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ALGEBRAIC TILING 

S. K. STEIN 

A variety of problems concerning number theory, tiling Euclidean space by 
cubes or by cross-shaped clusters of cubes, coding theory, and gambling, have led to 
questions in group theory, usually involving finite, or at least finitely generated, 
abelian groups. We shall discuss some of these problems, their history, and, when 
convenient, some details of their algebraic solutions. A reader who is familiar with 
vector spaces and with the quotient groups and homomorphisms of abelian groups 
will be able to follow the presentation without trouble. It is hoped, in particular, 
that the discussion will be accessible to upper-division students. 

1. Preliminaries. The words "tiling" or "tesselation" usually call to mind con- 
gruent copies of a triangle or of a convex quadrilateral tiling the plane. Perhaps 
"tiling" may remind us of the herringbone pattern composed of translates of an 
L-shaped set in brick pavements. In any case, copies of some set by some collection 
of motions fill up another set without overlap (except perhaps along common 
borders). 

Several types of tiling will concern us. In one case, we consider tilings of Euclidean 
n-space R" by translates of a cube or by translates of a certain union of a finite 
number of cubes. The union of these translates will be R" and the interiors of distinct 
translates will not intersect. 

Secondly, we shall be involved with a group G and two subsets of G: A and B, 
such that each element of G is uniquely expressible in the form ab, a E A, b E B. We 
may think of G as being tiled by copies of B or, symmetrically, by copies of A. We 
shall write G = (A, B), and speak of a factoring of G by subsets A and B. 

Another important type of tiling is the following: Let G be an abelian group 
written additively, and (s,, s,, ..., s,) a set of integers. Each si determines a function 
Si: G -+ G by fi(g) = sig = g + g + ... + g, si times if si is positive, and (-8) + (-9) 
+ ... + (- g), / si / times if si is negative. If each non-zero element of G is uniquely 
expressible in the form Sib for b in some fixed set B G G and some i, we write 

and say "{s,, s,, ...,s,) splits G - (0)". In this case, G - (0) is tiled by k copies of B. 
In special cases, the splitting of a group is equivalent to the factoring of a different 

group. To be specific, let p be a positive prime integer and let C(p) be the additive 
grodp of the integers modulo p. Assume that {s,, s,, ..., s,) splits C(p) - (0). Let 
2, be the field of integers modulo p and let G, be its multiplicative group. Then we 
have the factoring 

For instance, since C(13) - (0) = { f1, rir 2) : {1,3,4), we have 
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Before going on to the tilings that we shall treat in detail (all of which concern 
commutative structures), let us illustrate the notion of a tiling by showing how a 
purely combinatorial problem can lead to a problem concerning the tiling of a 
nonabelian group. 

Consider the set of n ! linear arrangements of the integers 1,2, ...,n.  Call two such 
arrangements adjacent if one is obtainable from the other by a single transposition. 
The question is: 

Is there a set B of arrangements of 1,2, ...,n such that each of the n !  arrangements 
i s  in B or adjacent to precisely one member of B? 

The case n = 2 is the only one for which the answer is known to be "yes". Since 
there are n(n - 1)/2 arrangements adjacent to a given one, the set B, if it exists, 
would have 

elements. So, it is necessary that 1 + n ( n  - 1) /2 divide n ! .  Consequently, if 
1 + n(n  - 1) /2 is divisible by a prime that is larger than n,  then the answer is "no". 
Rothaus and Thompson [I] obtained this stronger result: 

THEOREM. 1)/2 is divisible b y  a prime that is larger than 2 + Jn,I f  1 + n(n -
then there does not exist a set B of arrangements of 1,2, ..., n such that each of the n !  
arrangements of 1,2, ...,17 is either in B or adjacent to precisely one member of B. 

As stated, the theorem is purely combinatorial. To obtain their result, Rothaus 
and Thompson rephrased the problem in terms of factoring the symmetric group S,: 

Let T be the set of transpositions, together with the identity permutation, in the 
symmetric group S,. Is there a subset B of S,, such t l ~ a t  (T,B )  is a factoring of S,,? 

Rothaus and Thompson used the theory of group representations to obtain their 
result. The original question has still not been completely answered. 

The next five sections follow the evolution of a problem of Minkowski, from its 
origins in number theory, through its resolution in abelian groups, and then describes 
the problems that grew out of the solution. 

2. Minkowski's conjecture. The most dramatic work in factoring, that of 
~ a j 6 s[7] in 1942, solved a problem that Minkowski [12] raised in 1907. Minkowski 
first considered a question in number theory, quickly transformed it to one about 
vectors, and this to a problem about tiling space with congruent cubes. Haj6s ex- 
pressed this problem in terms of factoring a finite abelian group and solved it. Let us 
follow these transitions in detail, which in total are almost as startling as the 
metamorphosis of a caterpillar to a butterfly. 
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The original problem concerns the simultaneous approximation of several real 
numbers by rational numbers: 

Let a,, a,, ..., a,-, and t > 1 be real numbers. Do there exist integers x,, x2, ...,x,, 
such that 0 < x, < t"-' and 

The case n = 2, for instance, concerns the approximation of a single real number 
a ,  by a rational number xl /x2 such that 1 a ,  - x, /x2 I < 1 /x,t and O < x, < t. 
(Note that these two inequalities imply that ( a ,  - x, /x2 ( < l/x;.) If t = 2, and 
a,  = &, then x2 would have to be 1 and the inequality / a ,  - x, /x, I < 1 /x,t could 
not be satisfied. However, as will be shown later, if t is not an integer (2.1) can be 
satisfied. 

We shall follow the evolution of the problem in terms of the specific case n = 3, 
for it illustrates the essentials for arbitrary n and is easier to describe. 

Minkowski's question for n = 3 may be rephrased, after the clearing of denomina- 
tors, as follows: 

Let a,, a,, and t > 1 be real numbers. Do there exist integers x,, x,, x3, not all 0, 
such that 

I tx, + Ox, - a,tx3 / < 1 

(2.2) 	 I Ox, + tx, - a2tx3I < 1 

I Ox, + Ox, + (1/tL)x31 < l? 

The determinant of the 3-by-3 matrix formed from (2.2) by removing x,, x,, x3 has 
the value 1. So, Minkowski raised this more general question: 

Let 

be a real matrix with determinant 1. When do there exist integers x,, x,, x3, not 
all 0, such that 

Such integers x,, x,, x3 do not always exist. For example, the only integral 
solution of 
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is (0,0,0). Clearly, x, must be 0, then x2 = 0, finally x, = 0. To find the extra 
condition on the matrix (2.3) that would guarantee a nontrivial solution for the 
inequalities (2.4), Minkowski transformed the question into a geometric one. 

Observe that the three column vectors 

span a parallelepiped whose volume is 1. For convenience we shall identify a vector 
with the point whose coordinates are the components of the vector. The question now 
reads : 

Let v,, o,, and v3 be three vectors in R,  that span a parallelepiped of volume 1. 
When are there integers x,, x2, x,, not all 0, such that the vector 

lies in the interior of the 2 by 2 by 2 cube C whose edges are parallel to the axes 
and whose center is the origin? 

If, instead of demanding that x,v, + x2t1,+ x3v3 lie in the interior of C, we ask 
only that it lie in C-perhaps on the surface of C- then Minkowski showed that the 
answer is "always". His argument goes like this: Let D be the 1by 1by 1cube whose 
edges are parallel to the axes and whose center is the origin. Form the set of all 
translates of D by vectors of the form (2.5). (Note that x,, x,, x, are integers.) Such 
a set of translates, we shall call a lattice of translates. 

Pair off each point of the form (2.5) with the parallelepiped obtained by translating 
by that vector the parallelepiped P spanned by v,, v,, v,. Since the volume of P is 1, 
the number of points of the form (2.5) in a large region of volume V (say, similar to P) 
is approximately V. Thus there are approximately V translates of the unit cube C in 
that region. Since C has volume 1, these translates cannot be disjoint-they must 
overlap, perhaps only at their surface. Hence there are two vectors v and v* of the 
form (2.5) such that 

(0 + C) n (v* + C) # %, 

hence also two points c and c* in C such that v + c = v* + c*, or 

Now c* - c is in the cube D and v - v* is a non-zero vector of the form (2.5). Thus 
inequalities (2.4), with < replaced by S,  do have a non-trivial solution. 
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As observed above, if 

inequalities (2.4) have only the trivial solution. More generally, if the vectors 

are simply another basis for the lattice spanned by 

then the inequalities 

have no non-zero integer solution. This leads to Minkowski's conjecture, which we 
state for dimension 3. 

Minkowski's Conjecture. Let (cij) be a three-by-three matrix whose determinant 
is 1. If the only integral solution of inequalities (2.9) is (0,0,0), then the lattice 
spanned by (2.7) can also be spanned by vectors of the form (2.8) (or vectors dif-fering 
from (2.8) only by changing the role of the three axes). 

The validity of this conjecture would imply that all entries in a t  least one row of 
the matrix (cij) would have to be integers. In particular, if t is not an integer, 
inequalities (2.2) would have a non-zero solution. In other words, Equations (2.4) 
have only the trivial solution (O,O, 0) if and only if the real matrix (2.3) of determinant 
1 is unimodularly equivalent to  a triangular matrix with ones on the diagonal. (For 
the case where t is an integer see [11] pp. 109-110.) 

Minkowski also expressed his conjecture geometrically. The assertion that a 
lattice of translates of the unit cube C has a basis of, say, the form 



implies, first of all, that the unit cube whose center is ( I ,  0,0) is present in the lattice 
of translates. This means that the two unit cubes whose centers are (0,0,0) and (1,0,0) 
share a complete two-dimensional face. Since a lattice is homogeneous-every cube 
in it playing the same role-the lattice must be conlposed of files of cubes, parallel 
to the x, axis: one such (endless) file is shown in this figure: 

The presence of the vector 

is then equivalent to the existence of another file of cubes a t  the same height, tangent 
to the first array, but perhaps slid along the x, direction. Hence the tiling of R3 
includes a tiling of the slab I x3 I 5 3, as shown in the figure on page 451. 

Translates of this slab make up the original tiling of R3. In other words, the 
tiling of R~ can be built step by step, cubes forming files, then files forming slabs. 
This is how Minkowski's conjecture for general n reads in geometric terms: 

MINKOWSKI'S (geometric form): I f  a lattice of unit  cubes tiles Rn,CONJECTURE 
then some pair of cubes share a complete ( n  - 1)-dimensional face, 



ALGEBRAIC TILING 

This formulation appears in [12, p. 741. The problem, in arithmetic form, was 
raised eleven years earlier [ l l ,  $371. 

3. Hajds' confirmation of Minkowski's conjecture. Minkowski easily settled his 
conjecture for n = 2 or 3. Jansen in 1909 [9] took care of n = 4, 5, and 6. In 1930, 
Keller [lo] generalized the conjecture by removing the assumption that the cubes 
form a lattice. Using only the assumption that parallel unit cubes tile Rn, he proved 
that for any two of the cubes there is a coordinate axis such that along that axis 
the coordinates of their midpoints differ by an integer. Reviewing the work done up 
to 1940, Perron [13] remarked, "I must confess that in most of the papers I came to 
one or more places where I could not follow the line of reasoning. So I do not really 
know how far the assertions are in fact proved. Partly, but not completely, this may 
be because I lack the slightest intuitive picture of n-dimensional space, an insight 
with which the other authors seem to be endowed." In this paper, Perron verifies 
Keller's version of Minkowski's conjecture for n 6 and reduces the problem 
for any dimension n to a finite one concerning 2" parallel unit cubes whose centers 
are located in a special way in the 2" unit cubes that compose a cube of side 2. And 
there he left the problem, whose complexity grows rapidly with the dimension. 

Soon after, in 1942, Haj6s [7] settled Minkowski's conjecture, where it is assumed 
that the cubes form a lattice, after first casting it into the form of an equivalent 
conjecture about finite abelian groups. We shall describe this final formulation, but 
refer the reader to Fuchs [6,  pp. 318-3231 for the simplest exposition of Haj6s' 
proof, which depends on the group ring of a finite abelian group with integer 
coefficients. 

Let us consider only the case n = 2, the plane, for it illustrates the general idea 
and is easy to draw. Imagine, then, that the plane is tiled by a lattice of unit squares 
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parallel to the coordinate axes. Describe the location of each square by its lower 
left corner. These paints form a group L*. 

First of all, Haj6s reduced the general case to that in which the points in L* have 
rational coordinates. A linear transformation of the form (x ,y) -+ (m,x, m,y), where 
m, and m, are positive integers, distorts L* to a subgroup k whose points have 
integer coordinates and simultaneously transforms the unit squares to m, by m, 
rectangles, still parallel to the axes. 

This is now the situation. We have the group H of all points with integer coordi- 
nates and a subgroup L, which consists of the lower left corners of a family of m, by m, 
rectangles that tile the plane. Haj6s then expressed Minkowski's conjecture in terms 
of the quotient group G = HIL. 

Let u ,  = (1,O) and u, = (0,l)  be the standard unit vectors in H.  Let a ,  = u ,  + L 
and a, = u ,  + L be the corresponding elements in G = H IL. (We write the elements 
of G multiplicatively and those of H additively.) 

The assumption that the rectangles tile the plane is composed of two conditions: 
that they cover the plane and that they do not overlap (except at  their borders). 

The assumption that the m, by m, rectangles cover the plane reads, in terms of 
the group H, as follows: 

For any element Iz E H, there are an element 1 E L  and integers el and e,, 
0 5 e, < mi, i = 1,2, such that 
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In terms of the quotient group, this reads: Every element g E G can be written in the 
form 

g = ae11a;2, 0 e, < in,, i = 1,2. 

The assumption that the m1 by m, rectangles do not overlap reads, in terms of 
H : I f  1 , ~ L a n d  Z,EL, a n d o s e , ,  e ;<mi,  i = 1,2, and 

then el = e; and e, = e;. In terms of G this condition reads: 

If ar1a;2 = a;'la;;, 0 5 e,, ej < mi, i = 1,2, then ei = e; i = 1,2. 

The assumptions of Minkowski's conjecture are now expressed completely in 
terms of the group G (which, incidentally, has m117zz elements). How does the 
conclusion read? 

Imagine that two rectangles share a complete edge parallel, say, to the x,-axis. 
There is no loss of generality in assuming that the common edge is the right edge of 
the rectangle whose lower left corner is at  the origin. Thus 

In terms of G, this assertion is expressed in the equation 

This suggests Haj6s' translation of Minkowski's conjecture in n-space: 
(3.1) Let G be a j n i t e  abelian group and let a, ,  a,, ..., a, be n elements of G. 

Let the order of a, be a t  least mi, i = 1,2, . . . ,n .  Assume that each element of G is 
ziniquely expressible in the form 

0 5 ei < mi, i = 1,2, ...,n. Then there is a t  least one integer i such that a y i  = 1. 
This theorem concerns the factorization of the group G into n sets, 

G = ({l,a,, ...,a?'-'}, (1, a,, ..., {1,a,, ...,a:"-'}), 

and asserts that at  least one of the factors is a group. It was in this form that 
Minkowski's problem was finally solved. 

4. Haj6s generalized. With Haj6s' solution of Minkowski's problem, interest in 
tiling0by congruent cubes disappeared. No one seems to have pursued Keller's 
conjecture which removes the "lattice" assumption nor his problem concerning 2" 
cubes in n-space. 

But Haj6s' theorem did inspire new questions and new work. Perhaps the most 
interesting is RCdei's generalization [15] in 1965 of Haj6s' theorem, where the 
factors are no longer required to be "front ends" of cyclic groups. 
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R ~ D E I ' STHEOREM.Let G be a Jn i te  abelian group and let A,,A,, ...,A, be 
subsets of  G, eaclz of vvlziclz contains the identity element and eaclz has prime order. 
Assunze that  G is factored 

in the sense that  each element of  G is uniquely expressible as a product 

a , E A,.T h e n  at  least one A, is a group. 

(It is not hard to reduce Haj6s' theorem to the case where each m iis prime. So 
RCdei's is indeed a generalization of Hajbs'.) 

Wittman [22] in 1969 simplified part of Redei's proof, the important case where 
G = C(p) x C(p), the square of a cyclic group of prime order. Both Redei and 
Wittman used characters of abelian groups, the factorization of polynomials, and, 
as did Haj6s, the group ring. 

Moving in another direction, Bernstein [2] generalized Haj6s' theorem to finite 
nonabelian groups in which every cyclic subgroup of composite order is normal. 

5. Good groups. Haj6s' theorem also raised questions about the form of fac-
torizations. Let us look at  just one of them, which was answered over a period of 
fifteen years in a series of papers by Haj6s [8], RCdei [14], Sands [18, 19, 20, 211, 
and de Bruijn [4, 51. 

Haj6s calls a subset A of a finite abelian group G periodic if there is an element g 
in G, other than the identity element, such that gA = A. (The conclusion of Haj6s' 
theorem is equivalent to the assertion that one of the sets 

(1,ai,a?, ...,a:'-' I 
is periodic.) Observe that a subset A is periodic if and only if there is a subgroup H of 
G, ( H I > 1, such that A has a factorization, A = (H,B). 

In [8] Haj6s proved that if G is a cyclic group of prime power order, C(pn), and 
G = (A, B), then at  least one of the subsets A and B is periodic. RCdei [14] obtained 
the same conclusion when G is of the form C(p) x C(p). These papers helped initiate 
the search for "good" groups. A finite abelian group G is good if in each factorization 
G = (A, B), at least one of A and B is periodic. Sands [20], summarizing the efforts 
of several mathematicians, provided this complete list of the good groups: 



455 19741 ALGEBRAIC TILING 

and their subgroups. Here, p, q, r, s denote distinct primes; in each case p may equal 2. 
The notation (a, b, ..., c) is short for the direct product C(a) x C(b) x ... x C(c). 

Along the way, many side results were obtained. For instance, Sands [IS] proved 
that if a finite cyclic group G is factored, G = (A, B), and I A I is a power of a prime, 
then A or B is periodic. In [19], Sands proved that if the finite abelian group G is 
factored, G = ( A ,B), I A I is a power of a prime, and if (I A I, I B I) = 1, then there is a 
subgroup H in G such that G = (A, H). I t  is not known whether the assumption that 
the order of A is a prime power is necessary. 

6. Another relation to geometric tiling problems. The preceding section was con- 
cerned with the relation of a factor of G to scme subgroup H of G. The first such 
theorem is Lagrange's, which asserts that any subgroup H of G is a factor of G. 
Similar questions and results are to be found in the theory of convex bodies. For 
instance, for any convex body in the plane a densest packing by translates is provided 
by a lattice packing. 

Zassenhaus in [23] remarked, concerning a different geometric problem, "It is 
highly interesting to observe that one of the densest X-admissible point sets turns 
out to be a 'lattice with a base', i.e., a point set which is the union of a finite number 
of translates of a geometric lattice ...the fact that (vaguely formulated) optimal 
discrete distributions tend to be lattices with a base has been known to every scientist 
interested in solid state physics since Bragg's and von Laue's discoveries. ...Is it reason- 
able to assume that lattices with a base form a pattern of optimal packings?" 
Zasse~ihaus was presumably referring to the fact that when a liquid solidifies it tends 
to form a crystal which usually is the configuration that minimizes the total internal 
energy. 

One algebraic analog of this expectation, for tilings rather than for packings in 
general, runs as follows. Let G = Z x Z x ... x Z, the free abelian group with n 
generators (the analog of n-dimensional Euclidean space) with addition coordinate- 
wise. Let A be a finite subset of G. Assume that there is a set B such that G = ( A ,B). 
Is there then a subgroup H of G and a j?nite set S in G such that G = (A, H,S)? 
The set H + S is the analog of "a lattice with a base". The answer is not known. 
In [33] ig an example of a symmetric star body that tiles R" as a lattice with a 
base but not as a lattice. Robinson [17] exhibited 32 finite subsets of Z x Z whose 
translates tile Z x Z but do not tile Z x Z in any way that resembles a lattice with a 
base. The general question for translates of a single finite subset of Z x Z remains 
open. 

The theory of convexity contains many results on tiling, packing, and covering 
by translates of a convex body. If the interiors of a family of convex bodies in 
Euclidean space are pairwise disjoint, the family is called a packing; if the union of 
the family is all of the space, the family is called a covering. Thus a tiling by convex 
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bodies is simultaneously a packing and a covering. We will also speak of lattice 
tilings. First of all, a family of vectors form a lattice if they are a group under ad- 
dition and have no accumulation point. In a lattice tiling, the tiling family consists 
of the translates of a fixed convex body by the vectors of a lattice. The body is said 
to tile in a lattice manner. These definitions extend from convex bodies to star 
bodies. (A star body contains a point from which the entire body is "visible".) Two 
types of star bodies, called "crosses" and "semi-crosses", are of special k taes t ,  in 
part because their tiling problems, though fairly general, can be treated algebraically, 
and in part because of their appearance in combinatorial and coding theory. The 
next two sections concerns these star bodies. 

7. Tiling Euclidean space by crosses or semi-crosses. Let k and n be positive 
integers. Any translate of the kn + 1 unit n-dimensional cubes whose edges are 
parallel to the coordinate axes and whose centers are the kn + 1 points specified by 
the n-tuples 

(O,O, ...,O), (j,O, ...,O), ..., (O,O, 

j = 1,2, ...,k, is called a (k, n)-semi-cross. A (k, n)-semi-cross consists of n arms of 
length k attached at facets of a "corner" cube. 

A (k, n)-cross is any translate of the 2kn f 1 unit cubes whose centers are at the 
2kn + 1 points specified by the n-tuples 

j = 1,2, ...,k. The (k, n)-cross is centrally symmetric. 
We shall assume, unless otherwise stated, that in the tilings by crosses or semi- 

crosses, the centers of the cubes have integer coordinates. Essentially we are replacing 
R" by Zn. The next few theorems, which suggest the type of algebraic problems such 
tilings raise, are taken from Stein [32]. 

Theorems 7.1 and 7.3 show why lattice tilings by semi-crosses or crosses are 
specially amenable to algebraic treatment. 

THEOREM7.1. The (k, n)-semi-cross tiles Rn in a lattice manner if and only if 
the set {1,2, ..., k) splits an abelian group G of order kn + 1, that is 

where {g,, g,, ...,g,) c G. 

Proof. Let 2" be the free abelian group with n generators. If the (k, n)-semi-cross 
tiles 2" in a lattice manner, let H be the subgroup of Z" occupied by the centers of the 
corners of the semi-crosses. Let G be the quotient group Z" /H. Let f: Zn-,G be the 
natural homomorphism and let g j  =f(Ej) where E j  is the basic unit vector in the jth 
direction, Ej= (0, ...,0,1,0, ..., 0), a 1 in the jth coordinate. Note that Znis the union 
of the kn + 1 cosets of the form c + H, where c is a center of a cube in the semi-cross 
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whose corner is at  the origin. Thus, as c runs through the kn + 1 points iEj, 
1 5 i 5 k, 1 5 j 5 n, together with the origin, f (c) runs through the elements of G. 
Thus we have the splitting, 

Conversely, assume that G is an abelian group of order kn + 1 and that each 
non-zero element is of the form igj, 1j i 5 k, 1 5 j j n. Define f :  Z" -,G to be the 
unique homomorphism such that f(Ej) = g j  and let H be the kernel ofJ  Then, as 
may be checked directly, the set of semi-crosses whose corner cubes have their center 
in H constitute a tiling of R". 

In a similar manner, it can be shown that the (k, n)-cross tiles R" in a lattice 
manner if and only if the set { + 1, i2, ..., + k) splits an abelian group of order 
2kn + 1. In both these results, call G "the quotient group of the tiling". In particular, 
since C(13) - (0) = { + 1, + 2) : {1,3,4), the (2,3)-cross tiles R ~ .  

So the question, "when does a (k, n)-semi-cross or cross tile R" in a lattice manner," 
is reduced to a question concerning the splitting of finite abelian groups. Either 
question is far from being answered. The following two theorems represent only the 
first steps toward a complete solution. 

THEOREM 1, n)-semi-cross7.3. ([32, Theorem 4.81). If p is a prime, then the (p -
tiles R" in a lattice manner for an injinitude of n such that (p - l)n + 1 is prime. 

The next theorem shows that a semi-cross or cross can tile a given space in many 
geometrically distinct ways. Preprints are available from the authors. 

THEOREM7.4. (W. Hamaker-S.K. Stein). Let p be an odd prime, b an integer 
greater than 1, and n = (pb- 1)/(p - 1). Then the (p - 1, n)-semi-cross tiles Rn and 
the ((p - 1)/2, 2n)-cross tiles RL" in a lattice manner. Moreover, any abelian group 
of order pb can be prescribed as the quotient group of either tiling. 

Theorem 7.4 shows, for instance, that the (2,4)-semi-cross tiles R4 with quotient 
group C(9) and also C(3) x C(3). There are in fact at  least two geometrically 
inequivalent lattice tilings with quotient group C(9). One has its corners at  

and the other at  

With the aid of Theorem 7.1 and its companion for crosses, it is easy to show that 
the (1,n)-semi-cross tiles Rn with any abelian group of order n + 1 as quotient 
group and that the (1,n)-cross tiles R" with any abelian group of order 2n + 1 as 
quotient group. 

Among the many questions suggested by these theorems, we state just two. In a 
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geometric tiling of Rn by crosses (parallel to the axes), one of which has its center at  
the origin, must the centers of all the crosses have integer coordinates? (For the 
(1,3)-semi-cross in R ~ ,the answer is "no".) 

Secondly, if a (k, n)-semi-cross tiles Rn,n 2 3, is k bounded in terms of n? In 1321 
it was shown that in the case of a lattice tiling, where kn + 1 is prime, then k < 2n - 2. 
Hamaker 1261 removed the assumption that kn + 1 is prime. For crosses, a bound is 
known for any tiling, [32, Theorem 3.21. 

8. Combinatorial and coding problems. Problems in packing, covering, or tiling 
by figures closely related to semi-crosses or crosses have appeared independently in 
such separate fields as combinatorics and coding theory. 

The combinatorial case goes back to a gambling problem first investigated by 
Taussky and Todd [34] in 1948. This is their description of the problem: "A bettor 
tries to forecast the results of 13 games (win, loss, or tie), He 'knows' the results of 9, 
say. But the remaining 4 are uncertain. To make sure of getting the remaining 4 right, 
he would have to make 34 entries. But if he thinks 12 right will be the best submitted, 
he asks what is the smallest number of entries which will ensure that no matter what 
happens he will have at  least 3 right out of 4." 

This question suggested a general combinatorial problem: 

Let X be a set with q elements and let n be a positive integer. Let S be the n-fold 
a r tes ian  prodiict, X x X x ... x X. How small a subset B G S can be found such 
that each element of S diflers from some element of B in a t  most one coordinate? 

(The gambler's problem is the case q = 3 and n = 4.) The minimal size of B is 
usually denoted a(n,q). Since a given point in S differs in exactly one coordinate 
from n(q - 1) points, clearly 

If S is pictured as an n-dimensional chess board of side q, then the set B can be 
interpreted as a minimal set of castles that attack or occupy every cube of the board. 

At the outset, the combinatorial question was cast in algebraic terms. Let 

G = C(q) x C(q) x ... x C(q), n times. 

Let A G G be the n(q - 1) + 1 elements 

(8.1) (O,O, ...,0), (i,O, ...,0), (0, i,O, ...,O), ...,(0, ...,0, i) 

15 i 5 q - 1. Then the combinatorial question now reads: 
How small a subset B can be found in G such that A fB = G? 

The symbol A + B denotes the set of elements of the form a + b, a i n  A and b in B. 
Since it is not assumed that each element of G is uniquely of the form a + b, this 

question concerns covering, not tiling. However, most of the early work was devoted 
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to the special case of finding a factoring; in this case n(q - 1) + 1 must divide qn. 
The first general result in this direction is due independently to Zaremba [35] and 
Mauldon [31] in 1951: 

THEOREM8.2. Let p be a prime number, let a be an  integer larger than 1, and 
let n = (pa- l ) / ( p- 1). Then  the group G = [C(p) ln  has a tiling G = ( A ,B), 
where A is prescribed in (8.1). 

Proof. Each non-zero element of H = [C(p)Iahas order p. Select a non-zero 
element g,. It  generates a group G, of order p. Select 9 ,  not in G,. It generates a 
group G ,  of order p that meets G, only in the element 0 .  Continuing in this way, 
select elements g,, g2, . . . ,gn such that 

Next define a homomorphism 

by mapping (O,..., l,...,O)-where 1 is the ith place-onto g,. Then ( A ,  f - l ( 0 ) )  is 
a factoring of G = [C(p) ln .  

Theorem 8.2 includes the particular problem of the gambler when p = 3, a = 2, 
and n = ( P 2  - l ) / ( p- 1)  = 4, showing that 34 / [4 (3- 1)  + 11 = 9 forecasts 
suffice. 

Zaremba [36] also treated the case where q is a power of a prime. For con- 
venience, we include the short proof published in 1969 by Losey [30].  

THEOREM8.3. Let q be a power of a prime p, let a be an  integer larger than 1, 
and let n = (qa- 1 ) / ( q- 1).  Then  the group G = [C(q)]"  has a tiling ( A ,  B )  
where A is prescribed in (8.1). 

Proof. The vector space V aof dimension a over the Galois field G F ( q )  is the 
union of n = (qa- l ) / ( q- 1) lines through the origin. On each line, select a point 
gi other than the origin. Let V nbe the vector space of dimension n over G F ( q ) and 
define a linear map 

by setting 

(where a 1 is in the ith place and 0's elsewhere). Then it can be shown directly that 

G = ( A ,  T -1 (0 ) ) ,  

where G is considered as the additive group of V". 
Note that G in the preceding proof is not [C(q)In.  The additive structure of V" is 
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the n-fold sum of the additive group of GF(q), hence the sum of copies of C(p). 
The set TV1(0) is not a subgroup of [C(q)ln (unless q is itself a prime). This is a 
consequence of the following theorem, due to Zaremba 1361. 

THEOREM = [C(q)]" has no factoring of the 8.4. If q is composite, the groiip G 
type (A, B), where A is prescribed in (8.1) and B is a group. 

Proof. Assume that in such a factorization B is a group. Let 

be the natural homomorphism. The ith axis of G, 

((0, ...,x, ...,0) lx E ~ ( q ) ,x in the ith place}, 

is a subgroup of G. Let Hi  c G / B  be the image of the ith axis under the homomor- 
phism f.Then 

G /B = HI U H2U . . .U H,, 

and any pair of the Hi's meet only at  the element 0 in GIB.  Each Hi  is isomorphic 

to C(4). 
As Baer observes in [24, p. 3371, if a finite abelian group H is expressed as the 

union of at least two subgroups, any two of which meet only at  {0}, then every non- 
zero element of H has the same order. 

[To show this, assume H = A U B U C U .... Let a EA - (0) and b E B - (0). 
Assume m b  = 0. We shall show ma = 0. Clearly, a + b $ A  UB, hence is in a 
subgroup C that meets A anc! B only at  (0). Hence m(a + b) E C. But m(a + b) 
= nza EA. Thus ma = 0. From this it follows that all non-zero elements of A and of 
B have the same order, which, being non-zero, must be a prime.] 

The factorings of [C(q)In in Theorems 8.2 and 8.3 provide tilings of R" by (q -1, n)- 
semi-crosses and, if q is odd, by ((q - 1) /2,2n)-crosses). If q is prime the tiling is by 
a lattice. If q is a power of a prime, but not prime, the tiling is by a lattice with a base. 

The problem of tiling [C(q)]" arose, as we saw, from a combinatorial covering 
problem. The same problem is of importance in coding theory, where it grew out of a 
packing, rather than covering, problem. 

In the coding case, X is a set of q "symbols" and X" is the set of q" "messages" of 
length n that can be written with those symbols. Assume that when a message of 
length n is transmitted, at  most one of the n symbols is received erroneously. There- 
fore, when a message m is sent, any of 1+ n(q - 1) sequences can be received. Call 
this set of possibilities A(m). Because of the possible ambiguity, the sender and the 
receiver must agree in advance on a list of possible messages, called "code words," 
in,, m,, ..., m, such that for i # j ,  A(nii) and A(mj)  are disjoint. When each miis 
again interpreted as the position of a castle, no two of the k castles must attack the 
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same point. Instead of a (minimal) covering problem, we have come to a (maximal) 
packing problem. The two problems become identical if we insist that the covering 
have no overlap and the packing fill Xn.Codes that meet this stringent demand are 
called "perfect single-error correcting codes." For a survey of the construction of such 
codes, see van Lint [28, 291. 
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FOLIATIONS OF 3-MANIFOLDS 

MAURICE COHEN 

The theory of foliations has its roots in the study of differential equations in the 
nineteenth century and has recently been a very active area of topology. The modern 
theory started in 1944 and until 1969 the most striking examples and theorems 
were all concerning foliations of codimension one on the 3-sphere and other 3-mani- 
folds. The statements of these results of G. Reeb, A. Haefliger, S. Novikov and 
J. Wood, all of which will be discussed, are very geometric and within reach of the 
imagination and our usual 3-dimensional intuition (together with a few drawings). 
The definition of foliation will be vague at  first and made gradually precise. We 
shall begin with a few words about ordinary differential equations in the plane 
and the statement of the PoincarC-Bendixson theorem, so that it later becomes 
clear how foliations generalize differential equations and how questions about 
foliations arise naturally from the study of the qualitative behavior of solutions 
of ordinary differential equations. 

For our purposes, a differential equation in the plane is given by a system 


