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PAPER
Concatenated Permutation Codes under Chebyshev Distance

Motohiko KAWASUMI†, Nonmember and Kenta KASAI†, Member

SUMMARY Permutation codes are error-correcting codes over sym-
metric groups. We focus on permutation codes under Chebyshev (ℓ∞)
distance. A permutation code invented by Kløve et al. is of length 𝑛,
size 2𝑛−𝑑 and, minimum distance 𝑑. We denote the code by 𝜙𝑛,𝑑 . This
code is the largest known code of length 𝑛 and minimum Chebyshev dis-
tance 𝑑 > 𝑛/2 so far, to the best of the authors knowledge. They also
devised efficient encoding and hard-decision decoding (HDD) algorithms
that outperform the bounded distance decoding.

In this paper, we derive a tight upper bound of decoding error prob-
ability of HDD. By factor graph formalization, we derive an efficient max-
imum a-posterior probability decoding algorithm for 𝜙𝑛,𝑑 . We explore
concatenating permutation codes of 𝜙𝑛,𝑑=0 with binary outer codes for
more robust error correction. A naturally induced pseudo distance over
binary outer codes successfully characterizes Chebyshev distance of con-
catenated permutation codes. Using this distance, we upper-bound the
minimum Chebyshev distance of concatenated codes. We discover how to
concatenate binary linear codes to achieve the upper bound. We derive
the distance distribution of concatenated permutation codes with random
outer codes. We demonstrate that the sum-product decoding performance of
concatenated codes with outer low-density parity-check codes outperforms
conventional schemes.
key words: permutation codes, Chebyshev distance, ℓ∞ distance, concate-
nated codes

1. Introduction

In this paper, we consider permutation codes. A permutation
code is a subset of all permutations of fixed length 𝑛. The ori-
gin of permutation codes dates back to the 1960s [1]. Vinck
et al. proposed applications of permutation codes for power-
line communication and 𝑚-ary (frequency shift keying) FSK
modulation system [2], [3] which renewed subsequent inter-
est in permutation codes [4]–[6]. Frequencies in an 𝑚-ary
FSK system are used in specific time slots to describe the per-
mutation symbols. Time- and frequency-diversity are used
to overcome various types of noise: background noise, im-
pulse noise, and permanent frequency disturbances common
in power-lines.

When we view a permutation code as a modulation, the
map from an information message to a permutation code-
word is called rank modulation. Rank modulation for flash
memories is a significant application [7]–[9]. Flash mem-
ory is an electronic non-volatile computer memory storage
medium that can be electrically erased and reprogrammed.
Removing charge in flash memories can be done only by re-
moving the entire charge (erase) from a large block of cells,
while injecting charge (program) into a flash cell is a simple
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operation. Multi-level cells (MLC) store two or more bits
per flash cell, while single-level cells (SLC) store a bit per
flash cell. MLC flash devices cost less and allow for higher
storage density than SLC but have short lifetimes as low as
several thousands of erasures. Jiang et al. proposed the ap-
plication of the rank modulation scheme for flash memories
in [9]. Rank modulation eliminates the need for discrete cell
levels. The standard (amplitude) modulation represents the
information by their absolute levels of flash memory cells. In
contrast, the rank modulation scheme represents information
by relative levels.

DNA storage is another significant application of per-
mutation codes. Shotgun sequencing is a reading technique
of long DNA strings. In shotgun sequencing, DNA is broken
up randomly into numerous small segments. Such process
identifies a DNA string from a profile vector: a possibly
inaccurate histogram of sub-strings of a DNA string. In
[10], Kiah et al. introduced the DNA storage channel whose
outputs are profile vectors. They suggested protecting the
profile vector by permutation codes [10, Sec. VIII.B].

The purpose of this paper is not to make a direct con-
tribution to the above applications of permutation codes. In
fact, the proposed method is not always suitable for the above
applications. Rather, the purpose of this paper is to make
the fundamental contribution of introducing a philosophy of
soft-decodable sparse-graph codes [11], which has been very
successful in binary codes, to permutation codes.

In [12], Wadayama and Hagiwara invented permutation
codes based on linearly constrained permutation matrices.
A relaxed problem of the maximum likelihood decoding
problem of the codes can be viewed as linear-programming
(LP) since permutation matrices are vertices of the Birkhoff
polytope. One can use efficient LP solvers based on sim-
plex methods or interior point methods for decoding the
codes. From the geometrical properties of a code polytope,
they derived an upper bound on LP decoding error proba-
bility of randomly constrained permutation codes. However,
although LP decoding is far efficient compared with ML
decoding, in practice, it is not satisfactorily efficient. The
reason is that the LP decoder deals with matrices of size 𝑛×𝑛
as its variables. It is hard to demonstrate LP decoding of long
permutation codes, [12] uses codes of relatively small length
64 for demonstrating the performance.

The Hamming distance is the most important distance
for binary vector codes. In contrast, there are various types of
distances for permutation codes: Chebyshev distance [13],
[14], Hamming distance [14], Kendall-tau distance [15], and
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Ulam distance [16]. Since the concept of minimum distance
leads to bounded distance decoding (BDD), it plays a central
role in coding theory. Lots of efforts have been dedicated to
designing permutation codes with large minimum distance.

Under the multilevel flash memory model, the distance
induced by the ℓ∞ norm, which is known as the Cheby-
shev distance, is appropriate for studying the recharging and
error-correcting issues. Among the many distances for per-
mutation codes, Chebyshev distance has been intensively
studied: Gilbert–Varshamov bound and ball-packing bound
[17]–[19], efficient encoding and decoding algorithms [13],
[17], and systematic code constructions [20], [21].

It is important to note that Kløve et al. [13, Explicit
Construction] and Tamo et al. [17, Construction 1] inde-
pendently discovered a construction of permutation code
under Chebyshev distance. The size of the code is given
by ( [𝑛/𝑑]!)𝑛 mod 𝑑 (⌊𝑛/𝑑⌋!)𝑑−(𝑛 mod 𝑑) with linearly grow-
ing minimum Chebyshev distance 𝑑 with code length 𝑛. For
large minimum Chebyshev distance 𝑑 such that 𝑛/2 < 𝑑 < 𝑛,
the size becomes 2𝑛−𝑑 . To the best of the authors knowledge,
this is the largest known code construction of length 𝑛 and
linear growing minimum Chebyshev distance 𝑑 > 𝑛/2 so
far. They also devised very efficient encoding and decoding
algorithms. The decoding algorithm realizes BDD, which
corrects all errors within distance 𝑑/2 from the received
word.

Kløve et al. discovered the permutation codes of length
𝑛, of size 2𝑛−𝑑 and minimum Chebyshev distance 𝑑 [13, Sec.
III D]. The size is the same as the largest codes we mentioned
above for 𝑑 > 𝑛/2. We denote the code by 𝜙𝑛,𝑑 . They
also devised efficient encoding and hard-decision decoding
(HDD) algorithms. In this paper, we show that HDD is better
than BDD.

Consider binary binary codes of length 𝑛. The maxi-
mum size is 𝑀𝑏 = 2𝑛. This means that each code bit has
1
𝑛 log 𝑀𝑏 = 1 bits of information. In contrast, permutation
codes can have a size of up to 𝑀𝑝 = 𝑛!. This means that each
code symbol has 1

𝑛 log 𝑀𝑝 = 1
𝑛 (𝑛 log 𝑛 − 𝑛 + 𝑂 (log 𝑛)) =

log 𝑛−1+ 𝑜(1) bits of information. This is much larger than
that of binary codes. This is the major advantage of using
permutation codes. However, the permutation code 𝜙𝑛,𝑑 has
less than or equal to one bit of information per code sym-
bol. In this paper, we deal with several types of 𝑛-ary input
channels for evaluating the decoding performance. Every
capacity of these channels is greater than one. The purpose
of this paper is not to establish a permutation coding system
which achieves the capacity of the channels. The purpose
is to propose a permutation coding system which is more
effective than the conventional method for a wide range of
channels.

In conventional studies on permutation codes, a lot of
effort has been put into mainly constructing methods that
increase the minimum distance for a given distance metric.
The minimum distance is the most important measure of er-
ror correction capability of BDD since BDD can correct all
errors within half the minimum distance from the received

word. In contrast, sparse graph codes have been achieved a
great success in binary linear codes: the codes achieve the
channel capacity over various types of binary-input channels
[11]. Sparse graph codes are decoded by an efficient soft
iterative message-passing algorithm called the sum-product
(SP) algorithm. The SP decoder can usually correct errors
more than half the minimum distance. This is the reason
why minimum distance is not considered most important in
sparse-graph coding-theory [22, §13.2. and §13.8.] and [11,
§1.6.]. Although a lot of research has been done on permu-
tation codes, the aspect of efficient soft decoding has not yet
been extensively studied. To the best of the author’s knowl-
edge, the only study done for this purpose is [12]. Therefore,
there is still a lot of room for research on permutation codes
with efficient soft decoding algorithms. One of the goals of
this paper is to give a sparse-graph coding-theory perspec-
tive to permutation codes. Specifically, we will formulate
permutation codes using sparse graphs, and developed a soft
iterative decoder that can correct more errors than half the
minimum distance of conventional permutation codes.

In order to evaluate the performance of permutation
codes, in this paper, we define three types of 𝑛-ary input
channels. This does not mean that we are not only interested
in these specific channels. We believe that the proposed
method is not only effective for the three channels but also
for other channels such as channels with memory. Our aim
is to show that the proposed method is effective for a wide
variety of channels. In this paper, we focus on the three
channels that the most people will likely be interested in.

This paper consists of three parts. In the first part, we in-
vestigate 𝜙𝑛,𝑑 under HDD and MAP decoding. In the second
and third part, in order to make the codes robust for errors,
we explore concatenated codes with 𝜙𝑛,𝑑=0 and binary codes
as inner and outer codes, respectively. In the second part,
we study the distance distribution and minimum distance of
concatenated codes. We mainly consider SP decoding for
concatenated codes in this paper. However, the minimum
distance of concatenated codes is important since it is the
error correction capability of BDD with Chebyshev metric.
Efficient BDD algorithms for proposed codes may be devel-
oped in the future. The third part deals with concatenated
codes with low-density parity-check (LDPC) codes as outer
codes. The contributions in this paper are summarized as
follows:

1. Performance analysis on 𝜙𝑛,𝑑

a. We derive a tight upper bound of the error proba-
bility of HDD.

b. We devise efficient bit-wise and block-wise max-
imum a-posterior probability (MAP) decoding al-
gorithms for 𝜙𝑛,𝑑 .

2. Concatenation with binary codes: minimum distance
analysis

a. We introduce pseudo-distance over outer code
space, which successfully characterizes the Cheby-
shev distance of concatenated permutation codes.



KAWASUMI and KASAI: CONCATENATED PERMUTATION CODES UNDER CHEBYSHEV DISTANCE
3

b. We derive the distance distribution of concatenated
permutation codes with outer random binary and
linear codes.

c. We upper-bound the minimum Chebyshev distance
of concatenated codes. We discover how to con-
catenate outer binary linear codes that achieve the
upper bound.

3. Concatenation with LDPC codes: SP decoding perfor-
mance

a. We formulate the SP decoder of concatenated
codes with outer LDPC codes.

b. We demonstrate the SP decoding performance
of the codes and observe that the codes out-
perform conventional schemes: un-concatenated
codes 𝜙𝑛,𝑑 under HDD.

The remaining of the paper is organized as follows. Sec-
tion 2 introduces notations and defines channels. Section 3
derives the BDD error probability of general permutation
codes. Section 4 defines 𝜙𝑛,𝑑 and reviews the efficient en-
coding and HDD algorithms for 𝜙𝑛,𝑑 . Section 5 derives an
upper bound of the error probability of HDD and devises
MAP decoding algorithms. Section 6 defines concatenated
codes, introduces a pseudo distance, and derives the distance
distribution of concatenated permutation codes with outer
random binary and linear codes. Furthermore, we demon-
strate the SP decoding performance of concatenated codes
with outer LDPC codes. Section 7 concludes this paper.

2. Notations and Preliminaries

We define 1[S] as 1 if a statement S is true and as 0 oth-
erwise. We denote a binary field by F2 = {0, 1}. Vectors
are described like 𝑢𝑛1 = (𝑢1, . . . , 𝑢𝑛). When the components
of a vector are clear from the context, we simply denote the
vector underlined, e.g., 𝑢 = 𝑢𝑛1 . We denote random variables
by capital, e.g., 𝑋 . By E[𝑋] and Var[𝑋], we denote the
mean and variance of 𝑋 , respectively. For two integers 𝑎
and 𝑏 with 𝑎 ≤ 𝑏, we denote {𝑎, 𝑎 + 1, . . . , 𝑏} by [𝑎 : 𝑏].
We denote {1, . . . , 𝑛} by [𝑛]. Define 𝑆𝑛 as the set of all per-
mutations of [𝑛]. We denote a permutation on 𝑆𝑛 as a vector:

𝜎 := (𝜎1, . . . , 𝜎𝑛) :=
(

1 · · · 𝑛
𝜎(1) · · · 𝜎(𝑛)

)
. We denote the

identity permutation by 𝜄.

2.1 Chebyshev Distance and Permutation Codes

Definition 1 (Chebyshev Distance). For two vectors 𝜋, 𝜎 ∈
R𝑛, Chebyshev distance between 𝜋 and 𝜎 is defined as fol-
lows:

𝑑∞ (𝜋, 𝜎) = max
𝑗:1≤ 𝑗≤𝑛

|𝜋 𝑗 − 𝜎𝑗 |.

Note that 0 ≤ 𝑑∞ (𝜋, 𝜎) ≤ 𝑛 − 1 for 𝜋, 𝜎 ∈ 𝑆𝑛. In other
literature, this distance is known as ℓ∞ distance defined over
R𝑛.

We give an example. Chebyshev distance between 𝜋 =
(12345) and 𝜎 = (25413) is

𝑑∞ (𝜋, 𝜎) = max{|1 − 2|, |2 − 5|, |3 − 4|, |4 − 1|, |5 − 3|}

= max{1, 3, 1, 3, 2}
= 3.

Definition 2 (Permutation Codes). We say that a set of per-
mutations 𝑃 ⊂ 𝑆𝑛 is a permutation code of length 𝑛. We refer
to the elements of a permutation code as codewords. Permu-
tation codes are called permutation arrays in literature. We
say the minimum Chebyshev distance of permutation code
𝑃 is 𝑑 and write 𝑑∞ (𝑃) = 𝑑 if 𝑑∞ (𝜋, 𝜎) ≥ 𝑑 for any two
distinct permutations 𝜋, 𝜎 ∈ 𝑃 and 𝑑∞ (𝜋, 𝜎) = 𝑑 for some
𝜋, 𝜎 ∈ 𝑃. We say 𝑃 ⊂ 𝑆𝑛 is an (𝑛, 𝑀, 𝑑) permutation code
if 𝑃 is of length 𝑛, size 𝑀 , and minimum Chebyshev distance
𝑑.

We give an example of an (8,16,4) permutation code.
Table 1 lists 16 codewords in the-right-most column. In this
paper, we will investigate such a type of codes in detail. We
will explain how this code is constructed and other columns
in the following sections.

2.2 Channels

In this section, we define three types of 𝑛-ary input channels.
Each channel deals with permutation 𝜋 ∈ 𝑆𝑛 as input and
𝑛-tuple 𝜎 ∈ Y𝑛 as output, where Y is the set of output
symbols. The channels are all memoryless:

𝑃Σ𝑛
1 |Π𝑛

1
(𝜎𝑛

1 |𝜋
𝑛
1 ) =

𝑛∏
𝑗=1

𝑃Σ 𝑗 |Π 𝑗 (𝜎𝑗 |𝜋 𝑗 ).

Definition 3 (AWGN Channel). We define an additive white
Gaussian noise (AWGN) channel with input 𝜋 ∈ 𝑆𝑛 and
output 𝜎 ∈ R𝑛 as follows. Each transition probability is
defined as

𝑃Σ 𝑗 |Π 𝑗 (𝜎𝑗 |𝜋 𝑗 )
def
=

1
√

2𝜋𝑠2
𝑒
− (𝜋𝑗−𝜎𝑗 )2

2𝑠2 , ( 𝑗 = 1, . . . , 𝑛),

where 𝑠2 ≥ 0 is the variance of the noise. We denote the
channel by AWGNC(𝑠2). Let us consider a generic mod-
ulation: [𝑛] → C, where C is a constellation of signals.
In order to save transmitting power, for an even number
𝑛 > 0, we employ a simple modulation: 𝑛-level PAM
(pulse-amplitude modulation) with 𝑛 level value constella-
tion C = {±( 1

2 + 𝑗) | 𝑗 = 0, 1, . . . , 𝑛/2− 1} and we naturally
map 𝑗 ∈ [𝑛] to −(𝑛/2−1/2) + ( 𝑗 −1) ∈ C. For example, the
4-level PAM maps 1, 2, 3, 4 to −1.5,−0.5, 0.5, 1.5, respec-
tively. Of course, one can use more sophisticated modulation
methods, but we do not go into details in this paper. The

SNR is calculated as SNR[dB] = 10 log10

1
𝑛

∑𝑛/2−1
𝑗=0 (1/2+ 𝑗)2

𝑠2 .

Definition 4 (𝑛-ary Symmetric Channel). We define 𝑛-ary
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symmetric channel 𝑛-SC(𝛿) of error probability 𝜖 ∈ [0, (𝑛−
1)/𝑛] with input 𝜋 ∈ 𝑆𝑛 and output 𝜎 ∈ [𝑛]𝑛 as follows:

𝑃Σ 𝑗 |Π 𝑗 (𝜎𝑗 |𝜋 𝑗 )
def
=

{
1 − 𝜖 (if 𝜎𝑗 = 𝜋 𝑗 ),
𝜖

𝑛−1 (if 𝜎𝑗 ≠ 𝜋 𝑗 ).

The channel is noiseless when 𝜖 = 0, i.e., the conditional
entropy of 𝜎𝑗 given 𝜋 𝑗 is 0. The channel is completely noisy
when 𝜖 = (𝑛− 1)/𝑛, i.e., the conditional entropy of 𝜎𝑗 given
𝜋 𝑗 is log2 (𝑛).

Discussion 1. In [13, §I.], Kløve et al. implied the reason
why they use Chebyshev metric for AWGN channels. We
briefly review the reason as follow. Suppose that 𝜋 is sent
and 𝜎 is received through AWGN(𝑠2). The likelihood is
given as a function of the square of the Euclidean distance
between 𝜋 and 𝜎 as follows.

𝑃Σ |Π (𝜎 |𝜋) =
𝑛∏
𝑗=1

𝑃Σ 𝑗 |Π 𝑗 (𝜎𝑗 |𝜋 𝑗 )

=
𝑛∏
𝑗=1

1
√

2𝜋𝑠2
𝑒
− (𝜎𝑗−𝜋𝑗 )2

2𝑠2

=
1(√

2𝜋𝑠2)𝑛 𝑒− 𝑑𝐸 (𝜎,𝜋)2

2𝑠2

The probability that 𝜎 contains a component that is sig-
nificantly different from the one transmitted is very small.
Chebyshev distance can be viewed as a metric so that the
distance becomes large once such a component exists by
replacing the

∏
in likelihood with a min as follows,

min
𝑗∈[𝑛]

𝑃Σ 𝑗 |Π 𝑗 (𝜎𝑗 |𝜋 𝑗 ) =
1

√
2𝜋𝑠2

𝑒
−

max 𝑗∈[𝑛] (𝜎𝑗−𝜋𝑗 )2

2𝑠2

=
1

√
2𝜋𝑠2

𝑒
−

(max 𝑗∈[𝑛] |𝜎𝑗−𝜋𝑗 |)2

2𝑠2

=
1

√
2𝜋𝑠2

𝑒
− 𝑑∞(𝜎,𝜋)2

2𝑠2 .

Definition 5 (Erasure Channel). For some 𝛿 ∈ (0, 1], we
define erasure channel EC(𝛿) with input 𝜋 ∈ 𝑆𝑛 and output
𝜎 ∈ ([𝑛] ∪ {?})𝑛 as follows:

𝑃Σ 𝑗 |Π 𝑗 (𝜎𝑗 |𝜋 𝑗 )
def
=


𝛿 (𝜎𝑗 =?),
1 − 𝛿 (𝜎𝑗 = 𝜋 𝑗 ),
0 (otherwise).

The erasure channel can be viewed as a simplified channel
model of 𝑛-ary FSK with impulsive noise [3].

3. Decoding Performance of Bounded Distance De-
coder

Kløve et al. [13, Explicit Construction] and Tamo et al. [17,

Construction 1] independently discovered a construction of
an (𝑛, 𝑀, 𝑑) permutation code with

𝑀 = ([𝑛/𝑑]!)𝑛 mod 𝑑 (⌊𝑛/𝑑⌋!)𝑑−(𝑛 mod 𝑑) .

For fixed 𝑑, the size 𝑀 grows as Θ((𝑛/𝑑)!). For large 𝑑
such that 𝑛/2 < 𝑑 < 𝑛, the size 𝑀 scales as 𝑀 = 2𝑛−𝑑 . To
the best of the authors knowledge, this is the largest known
code construction of length 𝑛 and linear growing† minimum
Chebyshev distance 𝑑 > 𝑛/2 so far. Note that there still
remains a gap to the best-known upper bound [17, Theo-
rem 24] of the size of codes with linear growing minimum
Chebyshev distance. They also devised very efficient en-
coding and decoding algorithms. The decoding algorithm
realizes BDD.

In this section, we evaluate the BDD performance of an
(𝑛, 𝑀, 𝑑) permutation code.

Definition 6 (Bounded Distance Decoder). Let 𝑃 be an
(𝑛, 𝑀, 𝑑) permutation code.

�̂� (BD) (𝜎) =
{
𝜋′ if ∃𝜋′ ∈ 𝑃, 𝑑∞ (𝜎, 𝜋′) < 𝑑/2
error otherwise

Uniqueness of �̂�(𝜎) is ensured from the assumption that the
minimum Chebyshev distance of 𝑃 is 𝑑.

Assume transmissions take places over AWGN(𝑠2)
channels 𝑃Σ𝑛

1 |Π𝑛
1
(𝜎𝑛

1 |𝜋
𝑛
1 ). We consider a question: how

large does the minimum Chebyshev distance 𝑑 need to scale
with 𝑛 so that the BDD error probability goes to zero?
The BDD fails if and only if 𝑑∞ (𝜎, 𝜋) ≥ 𝑑/2. There-
fore, it holds that 𝑃(Π̂(BD) (Σ) ≠ Π) = 𝑃(𝑑∞ (Σ,Π) ≥ 𝑑/2).
There are independently and identically distributed (iid) ran-
dom variables 𝑍 𝑗 so that Σ 𝑗 = Π 𝑗 + 𝑍 𝑗 for 𝑗 = 1, . . . , 𝑛
each 𝑍 𝑗 ( 𝑗 = 1, . . . , 𝑛) is a Gaussian variable with mean
0 and variance 𝑠2. Note that 𝑑∞ (Σ,Π) = max 𝑗 |𝑍 𝑗 |. Let
𝑊 := 𝑑∞ (Σ,Π). From [23, Th. 3.12], it is known that
E[𝑊] ≤ 𝑠

√
2 ln(𝑛) and Var[𝑊] ≤ 𝑠2. For arbitrary 𝜖 ≥ 0, if

we choose

𝑑/2 = 𝑠(
√

2 ln(𝑛) + 1/𝜖) ≥ E[𝑊] +
√
𝑠2/𝜖, (1)

then we have

𝑃(𝑊 ≥ 𝑑/2) ≤ 𝑃( |𝑊 − E[𝑊] | ≥ 𝑑/2 − E[𝑊])

≤ Var[𝑊]
(𝑑/2 − E[𝑊])2

≤ 𝜖,

where we used Chebyshev inequality and the bounds on
E[𝑊] and Var[𝑊]. From this, we can see that 𝑊 exists
within 𝑑/2 from the mean under Chebyshev distance with
high probability. In other words, if 𝑑/2 is larger than this,
the decoding will succeed with high probability. This is the

†This code is not the largest for fixed 𝑑. We can see this
from observing that {123, 312, 231} is an (𝑛 = 3, 𝑀 = 3, 𝑑 = 2)
permutation code and 𝑀 > 2𝑛−𝑑 .
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reason why we set 𝑑/2 as given in (1).
We will give another simple derivation for a similar

result. First, recall the distribution of the maximum value of
independent random variables can be simply written as

𝑃(𝑊 ≥ 𝑑/2) = 𝑃
(
max

𝑗
{|𝑍 𝑗 | : 1 ≤ 𝑗 ≤ 𝑛} ≥ 𝑑/2

)
= 1 − 𝑃

(
max

𝑗
{|𝑍 𝑗 | : 1 ≤ 𝑗 ≤ 𝑛} < 𝑑/2

)
= 1 − 𝑃( |𝑍1 | < 𝑑/2)𝑛.

The numerical evaluation of this will be given in Section 5.4.
Using this, we have the following result. For arbitrary 𝜖>0,
if we choose 𝑑/2 ≥ 𝑠(

√
2 ln(2𝑛/𝜖)), then it holds that

𝑃(𝑊 ≥ 𝑑/2) (a)
= 1 −

(
1 − 2𝑄

( 𝑑/2
√
𝑠2

))𝑛
(2)

(b)
≤ 2𝑛𝑄

( 𝑑/2
√
𝑠2

)
(c)
≤ 2𝑛𝑒−

𝑑2
8𝑠2

(d)
≤ 𝜖

where we used Q-function
(
𝑄(𝑥) def

= 1√
2𝜋

∫ ∞
𝑥

exp
(
−𝑢2

2

)
𝑑𝑢

)
in (a), Bernoulli inequality in (b), Chernoff bound in (c), and
we used the assumption 𝑑/2 ≥ 𝑠(

√
2 ln(2𝑛/𝜖)) in (d).

4. Efficiently Encodable/Decodable Permutation Code

Kløve et al. developed a recursive construction of permuta-
tion codes [13, Sec. III C]. They also devised very efficient
encoding and hard-decision decoding algorithms for some
of those codes [13, Sec.III D]. The codes are of length 𝑛, of
minimum Chebyshev distance 𝑑 and of size 2𝑛−𝑑 . We denote
the code by 𝜙𝑛,𝑑 in this paper. In this section, we review the
encoder and decoder for 𝜙𝑛,𝑑 devised in [13].

4.1 Encoding Algorithm of 𝜙𝑛,𝑑

Definition 7 ([13, Sec.III D]). The following algorithm
consisting of two steps encodes a binary information vec-
tor 𝑢𝑛−𝑑1 into a codeword 𝜋𝑛1 ∈ 𝜙𝑛,𝑑 ⊂ 𝑆𝑛. With a
little abuse of notation, we also denote the encoder by
𝜙𝑛,𝑑 : F𝑛−𝑑2 ∋ 𝑢𝑛−𝑑1 ↦→ 𝜋𝑛1 ∈ 𝑆𝑛. With this notaion, the
code 𝜙𝑛,𝑑 is given by the image 𝜙𝑛,𝑑 (F𝑛−𝑑2 ). Two vectors
𝑥𝑛1 ∈ F𝑛2 and 𝑡𝑛+1

1 ∈ [0 : 𝑛]𝑛+1 will be used as auxiliary
variables.

1 Append 𝑑 zeros at the end of information vector
(𝑢1, . . . , 𝑢𝑛−𝑑). Denote the resulting vector by 𝑥𝑛1 . To
be precise, 𝑥𝑛−𝑑1 := 𝑢𝑛−𝑑1 and 𝑥𝑛−𝑑+1 = · · · = 𝑥𝑛 = 0.
Set 𝑡1 = 0.

2 Repeat the following for 𝑗 = 1, . . . , 𝑛. This step deter-
mines 𝜋 𝑗 and 𝑡 𝑗+1 from 𝑥 𝑗 and 𝑡 𝑗 so that

𝑡 𝑗+1 =

{
𝑡 𝑗 + 1, (𝑥 𝑗 = 0),
𝑡 𝑗 , (𝑥 𝑗 = 1),

(3)

𝜋 𝑗 =

{
𝑡 𝑗 + 1, (𝑥 𝑗 = 0),
𝑛 − ( 𝑗 − 𝑡 𝑗 − 1), (𝑥 𝑗 = 1).

(4)

We can see that the total complexity is 𝑂 (𝑛). Denote
the sets consisting of possible values that 𝑡 𝑗 and 𝜋 𝑗 take,
respectively, by T𝑗 := {0, 1, . . . , 𝑗 − 1} and P 𝑗 (𝑡 𝑗 ) := {𝑡 𝑗 +
1, 𝑛 − 𝑗 + 𝑡 𝑗 + 1} for 𝑗 = 1, . . . , 𝑛.

Remark 1. Note that |T𝑗 | = 𝑗 for every 𝑗 and |P 𝑗 (𝑡 𝑗 ) | = 2
for 𝑗 = 1, . . . , 𝑛 − 1 and |P𝑛 (𝑡𝑛) | = 1. We see that 𝑡 𝑗
and 𝑗 − 𝑡 𝑗 − 1 count the number of 0’s and 1’s appear-
ing in (𝑥1, . . . , 𝑥 𝑗−1), respectively. Denote (3) and (4) by
𝑡 𝑗+1 (𝑥 𝑗 , 𝑡 𝑗 ) and 𝜋 𝑗 (𝑥 𝑗 , 𝑡 𝑗 ), respectively. We have

𝜋 𝑗 (1, 𝑡 𝑗 ) − 𝜋 𝑗 (0, 𝑡 𝑗 ) = 𝑛 − 𝑗 ≥ 0 (5)

for any 1 ≤ 𝑗 ≤ 𝑛. In words, 𝜋 𝑗 takes the larger and smaller
value in P 𝑗 (𝑡 𝑗 ) when 𝑥 𝑗 = 0, 𝑥 𝑗 = 1, respectively.

Example 1. Consider 𝜙𝑛=8,𝑑=4. Table 1 lists information
vectors 𝑢4

1, the corresponding auxiliary vectors 𝑥8
1, counter

vectors 𝑡91 and codewords 𝜋8
1. From this table, we confirm

Table 1 A permutation code 𝜙8,4

𝑢4
1 𝑥8

1 𝑡9
1 𝜋8

1
0000 00000000 012345678 12345678
1000 10000000 001234567 81234567
0100 01000000 011234567 18234567
1100 11000000 000123456 87123456
0010 00100000 012234567 12834567
1010 10100000 001123456 81723456
0110 01100000 011123456 18723456
1110 11100000 000012345 87612345
0001 00010000 012334567 12384567
1001 10010000 001223456 81273456
0101 01010000 011223456 18273456
1101 11010000 000112345 87162345
0011 00110000 012223456 12873456
1011 10110000 001112345 81762345
0111 01110000 011112345 18762345
1111 11110000 000001234 87651234

that the minimum Chebyshev distance of 𝜙𝑛=8,𝑑=4 is 4. In
contrast, we observe that the minimum Hamming distance
of 𝜙𝑛=8,𝑑=4 is 2, where the nearest pair of codewords is
81234567 and 18234567.

4.2 Hard-Decision Decoding Algorithm of 𝜙𝑛,𝑑

Lots of efforts have been devoted to constructing permuta-
tion codes with large minimum Chebyshev distance. Some of
those codes are equipped with efficient encoding algorithms.
However, few of them have efficient decoding algorithms. In
this section, we review the recursive HDD algorithm [13,
Sec.III D] for 𝜙𝑛,𝑑 . The algorithm efficiently and sequen-
tially estimates each transmitted symbol 𝜋 𝑗 for 𝑗 = 1, . . . , 𝑛.
Below we describe a slightly modified version of [13, Sec.
III D]. Specifically, we introduce a random tie-breaking rule
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for symmetry.

Definition 8 (Hard-decision Decoder). Denote the received
symbols 𝜎𝑛

1 ∈ R𝑛. The decoder outputs estimated binary
information bits 𝑢𝑛−𝑑1 which is equal to 𝑥𝑛−𝑑1 as 𝑥𝑛−𝑑1 . The
decoder also estimates the transmitted symbols and auxiliary
variables, respectively as �̂�𝑛−𝑑1 and 𝑡𝑛−𝑑+1

1 .

(1) Set 𝑗 = 1 and 𝑡1 = 0.
(2) Repeat the following for 𝑗 = 1, . . . , 𝑛 − 𝑑. Let 𝜇 𝑗

be the middle point between 𝜋 𝑗 (0, 𝑡 𝑗 ) and 𝜋 𝑗 (1, 𝑡 𝑗 ):
𝜇 𝑗 :=

(
𝜋 𝑗 (0, 𝑡 𝑗 ) + 𝜋 𝑗 (1, 𝑡 𝑗 )

)
/2, where 𝜋 𝑗 (𝑥 𝑗 , 𝑡 𝑗 ) is a

function defined in (4). First, choose 𝑥 𝑗 ∈ {0, 1} so that
𝜋 𝑗 (𝑥 𝑗 , 𝑡 𝑗 ) is closer to 𝜎𝑗 . To be precise,

𝑥 𝑗 =


0 (𝜎𝑗 < 𝜇 𝑗 ),
Ber(1/2) (𝜎𝑗 = 𝜇 𝑗 ),
1 (𝜎𝑗 > 𝜇 𝑗 ),

(6)

where Ber(1/2) is a random variable taking a value of
0 or 1 with a probability 1/2. For symmetry, we added
such a tie-breaking rule on 𝑥 𝑗 (6). Next, substituting 𝑥 𝑗

and 𝑡 𝑗 into (4) and (3), we get �̂� 𝑗 and 𝑡 𝑗+1 as follows:
�̂� 𝑗 = 𝜋 𝑗 (𝑥 𝑗 , 𝑡 𝑗 ), 𝑡 𝑗+1 = 𝑡 𝑗+1 (𝑥 𝑗 , 𝑡 𝑗 ).

We can see that the total complexity is 𝑂 (𝑛).

5. HDD Performance and MAP decoding of 𝝓𝒏,𝒅

In this section, we first derive an upper bound of HDD error
probability over AWGN(𝑠2). Numerical results demonstrate
the tightness of the bound. Next, we devise an efficient MAP
decoding algorithm based on factor graphs.

5.1 Decoding Performance of Hard-Decision Decoder over
Channels

In this section, we analytically evaluate the HDD perfor-
mance for 𝜙𝑛,𝑑 . First, we give a sufficient condition for
successful estimation.

Lemma 1 (Sufficient Condition of Successful HDD). Con-
sider the HDD of 𝜙𝑛,𝑑 . We assume the same notations and
conditions we use in Definition 8. Let 𝑗 ∈ [1 : 𝑛 − 𝑑].
Assume the decoder successfully estimates 𝑥1, . . . 𝑥 𝑗−1, i.e.,
𝑥
𝑗−1
1 = 𝑥

𝑗−1
1 . Then it holds that

𝜎𝑗 < 𝜋 𝑗 + (𝑛 − 𝑗)/2 =⇒ 𝑥 𝑗 = 𝑥 𝑗 , if 𝑥 𝑗 = 0,

and

𝜎𝑗 > 𝜋 𝑗 − (𝑛 − 𝑗)/2 =⇒ 𝑥 𝑗 = 𝑥 𝑗 , if 𝑥 𝑗 = 1.

Proof. Recall that 𝑥 𝑗 ∈ {0, 1} is chosen so that 𝜋 𝑗 (𝑥 𝑗 , 𝑡 𝑗 ) is
closer to 𝜎𝑗 . From (5), we know that the difference between
candidates is 𝜋 𝑗 (1, 𝑡 𝑗 ) − 𝜋 𝑗 (0, 𝑡 𝑗 ) = 𝑛 − 𝑗 . First, consider
the case with 𝑥 𝑗 = 0. From the assumption 𝑥

𝑗−1
1 = 𝑥

𝑗−1
1 , the

decoder also successfully estimates the counter 𝑡 𝑗1 = 𝑡
𝑗
1 and

the transmitted symbol 𝜋 𝑗 (0, 𝑡 𝑗 ) = 𝜋 𝑗 (0, 𝑡 𝑗 ) = 𝜋 𝑗 . Recalling

the first rule of (6), we see that it is sufficient to show𝜎𝑗 < 𝜇 𝑗 .
This is true since𝜎𝑗 < 𝜋 𝑗+(𝑛− 𝑗)/2 = 𝜋 𝑗 (0, 𝑡 𝑗 )+

(
𝜋 𝑗 (1, 𝑡 𝑗 )−

𝜋 𝑗 (0, 𝑡 𝑗 )
)
/2 = 𝜇 𝑗 . The case with 𝑥 𝑗 = 1 can be shown

similarly.

Using this Lemma, we will derive an upper bound of
the error probability. The numerical evaluation of this bound
will be given in Section 5.4.

Theorem 1 (HDD performance). We assume the same
notations and conditions we use in Definition 8. For
transmissions over AWGNC(𝑠2), the word error probabil-
ity 𝑃( �̂�𝑛−𝑑

1 ≠ 𝑋𝑛−𝑑
1 ) of HDD for 𝜙𝑛,𝑑 is upper-bounded as

follows:

𝑃( �̂�𝑛−𝑑
1 ≠ 𝑋𝑛−𝑑

1 ) ≤
𝑛−𝑑∑
𝑗=1

𝑄
(𝑛 − 𝑗

2
√
𝑠2

)
. (7)

Furthermore, for arbitrary 𝜖 ≥ 0, if we choose 𝑑 ≥√
8𝑠2 ln(𝑛/𝜖), then we have 𝑃( �̂�𝑛−𝑑

1 ≠ 𝑋𝑛−𝑑
1 ) ≤ 𝜖 .

Proof. Let𝐸 𝑗 be the event that the first decoding error occurs
at the 𝑗-th position, more precisely, �̂�1 = 𝑋1, . . . , �̂� 𝑗−1 =
𝑋 𝑗−1 and �̂� 𝑗 ≠ 𝑋 𝑗 . The decoding error event �̂�𝑛−𝑑

1 = 𝑋𝑛−𝑑
1

is equal to the union of 𝐸 𝑗 for 𝑗 = 1, 2, . . . , 𝑛 − 𝑑. Since 𝐸 𝑗

is disjoint, the union bound holds with equality:

𝑃( �̂�𝑛−𝑑
1 ≠ 𝑋𝑛−𝑑

1 )

= 𝑃
(𝑛−𝑑⋃
𝑗=1

𝐸 𝑗

)
=

𝑛−𝑑∑
𝑗=1

𝑃(𝐸 𝑗 )

=
𝑛−𝑑∑
𝑗=1

𝑃( �̂� 𝑗 ≠ 𝑋 𝑗 , �̂�
𝑗−1
1 = 𝑋

𝑗−1
1 ). (8)

Each term in (8) is bounded as follow:

𝑃( �̂� 𝑗 ≠ 𝑋 𝑗 , �̂�
𝑗−1
1 = 𝑋

𝑗−1
1 )

= 𝑃( �̂� 𝑗 ≠ 𝑋 𝑗 | �̂� 𝑗−1
1 = 𝑋

𝑗−1
1 )𝑃( �̂� 𝑗−1

1 = 𝑋
𝑗−1
1 )

≤ 𝑃( �̂� 𝑗 ≠ 𝑋 𝑗 | �̂� 𝑗−1
1 = 𝑋

𝑗−1
1 )

(a)
= 𝑃(𝑋 𝑗 = 0| �̂� 𝑗−1

1 = 𝑋
𝑗−1
1 )𝑃( �̂� 𝑗 ≠ 𝑋 𝑗 |𝑋 𝑗 = 0, �̂� 𝑗−1

1 = 𝑋
𝑗−1
1 )

+ 𝑃(𝑋 𝑗 = 1| �̂� 𝑗−1
1 = 𝑋

𝑗−1
1 )𝑃( �̂� 𝑗 ≠ 𝑋 𝑗 |𝑋 𝑗 = 1, �̂� 𝑗−1

1 = 𝑋
𝑗−1
1 )

(b)
= 𝑃(𝑋 𝑗 = 0)𝑃( �̂� 𝑗 ≠ 𝑋 𝑗 |𝑋 𝑗 = 0, �̂� 𝑗−1

1 = 𝑋
𝑗−1
1 )

+ 𝑃(𝑋 𝑗 = 1)𝑃( �̂� 𝑗 ≠ 𝑋 𝑗 |𝑋 𝑗 = 1, �̂� 𝑗−1
1 = 𝑋

𝑗−1
1 )

(c)
≤ 1

2

(
𝑃(Σ 𝑗 ≥ Π 𝑗 +

𝑛 − 𝑗

2
|𝑋 𝑗 = 0, �̂� 𝑗−1

1 = 𝑋
𝑗−1
1 )

+ 𝑃(Σ 𝑗 ≤ Π 𝑗 −
𝑛 − 𝑗

2
|𝑋 𝑗 = 1, �̂� 𝑗−1

1 = 𝑋
𝑗−1
1 )

)
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(d)
=

1
2

(
𝑃(Σ 𝑗 − Π 𝑗 ≥

𝑛 − 𝑗

2
) + 𝑃(Σ 𝑗 − Π 𝑗 ≤ −𝑛 − 𝑗

2
)
)

(e)
= 𝑃

(
Σ 𝑗 − Π 𝑗 ≥

𝑛 − 𝑗

2
)

=
𝑛−𝑑∑
𝑗=1

𝑄
(𝑛 − 𝑗

2
√
𝑠2

)
.

The equality (a) uses a marginalization and (b) uses the
fact that 𝑋 𝑗 is independent of whether �̂� 𝑗−1

1 = 𝑋
𝑗−1
1 is true

or false. In (c), we used Lemma 1. In (d), we used the
fact that AWG noise Σ 𝑗 − Π 𝑗 is statistically independent
of 𝑋 𝑗 , �̂�

𝑗−1
1 , 𝑋

𝑗−1
1 . In (e), we used symmetry of Gaussian:

𝑃
(
Σ 𝑗 − Π 𝑗 ≥ 𝑛− 𝑗

2
)
= 𝑃

(
Σ 𝑗 − Π 𝑗 ≤ − 𝑛− 𝑗

2
)
. This concludes

the first claim.
Furthermore, we can bound the error probability as

follows.

𝑃( �̂�𝑛−𝑑
1 ≠ 𝑋𝑛−𝑑

1 ) ≤ (𝑛 − 𝑑)𝑄
( 𝑑

2
√
𝑠2

)
≤ 𝑛𝑒−𝑑

2/8𝑠2
, (9)

where we used that 𝑄 is a decreasing funciton and the Cher-
noff bound: 𝑄(𝑥) ≤ 𝑒−

𝑥2
2 . Substituting the assumption

𝑑 ≥
√

8𝑠2 ln(𝑛/𝜖) into (9), we obtain 𝑃( �̂�𝑛−𝑑
1 ≠ 𝑋𝑛−𝑑

1 ) ≤ 𝜖
which concludes the proof.

5.2 Bit-wise MAP Decoding of 𝜙𝑛,𝑑

In this section, we evaluate the bit-wise MAP decoding per-
formance of 𝜙𝑛,𝑑 for various channels. We assume that the
information vector 𝑢𝑛−𝑑1 is chosen uniformly at random. To
this end, we take a standard approach. We first formulate the
bit-wise MAP decoding problem as a marginal of factorized
function. Next, we draw a factor graph: a graphical model
representing a factorization of function consisting of many
variables. Finally, we devise bit-wise MAP decoding as a
SP algorithm on the factor graph that is a tree [24].

Let 𝑥 = 𝑥𝑛−𝑑1 be an information vector that is chosen
uniformly at random. Then, 𝑥 is encoded into a codeword
𝜋𝑛1 = 𝜙𝑛,𝑑 (𝑥). Let 𝜎 = 𝜎𝑛

1 be a received vector through one
of the three channels. Define the bit-wise MAP decoder by

𝑥𝑘 (𝜎)
def
= argmax

𝑥𝑘 ∈F2

𝑝𝑋𝑘 |Σ (𝑥𝑘 |𝜎) for 𝑘 = 1, . . . , 𝑛. (10)

Let 𝑡 = 𝑡𝑛+1
1 be the auxiliary counters. We claim that the bit-

wise MAP decoding can be accomplished by marginalizing
a factorized function:

𝑥𝑘 = argmax
𝑥𝑘 ∈F2

∑
∼𝑥𝑘

1[𝑡1 = 0]
𝑛∏
𝑗=1

𝑃Σ 𝑗 |Π 𝑗 (𝜎𝑗 |𝜋 𝑗 )

× 𝑃Π 𝑗 |𝑋 𝑗 ,𝑇𝑗 (𝜋 𝑗 |𝑥 𝑗 , 𝑡 𝑗 )𝑃𝑇𝑗+1 |𝑇𝑗 ,𝑋 𝑗 (𝑡 𝑗+1 |𝑡 𝑗 , 𝑥 𝑗 )𝑃𝑋𝑛
1
(𝑥𝑛1 ).

(11)

From the assumption, we see that 𝑃𝑋𝑛
1
(𝑥𝑛1 ) is further factor-

ized into 𝑃𝑋𝑛
1
(𝑥𝑛1 ) =

1
2𝑛−𝑑

∏𝑛
𝑗=𝑛−𝑑+1 1[𝑥 𝑗 = 0]. We used the

notation
∑

∼𝑥𝑘 as a summation over all variables 𝑥𝑛1 , 𝜋
𝑛
1 , 𝑡

𝑛+1
1

except 𝑥𝑘 . Note that 𝜎𝑛
1 is not a variable but a fixed value.

In the remainder of this subsection, when it is clear from
the context, we will abbreviate random variables and write
𝑃(𝑥) and 𝑃(𝑥 |𝑦) instead of 𝑃𝑋 (𝑥) and 𝑃(𝑋 = 𝑥 |𝑌 = 𝑦),
respectively.

We will show (11). We start by writing

𝑥𝑘 = argmax
𝑥𝑘 ∈F2

∑
∼𝑥𝑘

𝑃Π,𝑋 ,𝑇 |Σ (𝜋, 𝑥, 𝑡 |𝜎). (12)

Next, we factorize 𝑃(𝜋, 𝑥, 𝑡 |𝜎) as follows:

𝑃(𝜋, 𝑥, 𝑡 |𝜎)
= 𝑃(𝜎 |𝜋, 𝑥, 𝑡)𝑃(𝜋 |𝑥, 𝑡)𝑃(𝑡 |𝑥)𝑃(𝑥)/𝑃(𝜎)
= 𝑃(𝜎 |𝜋)𝑃(𝜋 |𝑥, 𝑡)𝑃(𝑡 |𝑥)𝑃(𝑥)/𝑃(𝜎). (13)

In the last equality, we used the fact that (𝑥, 𝑡) ↔ 𝜋 ↔ 𝜎
forms a Markov chain. We ignore the factor 1/𝑃(𝜎) since
it does not affect argmax for �̂� 𝑗 . Further, we will factorize
those four factors. Since we assume memoryless channels,
we have 𝑃(𝜎 |𝜋) = ∏𝑛

𝑗=1 𝑃(𝜎𝑗 |𝜋 𝑗 ). Similarly, we have

𝑃(𝜋 |𝑥, 𝑡) (a)
=

𝑛∏
𝑗=1

𝑃(𝜋 𝑗 |𝜋1, . . . , 𝜋 𝑗−1, 𝑥, 𝑡)

(b)
=

𝑛∏
𝑗=1

𝑃(𝜋 𝑗 |𝑥 𝑗 , 𝑡 𝑗 ),

where (a) is due to the chain rule and (b) holds since 𝜋 𝑗

depends only on (𝑥 𝑗 , 𝑡 𝑗 ) from (4). Similarly we have,

𝑃(𝑡 |𝑥) = 1[𝑡1 = 0]
𝑛−1∏
𝑗=1

𝑃(𝑡 𝑗+1 |𝑡1, . . . , 𝑡 𝑗 , 𝑥)

= 1[𝑡1 = 0]
𝑛−1∏
𝑗=1

𝑃(𝑡 𝑗+1 |𝑡 𝑗 , 𝑥 𝑗 ).

Since 𝑥 is uniformly chosen with fixed 𝑥 𝑗 = 0 for 𝑗 = 𝑛 −
𝑑 + 1, . . . , 𝑛, we have 𝑃(𝑥) = 1

2𝑛−𝑑
∏𝑛

𝑗=𝑛−𝑑+1 1[𝑥 𝑗 = 0] .
Substituting all factors into (13), we see the claim is true.

Figure 1 depicts the factor graph (tree) of factors inside
argmax in (11) for 𝜙8,4. It is known that the SP algorithm
calculates the exact value of the marginal function when the
factor graph is a tree [24]. Obviously, the factor graph forms
a tree for general 𝜙𝑛,𝑑 . We see that the SP algorithm on the
factor graph for 𝜙𝑛,𝑑 realizes the bit-wise MAP decoding
(10).

Let us write the decoding algorithm as forward and
backward message updates as in the BCJR algorithm [25] or,
more generally, in the Baum-Welch algorithm [26]. Denote
the forward and backward messages by 𝛼 𝑗 (𝑡 𝑗 ) and 𝛽 𝑗 (𝑡 𝑗 ),
respectively. These are corresponding to the SP message
from 𝑡 𝑗 to 𝑓 𝑗 and from 𝑡 𝑗+1 to 𝑓 𝑗 , respectively. The update
rules for forward, backward, and estimate steps are given in
(14), (15) and (16), respectively.

Let us consider the computation complexity of the al-
gorithm. Since the number of multiplications and evaluating
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𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

1[𝑥5 = 0] 1[𝑥6 = 0] 1[𝑥7 = 0] 1[𝑥8 = 0]

1[𝑡1 = 0] 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8

𝑃Σ1 |Π1
(𝜎1 |𝜋1)

𝑃Σ2 |Π2
(𝜎2 |𝜋2)

𝑃Σ3 |Π3
(𝜎3 |𝜋3)

𝑃Σ4 |Π4
(𝜎4 |𝜋4)

𝑃Σ5 |Π5
(𝜎5 |𝜋5)

𝑃Σ6 |Π6
(𝜎6 |𝜋6)

𝑃Σ7 |Π7
(𝜎7 |𝜋7)

𝑃Σ8 |Π8
(𝜎8 |𝜋8)

𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 𝜋6 𝜋7 𝜋8

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9

Fig. 1 The factor graph of factors inside argmax in (11) for 𝜙8,2. Each factor
𝑃Π 𝑗 |𝑋 𝑗 ,𝑇𝑗

(
𝜋 𝑗 |𝑥 𝑗 , 𝑡 𝑗

)
𝑃𝑇𝑗+1 |𝑇𝑗 ,𝑋 𝑗

(
𝑡 𝑗+1 |𝑡 𝑗 , 𝑥 𝑗

)
is denoted by 𝑓𝑗 for 𝑗 = 1, . . . , 8.

Forward Step: 𝛼1 (𝑡1) = 1 for 𝑡1 ∈ T1 = {0}

𝛼𝑗+1 (𝑡 𝑗+1) =
∑
𝑡 𝑗∈T𝑗

∑
𝜋 𝑗∈P 𝑗 (𝑡 𝑗 )

∑
𝑥 𝑗∈F2

𝑃 (𝜋 𝑗 |𝑥 𝑗 , 𝑡 𝑗 )𝑃 (𝑡 𝑗+1 |𝑡 𝑗 , 𝑥 𝑗 )𝑃 (𝜋 𝑗 |𝜎 𝑗 )𝑔 𝑗 (𝑥 𝑗 )𝛼𝑗 (𝑡 𝑗 ) for 𝑡 𝑗+1 ∈ T𝑗+1, 𝑗 = 1, . . . , 𝑛, (14)

Backward Step: 𝛽𝑛+1 (𝑡𝑛+1) = 1 for 𝑡𝑛+1 ∈ T𝑛+1 = {1, . . . , 𝑛}

𝛽 𝑗 (𝑡 𝑗 ) =
∑

𝑡 𝑗+1∈T𝑗+1

∑
𝜋 𝑗∈P 𝑗 (𝑡 𝑗 )

∑
𝑥 𝑗∈F2

𝑃 (𝜋 𝑗 |𝑥 𝑗 , 𝑡 𝑗 )𝑃 (𝑡 𝑗+1 |𝑡 𝑗 , 𝑥 𝑗 )𝑃 (𝜋 𝑗 |𝜎 𝑗 )𝑔 𝑗 (𝑥 𝑗 )𝛽 𝑗+1 (𝑡 𝑗+1) for 𝑡 𝑗 ∈ T𝑗 , 𝑗 = 𝑛, . . . , 1, (15)

Estimate Step:

�̂� 𝑗 = argmax
𝑥 𝑗∈F2

∑
𝑡 𝑗∈T𝑗

∑
𝑡 𝑗+1∈T𝑗+1

∑
𝜋 𝑗∈P 𝑗 (𝑡 𝑗 )

𝑃 (𝜋 𝑗 |𝑥 𝑗 , 𝑡 𝑗 )𝑃 (𝑡 𝑗+1 |𝑡 𝑗 , 𝑥 𝑗 )𝑃 (𝜋 𝑗 |𝜎 𝑗 )𝛼𝑗 (𝑡 𝑗 )𝛽 𝑗+1 (𝑡 𝑗+1) for 𝑥 𝑗 ∈ F2, 𝑗 = 1, . . . , 𝑛. (16)

probabilities in (14) are proportional to that of additions, we
focus on additions. For each 𝑗 , a naive implementation of
(14) needs about #T𝑗 × #T𝑗+1 × #P 𝑗 × #F2 = 𝑗 ( 𝑗 + 1)22

additions. For 𝑗 = 1, . . . , 𝑛, the total number of additions
amount to 𝑂 (𝑛3). This can be reduced to 𝑂 (𝑛2) with the
following alternative algorithm.

We can write 1[eq. (3) holds] = 𝑃(𝑡 𝑗+1 |𝑡 𝑗 , 𝑥 𝑗 ) and
1[eq. (4) holds] = 𝑃(𝜋 𝑗 |𝑥 𝑗 , 𝑡 𝑗 ) since they are determinis-
tic. From this observation, we see that 𝛼 𝑗+1 (𝑡 𝑗+1) can be
calculated as follows:

1 First, set 𝛼 𝑗+1 (𝑡 𝑗+1) := 0 for all 𝑡 𝑗+1 ∈ T𝑗+1.
2 Next, for all 𝑡 𝑗 ∈ T𝑗 , 𝑥 𝑗 ∈ F2, repeat the following.

i Calculate 𝑡 𝑗+1 (𝑡 𝑗 , 𝑥 𝑗 ) by (3).
ii Calculate 𝜋 𝑗 (𝑡 𝑗 , 𝑥 𝑗 ) by (4).
iii Accumulate𝛼 𝑗+1 (𝑡 𝑗+1) += 𝑃(𝜋 𝑗 |𝜎𝑗 )𝑔 𝑗 (𝑥 𝑗 )𝛼 𝑗 (𝑡 𝑗 ).

This needs #T𝑗 × #F2 = 2 𝑗 additions for each 𝑗 = 1, . . . , 𝑛.
The total number of additions amount to 𝑂 (𝑛2). Similarly,
we can calculate backward and estimate steps with 𝑂 (𝑛2)
additions. Consequently, we see that the total computational
complexity of the algorithm is 𝑂 (𝑛2).

5.3 Viterbi Decoding Algorithm of 𝜙𝑛,𝑑

In this section, we evaluate the block-wise MAP decoding
performance of 𝜙𝑛,𝑑 for various channels. We assume that
the information vector 𝑢𝑛−𝑑1 is chosen uniformly at random.
In this section, we follow the method of realizing Viterbi

decoding described in [24, IV. B] and [11, 2.5.5] with mes-
sage passing over factor graphs. Consider block-wise MAP
decoding:

�̂� : = argmax
𝑥∈F𝑛2

𝑃𝑋 |Σ (𝑥 |𝜎)

Write 𝑡 and 𝜋 determined by (3) and (4) from 𝑥 as 𝑡 (𝑥) and
𝜋(𝑥), respectively.

𝑃𝑋 |Σ (𝑥 |𝜎) = 𝑃Π,𝑇 ,𝑋 |Σ
(
𝜋(𝑥), 𝑡 (𝑥), 𝑥 |𝜎

)
If 𝜋 ≠ 𝜋(𝑥) or 𝑡 ≠ 𝑡 (𝑥), then 𝑃𝜋,𝑡 ,𝑥 |Σ

(
𝜋, 𝑡, 𝑥 |𝜎

)
= 0, so we

have

�̂� = argmax
𝑥∈F𝑛2

max
𝑡 , 𝜋

𝑃Π,𝑇 ,𝑋 |Σ
(
𝜋, 𝑡, 𝑥 |𝜎

)
.

The 𝑘-th element of �̂� is written as
(
�̂�
)
𝑘 . To emphasize

the difference from bit-wise MAP decoding, we denote it as
follows.(

�̂�
)
𝑘 = argmax

𝑥𝑘 ∈F2

max
∼𝑥𝑘

𝑃Π,𝑇 ,𝑋 |Σ
(
𝜋, 𝑡, 𝑥 |𝜎

)
This can be regarded as a replacement of the sum of (12) with
a max. We conclude that the block-wise MAP decoding can
be realized by replacing every sum in forward (14), backward
(15) and estimation step (16) by a max.

5.4 Numerical Evaluation

In this subsection, we numerically evaluate the decoding
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Fig. 2 The HDD, BDD, bit-wise MAP and Viterbi decoding performance
evaluation of 𝜙𝑛,𝑑 with 𝑛 = 512, 𝑑 = 64 over AWGN(𝑠2). The WER
and BER of HDD, bit-wise MAP and Viterbi decoding are almost the
same. The dashed black curve draws the exact word error probability of
BDD, which is given in (2). The solid gray curve draws the upper bound
of the HDD error probability given in (7). The SNR is calculated as
SNR[dB] = 10 log10

1
𝑛

∑𝑛/2−1
𝑗=0 (1/2 + 𝑗)2/𝑠2.
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Fig. 3 The HDD, bit-wise MAP and Viterbi decoding performance eval-
uation of 𝜙𝑛,𝑑 with 𝑛 = 512, 𝑑 = 64 over 𝑛-SC(𝜖 ). The WER and BER
of HDD, bit-wise MAP and Viterbi decoding are almost the same.

performance of the code 𝜙𝑛,𝑑 with 𝑛 = 512 and 𝑑 = 64. First,
Fig. 2 evaluates the HDD, BDD, bit-wise MAP and Viterbi
decoding performance over AWGN(𝑠2). The dashed black
curve draws the exact word error probability of BDD, which
is given in (2). We see that HDD outperforms BDD and is
likely the same as the bit-wise MAP and Viterbi decoder.
The solid gray curve draws the upper bound of the HDD
error probability given in (7). We see that the upper bound
is tight. Recall the computational complexity of HDD and
the proposed bit-wise MAP decoding algorithm are as small
as 𝑂 (𝑛) and 𝑂 (𝑛2), respectively. This makes it possible to
evaluate the error probabilities by Monte Carlo simulation.
Next, in Figures 3 and 4, we evaluate the performance of
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Fig. 4 The HDD*, bit-wise MAP and Viterbi decoding performance eval-
uation of 𝜙𝑛,𝑑 with 𝑛 = 512, 𝑑 = 64 over EC(𝛿). The WER and BER of
bit-wise MAP and Viterbi decoding are almost the same.

HDD, bit-wise MAP and Viterbi decoding of code 𝜙𝑛,𝑑 with
𝑛 = 512 and 𝑑 = 64 over 𝑛-SC(𝜖), and EC(𝛿). The reason
why we do not have HDD performance over EC(𝛿) is that
HDD is not applicable to EC(𝛿). This is due the restriction
that HDD assumes that outputs of a channel are real numbers.
The output of EC(𝛿) can be an erasure symbol ‘?’. We can
evaluate HDD performance over EC(𝛿) by forcibly regarding
an erasure symbol as a uniformly chosen symbol in [𝑛].
Denote such a decoder by HDD*, which results in the same
result as HDD over 𝑛-SC(𝜖 = 𝛿).

For AWGN(𝑠2), there is no difference between the per-
formance of HDD and bit-wise MAP decoding, while it is
observed that the difference is large for the 𝑛-SC(𝜖). These
results imply that the Chebyshev distance is suitable for cap-
turing statistical properties in AWGN(𝑠2). Conversely, on
𝑛-SC(𝜖) and EC(𝛿), MAP decoding takes full advantage of
the properties of the channel that are not captured by Cheby-
shev distance.

In our experiment, only 448/512=0.875 information bits
are transmitted per channel use. Despite such low efficiency,
one may think the system is operated at high SNR. This is due
to the high-level modulation (512-level PAM) and the lack
of powerful error correction. It is natural to wonder if there
is a way to improve decoding performance further while
keeping the structure of efficiently decodable permutation
codes. For this purpose, we consider concatenated codes in
the next section.

6. Concatenation

In this section, we investigate concatenated permutation
codes. We use a binary code 𝐶 of size #𝐶 as the outer code.
We use the permutation code 𝜙𝑛,𝑑=0 discussed in Section 4
as the inner code. In the rest of this paper, for simplicity,
we denote 𝜙 := 𝜙𝑛,𝑑=0. With a little abuse of notation, we
denote the encoder of 𝐶 also by 𝐶.



10
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

𝐶 𝜙 𝑃Σ𝑛1 |Π𝑛
1
(𝜎𝑛

1 |𝜋𝑛
1 )

𝔪 𝑥𝑛1 𝜋𝑛
1 𝜎𝑛

1

Fig. 5 Data diagram of concatenated permutation code.

6.1 Definition of Concatenation

Let us define the concatenated codes precisely with a data
diagram. Take a look at Fig. 5. Let 𝐶 be a binary code
of size 𝑀 . First, a message 𝔪 ∈ [𝑀] is encoded into a
binary codeword 𝑥𝑛1 := 𝐶 (𝔪) ∈ 𝐶. Next, the codeword is
used as an input to the permutation encoder 𝜙. The resulting
permutation codeword 𝜋𝑛1 = 𝜙(𝑥𝑛1 ) is transmitted over the
channels. We denote the resulting concatenated permutation
code by 𝜙(𝐶) := {𝜙(𝑥𝑛1 ) | 𝑥

𝑛
1 ∈ 𝐶}.

Example 2. The encoder 𝜙𝑛,𝑑 can be viewed as a special
case of the concatenated code with 𝐶 = 𝐶𝑛,𝑑 , where 𝐶𝑛,𝑑

maps 𝔪 := 𝑢𝑛−𝑑1 ∈ F𝑛−𝑑2 to 𝑥𝑛1 by appending 𝑑 zeros:

𝐶𝑛,𝑑 : 𝑢1 · · · 𝑢𝑛−𝑑 ↦→ 𝑥𝑛1 = 𝑢1 · · · 𝑢𝑛−𝑑

𝑑︷︸︸︷
0 · · · 0 . (17)

Example 3. We give another example. Let𝐶 be a binary ex-
tended Hamming code of length 8. Table 2 lists information
vectors 𝔪 = 𝑢4

1 ∈ F4
2, binary codewords 𝑥8

1 ∈ 𝐶, counters 𝑡91
and permutation codewords 𝜋8

1 = 𝜙(𝑥8
1).

Table 2 An example of concatenated permutation code 𝜙 (𝐶) with the
extended Hamming code 𝐶.

𝔪 = 𝑢4
1 𝑥8

1 𝑡9
1 𝜋8

1
0000 00000000 012345678 12345678
0001 00011110 012333334 12387654
0010 00101011 012233444 12837465
0011 00110101 012223344 12873645
0100 01000111 011234444 18234765
0101 01011001 011222344 18276345
0110 01101100 011122234 18726534
0111 01110010 011112334 18762354
1000 10001101 001233344 81237645
1001 10010011 001223444 81273465
1010 10100110 001123334 81723654
1011 10111000 001111234 81765234
1100 11001010 000122334 87126354
1101 11010100 000112234 87162534
1110 11100001 000012344 87612345
1111 11111111 000000000 87654321

Note that, the map 𝜙 : F𝑛2 → 𝑆𝑛 is not injective. For
example, 𝜙𝑛=4,𝑑=0 maps both 0100 and 0101 to 1423. This
problem can be quickly resolved as follows. We can make
the whole mapping from 𝔪 to 𝜋 injective by choosing 𝐶 so
that the minimum Hamming distance of 𝐶 is greater than 1.
We will investigate this in the following subsection.

6.2 Induced Pseudo Distance Space: Minimum Chebyshev
Distance Characterization

In this subsection, we characterize the minimum Chebyshev

distance of concatenated codes by binary outer codes. For
this purpose, we introduce a pseudo distance on the binary
outer code. This distance is naturally induced from Cheby-
shev distance of concatenated codes so that the concatenation
preserves distance.

First, in the following theorem, we give a simple loose
lower bound of the minimum Chebyshev distance of con-
catenated code 𝑑∞

(
𝜙(𝐶)

)
. Since the proof of this theorem

becomes simple with the notion that we will introduce later,
we delegate the proof to the appendix.

Theorem 2. Let 𝐶 ⊂ F𝑛2 be a binary code of length 𝑛, with
the minimum Hamming distance 𝑑𝐻 (𝐶). Then it holds that

𝑑∞
(
𝜙(𝐶)

)
≥ 𝑑𝐻 (𝐶) − 1 (18)

In words, the minimum Chebyshev distance of concate-
nated code 𝜙(𝐶) is roughly greater than the minimum Ham-
ming distance of𝐶. The natural thought is that concatenating
codes with a larger minimum Hamming distance makes con-
catenated codes with a larger minimum Chebyshev distance.
This idea is not so good because the bound is not tight. In

fact, using the outer code 𝐶𝑛,𝑑 we saw in Example 2, we can
express 𝜙𝑛,𝑑 = 𝜙(𝐶𝑛,𝑑). It can be seen that the minimum
Hamming distance is 1: 𝑑𝐻 (𝐶𝑛,𝑑) = 1 and 𝑑∞ (𝜙𝑛,𝑑) = 𝑑
while the bound gives 𝑑∞ (𝜙𝑛,𝑑) ≥ 𝑑𝐻 (𝐶) − 1 = 0.

The following pseudo distance over F𝑛2 essentially cap-
tures the structure of concatenated codes 𝜙(𝐶). We start
from a definition.

Definition 9 (pseudo distance). Consider two vectors 𝑥 (1)

and 𝑥 (2) in F𝑛2 . Let ℓ(𝑥 (1) , 𝑥 (2) ) be the smallest 𝑗 ∈ [𝑛] such
that 𝑥 (1)𝑗 ≠ 𝑥 (2)𝑗 . To be precise,

𝑥 (1)𝑗 = 𝑥 (2)𝑗 for 𝑗 = 1, 2, . . . , ℓ − 1, (19)

𝑥 (1)ℓ ≠ 𝑥 (2)ℓ .

When 𝑥 (1) = 𝑥 (2) we define ℓ = 𝑛. Define 𝑑∗
(
𝑥 (1) , 𝑥 (2)

) def
=

𝑛 − ℓ. In Theorem 3, we will show that (F𝑛2 , 𝑑∗) is a pseudo
distance space.

From this definition, it is easily seen that

𝑑∗ (𝑥 (1) , 𝑥 (2) ) = 𝑑∗ (𝑥 (1) − 𝑥 (2) , 0). (20)

It follows that 𝑑∗ (𝑥 (1) , 𝑥 (2) ) depends only on the difference
between 𝑥 (1) and 𝑥 (2) .

Lemma 2 (𝜙 is distance preserving). For 𝑥 (1) and 𝑥 (2) in F𝑛2 ,
denote the corresponding permutation codewords by 𝜋 (1) :=
𝜙(𝑥 (1) ) and 𝜋 (2) := 𝜙(𝑥 (2) ), respectively. It holds that 𝜙
preserves distance between (F𝑛2 , 𝑑∗) and (𝑆𝑛, 𝑑∞). To be
precise,

𝑑∞ (𝜋 (1) , 𝜋 (2) ) = 𝑑∗ (𝑥 (1) , 𝑥 (2) ).

Proof. Write ℓ = ℓ(𝑥 (1) , 𝑥 (2) ). It is sufficient to show that
𝑑∞ (𝜋 (1) , 𝜋 (2) ) = 𝑛−ℓ. Recall Definition 1: 𝑑∞ (𝜋 (1) , 𝜋 (2) ) =
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max1≤ 𝑗≤𝑛 |𝜋 (1)
𝑗 − 𝜋 (2)

𝑗 |. First, we partition [𝑛] into three
sections: {1, . . . , ℓ − 1}, {ℓ} and {ℓ + 1, . . . , 𝑛}. Next,
we will evaluate |𝜋 (1)

𝑗 − 𝜋 (2)
𝑗 | with 𝑗 in the three regions as

follows.

1. For 𝑗 = 1, . . . , ℓ − 1, it holds that 𝑥 (1)𝑗 = 𝑥 (2)𝑗 from
(19). Recalling the definition of the encoder 𝜙, we
know 𝜋 (1)

𝑗 and 𝜋 (2)
𝑗 depend only on 𝑥 (1)1 , . . . , 𝑥 (1)𝑗 and

𝑥 (2)1 , . . . , 𝑥 (2)𝑗 , respectively. It follows that 𝜋 (1)
𝑗 − 𝜋 (2)

𝑗 =
0.

2. For 𝑗 = ℓ, from (4), we know that 𝜋 (2)
𝑗 − 𝜋 (1)

𝑗 = 𝑛 − ℓ.
3. Consider the case with 𝑗 = ℓ + 1, . . . , 𝑛. Recall Re-

mark 1. Let 𝑡 (1)𝑗 and 𝑡 (2)𝑗 for 𝑗 = 0, . . . , 𝑛 be counters
that count the number of 0’s in (𝑥 (1)1 , . . . , 𝑥 (1)𝑗−1) and
(𝑥 (2)1 , . . . , 𝑥 (2)𝑗−1), respectively. Recall (4). It holds that

|𝜋 (1)
𝑗 − 𝜋 (2)

𝑗 | =
{
|𝑡 (1)𝑗 − 𝑡 (2)𝑗 | (𝑥 (1)𝑗 = 𝑥 (2)𝑗 ),
|𝑛 − 𝑗 + 𝑡 (1)𝑗 − 𝑡 (2)𝑗 | (𝑥 (1)𝑗 ≠ 𝑥 (2)𝑗 ).

(21)

First, consider the case with 𝑥 (1)𝑗 = 𝑥 (2)𝑗 . It holds
|𝜋 (1)

𝑗 − 𝜋 (2)
𝑗 | = |𝑡 (1)𝑗 − 𝑡 (2)𝑗 |. Note that |𝑡 (1)𝑗 − 𝑡 (2)𝑗 |

is equal to the number of distinct components be-
tween (𝑥 (1)1 , . . . , 𝑥 (1)𝑗−1) and (𝑥 (2)1 , . . . , 𝑥 (2)𝑗−1). Since
𝑥 (1)1 = 𝑥 (2)1 , . . . , 𝑥 (1)ℓ−1 = 𝑥 (2)ℓ−1, we have |𝑡 (1)𝑗 − 𝑡 (2)𝑗 | ≤
𝑗 − ℓ ≤ 𝑛 − ℓ. Using this and the triangle inequal-
ity for absolute values, we have |𝑛 − 𝑗 + 𝑡 (1)𝑗 − 𝑡 (2)𝑗 | ≤
(𝑛 − 𝑗) + |𝑡 (1)𝑗 − 𝑡 (2)𝑗 | ≤ 𝑛 − ℓ. Hence, for both cases in
(21), it holds that |𝜋 (1)

𝑗 − 𝜋 (2)
𝑗 | ≤ 𝑛 − ℓ.

Hence, we have |𝜋 (1)
𝑗 − 𝜋 (2)

𝑗 | ≤ 𝑛 − ℓ for any 𝑗 ∈ [𝑛] and the
equality holds with 𝑗 = ℓ. This concludes the proof.

Theorem 3. (F𝑛2 , 𝑑∗) is a pseudo distance space.

Proof. Let us choose arbitrary 𝑥, 𝑦, 𝑧 ∈ F𝑛2 . Obviously,
𝑑∗ (𝑥, 𝑦) = 𝑑∗ (𝑦, 𝑥) ≥ 0 and 𝑑∗ (𝑥, 𝑥) = 0. The function
𝑑∗ (·, ·) satisfies the triangle inequality: for arbitrary 𝑥, 𝑦, 𝑧 ∈
F𝑛2 , it holds that

𝑑∗ (𝑥, 𝑧) = 𝑑∞ (𝜙(𝑥), 𝜙(𝑧))
≤ 𝑑∞ (𝜙(𝑥), 𝜙(𝑦)) + 𝑑∞ (𝜙(𝑦), 𝜙(𝑧))
= 𝑑∞ (𝑥, 𝑦) + 𝑑∗ (𝑦, 𝑧),

where the equalities are due to Lemma 2 and the inequality
is due to the triangle inequality of 𝑑∞ (·, ·). This concludes
the proof.

However, 𝑑∗ (·, ·) is not a distance but a pseudo distance
since 𝑑∗ (𝑥 (1) , 𝑥 (2) ) = 0 does not imply 𝑥 (1) = 𝑥 (2) , e.g.,
𝑑∗ (0000, 0001) = 0.

Table 6.2 demonstrates Lemma 2: 𝑑∗ (𝑥 (1) , 𝑥 (2) ) =
𝑑∞ (𝜋 (1) , 𝜋 (2) ) for some 𝑥 (1) , 𝑥 (2) ∈ F𝑛2 for 𝑛 = 4.

Consider the pseudo distance space (F𝑛2 , 𝑑∗). For a

Table 3 Demonstration of Lemma 2: 𝑑∗ (𝑥 (1) , 𝑥 (2) ) = 𝑑∞ (𝜋 (1) , 𝜋 (2) )
𝑥 (1) 𝑥 (2) ℓ 𝑑∗ 𝜋 (1) 𝜋 (2) 𝑑∞
0000 0000 4 0 1234 1234 0
0000 1000 1 3 1234 4123 3
0000 0100 2 2 1234 1423 2
0000 0010 3 1 1234 1243 1
0000 0001 4 0 1234 1234 0

binary code 𝐶 ⊂ F𝑛2 , we define the minimum pseudo-
distance of 𝐶 by the minimum value of pseudo distance
of any two distinct codewords and denote it by 𝑑∗ (𝐶) =
min{𝑑∗ (𝑥 (1) , 𝑥 (2) ) : 𝑥 (1) , 𝑥 (2) ∈ 𝐶, 𝑥 (1) ≠ 𝑥 (2) }. We say
𝐶 ⊂ F𝑛2 is an (𝑛, 𝑀, 𝑑) code on (F𝑛2 , 𝑑∗) if #𝐶 = 𝑀 and
𝑑 = 𝑑∗ (𝐶). As a direct consequence of Lemma 2, we have
the following Theorem.

Theorem 4. Let 𝐶 ⊂ F𝑛2 and 𝑑 ≥ 1. It holds that 𝐶 is an
(𝑛, 𝑀, 𝑑) code on (F𝑛2 , 𝑑∗) if and only if 𝜙(𝐶) is an (𝑛, 𝑀, 𝑑)
permutation code on (𝑆𝑛, 𝑑∞).

Theorem 4 states that for any 𝑑 such that 𝑑 ≥ 1, any
proposition about 𝜙(𝐶) with 𝑑∞ (𝐶) = 𝑑 can be replaced
by a proposition about the outer code 𝐶 with 𝑑∗ (𝐶) = 𝑑.
Although the subject of our study is the concatenated code
𝜙(𝐶) under Chebyshev distance, in the remainder of this
paper, for the sake of brevity and to avoid redundancy, we
will refer only to statements in terms of a binary code 𝐶
under distance 𝑑∗.

6.3 Bounds on Minimum Chebyshev Distance of Concate-
nated Permutation Codes

We define a Chebyshev ball 𝐵∗ (𝑥, 𝑟) centered at 𝑥 ∈ F𝑛2 of
radius 𝑟 by

𝐵∗ (𝑥, 𝑟) = {𝑦 ∈ F𝑛2 | 𝑑∗ (𝑥, 𝑦) ≤ 𝑟}.

The size of ball is given by #𝐵∗ (𝑥, 𝑟) = 2𝑟+1 for 0 ≤ 𝑟 <
𝑛. Note that this does not depend on 𝑥. Hence, we drop
𝑥 and simply write 𝐵∗ (𝑥, 𝑟) =: 𝐵∗ (𝑟). This leads to the
Gilbert–Varshamov (GV)-like bound on the size of code as
follows.

Theorem 5. An (𝑛, 𝑀, 𝑑) code 𝐶 exists on (F𝑛2 , 𝑑∗), if 𝑀 ≤
2𝑛/#𝐵∗ (𝑑 − 1) = 2𝑛−𝑑 .

Proof. The claim follows from the standard arguments of
GV bound by counting the size of balls. We omit the proof.

As a corollary of Theorem 5, we have that an (𝑛, 𝑀, 𝑑)
permutation code 𝜙(𝐶) with 𝐶 ⊂ F𝑛2 exists on (𝑆𝑛, 𝑑∞),
if 𝑀 ≤ 2𝑛/#𝐵∗ (𝑑 − 1) = 2𝑛−𝑑 . The following theorem
explains 𝐶𝑛,𝑑 is the outer code that maximizes the size of
concatenated codes of minimum Chebyshev distance 𝑑.

Theorem 6. If an (𝑛, 𝑀, 𝑑) code 𝐶 exists on (F𝑛2 , 𝑑∗), then
𝑀 ≤ 2𝑛−𝑑 .

Proof. Let 𝑥, 𝑦 ∈ 𝐶 be two distinct codewords. Since the
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minimum pseudo distance is 𝑑, it holds that ℓ(𝑥, 𝑦) ≤ 𝑛 − 𝑑.
In words, 𝑥 and 𝑦 have at least one different component in the
first 𝑛−𝑑 components. The maximum number of codewords
such that any two distinct codewords satisfy such property is
2𝑛−𝑑 .

6.4 Concatenation with Outer Linear Codes

Consider the case 𝐶 ⊂ F𝑛2 is linear. The minimum pseudo
distance can be evaluated by minimizing the distance from
the zero-vector.

Theorem 7. The minimum pseudo distance of a linear code
𝐶 on (F𝑛2 , 𝑑∗) is given by the minimum value of the dis-
tance from the all-zero vector. To be precise, 𝑑∗ (𝐶) =
min𝑥∈𝐶:𝑥≠0 𝑑∗ (𝑥, 0).

Proof. This can be seen from

𝑑∗ (𝐶) = min
𝑥 (1) ,𝑥 (2) ∈𝐶:𝑥 (1)≠𝑥 (2)

𝑑∗ (𝑥 (1) , 𝑥 (2) )

(a)
= min

𝑥 (1) ,𝑥 (2) ∈𝐶:𝑥 (1)≠𝑥 (2)
𝑑∗ (𝑥 (1) − 𝑥 (2) , 0)

(b)
= min

𝑥 (1)−𝑥 (2) ∈𝐶:𝑥 (1)−𝑥 (2)≠0
𝑑∗ (𝑥 (1) − 𝑥 (2) , 0)

= min
𝑥∈𝐶:𝑥≠0

𝑑∗ (𝑥, 0),

where (a) is due to (20) and (b) is due to the linearity of
𝐶.

Example 4. For example, consider the code 𝐶𝑛,𝑑 defined in
(17). It is easy to check that 𝐶𝑛,𝑑 is linear. From Theorem
7, we have

𝑑∗ (𝐶𝑛,𝑑) = min
𝑥∈𝐶:𝑥≠0

𝑑∗ (𝑥, 0) = max
𝑥∈𝐶:𝑥≠0

𝑛 − ℓ(𝑥, 0).

Recall ℓ(𝑥, 0) is the smallest 𝑗 such that 𝑥 𝑗 ≠ 0. The
minimum pseudo distance is given by 𝑑∗ (𝑥, 0) with 𝑥 =
𝑛−𝑑−1︷︸︸︷
0 · · · 0 1

𝑑︷︸︸︷
0 · · · 0.

Next, we will construct linear codes of minimum pseudo
distance 𝑘 on (F𝑛2 , 𝑑∗), from arbitrary linear codes 𝐶 of
dimension 𝑛 − 𝑘 and length 𝑛. For a permutation 𝜏 ∈ 𝑆𝑛
and a vector 𝑥𝑛1 of length 𝑛, denote (𝑥𝜏 (1) , . . . , 𝑥𝜏 (𝑛) ) by 𝑥𝜏 .
For example, (𝑥1, 𝑥2, 𝑥3)𝜏 = (𝑥3, 𝑥2, 𝑥1) with 𝜏 = (3, 2, 1).
Similarly, for a code𝐶 of length 𝑛, we define𝐶𝜏 := {𝑥𝜏 | 𝑥 ∈
𝐶}. Obviously, the dimension and Hamming distance remain
the same, that is, dim(𝐶𝜏) = dim(𝐶) and 𝑑𝐻 (𝐶𝜏) = 𝑑𝐻 (𝐶)
for any 𝜏 ∈ 𝑆𝑛.

Theorem 8. Let 𝐶 be a binary linear code of length 𝑛 and
dimension 𝑘 . There exists a permutation 𝜏 ∈ 𝑆𝑛 such that
𝑑∗ (𝐶𝜏) = 𝑛 − 𝑘 .

Proof. From Theorem 5, it holds that 𝑑∗ (𝐶𝜏) ≤ 𝑛−𝑘 for any
𝜏 ∈ 𝑆𝑛. We will construct 𝜏 ∈ 𝑆𝑛 such that 𝑑∗ (𝐶𝜏) ≥ 𝑛 − 𝑘.

Let 𝐺 be a 𝑘 × 𝑛 generator matrix of 𝐶. The rank of 𝐺
should be 𝑘 . Recall the rank of a matrix is the maximum
number of linearly independent columns. Therefore, there
exist 𝑘 linearly independent columns in 𝐺. We denote the
set of column indices by I. Let 𝐺I be the submatrix of 𝐺
restricted to the columns indexed by I. Similarly, denote the
corresponding subvector of 𝑥 ∈ F𝑛2 by 𝑥I .

Let 𝜏 be chosen so that 𝜏 moves columns in I to the
left, that is, 𝐺𝜏 = (𝐺I |𝐺I), where I = [𝑛] \ I. The first
𝑘 components of codewords of 𝐶𝜏 takes any values: 𝐶𝜏

[𝑘 ] =

F𝑘2 . This can be seen as follows. Let 𝑢 be an information
vector of length 𝑘 . A codeword of 𝐶𝜏 is generated by 𝑥𝜏 =
𝑢𝐺𝜏 = 𝑢(𝐺I |𝐺I) = (𝑢𝐺I , 𝑢𝐺I). We see that 𝑢𝐺I is the
first 𝑘 components of the codeword. This takes any value of
F𝑘2 by letting 𝑢 run over F𝑘2 since 𝐺I is invertible.

Consider two codewords 𝑥, 𝑥 ′ in 𝐶𝜏 . The first 𝑘 com-
ponents of 𝑥 and 𝑥 ′ must be different, i.e., 𝑥 [𝑘 ] ≠ 𝑥 ′[𝑘 ] .
Recalling the definition of ℓ(·, ·), we have ℓ(𝑥𝑖 , 𝑥 𝑗 ) ≤ 𝑘 .
Therefore, we obtain 𝑑∗ (𝑥, 𝑥 ′) = 𝑛 − ℓ(𝑥, 𝑥 ′) ≥ 𝑛 − 𝑘 .

As a corollary of Theorem 8, it holds that from any lin-
ear code𝐶 of dimension 𝑘 , one can construct a concatenated
permutation code 𝜙(𝐶) of minimum Chebyshev distance
𝑛 − 𝑘 .

In the following subsections, we will evaluate the min-
imum pseudo distance of random codes.

6.5 Minimum Pseudo Distance of Random Binary Codes

In this subsection, we evaluate the minimum pseudo distance
of random binary codes. The proof relies on the technique
used in [27]. We write 𝑓 (𝑛) = Ψ𝑛 (𝑔(𝑛)) if

lim
𝑛→∞

1
𝑛

log2 𝑓 (𝑛) = lim
𝑛→∞

1
𝑛

log2 𝑔(𝑛).

Let 𝐶 be a binary code of length 𝑛 and size 𝑀 . Let
us write 𝐶 := {𝑋 (1) , . . . , 𝑋 (𝑀 ) } ⊂ F𝑛2 . Each component of
𝑋 (𝑖) for 𝑖 = 1, . . . , 𝑀 is independently and uniformly chosen
from F2. Here we view the code as a multiset that may have
multiple instances. There are 2𝑛𝑀 possible codes. We call𝐶
a random binary code. We denote the number of codeword
pairs of pseudo distance 𝑑 by 𝑆(𝐶, 𝑑). To be precise,

𝑆(𝐶, 𝑑) =
∑

𝑖, 𝑗∈[𝑀 ]:𝑖< 𝑗

1[𝑑∗ (𝑋 (𝑖) , 𝑋 ( 𝑗) ) = 𝑑] .

Theorem 9. For 𝑟 ∈ (0, 1), let 𝑀 := 2 ⌈𝑛𝑟 ⌉ . Let 𝐶 be a
random binary code of size 𝑀 . For 𝛿 ∈ (0, 1), it holds that

E[𝑆(𝐶, ⌊𝛿𝑛⌋)] = Ψ𝑛 (2𝑛(2𝑟−1+𝛿) ),

𝑃
[
𝑑∗ (𝐶) ≤ 𝛿𝑛

]
≤ Ψ𝑛 (2−𝑛(1−2𝑟−𝛿) ),

𝑃
[ 𝑆(𝐶, ⌊𝛿𝑛⌋)
E[𝑆(𝐶, ⌊𝛿𝑛⌋)] ∉ (1 − 𝛼, 1 + 𝛼)

]
≤ 1

𝛼2Ψ𝑛
(
2−𝑛(2𝑟−1+𝛿) ) .

The second and third claims are valid for all 𝑟, 𝛿 ∈ (0, 1), but
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have meaning only for 𝛿 < 1−2𝑟 and 𝛿 > 1−2𝑟 , respectively.
From the first and third claim, we see that 𝑆(𝐶, ⌊𝛿𝑛⌋) grows
exponentially with 𝑛 if 𝛿 > 1−2𝑟 . We see that, from this and
the second claim, for 𝑟 ≤ 1/2, 𝐶 has the minimum pseudo
distance approximately 𝑛(1−2𝑟) with probability 1−2−Ω(𝑛) .

Proof. Recall (20). We see that shifting codewords pre-
serves distance: 𝑑∗ (𝑋 (𝑖) , 𝑋 ( 𝑗) ) = 𝑑∗ (𝑋 (𝑖) − 𝑋 ( 𝑗) , 0) for
𝑖, 𝑗 ∈ [𝑀]. Moreover, we see that

𝑃
(
𝑑∗ (𝑋 (𝑖) , 𝑋 ( 𝑗) ) = 𝑑

)
=

{
1/2𝑛−1 (𝑑 = 0),
1/2𝑛−𝑑 (𝑑 ∈ [𝑛 − 1]).

(22)

We drop 𝑖, 𝑗 and denote (22) by 𝑞𝑑 , since (22) does not de-
pend on (𝑖, 𝑗). From this and how the code is constructed,
we see that 𝑑∗ (𝑋 (𝑖) , 𝑋 ( 𝑗) ) for (𝑖, 𝑗) with 𝑖 < 𝑗 are inde-
pendent and identically distributed (iid). Hence, we have
E[𝑆(𝐶, 𝑑)] =

(𝑀
2
)
E[1𝑖, 𝑗 ] for some arbitrarily fixed (𝑖, 𝑗)

with 𝑖 < 𝑗 , where 1𝑖, 𝑗 := 1[𝑑∗ (𝑋 (𝑖) , 𝑋 ( 𝑗) ) = 𝑑]. Recall-
ing the definition of 𝑑∗, we see that 𝑃[1𝑖, 𝑗 = 1] = 𝑞𝑑 for
arbitrarily fixed (𝑖, 𝑗). Hence, for 𝑑 = ⌊𝛿𝑛⌋, we have

E[𝑆(𝐶, 𝑑)] =
(
𝑀

2

)
𝑞𝑑 = Ψ𝑛 (2𝑛(2𝑟−1+𝛿) ).

Let us move to the second claim. The minimum pseudo
distance 𝑑∗ (𝐶) is equal to the minimum value of 𝑑 ∈ [0 : 𝑛]
such that 𝑆(𝐶, 𝑑) ≠ 0. Note that the minimum pseudo dis-
tance can be 0, since𝐶 is allowed to have multiple instances.
Consequently, 𝑑∗ (𝐶) ≤ 𝛿𝑛 iff

∑ ⌊𝑛𝛿⌋
𝑑=0 𝑆(𝐶, 𝑑) ≥ 1. It follows

that

𝑃
[
𝑑∗ (𝐶) ≤ 𝛿𝑛

]
= 𝑃

[ ⌊𝑛𝛿⌋∑
𝑑=0

𝑆(𝐶, 𝑑) ≥ 1
]

(a)
≤ E

[ ⌊𝑛𝛿⌋∑
𝑑=0

𝑆(𝐶, 𝑑)
]

=
⌊𝑛𝛿⌋∑
𝑑=0
E[𝑆(𝐶, 𝑑)]

≤ (𝑛𝛿 + 1) max
𝑑∈[0:𝛿𝑛]

E[𝑆(𝐶, 𝑑)]

= Ψ𝑛 (2𝑁 (2𝑟−1+𝛿) ).

In (a), we used Markov inequality. This concludes the second
claim.

Now, we move to the final claim. For 𝑖, 𝑗 ∈ [𝑀] with
𝑖 < 𝑗 , the variance of 1𝑖, 𝑗 can be calculated via E[1𝑖, 𝑗 ] as
follows:

Var[1𝑖, 𝑗 ] = E[12
𝑖, 𝑗 ] − (E[1𝑖, 𝑗 ])2

= E[1𝑖, 𝑗 ] − (E[1𝑖, 𝑗 ])2 ≤ E[1𝑖, 𝑗 ],

where we used that 1𝑖, 𝑗 ∈ {0, 1} and 0 ≤ E[1𝑖, 𝑗 ] ≤ 1.
Using this and the fact that 1𝑖, 𝑗 for (𝑖, 𝑗) with 𝑖 < 𝑗 are

(𝑀
2
)

iid random variables, we have

Var(𝑆(𝐶, 𝑑)) =
(
𝑀

2

)
Var(1𝑖, 𝑗 ) ≤ E[𝑆(𝐶, 𝑑)] .

with arbitrarily fixed (𝑖, 𝑗). By the Chebyshev inequality, for
any 𝛼 > 0, we have

𝑃{𝑆(𝐶, 𝑑)/E[𝑆(𝐶, 𝑑)] ∉ (1 − 𝛼, 1 + 𝛼)}
= 𝑃{|𝑆(𝐶, 𝑑) − E[𝑆(𝐶, 𝑑)] | ≥ 𝛼E[𝑆(𝐶, 𝑑)]}

≤ E[𝑆(𝐶, 𝑑)]
𝛼2E[𝑆(𝐶, 𝑑)]2

=
1

𝛼2E[𝑆(𝐶, 𝑑)]
(23)

Together with the first claim, the third claim follows.

6.6 Minimum Pseudo Distance of Random Linear Codes

In this subsection, we evaluate the minimum pseudo distance
of random linear codes. The proof relies on the technique
used in [11, Problem 1.17].

Let 𝐺 be a random binary matrix of size 𝑘 × 𝑛. Each
entry of 𝐺 is chosen from F2 identically and uniformly at
random. Let 𝑀 := 2𝑘 . Consider a code 𝐶, which is gen-
erated by 𝐺: 𝐶 = {𝑋 (0) , . . . , 𝑋 (𝑀−1) }, where we wrote
𝑋 (𝑖) := 𝑢 (𝑖)𝐺 and 𝑢𝑖 for 𝑖 = 0, . . . , 𝑀 − 1 are chosen
so that {𝑢 (0) , . . . , 𝑢 (𝑀−1) } = F𝑘2 . Particularly, we choose
𝑢 (0) := 0 ∈ F𝑘2 . It follows 𝑥 (0) = 0 ∈ F𝑛2 . Note that 𝐶 is de-
fined as a multiset, which may have multiple instances. We
call 𝐶 a random linear code. There are 2𝑘𝑛 possible choices
of 𝐺. We call 𝐺 a random generator matrix and 𝐶 a random
linear code, respectively.

Since 𝐶 is linear, it contains at least an all-zero vector
0. Note that 𝐶 may have multiple all-zero vectors. Let
𝐴(𝐶, 𝑑; 𝑖) be the number of codewords of pseudo distance 𝑑
from 𝑥 (𝑖) . Precisely,

𝐴(𝐶, 𝑑; 𝑖) =
∑

𝑗∈[0:𝑀−1]: 𝑗≠𝑖
1[𝑑∗ (𝑋 (𝑖) , 𝑋 ( 𝑗) ) = 𝑑] .

It follows that

𝐴(𝐶, 𝑑; 𝑖) (a)
=

∑
𝑗∈[0:𝑀−1]: 𝑗≠𝑖

1[𝑑∗ (𝑋 (𝑖) − 𝑋 ( 𝑗) , 0) = 𝑑]

(b)
=

∑
𝑗∈[1:𝑀−1]

1[𝑑∗ (𝑋 ( 𝑗) , 0) = 𝑑], (24)

where we used (20) in (a). From the linearity of 𝐶, it
follows that {𝑥 (𝑖) − 𝑥 ( 𝑗) | 𝑗 ∈ [0 : 𝑀 − 1], 𝑗 ≠ 𝑖} =
{𝑥 (1) , . . . , 𝑥 (𝑀−1) }. We used this in (b). It can be seen
that (24) does not depend on 𝑖. Hence, we drop 𝑖 and write
(24) simply by 𝐴(𝐶, 𝑑).

Example 5. For 𝑛 = 3, 𝑘 = 3, 𝐺 =

(
011
011
101

)
, and F3

2 =

{000, 100, 010, 110, 001, 101, 011, 111}, then we have

𝐶 = {000, 011, 011, 000, 101, 110, 110, 101},
𝑃 = {123, 132, 132, 123, 312, 321, 321, 312},
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𝐴(𝐶, 0) = 1, 𝐴(𝐶, 1) = 2, 𝐴(𝐶, 2) = 4.

Theorem 10. For an arbitrary fixed 𝑟 ∈ (0, 1), let 𝑘 := ⌊𝑟𝑛⌋
and 𝑀 := 2𝑘 . Let 𝐺 be the random generator matrix of size
𝑘 × 𝑛. Let 𝐶 be the random linear code of size 𝑀 , which is
generated by 𝐺. For any 𝛿 ∈ (0, 1), it holds that

E𝐺 [𝐴(𝐶, ⌊𝛿𝑛⌋)] = Ψ𝑛 (2𝑛(𝑟−1+𝛿) ), (25)

𝑃
[
𝑑∗ (𝐶) ≤ 𝛿𝑛

]
≤ Ψ𝑛 (2𝑛(𝑟−1+𝛿) ),

𝑃
[ 𝐴(𝐶, ⌊𝛿𝑛⌋)
E[𝐴(𝐶, ⌊𝛿𝑛⌋)] ∉ (1 − 𝛼, 1 + 𝛼)

]
≤ 1

𝛼2Ψ𝑛
(
2−𝑛(𝑟−1+𝛿) ) .

Proof. Taking E on both sides of (24), we have

E[𝐴(𝐶, 𝑑)] =
∑

𝑖∈[1:𝑀−1]
𝑃[𝑑∗ (𝑋 (𝑖) , 0) = 𝑑] .

Recalling the definition of 𝑑∗, we have that 𝑑∗ (𝑋 (𝑖) , 0) = 0

iff 𝑋 (𝑖) =

𝑛−1︷︸︸︷
0 · · · 0 ∗ for 𝑑 = 0, and 𝑋 (𝑖) =

𝑛−𝑑︷︸︸︷
0 · · · 0 1

𝑑−1︷︸︸︷
∗ · · · ∗

for 𝑑 ≠ 0. where ∗ means we do not care whether it is 0
or 1. Note that 𝑖 ≠ 0. Since 𝑢 (𝑖) ≠ 0, each element of
𝑋 (𝑖) = 𝑢 (𝑖)𝐺 is an independently and uniformly distributed
random binary variable: 𝑃[𝑋 (𝑖) = 𝑋] = 1/2𝑛 for any 𝑋 ∈
F𝑛2 . Consequently, we have

𝑃[𝑑∗ (𝑋 (𝑖) , 0) = 𝑑] =
{

1/2𝑛−1 (𝑑 = 0),
1/2𝑛−𝑑+1 (𝑑 ≠ 0).

(26)

Note that the right hand side of (26) does not depend on 𝑖.
Therefore, we have

E𝐺 [𝐴(𝐶, 𝑑)] = (𝑀 − 1)𝑃[𝑑∗ (𝑋 (𝑖) , 0) = 𝑑] . (27)

Substituting (26) and 𝑑 = ⌊𝛿𝑛⌋ to this, we obtain the first
claim (25).

Noting that𝐶 may contain multiple zero codewords, we
see that the minimum pseudo distance 𝑑∗ (𝐶) can be zero.
Hence, it holds that 𝑑∗ (𝐶) is equal to the minimum value
of 𝑑 ∈ [0 : 𝑛 − 1] such that 𝐴(𝐶, 𝑑) ≠ 0. Consequently,
𝑑∗ (𝐶) ≤ 𝛿𝑛 iff

∑ ⌊𝑛𝛿⌋
𝑑=0 𝐴(𝐶, 𝑑) ≥ 1. It follows that

𝑃
[
𝑑∗ (𝐶) ≤ 𝛿𝑛

]
= 𝑃

[ ⌊𝑛𝛿⌋∑
𝑑=0

𝐴(𝐶, 𝑑) ≥ 1
]

(a)
≤ E

[ ⌊𝑛𝛿⌋∑
𝑑=0

𝐴(𝐶, 𝑑)
]

=
⌊𝑛𝛿⌋∑
𝑑=0
E[𝐴(𝐶, 𝑑)]

≤ (𝑛𝛿 + 1) max
𝑑∈[0:𝛿𝑛]

E[𝐴(𝐶, 𝑑)]

(b)
= Ψ𝑛 (2𝑛(𝑟−1+𝛿) ),

where we used Markov inequality and (25) in (a) and in (b),
respectively. This concludes the second claim.

For 0 ≤ 𝑑 ≤ 𝑛 − 1, we write 1[𝑑∗ (𝑋 (𝑖) , 0) = 𝑑] by
1𝑖 . With this notation, (24) is simply written by 𝐴(𝐶, 𝑑) =∑𝑀−1

𝑖=1 1𝑖 . It follows that

E
[
𝐴2 (𝐶, 𝑑)

]
= E

[ (𝑀−1∑
𝑖=1

1𝑖
) (𝑀−1∑

𝑗=1
1 𝑗

) ]

= E
[ ∑
𝑖, 𝑗:𝑖= 𝑗

1𝑖1 𝑗

]
+ E

[ ∑
𝑖, 𝑗:𝑖≠ 𝑗

1𝑖1 𝑗

]

= E[𝐴(𝐶, 𝑑)] + E
[ ∑
𝑖, 𝑗:𝑖≠ 𝑗

1𝑖1 𝑗

]
.

We see that 11, . . . ,1𝑀−1 are not independent but pairwise
independent, since, for 𝑖, 𝑗 ∈ [𝑀 − 1] with 𝑖 ≠ 𝑗 , 𝑃[𝑋 (𝑖) =
𝑥 |𝑋 ( 𝑗) = 𝑥 ′] = 𝑃[(𝑢 (𝑖) − 𝑢 ( 𝑗) )𝐺 = 𝑥 − 𝑥 ′ |𝑋 ( 𝑗) = 𝑥 ′] = 1/2𝑛
for any 𝑥, 𝑥 ′ ∈ F𝑛2 . Consequently, we have

E
[ ∑
𝑖, 𝑗:𝑖≠ 𝑗

1𝑖1 𝑗

]
= (𝑀 − 1) (𝑀 − 2)𝑃[𝑑∗ (𝑋 (𝑖) , 0) = 𝑑]2

(a)
= E[𝐴(𝐶, 𝑑)]2 𝑀 − 2

𝑀 − 1
≤ E[𝐴(𝐶, 𝑑)]2,

where we used (27) in (a). Now we evaluate the variance by

Var[𝐴(𝐶, 𝑑)] = E[𝐴(𝐶, 𝑑)2] − E[𝐴(𝐶, 𝑑)]2

≤ E[𝐴(𝐶, 𝑑)] .

The third claim follows by using this and the same arguments
as in (23).

6.7 Concatenation with LDPC codes

In this section, we demonstrate SP decoding of concatenated
permutation codes with outer binary linear codes. Specif-
ically, we employ LDPC codes. Let the binary outer lin-
ear code of length 𝑛 be defined by a parity-check matrix
𝐻 of size 𝑚 × 𝑛. Denote the code by 𝐶𝐻 . We have
𝐶𝐻 = {𝑥 ∈ F𝑛2 |𝐻𝑥T = 0}. Assume that 𝐻 is a full-rank
matrix. First, a uniformly picked message 𝔪 ∈ [#𝐶𝐻 ]
is encoded into a binary codeword 𝑥𝑛1 := 𝐶𝐻 (𝔪) ∈ 𝐶𝐻 .
Consequently, 𝑥 is uniformly distributed in 𝐶𝐻 . Next, 𝑥 is
encoded into a permutation codeword 𝜙(𝑥) ∈ 𝜙(𝐶𝐻 ), which
is transmitted through channels.

At the receiver, let 𝜎 = 𝜎𝑛
1 be a received vector through

channels. From the same argument in Section 5.2, the
bit-wise MAP decoding 𝑥𝑘 (𝜎)

def
= argmax

𝑥𝑘 ∈F2

𝑃𝑋𝑘 |Σ
(
𝑥𝑘 |𝜎

)
for 𝑘 = 1, . . . , 𝑛 can be written by the same as
(11), except that 𝑃𝑋𝑛

1
(𝑥𝑛1 ) is factorized into 𝑃𝑋𝑛

1
(𝑥𝑛1 ) =
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𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

1[𝑡1 = 0] 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8

𝑃Π1 |Σ1
(𝜋1 |𝜎1)

𝑃Π2 |Σ2
(𝜋2 |𝜎2)

𝑃Π3 |Σ3
(𝜋3 |𝜎3)

𝑃Π4 |Σ4
(𝜋4 |𝜎4)

𝑃Π5 |Σ5
(𝜋5 |𝜎5)

𝑃Π6 |Σ6
(𝜋6 |𝜎6)

𝑃Π7 |Σ7
(𝜋7 |𝜎7)

𝑃Π8 |Σ8
(𝜋8 |𝜎8)

𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 𝜋6 𝜋7 𝜋8

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9

𝑐1 𝑐2 𝑐3 𝑐4

Fig. 6 Factor graph of factors inside argmax in (11) with 𝑃𝑥𝑛1
(𝑥𝑛1 ) =

1
|𝐶 |

∏𝑚
𝑖=1 1[

∑
𝑗∈𝜕𝑖 𝑥 𝑗 = 0] and

𝐻 in (28). Each factor 1[∑ 𝑗∈𝜕𝑖 𝑥 𝑗 = 0] is denoted by 𝑐𝑖 for 𝑖 = 1, . . . , 4.

1
#𝐶𝐻

∏𝑚
𝑖=1 1[

∑
𝑗∈𝜕𝑖 𝑥 𝑗 = 0], where 𝜕𝑖 is the set of column

indices 𝑗 such that 𝐻𝑖, 𝑗 = 1.
We give an example. Assume that we are given 𝐶𝐻

defined by a parity-check matrices 𝐻:

𝐻 =
©«
10111000
11010100
01110010
11111111

ª®®®¬ . (28)

Figure 6 depicts the factor graph of factors inside argmax in
(11) with 𝑃𝑋𝑛

1
(𝑥𝑛1 ) =

1
|16 |1[𝑥1 + 𝑥3 + 𝑥4 + 𝑥5 = 0]1[𝑥1 + 𝑥2 +

𝑥4 + 𝑥6 = 0]1[𝑥2 + 𝑥3 + 𝑥4 + 𝑥6 = 0]1[𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 +
𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 = 0] and 𝐻 in (28). As can be seen from
this figure, the factor graph is not a tree in general. This
implies that applying the SP algorithm no longer realizes
MAP decoding.

We demonstrate the proposed method: concatenated
permutation codes with (3,24)-regular LDPC codes of length
𝑛 = 512 decoded by the SP algorithm. The parity-check ma-
trix 𝐻 is of size 64×512. We compare with the conventional
method [13]: non-concatenated permutation code 𝜙𝑛,𝑑 with
𝑛 = 512 and 𝑑 = 64 with HDD. We chose these parameters
for making the comparison fair so that both concatenated
codes are of size 2512−64 and of length 512. Figures 7, 8 and
9 plot the word and bit error rate of the conventional and
proposed methods over AWGN(𝑠2), 𝑛-SC(𝜖) and EC(𝛿), re-
spectively. The SP decoder is evaluated with 50 iterations. It
is observed that the SP decoding of concatenated codes vastly
outperform the conventional methods for all three channels.
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Fig. 7 The decoding performance comparison between conventional [13]
and proposed methods over AWGN(𝑠2). The conventional method [13]
uses 𝜙𝑛,𝑑 with 𝑛 = 512, 𝑑 = 64 and HDD. The proposed method uses
concatenated permutation codes with a (3,24)-regular LDPC code of length
𝑛 = 512 and SP decoder.
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Fig. 8 The decoding performance comparison between conventional [13]
and proposed methods over 𝑛-SC(𝜖 ). The conventional method [13] uses
𝜙𝑛,𝑑 with 𝑛 = 512, 𝑑 = 64 and HDD. The proposed method uses con-
catenated permutation codes with a (3,24)-regular LDPC code of length
𝑛 = 512 and SP decoder.
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Fig. 9 The decoding performance comparison between conventional [13]
and proposed method over EC(𝛿). The conventional method [13] uses
𝜙𝑛,𝑑 with 𝑛 = 512, 𝑑 = 64 and HDD*. The proposed method method uses
concatenated permutation codes with a (3,24)-regular LDPC code of length
𝑛 = 512 and SP decoder.

7. Conclusions

We have studied permutation codes on Chebyshev distance,
particularly on the permutation code 𝜙𝑛,𝑑 , which is the
largest known code with linear growing minimum Cheby-
shev distance. We derived a tight upper bound of the error
probability of HDD. We devised an efficient MAP decoding
algorithm for 𝜙𝑛,𝑑 .

We also explored concatenation with binary codes with
𝜙𝑛,𝑑=0. We introduced pseudo distance over outer code
space, which successfully characterizes the Chebyshev dis-
tance of concatenated permutation codes. We derived the

distance distribution of concatenated permutation codes with
outer random binary and linear codes. We upper-bounded the
minimum Chebyshev distance of concatenated codes. We
discover how to concatenate binary linear codes to achieve
the upper bound. We demonstrated concatenated codes with
outer LDPC codes outperform conventional schemes.

Appendix A: Proof of Theorem 2

From Lemma 2, we see that it is sufficient to show
that 𝑑∗ (𝑥 (1) , 𝑥 (2) ) ≥ 𝑑𝐻 (𝐶) − 1 for any two distinct code-
words 𝑥 (1) and 𝑥 (2) in 𝐶. Assume this is not true, i.e.,
𝑑∗ (𝑥 (1) , 𝑥 (2) ) ≤ 𝑑𝐻 (𝐶) − 2 for some distinct 𝑥 (1) and 𝑥 (2) in
𝐶. It follows that ℓ ≥ 𝑛−𝑑𝐻 (𝐶) +2, where ℓ = ℓ(𝑥 (1) , 𝑥 (2) ).
Then it holds that 𝑥 (1)𝑗 = 𝑥 (2)𝑗 for 𝑗 = 1, 2, . . . , 𝑛−𝑑𝐻 (𝐶) +1.
This implies 𝑑𝐻 (𝑥 (1) , 𝑥 (2) ) ≤ 𝑑𝐻 (𝐶) − 1. This contradicts
the condition that the minimum Hamming distance of 𝐶 is
𝑑𝐻 (𝐶).

It follows that equality of (18) holds if and only if ℓ =
𝑑𝐻 (𝐶) −1, in other words, there are codewords 𝑥 (1) and 𝑥 (2)

in 𝐶 such that the first 𝑛 − 𝑑 components are identical and
the last 𝑛 − 𝑑 components are different. To be precise,

𝑥 (1)𝑗 = 𝑥 (2)𝑗 (1 ≤ 𝑗 ≤ 𝑛 − 𝑑),

𝑥 (1)𝑗 ≠ 𝑥 (2)𝑗 (𝑛 − 𝑑 + 1 ≤ 𝑗 ≤ 𝑛).
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