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possible for larger word lengths, with both R, and R, 
approaching 1 bit per symbol, the capacity of the binary 
noiseless channel, as L increases [6]. 
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Rank Permutation Group Codes Based on 
Kendall’s Correlation Statistic 

HENRY D. CHADWICK, MEMBER,  IEEE, AND LUDWIK KURZ, MEMBER,  IEEE 

Absfracf-A coding scheme based on the properties of rank vec- 
tors is presented. The new codes are based on the theory of per- 
mutation groups by introducing a new notation for the group opera- 
tion that simplifies the generation and decoding of desirable rank 
codes. The use of group theory is made possible by the introduction 
of the Kendall correlation coefficient as a measure of the distance 
between code words. This technique provides a method for the 
choice of rank vector code words superior to those that have been 
proposed in the past. Much of the terminology used in block coding 
can also be used to describe rank vector codes, but the actual quan- 
tities involved are quite different. The rank vector codes discussed 
in the paper offer the advantage of low sensitivity of the probability 
of error to the noise distribution because of the nonparametric 
character of rank vector detection schemes. Bounds that have been 
verified by extensive computer simulation have been derived for 
the probability of error. 

II[ 

N COMMUNICATION systems the correlation be- 
tween a received sample vector and the various 
possible transmitted signal vectors is often used to 

determine which signal has been transmitted. If one set 
of observations of a random process is denoted by {xi ) = 
x, i = 1, 2, ** * ) n, and a second set of observations by 
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(ui] = Y, then a commonly used measure of their cor- 
relation is 

X-Y = 2 xgyi 

or the scalar product of the two vectors. The solution of 
the optimum signal detection problem in t,he Neyman- 
Pearson sense for a signal embedded in white additive 
Gaussian noise gives a test statistic that can be reduced 
to a correlation of this type. 

Kendall [7] has investigated the extension of the con- 
cept of correlation to cases in which the ranks (appropriate 
rank vectors) of the observations instead of the values 
themselves are correlated. The use of rank vectors can 
be justified in the signal detection problem by considering 
non-Gaussian noise, particularly impulsive noise [3], [4]. 
Should an impulsive transient greatly alter the value of 
a single observation in the sample vector, the effect on 
the rank correlation will be considerably less than the 
effect on the time correlat,ion. Thus, rank correlation can 
give a better picture of the “closeness” of the samples when 
the noise distribution is severe than the picture given by 
time correlation 

In this paper, the good properties of rank correlation 
detectors and the theory of permutation groups are used 
to generate a class of rank permutation codes which 
preserve the good qualities of block codes and the robust- 
ness (low sensitivity to the unknown noise distribution) 
of the nonparametric detection procedures. The rank cor- 
relation detector decides that a signal has been transmitted 
on the basis of the rank correlation measured between the 
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received sample vector and the possible transmitted sam- 
ple vectors. Stoll and Kurz [l] have previously investigated 
a scheme of this type using a metric equivalent to the 
Spearman coefficient of rank correlation. By using, instead, 
the Kendall rank correlation coefficient in this paper, it 
has become possible to develop a simplified scheme for 
generating rank vector group codes. Here the theory of 
permutation groups has been useful. Much of the terminol- 
ogy used in the description of these rank vector codes is 
the same as that for block codes. The actual quantities 
involved are quite different, however. 

THEMATHEMATICALBACKGROUND FORTHE RANK 
CODINGPROBLEM 

Definiticm of Symbols 

The coding problem considered in the paper consists of 
selecting for the transmission of messages one of the sub- 
sets of the n! arrangements of the n digits 1, 2, . . . , n. 
The coded message will be specified by the vector R, = 
irk}; i = 1, 2, . *. ) n, where the coordinate rp is the ith 
digit in the arrangement. The coded message is then used 
to modulate a transmitted signal S= (s,], i=l, 2, 1 . . , n, 
where the coordinate si is the value of the transmitted 
signal at time ti. At the receiver the signal is 

xi = ysi + ni (1) 

where y is a gain constant and ni is the value of t,he addi- 
tive noise at the sampling instant ti. The ni are assumed 
to be independent of each other and identically distributed 
with probability density function f(n). The detector cal- 
culates the rank vector of the signal X to obtain R = 
{ ri 1, where ri is the relative ranking of the component xi 
in the vector X.’ The decoder then decides which message 
has been transmitted on the basis of this rank vector, or, 
in a feedback system, may request a repeat transmission. 

Transmitted Signal Design 

Stoll and Kurz [l] have shown’ that’, in a system of this 
type, the optimum signal when the transmitter is average 
power limited and Gaussian noise is present in the channel 
is 

AS = C = constant, (2) 

where AX is the difference between two adjacent signal 
levels, corresponding to two components differing by 1 
in the code vector R,. The transmitted signal is thus3 

at the 
will be 

si = cry (3) 

sampling intervals. This transmitted signal form 
assumed in the remainder of this paper. 

1 If zi is the algebraically smallest component, ri = 1. If Xi is 
the 2nd smallest, ri = 2. If zi is the largest, ri = n. 

2 In [I], proof of optimality is given for n = 3. Extensive computer 
simulations support the conjecture that it is true for larger n. Here, 
“optimal” means that the average probability of error is minimized 
when all the signals are a priori equally likely. 

3 If an average power limitation is of importance, one subtracts 
from every signal the mean C n(n + 1)/2. 

Definition of an Errol 

A transmission error will be said to occur if the rank 
vector associated with the corresponding received and 
transmitted signals are different. The most probable error 
will be assumed to be an interchange between two digits 
differing by 1, e.g., the arrangement’ [1423] is changed into 
[2413] by interchanging the digits 1 and 2 and [1423] -+ 
[1324] by interchanging 3 and 4. 

Definition of Group Operation 

We denote an arrangement of the integers 1, 2, -1. , n 
by an expression in square brackets, e.g., [Z 1 4 31. There 
are n! such arrangement’s. Let A and B be two such 
arrangements. We can think of obtaining B from A by the 
application of a substitution or permutation operator to 
A, B = aA. The operator a specifies the substitution that 
must be made for each integer appearing in A to convert 
it into B. For example, A = [2 3 1 41 is converted to 
B = [3 1 4 21 by replacing 2 by 3, replacing 3 by 1, re- 
placing 1 by 4, and replacing 4 by 2. We write this operator 
as a = (4 3 1 2). In general the operator (x1x2x3 * * . z,) 
means replace the integer i by xi, i = 1, 2, . + * , n. We 
have [3 1 4 21 = (4 3 1 2)[2 3 1 41. Note that the result 
of applying (~~2~ a . . x,) to [l 2 3 . . . n] is [x1x2 * * . x,]. 

The result of applying two substitutions (permutation 
operators) a and b in succession to an arrangement A of 
the integers is again an arrangement and hence can be 
regarded as the result of applying a new substitution c to 
A. If a is applied first to A, and then b applied to the 
result, we write c = ba. For example 

(2413)(4312)[1234] = (2413)[4312] 

= [3124] 

= (3124)[1234] 

so that 

(2413)(4312) = (3124) 

which is independent of the choice of the initial arrange- 
ment A = [l 2 3 41. 

The collection of n! operations (x1z2 . . + x,) under the 
multiplication just defined forms a well-known group X,, 
called the symmetric group on n letters. There is another 
common notation for permutations or substitut,ions. The 
operator (xlzZ . . 3 xi1 means replace x1 by x2, replace x2 
byzs, . . . . replace xi-, by xi, and replace xi by x1. {x1x2 . . * 
xi} is called a cycle of length j. A cycle of length 2 is called a 
transposition. Any substitution can be written as a product 
of cycles on disjoint letters, e.g., 

(2143) = (12)(34}. 

The product of cycles is defined by successive applications 
of the indicated operators, starting with the rightmost 
factor. 

If a = (3412) and b = (4321) are two operators, then 
the multiplication of b by a is 

ab = (3412)(4321) = (2143) 
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where the method of multiplication of permutation opera- 
tors has been used. In terms of transpositions 

a = (3412) = {23](34){12]{23}. 

The product ab can also be formed by performing a series 
of transpositions on b, namely, 

(3412)(4321) = {23) (34) { 12) { 23) (4321) 

= (23) 134) {12)(4231) 

= {23]{34)(4132) 

= {23) (3142) 

= (2143). 

The Weight of a Permutation 

The use of rank permutations as code words can be 
more easily systematized if the concept of weight is in- 
troduced. The weight of a permutation is defined as the 
Kendall correlation statistic4 Q between the permutation 
and the identity element and will hereafter be denoted 
by w. The weight of the permutation a = (x1, zz, . . . , 2,) 
is given by 

w = w(a) = Q = g z mii (4) 

where 

1 
mii = 

! 

if xi > xi 

0 if Xi<Xj. 

In addition, for any permutation a, the equality w(a) = 
~(a-~) is satisfied. 

The following theorem shows the equality between the 
weight of a permutation and the minimum number of 
transpositions involved in its decomposition into trans- 
positions of integers differing by unity. 

Theorem 1 

The minimum number of interchanges of digits differing 
by 1 required to convert the identity element 1 to a given 
permutation is equal to the weight of the permutation. 

Proof: Let OL = OL,, = (x1, * . * , x,) be a permutation. 
If Qg # (1, 2, *. * ) n) = 1, then for some i and j with 
i < j, xi = xi + 1. Let a1 = {xi, xi)aO. Note that w(Q~) = 
~(01~) - 1. Repeat the procedure for 0~~) thus obtaining 
a2 for which w(cr,) = ZU((Y~) - 1 = w((Y,,) - 2. Continuing 
in this way, we obtain ai (j = 1, 2, *** , ~(a,)). Since 
&%&7,,> = 0, %Jur(a,) = 1. Thus we have shown a pro- 
cedure (not necessarily unique) for transforming a0 to 1 
with W(LY~) cycles of the form (i, i - 11. Further, since the 
application of a cycle (i, i - l} can reduce the weight of a 
permutation by at most 1, we must apply at least w(ao) 
such cycles to transform cyo to 1. Hence, w((Y~) is the 
minimum number of cycles {i, i - 1) which can transform 
at0 1. Q.E.D. 

4 The Kendall correlation statistic is defined by (4). See also 
Kendall [7]. 

Distance Between Permutations 

The Euclidean distance between rank vectors may be 
used as a distance metric, but it is of limited usefulness 
in generating practical rank vector codes5 In this paper, 
the Kendall correlation coefficient Q between two rank 
vectors will be used as the distance metric’j. It is reasonable 
to assume that the most probable error consists of a trans- 
position of digits differing by 1 (this represents a distance 
of l), and that errors representing greater distances are 
less probable. Thus, the error probability will go down 
in some manner with increased distance among the rank 
vectors representing the signaling alphabet, where the 
distance between two rank vectors is defined as the mini- 
mum number of transpositions of digits differing by 1 that 
is necessary to transform one permutation into the other. 

Let a, b, and c be any three permutations satisfying 
ca = b. The permutation c can be written as a product of 
w(c) transpositions of integers differing by unity, and w(c) 
is the minimal number of factors in any such representa- 
tion of c. These transpositions convert a into b and, hence, 

d(a, b) = w(c) = w(ba-l) 

where 

ca = b. 

(5) 

The following theorem is then analogous to one for 
binary group codes and is very useful in determining the 
properties of subgroups as codes. 

Theorem ,‘2 

The minimum distance between any two members of a 
subgroup of the symmetric group S, is equal to the weight 
of the member with lowest weight, excluding the identity 
element. 

Proof: A subgroup of X, is any subset of the members 
of S, that satisfy the group axioms. From the definitions 
of weight and distance, the weight of any element is equal 
to its distance from the identity element. If a, b, and c are 
members of the subgroup and ab = c, then the distance 
between b and c is equal to the number of transpositions 
performed on b by a. This, in turn, is equal to the weight 
of a. Hence, the distance between any two elements is 
equal to the weight of a third element that must also 
belong to the subgroup, and the lowest such weight will 
be equal to the smallest distance. Q.E.D. 

From (5) it follows that for any two elements b, c of S, 

d(ba, ca) = w[ca(ba)-I] = w[caa-‘b-l] 

= w(cb-*) = d(b, c). (61 

All properties of the standard array follow from (6). 

6 Stoll and Kurz [I] have investigated the use of the Euclidean 
metric in connection with this problem. 

6 A metric over a vector space is a distance function that satis- 
fies certain axioms. It can be easily shown that the & statistic is a 
metric. 
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THE FORMATION OF RANK VECTOR CODES' 

Subgroups of S, 

If a code is selected as a subgroup of S, with the property 
that the minimum weight of the elements (except for the 
identity element) is some value w, then obviously, if 
w - 1 or fewer transpositions occur in the transmission 
of a code word, it will be possible to detect at the receiver 
that an error has occurred. An important property of 
subgroups, which is used extensively for binary group 
codes, is the following. All of the elements of a subgroup 
H are written in a row, with the identity element at the 
left. Select one of the group members not in the subgroup 
and write it under the identity element. Multiply each of 
the members of the subgroup by this element, called the 
coset leader, and place the resulting element under the 
corresponding subgroup element. If any elements remain 
in the group, select one of them as a second coset leader 
and repeat the procedure until all of the elements of the 
group are written down. A theorem from the theory of 
finite groups states that each element of the group will 
appear once and only once in the array 16, p. 171. Ob- 
viously, for this to be true, both the number of coset 
leaders (including the identity element) and the number 
of elements in the subgroup must be divisors of n!, the 
number of elements in the group. A typical array is shown 
below: 

Subgroup 
-- - 
Coset 

Leaders I;zii ig;s {?Ei] rg:ai 

r:;:tj i&::i rZf:SI I%: 

The coset leaders can be regarded as possible error 
patterns, e.g., (2134) is the interchange (12) of the digits 
1 and 2. A possible received permutation is then the prod- 
uct of one of these coset leaders with one of the code words, 
e.g., (3241) = (2134) (3142). 

If the coset leaders are chosen to be those elements that 
have a weight e or less and decoding is performed by 
selecting the code word directly above the received word 
in the array, then all errors of weight e or less can be 
correctly decoded. Since the weight of the coset leader 
is equal to the number of transpositions caused by the 
error, it is then possible to correct all errors that involve 
e transpositions or less. 

Cyclic Subgroups 

An important class of subgroups of S, are the cyclic 
subgroups. These subgroups are generated by taking all 
of the distinct powers of a single element: a, a’, a3, . . . , 
where a2 = aa indicates that the permutation is multiplied 
by itself. Since the number of elements in S, is finite, the 
powers of a single element will eventually repeat them- 

;;09 

selves in a cycle. If a is the generating element, then the 
members of the subgroup are 

7 Although much of the terminology used in this paper is the 
same as that used in describing binary group codes, it should be 
remembered that the quantities are calculated in a different way. 

a, a’, a3, - - - , a’-‘, ar = 1. 

The subgroup used in the example given above is such a 
cycle group with (3142) as the generating element and 
r = 4. 

(3142)(3142) = (4321) = a2 

(3142)(4321) = (2413) = a3 

(3142)(4213) = (1234) = a4 = 1. 

The minimum weight of the elements in this subgroup is 3. 
The cyclic subgroups provide a simple method for 

generating rank vector codes. 

Derivation of Rank Cyclic Codes 

A digital computer program has been used to derive 
cyclic rank codes generated by each of the permutations 
of 4, 5, and 6 digits and to find the weights of each code 
word. From the computations made, it is possible to find 
the largest cyclic subgroups of a given minimum weight. 
The table below gives t.he sizes of these cyclic subgroups. 

Number of Code Words in Subgroup 

Minimum Weight n=4 n=5 n=6 

There is no guarantee that these cyclic subgroups are 
the largest possible subgroups of a given minimum weight, 
and indeed, for w = 2, the alternating subgroup’ A,,, which 
is not cyclic, has 12, 60, and 360 elements for n = 4, 5, 
and 6. No consistent method has been determined for 
finding the largest subgroup of a given minimum weight. 
An upper bound can be determined, however, and, as will 
be shown below, for w sufficiently large, the cyclic sub- 
groups approach this bound. 

Upper Bound on Size of a Subgroup’ 

For a code to be able to correct all errors of weight e 
or less, the minimum distance between its code words 
must be at least 2e + 1. Given a code with this minimum 

8 The alternating subgroup A, consists of the n!/2 permutations 
of even weight. A code comprised of the alternating subgroup has 
minimum weight 2. Such a code is analogous to a single parity check 
digit binary code and is capable of detecting a single transposition. 

9 This derivation is similar to the derivation of the Shannon 
bound [B] (also known as Hamming bound) for linear group codes. 
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BEST ACHIEVED WITH 
CYCLIC RANK CODES 

0 .2 .4 .6 .s I .o 

-_ 

__. 

__ 

NORMALIZED MINIYUM DISTANCE -+- 
0 

No =+ n(n-I) 

Fig. 1. Upper bound on information rate versus minimum distance. 

distance, then all of the permutations of weight e or less 
must bc coset leaders. If there are m  code words there will 
be n!/m coset leaders, including the identity element. For 
such a code to exist, the number of coset leaders must be 
greater than or equal to the number of permutations of 
weight e or less. Hence, 

n! 

m  5 2 U,(w) 
w-o 

where U,(w) is the distribution of weights, as given in the 
Appendix. 

This bound is plotted in Fig. 1 for n = 5 and 6. It can be 
seen that for w larger than half of the maximum of 
($)n(n - l), the bound is closely approached by the cyclic 
subgroup codes. The curves are plotted with log m/log n!, 
referred to as the information rate of the rank permutation 
code, versus the minimum distance d = 2e + 1, normalized 
by the maximum distance No = +n(n - 1). If n  is large, 
the normal approximation to the distribution of weights 
can be used (see Appendix and [7]), namely, 

U,,(w) R5 n! &-&5 exp 
C 

- $ (w - PI2 1 (7) 

where 

p = (%)n(n - 1) 
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and 

then 

CT2 = (&n(n - 1)(2n + 5), 

n! @ . -2 m s I/,(w) dw 
-m 

or 

where 

Decoding iklethods 

In order to correct every transmission error of weight 
e or less, it is necessary to construct a subgroup with an 
array having all permutations of weight e or less as coset 
leaders. The decoding method is then to choose that code 
word which lies directly above the received code word in 
the array. The implementation of such a scheme can be 
performed more simply, however, without storing the 
complete array. A simpler procedure is outlined below. 

Assume that having transmitted the rank vector R. the 
rank vector R is received. If the error pattern B = [ei) 
occurs where the weight of lG is less than e, then li: will 
be a coset leader and R = ER, will appear under R, in the 
array. If R, # 1  = (1, 2, . . . , n) then the weight of R 
must be greater than e, since all permutations of weight less 
than e are coset leaders. 

Theorem 3 

If R, is a member of the subgroup (code word), the 
product RR;’ will have weight e or less if and only if 
R, = R,, where R is the received word and R, is the 
transmitted word. 

Proof: To prove the “if” statement assume that 
R, = R,, then the product 

RR;’ = ER,R;’ = ER,R,’ = E, 

which has weight e or less. 
To prove the “only if” statement assume that R,, #  RI, 

then the product 

RR;’ = ER,R;’ = ER, 

where R, must be some code word and the product must 
appear in the array not as a coset leader and have weight 
greater than e, which results in a contradiction. Q.E.D. 

Decoding can, therefore, be performed in the following 
manner. 

1) If R, the received rank vector, is a code word, accept 
that code word as the decoded output,. 
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2) If R is not a code word, form the products RR;‘, 
where the Ri are the possible code words, and cal- 
culate the weight of each product. The accepted 
code word is that Ri for which the weight of the 
product is e or less. 

Communication Systems with Feedback 

By choosing a subgroup as a code such that all permuta- 
tions of weight e or less are coset leaders but some permuta- 
tions of weight greater than e are also coset leaders, a 
code can be formed such that all error patterns of weight 
less than e are correctable and some error patterns of 
weight greater than e are detectable. In the latter case a 
feedback communication system can be used in which the 
transmitter requests a repeat from the receiver when a 
detectable but not correctable error has occurred. 

J L L 

space in which the transformation occurs. This method 
requires evaluating an n-fold integral and is discarded as 
impossibly complex. 

A simplification of this method is provided by the exten- 
sion to the Hoeffding Theorem [S] as was demonstrated 
by Stoll and Kurt [I]. This theorem allows the calculation 
of the probability of receiving some rank vector R given 
that the rank vector R, was transmitted. The funda- 
mental weakness of this approach is that the equations 
are again difficult to evaluate except for cases where the 
signal-to-noise ratio is small. The evaluation uses the first 
term of a series approximation, and gives poor results for 
signal-to-noise ratios above approximately - 10 dB. 

The procedure adopted in this paper to give approximate 
results for the error probabilities was to simulate the addi- 
tion of noise to the transmitted signal and to determine 
the rank vector of the total signal. The computer program 
made repeated trials of this procedure and counted the 
distribution of the distances between the transmitted and 
received rank vectors. The simulation was performed for 
various signal-to-noise ratios between $3 dB and -6 dB 
when the signal-to-noise ratio for Gaussian noise was 
defined by 

ERROR PROBABILITIES 

Monte Carlo Computer Simulation 

The calculation of error probabilities for the rank vector 
coding scheme is extremely difficult. To determine the 
probability that one permutation will be transformed 
into another by noise it is necessary to assume some signal 
form and some noise distribution. The signal form used 
in this paper is probably the most easily analyzed, but 
exact analytical results have not been obtained. Monte 
Carlo simulation techniques using the digital computer 
were used instead to estimate the error probabilities. 

The signal was assumed to be of the form s(t) = Cr,; 
i = 1,2, **a, n, where C is an arbitrary constant and the 
ri are the components of the transmitted rank vector. A 
single observation is assumed at each sampling interval, 
although an improvement in accuracy could easily be 
obtained by taking more than one observation and averag- 
ing over each sample interval.” The signal is thus pulse 
modulated with the pulse levels proportional to the rank 
of each interval. A smoother signal with considerably lower 
bandwidth could easily be obtained by rounding the 
corners of the stairstep function as long as the relative 
ranking at the sampling intervals is maintained. 

Additive noise that is statistically independent and 
identically distributed from sample to sample is assumed. 
A transposition will occur at the receiver if the effect of 
the noise is to change the relative rankings of two of the 
observations. Because the ranking of the received signal 
observations is used for decoding rather than the signal 
levels themselves, the probabilities will be relatively in- 
sensitive to changes in noise distribution. For example, 
the noise mean is not important because it does not change 
the relative ranking of the observations. 

The direct method of calculating the probability that 
one rank vector is t,ransformed into another by noise would 
be to integrate the joint probability density function of 
the sample observations over t,he region of the sample 

lo In such a system, the assumption of statistical independence 
between the averaged sample observations will be closer to the truth 
than would the individual observations used directly. 

x c2 --=7 
N u 

where c is the signal gain constant defined in (2) and n2 is 
the variance of the Gaussian distributed noise. The simula- 
tions were also performed with Cauchy distributed noise, 
with probability density function 

P(X) = x x-(x2 + xy (11) 

For this case (in which the noise variance is infinite), 
the signal-to-noise ratio was defined by 

s c2 
- = -3’ N X (12) 

The signal-to-noise ratio was defined in this manner, 
rather than as a direct ratio of signal power to noise power, 
so that it would not depend on n and comparisons could 
be easily performed between performance for various 
values of n if the value of C is maintained.*l 

Figs. 2-7 show the results of the computer simulations 
plotted as the cumulat,ive distribution function P[d > e], 
where d is the distance between transmitted and received 
rank vectors, versus e. Thus, if a code can correct all errors 
up to weight e, these curves represent the probability that 
the decoding will be in error. 

A Bound on Error Probabilities 

Usjng anot’her approach it is possible to determine an 
upper bound on the error probability that will be close 
to the actual error probability when the signal-to-noise 
ratio is high. 

11 In the case of Cauchy noise, the standard definition of the 
signal-to-noise ratio is meaningless. 
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Fig. 2. Probability of error versus error-correcting capability: 
Gaussian noise TZ = 4. 

Fig. 3. Probability of error versus error-correcting capability: 
Gaussian noise n = 5. 
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Fig. 4, Probability of error versus error-correcting capability: 

Gaussian noise n = G. 
Fig. 5. Probability of error versus error-correcting capability: 

Cauchy noise 12 = 4. 
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Fig. 6. Probability of error versus error-correcting capability: Fi.g 7. Probability of error versus correcting capability: Cauchy 
Cauchy noise n = 5. noise n = 6. 

The transmitted vector is assumed to be the identity 
element 1 = (1, 2, + . . , n). This assumption does not 
lead to a loss of generality, as will become obvious later. 

The probability of the interchange (12) occurring is the 
probability that the observation x1 is greater than za at 
the receiver and is given by 

P,, = P[xz > x,1 = sp. j-1 fh, x2> dx, dx,. (13) 

This probability can be calculated when the noise density 
is known and will be a function of the gain constant C 
and the noise variance cr’. 

The probability P,, is the combined probability of all 
rank vectors occurring at the receiver in which x1 > x2. 
There are n!/2 such permutations. For example when 
n = 4 the permutations are divided as follows. 

x2 > Zl Xl > x2 
1234 2134 
1243 2143 
1324 3124 
1342 3142 
1423 3241 
1432 3214 
2314 4123 
2341 4132 
2413 4213 
2431 4231 
3412 4312 
3421 4321 

The same probability can be calculated for all other 
possible transpositions. When the signal form is such that 

all levels are equally separated, then 

P,, = P,, = P34, * ** ) P,-I-, (14) 

where P,-l,i is the probability that the (i - 1)st and ith 
coordinates have been interchanged. 

Similarly, the probabilities Pi-z,i; Piea, . . . , can also 
be calculated. Each such transposition will occur for 
exactly half of the n! permutations. 

Let p(R,) be the probability that the rank vector R1 
occurs at the receiver. Then 

g PW = 1 (15) 

and the probability P,, is equal to the sum of the prob- 
abilities Pi for those permutations for which x1 > xz, be- 
cause the permutations form a mutually exclusive set of 
events. For n = 4 

P,, = P(2134) + P(2143) + P(3124) + +.a + P(4321). 

(16) 

If the probabilities of each possible permutation P,+i are 
written as above, the permutation Ri will occur in a num- 
ber of expressions equal to its weight. For example, the 
permutation (4321) has weight 6 and appears in the six 
expressions for 

Pm Pm, Pm, PI,, PM, PI,. 
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Thus, if all of the expressions are summed, the following 
equation is obtained 

CONCLUSIONS 

The use of the Kendall correlation statistic as a measure 
of distance between rank vectors permits the application 
of the theory of permutation groups’to the rank vector 
permutations. Codes have been derived that are sub- 
groups of the basic permutation group and which have 
properties similar to those of linear group codes. The rank 
permutation group codes offer an efficient and easily 
applicable means of coding transmitted information. 

Bounds on the probability of error for a communication 
system using rank permutation group codes have been 
obtained and verified by l’vIonte Carlo simulation on a 
digital computer. 

where w(RJ is the weight of the permutation Ri. 
This sum is the expected value of the weight w given 

that the rank vector 1 = (1, 2, . . . , n) was transmitted. 
It can also be interpreted as the average weight of the 
noise patterns that will occur in a given noise situation, 
namely, 

E(w) = 2 WI-‘(W) = & g PM,, 
lo- 

(18) 

where w, = $n(n - 1) is the maximum weight. 
The generalized Chebyshev inequality (see Fisz [9, p. 

741) states that if g(r) is a non-negative function of a ran- 
dom variable, then 

where k is a positive constant. Substituting the pertinent 
values results in 

P, = P[w 2 e + l] < $ (20) 

where E(w) is given by (18). 
The above relation can be extended to form the 

Bienayme-Chebyshev inequality for cases in which the 
variance of w exists, thus obtaining 

where P is the mean and a2 the variance of the distribution 
of x. 

It can be assumed that the variance of the distribution 
of w will be no greater when a signal is present than when 
no signal is present (signal-to-noise ratio equals 0). When 
no signal is present, the variance is the same as that de- 
rived for the distribution of w among the permutations (see 
Appendix), because, in this case, all permutations are 
equally probable. Hence 

u: i +?dn - 1)(2n + 5) 

and, by the Bienayme-Chebyshev inequality, 

P[lw--Q(w)1 2e+l] S& 

P, = P[ (w - 2 5 P,_,,,) 2 e + I] 
i=2 k=l 

< nb - 1)(2n + 5) 
- 72(e + 1)’ ’ (22) 

which provides a tighter bound on the probability of error The authors wish to express their gratitude to the 
for high signal-to-noise ratios. For low signal-to-noise anonymous reviewers whose comments helped to im- 
ratios, the extended Hoeffding theorem may be used. prove the paper considerably. 

APPENDIX 

The Distribution of Q 

Kendall [7] has derived the distribution of the values of 
Q measured between each of the members of the group 
S,, and the identity element. If U,(Q) is the number of 
elements of S, that have the particular value Q, then the 
following recursion formula can be used to determine the 
distribution. 

U,+,(Q) = U,(Q - n) + U,(Q - n + 1) + . . . + U,,(Q) 

= zudQ--n+i). (23) 

Since for n = 2 there can be only two permutations in 
the group S,, (12) and (21), and since Q = 0 and Q = 1 
for these permutations, the starting values for the re- 
cursion formula are known. The distribution for Q up to 6 
is given in the following table. 
- 
n 0 123456 7 8 9 10 11 12 13 14 16 
2 11 

3 1 2 2 1 

4 1 356531 
5 1 4 9 15 20 22 20 15 9 4 1 
6 1 5 14 29 49 71 90 101 101 90 71 49 29 14 5 1 

The maximum value of Q is N, = +n(n - 1). Since the 
total number of elements in the group is n!, 

Qz u,(Q) = n!. 

As n gets large, the distribution of Q tends toward the 
normal distribution. The mean of the distribution is 

p = tn(n - 1) 

and the variance is 

u2 = -&n(n - 1) (2n + 5). 
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Correspondence 

Nonstationary Autoregressive Processes 

Abstract-Let Ry, = ut be a stochastic difference equation. Var- 
ious relations between the input and output covariances and spectral 
densities are deduced under the hypotheses that R is t ime depen- 
dent and that it is a member  of a nonstationary random process. 

INTRODUCTION 

If R is a  l inear dif ference operator and  ut is a  member  of a  stochas- 
tic process, then the equat ion Ry t =  u1  def ines an  autoregressive 
process (yi). Such discrete analogs of the cont inuous model  (that 
is, the case when R is a diferential operator) are of interest in the 
statistical theory of time series and  signal detect ion [I], [2], [4]. In 
almost all situations that we have observed in the literature the 
coefficients of R are assumed to be  constant and  ut is assumed to 
be  a  member  of a  wide-sense stationary stocha&ic process. Our  objec- 
tive here is to obtain results when the coefficient,s of R are functions 
of time, and  the (~~1 process is nonstat ionary. The relations we 
deduce between covar iance functions and  spectral densit ies general ly 
have wel l-known cont inuous analogs, a l though the correspondence 
is not always one  to one.  

THE DIFFERENCE EQUATION 

Let I =  (.a., -1, 0, 1, . . .) be  the set of all integers. W e  shall 
assume that all functions considered are def ined on  I. Consider the 
l inear dif ference operator 

R = arO(t)L” + cyl(t)L + . . . + a,(t)L” (1) 
where L  is the lag operator, Ly, =  yl-*, and  the a;(t), 0  s i 5  p, are 
real-valued functions of t def ined on  I. W e  assume ao(t)aq(t) #  0  on  
I so that R is of the qth order. Let (ut / t E I] be  a  family of random 
variables with mean-zero and  covar iance function uu(t, s) =  GU‘U~. 
Then if G(t, s) is the one-s ided Green’s function for R, 

gt =  2  G(t, t - r)u+, (2) r=0 
converges in mean-square to a  mean-zero random variable, which 
is a  solution of :, 

Ryt =  ut (3) 

Manuscript received June 7, 1968; revised August 26, 1968. This research v&s 
supported in part by the Advanced Research Projects .Agenoy of the Department 
of Defense and was monit~ored by Electronic System Division, AF Systems 
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on  1, provided 

k IG(t, s)/ <  a  (I=--m 

for all t, and  

l&&(4 01  < Ju 

for some constant M  and  for all t E I (see [5]). 
The covar iance function of the autoregressive 

def ined by (3) is 

(4) 

process Iyt It E I) 

(5) 
= 2 5  G(t, t - r)G(s, s - &u(t - r, s - p). 

THE SPECTRAL DENSITY 

A real stochastic process (u, / t E I), which is stationary in the 
wide-sense, def ines a  sequence of covar iances g%(O), am, . . . . For 
any  covar iance sequence (vu(h)), there exists a  unique monotone 
nondecreasing spectral distribution function 8’%(X) with F,( -?r) =  0  
such that 

44 = s = cos hX dF,(X), 
-7 

(Stieltjes integral representation). In particular, if CF=‘=, am con- 
verges absolutely, then dF,(h) =  j,(X)& where ju(X) is the spectral 
density of the iut) process. Futhermore, j%(X) is a  cont inuous func- 
tion of X, 

f&9 =  i& kg a,(k)e-‘“” 
m  

and  

u,(h) =  .I‘ 
r fu(X)eihx dX, h  G  I, (6) -?T 

(see [II). 
Now let us  special ize the random process (u, 1  t E I}. 

Case 1 

Letut =  zttl where (zt ( t E 7) and  (.$t I t E I) are real indepen- 
dent  wide-sense stationary mean-zero processes with respect ive co- 


