandrasekaran, L. Nunziante and G. Serino, "Seismic Design Aids for Nonlinear Analysis of Reinforced Concrete Structures", CRC Press; 2009.
- 4- Y. Bozorgnia and V. V. Bertero, "Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering", CRC Press; 2004.

Web links: -

Computer Software: -

Week	Topic	Reading / Assignment
16		
1	Differences between performance-based design and force-based	-
	design	
2	Structural performance levels and seismic hazard levels	-
3	Nonlinearity in structures including: geometrical and material	-
	nonlinearity and P-Delta effects	

4	Large deformations, yielding and energy absorption, brittle and ductile behavior, ductility limit and strength degradation	-
5	Elastic and plastic energy, cyclic stiffness and strength	-
6	Strength-based design and deformation-based design, capacity design, failure mechanism, permanent and cyclic loads	-
7	Nonlinear modeling including: material models, bending, axial and shear plastic hinges	-
8	Plastic hinges in ASCE41 code, interaction between axial force and bending moment, fiber based hinges	-
9	Multi-linear elastic and plastic behavior, viscous dampers and seismic isolation systems, types of hysteresis loops (Kinetic, Pivot, Takeda, Isotropic)	-
10	Nonlinear analysis methods including: time analysis and Ritz vectors, time history analysis, large deformation and P-Delta effects	-
11	Modal and Rayleigh damping	-
12	Pushover analysis requirements in ASCE41 and its limitations, force control and displacement control methods, undesirable deformations	-
13	Finding target displacement based on different methods, performance evaluation and performance levels, capacity to demand ratio and acceptance criteria	-
14	Evaluation of structures after analysis	-
15	Principles and methods of structural analysis (Static and Dynamic, Linear and Nonlinear)	-
16	Introducing new performance based design methods	-

HWs (20%), Project (30%), Final (50%)

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

COURSE TITLE: STRUCTURAL RELIABILITY ANALYSIS

BASIC INFORMATION

Course prefix, title and semester: Structural reliability analysis

Number of credits: 3

COURSE PREREQUISITES:

_

COURSE CO-REQUISITES:

_

TEACHERS:

Person in charge:

Office location: Department of Civil Engineering and Transportation

Phone Number: Email Address:

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

The aim in structural reliability analysis is calculation of failure probability in which failure is defined as violation of limit state function. Students are expected to become familiar with the following topics:

- ✓ Application of probability and statistics in the analysis and design of civil engineering systems.
- ✓ First order reliability methods and simulation techniques.
- ✓ Probabilistic modeling of loading and resistance parameters.
- ✓ Code calibration and partial safety factors.

REQUIRED STUDENT RESOURCES

Textbooks and References:

- 1. Nowak, Andrzej S., and Kevin R. Collins. Reliability of structures. CRC Press, 2012.
- 2. Melchers, Robert E., and André T. Beck. Structural reliability analysis and prediction. John Wiley & Sons, 2018.

Web links: -

Computer Software: MATLAB

Week	Topic	Reading /Assignment
16		
1	Introduction and Basic Background	-
2	Brief Review of Probability Theory and Statistics	-
3	Probability Distributions	-

4	Concept of Limit State Function and Failure Probability	-
5	First Order Second Moment Reliability Index	-
6	Hasofer-Lind Method	-
7	Sensitivity and Importance Vector	-
8	Rackwitz-Fisseler Procedure	-
9	Monte Carlo Simulation Method	-
10	Latin Hypercube Sampling	-
11	Rosenblueth`s 2K+1 Point Estimate Method	-
12	Structural Loads Models	-
13	Time-Variant Reliability Assessment of Load	-
	Combinations	
14	Probabilistic Models of Resistance for Steel and	-
	Reinforced Concrete Components	
15	Calibration of Partial Safety Factor	-
16	System Reliability	-

HWs (5%), Project (10%), Midterm (35%), Final (50%)

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

COURSE TITLE: RESEARCH METHOD

BASIC INFORMATION

Course prefix, title and semester: Research Method

Number of credits: 1

COURSE PREREQUISITES:

_

COURSE CO-REQUISITES:

_

TEACHERS:

Person in charge:

Office location: Department of Civil Engineering and Transportation

Phone Number: Email Address:

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
1 h	-	-	20 min

COURSE OBJECTIVES

This course will provide an opportunity for students to establish or advance their understanding of research procedure. The different steps of research procedure, ethical principles and challenges are introduced. And then, students will use these theoretical underpinnings to begin to critically review literature relevant to their field or interests.

REQUIRED STUDENT RESOURCES

Textbooks and References:

- 1. R. R. Powell and L. S. Connaway, "Basic Research Methods for Librarians", 5th Edition (Library and Information Science Text Series), 2010.
- 2. R. K. Yin, "Case Study Research, Design, and Methods", 5th Edition, Sage Publications, 2013.
- 3. W. K. Schuttle and E. Schuttle, "Communications Skills for the Information Age", 3rd Edition, McGraw-Hill Book Co., 2001.

Web links: -

Computer Software: Microsoft Word, EndNote COURSE SCHEDULE/OUTLINE/CALENDAR OF EVENTS

Week 16	Topic	Reading /Assignment
1	Introduction	-
2	Research Topic	-

3	Types of Research	-
4	Theoretical Approaches	-
5	Concluding Steps of Research	-
6	Data Base Searches	-
7	Literature Reviews Fundamentals	-
8	Implementing Research	-
9	Research Ethics	-
10	Citations and Style Guides	-
11	Introduction to Endnote Software	-
12	Different Types of Articles and Scientific Journals	-
13	Writing Process of Journal Paper	-
14	Dissertation Proposal	-
15	Grammar Advice for Writing Dissertation	-
16	Verbal Presentations Characteristics	-

HWs (10%), Project (40%), Final (50%)

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

COURSE TITLE: STABILITY OF STRUCTURES

BASIC INFORMATION

Course prefix, title and semester: Optional, Stability of Structures, Q1 or Q2

Number of credits: 3

COURSE PREREQUISITES AND CO-REQUISITES: -

TEACHERS: Dr Amoushahi

Person in charge: Dr Amoushahi

Office location: Department of Civil and Transportation Engineering, University of Isfahan, Hezar-Jerib av., Isfahan, Iran

Phone Number: +98 (31) 37935285 Email Address: h.amoushahi@eng.ui.ac.ir

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

In this lesson, students learn the basics of the stability of components and structures, such as the buckling of the columns, torsional buckling, and learn how to use them to design of structures.

- ✓ Elastic and inelastic buckling of columns: Euler buckling load, effective length, double and tangential modulus theory, Shanley theory, how to use these principles in the formulation of regulations
- ✓ Columns with imperfection and large deformations
- ✓ Approximate methods and their application in solving stability problems, critical loads using the approximate deformation curve, static potential energy, Rayleigh -Ritz method and Galerkin method
- ✓ Beam-columns, examination of different loads, axial force effect on flexural stiffness, ultimate strength, how to use these principles in the formulation of regulations
- ✓ Torsional buckling, lateral-torsional buckling, lateral buckling of rectangular sections in pure bending, buckling of the Z-shaped beams, how to use these principles in the formulation of regulations
- ✓ Buckling Frames: Checking Different Loading, Axial forces effect on flexural stiffness, how to use these principles in drafting regulations
- ✓ Buckling of plates and shells, precise and approximate methods
- ✓ Numerical methods for buckling analysis of members and plates

REQUIRED STUDENT RESOURCES

Textbooks:

- 7. Azhari M., Amoushahi H., Mirghaderi R., Design of Steel Structures, Vol.5, 16th edition, Arkan Danesh Pub., 2016.
- **8.** Azhari M., Sarrami S., Mirghaderi R., Stability of steel structures, 1st edition, Arkan Danesh Pub., 2017.

References:

- 9. 1- W. C. Xie, Dynamic Stability of Structures, Cambridge University Press; 2010.
- **10.** 2- N.A. Alfutov, V. Balmont and E. Evseev, Stability of Elastic Structures (Foundations of Engineering Mechanics), Springer; 2000.
- **11.** 3- Z. P. Bazant and L. Cedolin, "Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories (Oxford Engineering Science Series), Oxford University Press, USA; 2010.
- 12. 4- G. J. Simitses, Introduction to the Elastic Stability of Structures, Krieger Pub Co; 1986.

Week	Торіс
16	
1	Elastic and inelastic buckling of columns: Euler buckling load
2	Effective length, double and tangential modulus theory, Shanley theory

3	Columns with imperfection and large deformations		
4	Approximate methods and their application in solving stability problems		
5	Critical loads using the approximate deformation curve, static potential energy		
6	Rayleigh-Ritz method and Galerkin method		
7	Numerical methods for buckling analysis of members and plates		
8	Numerical methods for buckling analysis of members and plates		
9	Midterm exam		
10	Beam-columns, examination of different loads		
11	Axial force effect on flexural stiffness, ultimate strength		
12	Torsional buckling, lateral-torsional buckling, lateral buckling of rectangular sections in pure bending,		
13	Buckling of the Z-shaped beams, how to use these principles in the formulation of regulations		
14	Buckling Frames: Checking Different Loading, Axial forces effect on flexural stiffness, how to use these		
	principles in drafting regulations		
15	Buckling of plates and shells, precise and approximate methods		
16	Final exam		

Assignment 20% of final grade
Project 30% of final grade
Mid-Term Exam 25% of final grade
Final Exam 25% of final grade

100%

COURSE TITLE: THEORY OF ELASTICITY

DAGIG	Lucona	
DASIC	INFORM	IATION

Course prefix, title and semester: Compulsory

Number of credits: 3

COURSE PREREQUISITES:

COURSE CO-REQUISITES:

TEACHERS:

Person in charge: Office location: Phone Number: Email Address:

Others:

Person (email address) Person (email address)

...

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	1 h	-	1 h

COURSE OBJECTIVES

Students are expected to:

✓ Learn the governing principles of elastic behaviour of deformable bodies

REQUIRED STUDENT RESOURCES

Textbooks: As in the References

References:

- 1. A. Bertram, "Elasticity and Plasticity of Large Deformations: An Introduction", 3rd edition, Springer; 2012.
- 2. M. H. Sadd, "Elasticity: Theory, Applications and Numerics", 2nd edition, Academic Press, New York, 2009.
- 3. W. F. Chen and A. E. Saleeb, "Constitutive Equations for Engineering Materials, Volume 1: Elasticity and Modeling, and Volume 2: Plasticity and Modeling", Wiley, New York, 1982.
- 4. S. Timoshenko, and J. Goodier, "Theory of Elasticity", 3rd edition, McGraw-Hill, New York, 1970.

Web links:

Computer Software:

Week	Торіс	Reading / Assignment
1	Stress: Equations of equilibrium, principle stresses, maximum shear stress	
2	Stress: Special cases of stress, equations of equilibrium in cylindrical and spherical coordinates	
3	Strain: Strain at a point, strain-stress relationships, principle strains, compatibility conditions	
4	Strain: Special cases of strain, strain-stress relationships in cylindrical and spherical coordinates	
5	General stress-strain relationships, compatibility conditions based on stress	
6	Solution of three-dimensional elasticity problems using the potential functions, Boussinesq and Kelvin problems	
7	Solution of three-dimensional elasticity problems using the potential functions, Boussinesq and Kelvin problems	
8	Plane strain and plain stress problems	
9	Solution of two-dimensional problems using the stress function	
10	Solution of two-dimensional problems using the stress function	
11	Solution of two-dimensional axisymmetrical problems using the stress function	
12	Pure bending of beams	
13	Torsion of bars with different cross-sections	
14	Torsion of bars with different cross-sections	
15	Energy methods: strain energy, the principle of virtual work, the principle of minimum potential energy	
16	Energy methods: Castigliano's theorem, thermal stresses	

CASTIGLIANO'S THEOREM

EVALUATION PROCEDURES AND GRADING CRITERIA

Assignment "Homework" 5% of final grade
Mid-Term Exam 45% of final grade
Final Exam 50% of final grade

100%

ATTENDANCE STATEMENT

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible.

APPROVED ACADEMIC HONESTY STATEMENT

The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

COURSE TITLE: THEORY OF PLATES

BASIC INFORMATION

Course prefix, title and semester: Theory of Plates

Number of credits: 3

COURSE PREREQUISITES:

_

COURSE CO-REQUISITES:

_

TEACHERS:

Person in charge: Dr. Amoushahi

Office location: Department of Civil Engineering and Transportation

Phone Number: +98 (31) 3793 5285

Email Address: h.amoushahi@eng.ui.ac.ir

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	-	-	1 h

COURSE OBJECTIVES

Students are expected to:

In this lesson, students learn the principles governing the behavior of plates and shells and their application in solving some structures.

REQUIRED STUDENT RESOURCES

Textbooks and References:

- 1- R. Szilard, "Theories and Application of Plates Analysis", Willey, 2014.
- 2- A. C. Ugural, "Stresses in Beams, Plates, and Shells", 3rd edition, CRC Press, 2009.
- 3- R. Kienzler, H. Altenbach and I. Ott, "Theories of Plates and Shells", Springer; 2004.
- 4- E. Ventsel and T. Krauthammer, "Thin Plates & Shells: Theory, Analysis, & Applications", CRC; 2001.
- 5- S. P. Timoshenko and S. W. Kreiger, "Theory of Plates and Shells", 2nd edition, McGraw Hill Higher Education;1964.

Web links: -

Computer Software: MATLAB

COURSE SCHEDULE/OUTLINE/CALENDAR OF EVENTS

Week	Topic	Reading /Assignment
16		
1	Plate theories of static, linear-elastic plate problems	-
2	Exact solutions of governing differential equations	-
3	Solutions by double trigonometric series (Navier's approach)	-
4	Solutions by double trigonometric series (Navier's approach)	Ass 1
5	Solutions by single trigonometric series (Levy's method)	-
6	Solutions by single trigonometric series (Levy's method)	Ass 2
7	Energy and variational methods for solution of lateral deflections	-
8	Energy and variational methods for solution of lateral deflections	Ass 3
9	Buckling of plates	-
10	Buckling of plates	-
11	Finite element method	-
12	Finite element method	-
13	Classical finite strip method	Ass 4
14	Theories of shear deformation in relatively thick and thick plates	-
15	Dynamic and free vibration analysis of elastic plates	-
16	Composites Plates	-

EVALUATION PROCEDURES AND GRADING CRITERIA

HWs (15%), Project (25%), Midterm (30%), Final (30%)

ATTENDANCE STATEMENT

The course instructor must clearly inform students on the first day of class and in writing in the syllabus of their (1) policy regarding class absence and (2) policy, if any, for making up missed assignments. If class attendance is a component of the course grade, the course instructor must clearly communicate this to the class in writing in the syllabus.

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

The following statement must appear on all syllabi: "Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible."

APPROVED ACADEMIC HONESTY STATEMENT

The following statement must appear on all syllabi: "The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES

COURSE TITLE: THEORY OF SHELLS

Rasic	INFORM	ΙΔΤΙΩΝ
DASIC	INFORIN	

Course prefix, title and semester: Selective

Number of credits: 3

COURSE PREREQUISITES:

COURSE CO-REQUISITES:

TEACHERS:

Person in charge: Office location: Phone Number: Email Address:

Others:

Person (email address) Person (email address)

WEEKLY HOURS

Theory	Problem Solving	Laboratory	Guided learning
3 h	1 h	-	1 h

COURSE OBJECTIVES

Students are expected to:

✓ Learn the governing principles of shells behaviour

REQUIRED STUDENT RESOURCES

Textbooks: As in the References

References:

- 1. S. S. Behavikatti, "Theory of Plates and Shellss", New Age International Pvt., 2010.
- 2. C. R. Calladine, "Theory of Shell Structures", Cambridge University Press, 1989.
- 3. W. Flugge, "Stresses in Shells" Springer, Berlin, 1973.
- 4. V. S. Kelkar, and R. T. Sewell, "Fundamentals of the Analysis and Design of Shell Structures", Prentice Hall, 1987.
- 5. E. Venstse, and T. Krauthammer, "Thin Plates snd Shells: Theory, Analysis and Applications", CRC Press, 2001.

Web links:

Computer Software:

Week	Topic	Reading / Assignment
1	Membrane theory of shells: General differential equations of shells of revolution	
2	Shells of revolution: axisymmetrical load, axially symmetric deformation, asymmetrical load	
3	Cylindrical shells of general shape	
4	Shells of general form	
5	Applications of membrane theory	
6	Bending theory of shells: fundamental equations	
7	Axisymmetrically loaded circular cylindrical shells	
8	Shells of revolution under axisymmetrical loads	
9	Axisymmetrical deformation	
10	Buckling of cylindrical shells: fundamental equations	
11	Buckling of cylindrical shells: lateral and axial pressure	
12	Buckling of cylindrical shells: design equations, inelastic buckling	
13	Buckling of shells of revolution: unstiffened, stiffened, design equations, inelastic buckling	
14	Free vibration of cylindrical shellss	
15	Free vibration of shells of revolution	
16	Analysis of shells by the finite element method	

CASTIGLIANO'S THEOREM

EVALUATION PROCEDURES AND GRADING CRITERIA

Assignment "Homework" 5% of final grade
Assignment "Project" 25% of final grade
Mid-Term Exam 30% of final grade
Final Exam 40% of final grade

100%

ATTENDANCE STATEMENT

STUDENTS WITH DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office as soon as possible.

APPROVED ACADEMIC HONESTY STATEMENT

The academic community is operated on the basis of honesty, integrity, and fair play. It applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records.

SYLLABI ON WEB PAGES