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Abstract—The rank modulation scheme has been pro- of the cells charge levels and not by the absolute values
posed for efficient writing and storing data in non-volatile  of the charge levels. This allows for more efficient
memory storage. Error-correction in the rank modulation programming of cells, and coding by the ranking of
scheme is done by considering permutation codes. In this , . ’
paper we consider codes in the set of all permutations on € Cells’ levels is more robust to charge leakage than
elements, S,,, using the Kendall 7-metric. The main goal coding by their actual values. In this model codes are
of this paper is to derive new bounds on the size of such subsets 0fS,,, the set of all permutations anelements,
codes. For this purpose we also consider perfect codes,where each permutation corresponds to a ranking of

diameter perfect codes, and the size of optimal anticodes ¢¢15 |evels, Permutation codes were mainly studied in
in the Kendall ~-metric, structures which have their own

considerable interest. We prove that there are no perfect thiS context using three metrics, the_ infinity me_tric, the
single-error-correcting codes inS,,, wheren > 4 is a prime  Ulam metric, and the Kendalt-metric. Codes inS,,

or 4 < n < 10. We present lower bounds on the size of under the infinity metric were considered In [24], [36],
optimal anticodes with odd diameter. As a consequence [38], [40]. Anticodes inS,, under the infinity metric were
we obtain a new upper bound on the size of codes i, considered in[[23],[137],[[39]. Codes if,, under the

with even minimum Kendall 7-distance. We present larger ul . idered inT161. P . d
single-error-correcting codes than the known ones inSs am metric were considered in [16]. Permutation codes

and S-. with other metrics were considered in many papers. A
Index Terms—Anticodes, bounds, flash memory, Kendall survey on metrics related to permutations is givenin [11].
T-metric, perfect codes, permutations In this paper we consider codes using the Kendall
T-metric [22]. Under the Kendalt-metric, codes inS,,
; o i d—1
|. INTRODUCTION with minimum distanced should correct up td 43 |

grrors that are caused by small charge leakage and

LASH memory is a non-volatile technology tha d disturb For | h leak d q
is both electrically programmable and electricallyyea Isturbance. For 1argeé charge leakage and rea

erasable. It incorporates a set of cells maintained atdgtu;baphce the Ulf';?] mletr|c '? usgd };6]' .,ftn?d.)
set of levels of charge to encode information. Whilgeno?< Z ﬁlzed_ot edar'ges co eh Wi m'lr(“'
raising the charge level of a cell is an easy operatioﬂ1um endalir-distanced. A COmprenensive work on

reducing the charge level requires the erasure of tfgfor-correcting codes i, using the Kendall-metric

whole block to which the cell belongs. For this reaso hd bounds onP(n,d) were considered in[[21]. In

charge is injected into the cell over several iteration 1at paper there is also a construction of single-error-

Such programming is slow and can cause errors sing@recting codes using codes in the Lee metric. This

cells may be injected with extra unwanted charge. Othg}ethOd was generalized inl[3] for the construction of

common errors in flash memory cells are due to char &ror-correcting codes that are of optimal size up to

leakage and reading disturbance that may cause cha ?8onstant factt.or, whdert3|s flxed_. More ggnsgucttlonst_
to move from one cell to its adjacent cells. In ordef! €for-correcting codes were given n [28]. Systematic

) ) X . ; s
to overcome these problems, the novel framework glmgle error correct_lng codes i, of size (n — 2)!
rank modulation codesvas introduced in[[20]. In this were constructed in[41]1142]. The constructed codes

setup the information is carried by the relative rankingre of pptlmal SIZ€, assuming that perfect smglg-error-
orrecting codes do not exist. But, only the nonexistence
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As part of this goal we will prove the nonexistenc&n exchange of the two adjacent elements) and
of perfect single-error-correcting codes #, if nis a o(i + 1) in o. The result is the permutationr =
prime. Although this improves the related upper boun@d(1),...,0(i —1),0(i + 1),0(i),0(i +2),...,0(n))].
on P(n,3) only by one, such a result is of interest folObserve that the notatiorfi,i + 1) is also used
itself. This is one of the two main results of this papefor the cycle decomposition of the permutation
The second main result is a new upper bound on thig2 ... i—1,i+1,4,i+2,...,n] and the permutation
size of permutation codes in the Kendalinetric, where 7 can also be written as = (i,i + 1) oo. In other
the minimum distance is even. This bound is obtainagords, left multiplication by(:,i + 1) exchanges the
by introducing the notion of anticodes in the Kendalklements in positions, i + 1. Right multiplication by
T-metric and proving a related code-anticode theorerfi, i + 1) exchanges the elements + 1. Two adjacent
Finally, we present two codes with minimum distance fanspositiongs, i + 1) and (4, j + 1) are calleddisjoint
in S5 and S7, which are considerably larger than thef eitheri + 1 < j or j + 1 < i. For two permutations
previous known codes. These codes are of special interest < 5,,, the Kendallr-distance betweew and ,
since the rank modulation scheme is more likely to béx (o, ), is defined as the minimum number of adjacent
applicable for small values of. transpositions needed to transfowninto = [22]. For
The rest of this work is organized as follows. Iro € S, the Kendallr-weight of o, wk (o), is defined
SectionJl we define the basic concepts for the Kendals the Kendallr-distance betweew and the identity
T-metric and for perfect codes. In Section 11l we prov@ermutatione. The following expression forlx (o, 7)
the nonexistence of a perfect single-error-correctingcoi well known [21], [25].
in S,, using the Kendall--metric, wheren > 4 is a
prime or4 < n < 10. This is the first known result o 1 1 1. 1,
in this direction and it shows that the sphere packirfy< (%™ = H(@5) « o (@) <o (G)Am (i) > = (J)(}l|)'
upper bound can not be attained in these cases. In
Sectlon[ﬂ we establish th(_a Delsarte’s _code_—antlcode For a permutations = [#(1),5(2), ..., o(n)] € Sh,
ound for the Kendall--metric and examine diameter . k
. . : ) . the reverse of o is the permutation
perfect codes irp,, for this metric. We find the sizes of = .t
optimal anticodes irf,, with diameter 2 and diameter 37 — [o(n),0(n —1),...,0(2),0(1)]. It follows fronm
and consider the size of optimal anticodes for larg&duation((l) that for every, = € S, di (o, 7) < (3)

diameters as well. Trivial diameter perfect codes afd'd dx(o:7) = () if and only if = = 0. The

considered in some of these cases. We combine thégléowmg lemma is an immediate consequence from

results with the code-anticode bound to improve th@e expression to compute the Kendaitlistance given
known upper bound on the size of a code Sp for L.

even minimum distances. In Sectioh V we consider lowg¢lemma 1. For everyo, 7 € S,,,

bounds on the size of permutation codes in the Kendall

7-metric for small values of.. We search for such codes di(0,7) +dg (0", 7) = dg (0,07 = n
by forcing a structure and a certain automorphism group ’ ’ ’ 2)
on the codes. Two large single-error-correcting codes for L i i i
n = 5andn = 7 are constructed in this way and yield an The Kendallr-metric is _r|ght invariant[[i7], [[11], i.e.
improvement on the related lower bounds. We conclud@ €very three permutations,r,p € S, we have

in Sectior[ V], where we also present some questions K (% ™) = dx (o 0 p,m o p). Note, that the Kendalt-
future research. metric is not left invariant. The Kendal-metric on.S,,

is graphic, i.e. for every two permutationsr € S,, their
Kendall r-distance is equal to the length of the shortest
path betweerr and~ in the graphG,,, whose vertex set
Let S,, be the set of all permutations on the setrof is the setS,,, and two vertices are connected by an edge
elements[n]d:Cf{l,Q, ...,n}. We denote a permutationif and only if their Kendallr-distance is one.
o € S, by ¢ = [0(1),0(2),...,0(n)]. For two A distance measuré(-,-) over a space/, is called
permutationso, 7 € S,, their multiplication = o o bipartite if every three elements, y, z € V satisfy the
is defined as the composition af on 7, namely, equality d(z,y) + d(y,z) = d(z,z) (mod?2), i.e. the
woo(i) = o(n(i)), forall 1 < ¢ < n. Under this related graph is bipartite. The Kendalmetric onsS,, is
operation, the setS, is a noncommutative group,bipartite as stated in the next lemma.
known as the symmetric group of ordes!. We
denote by ad:ef[l,2, ...,n] the identity permutation
of S,. Given a permutatioro € S,, an adjacent Proof: Just note that by {1) two permutations which
transposition (i,7 + 1), for somel < i < n — 1, is differ in exactly one adjacent transposition have différen

II. BASIC CONCEPTS

Lemma 2. The Kendallr-metric oversS,, is bipartite.



weights modulo 2. This implies that the related grégh diameter perfect code |[1]. This concept is based on
and the Kendall--metric are bipartite. m Delsarte’s code-anticode bourid [10] for distance regular
graphs. Since the Kendafl-metric over S, does not
induce a distance regular graph, Delsarte’s theorem may
not apply for this metric. However, an alternative proof
Proof: Since the KendaH-metric is right invariant, shows that such type of a bound is also valid for the

Corollary 1. If ¢ and = are two permutations inS,,
thenwg (o) + wg (1) = wi (o o7) (Mod?2).

it follows that wi (7) = dg(m,e) = di(e,7~') = KendallT-metric.
wr (m~1). Hence, by the definition of the Kendatt
weight and by LemmAl2, we have that [1l. THE NONEXISTENCE OFSOME PERFECTCODES
wi (o) + wi (1) = wi (0) + wi (77 1) In this section we prove that there are no single-error-

correcting codes ii%,,, wheren is a prime greater than 4.
=dg(o,€) +dg(m ' e) =dg(o,77") (Mod2) . (2) Similarly, we also show that there are no perfect single-
error-correcting codes i, for 4 <n < 10.

For eachi, 1 < i < n, we definedeéf{a o=

Sp, o(i) =1}, i.e.o0 € S, is an element ofl,, ; if 1

dg (o, ) =dg(oom, €) =wg(o o) (3) appears in théth position ofs. Clearly,|T), ;| = (n—1)!.
Assume that there exists a perfect single-error-

Thus, by [2) and[(3), we have thatx (o) + wi () = correcting code&’ C S,,. For eachi, 1 <i < n, let

wg (o om) (mod2). [ | o
Given a metric space, one can define codes. We say C;
thatC C S,, hasminimum distancel if dx (o, 7) > d,
for every two distinct permutations, 7 € C. For a

Since the Kendalt--metric is right invariant, it follows
that

d:efc N Tnz and .Izdéf|cl|

We say that a codeword € C coversa permutation

given space) with a distance measuré-, ), a subset ™ € Sn I dic(o,7m) < 1. SinceC is a perfect single-
error-correcting code, it follows that each permutation

C of V is a perfect codewith radius R if for every | ’
elementz € V there exists exactly one codeword" To,1 must be at distance at most one from exactly

¢ € C such thatd(z,c) < R. For a pointz € V one codeword ofC and this codeword must belong

the ball of radius R centered atr, B(x, R), is defined to either ¢, or C,. Every codewords € C, covers
def exactlyn — 1 permutations inZ;, ;. It covers itself and

by B(z, R)={y €V : d(z,y) < R}. In the Kendall .~ ~ permutations in7), ; obtained fromo by

T-metric the size of a ball does not depend on the Cent&actly one adjacent transpositiéhi + 1), 1 < i < n

Ef trzje ”bal(lj.. -It-h's IS a_c?]?§equgn<ieltqf the (E‘Ct th."}f‘,t gl?ach codewordr € Co covers exactly one permutation
endall-distance is right invariant. It is readily verified T 7 = (1,2) 0 0. Therefore, we have that

that

Theorem 1. LetV be a space with a distance measure (n—1ax1+z2=(n—-1)". 4
d(-,-). For a codeC C V with minimum distanceR+ 1
and a ball B with radius R we have|C| - |B| < |V,
where|S| is the size of the sef.

Similarly, by considering how the permutations
of T, , are covered by the codewords 6f we have
that

Theorem[1l is known as thsphere packing bound
(even so it is really a ball packing bound). In a cade Tpo1+(n— 1Dz, =(n—-1)!. (5)
\tIJVhIiICh ?}tainj tr}izs boun(;d,thi.e|.C|d- |B|d:ait“|1;|, the For eachi, 2 < ¢ < n — 1, each permutation ifl;, ;

alls with radiusR around the codewords orma '
partition of V. Such a code is a perfect code. A perfeclésitr?grvzreld Cl?l_y Oerxgitlly é);c?h CC%(Leev\\//v(:)rr(detP;aéibce;(\)lggrgss o
code with radiusR is also called aperfect R-error- exactlyn — 2 permutations i}, ;. It covers itself and

correcting code then—3 permutations i, ; obtained fromr by exactly

Perfect codes is one of the most fascinating topics {}, o adjacent transpositian, j+1), wherel < j < i—1
coding theory. These codes were mainly considered f&ri < j < n. Each codéword ”f LU C_'+1 covers
. 11— (2

the Hamming sc_:heme, e.g. [15]. [29]. [31]-33]. The}éxactly one permutation fror,, ;. Therefore, for each
were also considered for other schemes such as rzh <i<n—1 we have that

Johnson scheme, e.d. [12], [14], [35], the Grassmann
schemel[B],[[2[7], and to a larger extent also in the Lee
and the Manhattan metrics, e.@. [13], [17],1[18], ][34].
Note, that the minimum distance of a perfect code is Letx = (x1,29,...,x,) and letl denote the all-ones
always an odd integer. A more general concept in whidolumn vector. Equationgl(4L1(5), arid (6) can be written
codes can have even minimum distances as well, isiraa matrix form as

Ti—1 + (n — 2)171 + Ti4+1 = (n — 1)' . (6)



AT = (n—1)! -1, @) the technique used to prove Theorgm 3. It is omitted here

) . ] since the theorem is not used in the sequel.
where A = (a; ;) is ann x n matrix defined by . _
Theorem 4. Assume that there exists a perfect single-

meh ot Y 0 error-correcting codeC c S,, wheren > 11. If
0 Loomn=21 -0 0 0 r < 7 then for each sequence of distinct elements
e : : : o : : : ~of [n], i1,42,...,4,, and for each set of- positions,
: : oo oo : : 1<j1 <joe<---<jr <m, there are exactly@
0 oo by L0 codewordso € C, such thato(j,) = i, for each?,
0 0 0 -~ 0 0 1 n-1 1<,
Since the sum of every row inl is equal ton it Forn = 6,8,9,10, we use similar arguments and

follows that the linear equation system defined [ih (ﬁbtain systems of linear equations. We used a computer
. —1)! . . i

has a solutiony” = % .1. We will show that if o show t_hat_ these systems have no solutions over the

n > 3 thenA is a nonsingular matrix and hengeis the nonnegative integers, and to conclude that perfect single-

unique solution of[{7), i.ex = y. To this end, we need error-correcting codes iff,, do not exist for these values

the following theorem known as the Levy-Desplanqué¥ 7- More details on these cases can be found in

Theorem|[[19, p. 125]. Appendix A.

Theorem 2. Let B = (b;;) be ann x n matrix. If Corollary 2. P(n,3) < (n—1)!'if n is a prime greater
biil > S, bl forall i, 1 < i < n, thenB is thandord<n <10.
nonsingular. Proof: The size of a ball with radius one if,,

For everyn > 4 we have that for each 1 < i < n, when the Kendalh—-rnetric_ is usgd, isn. Hen.ce, by
;i >2n—2>22> Z#i a; j. Hence, by Theorer] 2 Theoreni ]l and thg discussion whlch.follows this th(_aorem
it follows that A is nonsingular. Fom = 4 it can be We have that, a single-error-correcting cadle- .5, is
readily verified that the matrixd is nonsingular. As a Perfectif and only ifiC| = (n—1)!. Since such codes do
consequence we have thaf = @=D' 1 for every _not exist ifn is a prime greater than 4 or4f < n < 10,

n > 4. If n = 4 ornis a prime greater thas then it follows that P(n, 3) < (n — 1)!. u
@ is not an integer and therefore, a perfect single-
error-correcting code does not exist, i.e. IV. ANTICODES AND DIAMETER PERFECTCODES

In all the perfect codes of a graphic metric the mini-
mum distance of the code is an odd integer. If the min-
imum distance of the cod€ is an even integer the@
Remark 1. It was brought to our attention that Theo-cannot be a perfect code. The reason is that for any two
rem[3 is a special case of Theorem 5 il [9]. Howevegcodewordscy,co € C such thatd(cy,ce) = 24, there
there is a crucial mistake in the proof of this theoremexists a wordr such thatd(x, c¢;) = § andd(x, c2) = 0.
which cannot be resolved. The proof follows by inductiofRor this case another concept is used, a diameter perfect
on n, where the induction step is based on a partitiosode, as was defined inl[1]. This concept is based on
of S, into (2) classes2 < k < n — 2, according to the code-anticode bound presented by Delsarte [10]. An
the set of the: first elements in the permutations. It isanticode A of diameterD in a spaceV is a subset of
stated that ifC C S, is a code with minimum distance 3words fromV such thatd(z,y) < D for all z,y € A.

and C is contained in one of these classes, then thleneorem 5.1 a code C, in a spaceV’ of a distance

projection of C into S;, has also minimum distance 3. o . ) .
: . regular graph, has minimum distanekand in an anti-
This argument is clearly wrong. For example, the code

{[1,2,3,4,5],[3,1,2,5,4]} has minimum distance 3 and,([:r?edri“é'?ﬁj']e:ﬁjw} the maximum distance i — 1
the first three elements in each of its codewords belong -

to {1,2,3}. However, its projection intd3 is the code . . . i
{11,2.3],[3,1,2]}, which has minimum distance 2. A Theorem[ b which was proved in [10] is a general

similar example can be found for eveny> 4 and for |zat|%n of Treé)renihll (the sphere rr)]ackmg_ bounhd) ar;d Itd
each2 <k <n 2. can be applied to the Hamming scheme since the relate

graph is distance regular (se€ [4] for the definition of
The following theorem proved in[[5] implies thata distance regular graph). It cannot be applied to the

perfect single-error-correcting codes must have a velendall —-metric since the related graph is not distance

symmetric and uniform structure. This might be useful teegular if n > 3. This can be easily verified by con-

rule out the existence of these codes for other parametsigering the three permutatioas= [1,2,3,4,5,...,n],

as well. The proof of this theorem is a generalization of = [3,1,2,4,5,...,n|, and7 = [2,1,4,3,5,...,n]

Theorem 3. There is no perfect single-error-correcting
code inS,,, wheren > 4 is a prime orn = 4.
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in S,. Clearly, di(e,0) = dg(e,m) = 2 and there this section we will mostly consider bounds on the size
exists exactly one permutatienfor whichdg (e,«) = 1  of optimal anticodes and use these bounds to obtain new
anddg (a, o) = 1, while there exist exactly two permu-upper bounds o (n, 20). The proof of the next theorem

tations 8,~ for which dk(e,58) = 1, dx(B,7) = 1,
di(e,v) =1, anddk (v,7) = 1. Fortunately, an alter-

native proof which was given iri_[1] and was modifie

in [13] will work for the Kendall m-metric.

Theorem 6. Let Cp be a code insS,, with Kendall
T-distances between codewords taken from alxetet
A C S, and letC7, be the largest code il with Kendall
T-distances between codewords taken from theTxet
Then

ICol

Al

leol _

Proof: Let Bdﬁf{(U, w) : 0 €Cp, TE Sy, oom E
A}. For a given codeword € Cp and a worda € A,
there is exactly one elemente S,, such thatyx = cor.
Therefore,|B| = |Cp| - |Al.

Since the Kendal--metric is right invariant it follows
that for everyr € S,,, the se’Cﬁdéf{crow : 0 €Cp}has
the same Kendalt-distances as i€p, i.e. the Kendall
T-distances between codewordstqf are taken from the

setD. Together with the fact thaly, is the largest code
in A, with Kendallr-distances between codewords take

from the setD, it follows that for any given word € S,
the set{c : o € Cp, o o € A} has at mosiCj|
codewords. Hence3| < [Cp| - nl.

Thus, sincgB| = |Cp|- | A|, we have tha{Cp|- |A] <
|C5| - n! and the claim is proved. [

Corollary 3. If a codeC C S,, has minimum Kendall
T-distanced and in an anticoded C S,, the maximum
Kendall -distance isd — 1 then|C| - |A] < n!.

Proof: LetD = {d,d+1,..., ()} and letCp C S,
be a code with minimum Kendatt-distanced. Let A

is given in Appendix B.

Theorem 7. Every optimal anticode with diameter 2

d(uslng the Kendall-distance) inS,, n > 5, is a ball

with radius one whose size is

We will now consider lower bounds on the size of
optimal anticodes with odd diameter. These bounds will
imply new lower bounds orP(n,24). To this end we
will define a double ball of radiusk. For a given
spaceV with a distance measuré(-,-) and for two
elementsz,y € V such thatd(z,y) = 1, the dou-
ble ball of radius R centered atr and y is defined
by DB(z,y, R)< B(x,R) U B(y,R). Let B, i be a
ball of radiusR in S,,. W.l.o.g., we may assume that
B, r = B(e, R). For everyn > 1 andR > 0, we denote
by DB, r the double ball of radiu® in S,, centered at
the identity permutatios and the permutatiofi, 2).

Lemma 3. Let V be a space with a distance measure

d(-,-). For everyz,y € V such thatd(x,y) = 1 we have

(1) DB(z,y,R) is an anticode of diameter at most
2R+ 1.

(2) IDB(,y. R)| = |Bla, B) +|Bly, B)| - | Bz, )N
B(y, R)|.

(3) If d(-,-) over V is bipartite then B(z,R) N

Proof: (1) follows immediately from the triangle
inequality and(2) is trivial.

If 2 € B(z,R) N B(y,R) thend(z,z) < R and
d(y,z) < R. Assume that(-,-) is bipartite, i.e. every
three elements, g, 2 € V satisfies the equatiaf(, )+
d(g,%2) = d(z,2) (mod?2). If d(z,z) = d(y,2) = R
thend(z, y)+d(y, z) # d(z, z) (mod 2), a contradiction.

be a subset of5,, with Kendall r-distances between Henced(z,z) < R—1ord(y, z) < R—1 and therefore,

words of A taken from the se{1,2,...,d — 1}, i.e. A
is an anticode with diametet — 1. Clearly, the largest
code in A with Kendall 7-distances fromD has only
one codeword. Applying Theoreld 6 dn, Cp, and A,
implies that|Cp| - |A| < nl. [ |
If there exists a cod€ C S,, with minimum Kendall
7-distancel = D+1 and an anticodel with diameterD
such that|C| - | A| = n! thenC is called aD-diameter

perfectcode. In this cased must be an anticode with
maximum distance (diametef) of the largest possible Corollary 4. [DB,, | = 2| By, r| —

size, andA is called anoptimal anticode of diametebD.
If D = 2R and the ball of radiusk is an optimal
anticode then a-diameter perfect code is a perfegt

error-correcting code. It is interesting to find the optim
anticodes inS,, and to determine their sizes. Usin

z € DB(z,y, R —1).

On the other hand, it € DB(z,y,R — 1) then
d(xz,z) < R—1lord(y,z) < R—1and sincel(z,y) =1
it follows from the triangle inequality thai(x,z) < R
andd(y, z) < R. Thereforez € B(z, R) N B(y, R).

Thus, = € B(z,R) N B(y,R) if and only
if - € DB(z,yyR — 1), ie. B(z,R) N
B(yaR): DN(Iava_l) u

|DB,, r—1].

Proof: By Lemmal[3 (2) we havelDB, g|
2|B,, r|—|B(e, R)NB((1,2), R)|. By Lemm&3B (3) we
t?ave that|B(e, R) N B((1,2),R)| = DB, _1,r. Thus,

B | = 2|Bn R| |DBn R— 1| ]

the sizes of such optimal anticodes we can obtain Fheorem 8. If n > 4 thenDB,, ; is an optimal anticode

Corollary[3 upper bounds o#®(n,24). In the rest of

of diameter 3, whose size &n — 1).



Proof: The claim can be easily verified for = 4.
By the first part of Lemmdl3 and by Corollafy 4 it
follows that DB,,; is an anticode of diameter 3 and

2R > (3) is S,. Since| By, r| < n!, for %) <R<(3),

it follows that B,, r is not an optimal anticode with

size2(n —1). diameter2R. Similarly, if % < R < (3) —1then
Let A be an optimal anticode of diameter 3 §,, |DBn,rl < n! and hence,DB, r is not an optimal
wheren > 5, and let anticode with diamete2R + 1.
Ac={ocec A : wg(s) =0 (mod2)}, Theorem 9. A C S, is an optimal anticode of diameter
() —1if and only if A contains eithew or o”, for each
A, ={oc€e A : wg(o)=1 (mod2)}. ceS,.
Since the KendalF-metric is bipartite, it follows tha#. Proof: If A is an optimal anticode of diameter

and A, are anticodes of diameter 2. H > 5 then (7) — 1 then by Lemmdl1, for every € S,, A cannot
by Theoremll it follows thatA.| < n (|4o| < n, contain boths and¢”. On the other hand, ifr # o”
respectively) andAc| = n (|Ao| = n, respectively) if thendy (o, 7) < (%) — 1. Thus, the theorem followsm
and only if A, (Ao, respectively) is a ball of radius one. ) ) )

The anticodesd, and.A, cannot be balls of radius oneCorollary 7. An optimal anticoded C 5, of diameter
and therefore|A.| < n — 1 and|A4,| < n — 1. Thus, 5) — 1 has size’: and can be chosen i~ different
|A| = |Ae| + [A,] < 2(n —1), for n > 5. m Ways.

As a consequence of Corollafy 3 and the fact th@iorollary 8.
DB, r is an anticode of diamete2R + 1 we have o For eacho € S, the set{s,o"} is a D-diameter

the following upper bound o®(n, 26), which generally perfect codeD = (7) — 1.
considerably improves the known upper bounds. e If 2R+ 1= (2) then{o,0"} is a perfectR-error-
Corollary 5. correcting code.
P 2R+ 1)) < nl Theorem 10.If 2(3) < d < (3) thenP (n,d) = 2.
|D B, gl Proof: Any code of the form{c, "} has minimum
Corollary 6. Kendall 7-distance at least, and therefore?(n, d) > 2.
! Assume to the contrary th&(n,d) > 3, i.e. there ex-
P(n,4) < m ists a codeC C S, with minimum Kendallr-distanced
and of size 3. Since the Kendaltmetric is right invari-
Note, thatP(n,4) > 2(2(2)7’1) [21] and hence the size ant, we can assume w.l.0.g. that= {¢, o, 7}. We have
of the best known code is within a factor of two fromthat d < wx (o) andd < wg(r) andd < dg (o, ).

the new upper bound. By Lemmall we have thatx(c,e") < (3) — d and
Note also, that since we proved tha&B, ; is an dk(m,e") < (3)—d. By the triangle inequality it follows
optimal anticode of diametes, the upper bound of thatdx (o, 7) < 2(5) —2d < 2(5) —22(}) < d.
Corollary[8 is the best bound that can be derived from u
Corollary[3. An intriguing question is whethe?,, r is
an optimal anticode of diametdp = 2R, where(0 <

R < % and whetheD B,, r is an optimal anticode of

Corollary 9. If 2R = (g) — 1 then B, g is an optimal

anticode of diamete(?) — 1.

) (2)-1 Proof: Follows from Lemmall, Theoreinl 9, and
diameter2 R+ 1, where0 < R < ~25—. Table[] present Corollary[7. -
the sizes of the largest known anticodes of diaméler

in S, for4 <n <12and2 < D < max{(7),20} . For Lemmad4.If 2R+1 = (;)—1thenDB,, r is an optimal
even values oD, the bound is the size of the related bafnticode of diamete(y) — 1.

of radiusZ and was computed by computer. A formula  proof Recall thate and (1,2) are the centers of

to compute some of these values is givenlinl [25]) [30h B, ... By Theorent® it is sufficient to show that for
and also in[[2l1]. Odd values d? were computed using ever)} o € S,, eitherc € DB, r or " € DB, g.

Corollary[4. Related bounds d?(n, d) will be presented wi (o) < R then by Lemmdllwk (") = (1) —

in Sectior(V. _ _ wg(o) > R + 1 and therefores € DB, r and
For completeness, we will present in the next feyr ¢ DB, p. Similarly, if wx(oc) > R + 1 then
results some simple optimal anticodes and the relatgdg DBn’R ando” € DB, g. If wg(oc) = R+ 1

perfect codes and diameter perfect codesin which  hen by Lemmdllwy (6") = R + 1. By Lemmal2

n

might be considered as trivial. 1D = (2) then an ang since wx((1,2)) = 1 it follows that either
optimal anticode of diametd? in 5,, is S, itself. Hence, 4, (5 (1,2)) = R or dg (o, (1,2)) = R + 2. Similarly,

if %) < R < (%) then an optimal anticode with diametereitherd (o, (1,2)) = R or dg(o", (1,2)) = R+2. By



3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

8 | 14] 20 29 38 49 60 120 - - - - -
10| 20| 30 49 68 98 128 169 210 259 308 360 720 - - - - -
110 | 174 238 343 448 602 756 961 1,166 | 1,416 | 1,666 1,947 2,228 2,520

14 35| 56 | 111 ] 166 | 285 404 628 852 1230 | 1,608 | 2,191 | 2,774 | 3,606 | 4,438 5,546 6,654 8,039

16 | 44| 72 | 155] 238 | 440 642 | 1,068 | 1,494 | 2,298 | 3,102 | 4,489 | 5876 | 8,095 | 10,314| 13,640 | 16,966 | 21,671
18 | 54| 90 [ 209 | 328 | 649 970 | 1,717 | 2,464 | 4,015 | 5566 | 8504 | 11,442 16,599 | 21,756 | 30,239 | 38,722 | 51,909
11 11 ] 20 | 65| 110 | 274 | 438 | 923 | 1,408 | 2,640 | 3,872 | 6,655 | 9,438 | 15,159 | 20,880 | 31,758 | 42,636 | 61,997 | 81,358 | 113,906
12 1222 77132 351|570 | 1,274 1,978 3,914 5,850 10,569 | 15,288 [ 25,728 36,168 | 57,486 | 78,804 | 119,483 ] 160,162 | 233,389

= .
ISR S N

N

N

N

~

A

N

~

o

TABLE I: sizes of the largest known anticodes of diamefein S,

Lemmall we conclude that eithdj (o, (1,2)) = R or 7-distance can only be increased by removing the trans-

di(c",(1,2)) = R. m position (0,n-1)) and hence ,
The next theorem can be easily verified. Theorem 12.
Theorem 11. Any set{c, 7} such thatdx(o,7) = 1 P(5,3) > 20.

is an optimal anticode of diameter one. The set of all
permutations of even Kendall-weight, known as the In general, we suggest to search for codes in
alternating group, A,,, is a 1-diameter perfect code. S», for small n, n prime, and small minimum
Similarly, the set of all permutations of odd Kendail Kendall 7-distance as follows. We require that if
weight, S, \ A,, is an 1-diameter perfect code. Theseo = [0(0),0(1),...,0(n —1)] is a codeword in the
codes are the only-diameter perfect codes ifi,. codeC then[o(1),...,0(n—1),0(0)], [0(0)—1,0(1) -
1,...,0(n—1)—1], and[ac(0),ac(1l),...,ac(n—1)]
are also codewords, where the computations are done
V. CONSTRUCTIONS OFLARGE CODES AND ATABLE  modulon anda is a primitive root modulor. Note, that
OF THE BOUNDS [0(0)=1,0(1)=1,...,0(n—1)—1] = 60[1,2,...,n—

In this section we present two large codes with minil,0)- A computer search for such a code is easier since
mum Kendall-distance 3 inS; andS;. These two codes the code has a large automorphism group. We leave as
have large automorphism groups and can be represerfleBiCe exercise to the reade_r to verify that a codeyvord
only by one or two codewords, respectively. We hopl® Such a code represents eithen — 1) codewords (if
that the method in which we constructed these cod@8d only if [0,1,...,n — 1] is one of the represented
can be applied for other values of and minimum C0dewords, as ids) or n?(n — 1) codewords.

Kendall -distance. In addition, we present a table ofhegrem 13.

the lower and upper bounds df(n, d) for small values P(7,3) > 588

of n. Throughout this section the positions and elements T '

of permutations of lengthn are taken from the set Proof: Verify that the two representatives

{0,1,2,...,n — 1} (instead of the sefn]). n=10,1,2,4,365 and v = [0,1,2,3,6,4,5]
By Theorem[B, there is no perfect single-erroryield the require code of size 588. m

correcting code inSs, using the Kendallr-distance.  The previous known lower bounds oR(5,3) and
However, if we add to the set of adjacent transpositiong(7’3) were 18 and 526, respectively [[21]. We sum-
which defines the Kendalr-metric, the transposition marise with the best known bounds dA(n, d), for
(0,n — 1), we obtain a new metric in which the code; < , < 7 and3 < d < 9, which are presented in
Cs, consists of the following 20 codewords, is a perfectaple[T].

single-error-correcting code ;.

[0,1,2,3,4], [0,2,4,1,3], [0,3,1,4,2], [0,4,3,2,1] V1. CONCLUSIONS ANDOPEN PROBLEMS
[1,2,3,4,0, [2,4,1,3,0], [3,1,4,2,0], [4,3,2,1,0] We have considered several questions related to
2,3,4,0,1], [4,1,3,0,2], [1,4,2,0,3], [3,2,1,0,4] ) : )

bounds on the size of codes in the Kendalinetric.
[3,4,0,1,2], [1,3,0,2,4], [4,2,0,3,1], [2,1,0,4,3] \\"0 0002 novel technique to exclude the existence of
4,0,1,2,3], [3,0,2,4,1], [2,0,3,1,4], [1,0,4,3,2] 9 q

)

1 . - .

perfect single-error-correcting codes using the Kendall
Note, that if[c(0),0(1),...,0(4)] is a codeword then 7-metric. We applied this technique to prove that there
[c(1),...,0(4),0(0)] and[20(0),20(1),...,20(4)] are are no perfect single-error-correcting codesijn where
also codewords, where the computations are performed> 4 is a prime or4 < n < 10, using the Kendall
modulo 5. Hence, this code can be represented by onlymetric. We examine the existence question of diameter
one codeword0, 1,2, 3,4] and it has an automorphismperfect codes inS,, and the sizes of optimal anticodes
group of size 20. Note, also that the minimum Kendalvith the Kendall7-distance. We obtained a new upper
T-distance of this code is at least 3 (since the Kenddlbund on the size of a code i}, with even Kendall



d 3 4 5 6 7 8 9
n

5 T20 —23? h10 — 15¢ dg — g J4 —6° 91 91 191

6 dgp — 119° k45 —72¢ 423 — 362 h12 —24c¢ | 410 — 14* | h5—10° dq _7a

7 €588 — 7190 | 7294 —420¢ | 4110 — 186% | ™55 —120¢ | 934 — 662 | M17 —45¢ | 914 — 28@
e a - The sphere packing bound.
e b - The sphere packing bound + Theorgm 3.
e c - Corollary[3.
e d - Lower bounds from [[21].
o f- Theorem(ID.
* e- Theoren@S
e h-P(n,20) > 1P(n,20—1) [21.
° - TheorenﬂD
o j-C=1{[1,2,3,4,5],[1,5,2,3,4],[2,3,4,1,5],[1,4,3,2,5]}.

TABLE II: Best known lower and upper bound dA(n, d).

7-distance. Finally, we constructed two large codes withot exist if n > 4 is a prime or ifn = 4. The proof

large automorphism groups ity and Sx.

of Theorem[B is based on a certain linear equations

Our discussion raises many open problems from whidystem, where the existence of a perfect single-error-

we choose a few as follows.
1) Prove the nonexistence of perfect codessSin

2)

3)

4)

correcting code irf,, implies the existence of a solution
to the linear equations system over the integers, and

using the Kendall-metric, for more values of,  thus, by showing the nonexistence of such solution
and/or other distances. we derive the nonexistence of a perfect single-error-

Do there exist moreD-diameter perfect codescorrecting code. By using similar techniques we prove
in S,, with the Kendall7-metric, for2 < D < the nonexistence of perfect single-error-correcting sode
") —1? We conjecture that the answer is no. in Sn for n € {6,8,9,10}. For each suctn, let C

Is a ball with radiusR in S, always optimal be a perfect single-error-correcting codeSp. We will
as an anticode with diamete2R in S,, for describe the corresponding linear equations system and

9<R< o use a computer to show that this linear equations system

Is the double ball with radiu® in S, always does not have a solution over the integers.

optimal as an anticode with diame®R+1in S,,, 1) n = 6: We denote byDg the set of all vectors of

for2< R < ()1o {1,2,3}% in which each of the elements 1,2,3 appears
5) What is the size of an optimal anticodeSp with ~ Wicé. For eachv € Ds we defineS, to be the set
diameterD? of eight permutations inSs, such that the elements
6) Improve the lower bounds on the sizes of codé¥'d 2 appear in the two positions in which appears

7

in S, with even minimum Kendalf--distance.
Can the codes irf; and S, from Section[V be which 2 appears inv, and the elements and6 appear

in v, the element8 and4 appear in the two positions in

in the two positions in whicl3 appears inv. Let z, =
|IC NSyl and letx = (Tyy, Tvgs - - -, Ty, ), Wherem =
6| = 2,2,2, By considering how the elements 8§ are
covered (similarly to the way it was done in the proof
of Theorem[B), for eaclv € Dg, we obtain a linear
Sarit Buzaglo would like to thank Amir Yehudayoffequations system of the formx” = |S,|-1 = 8 -1,
for many useful discussions. The authors would like tghere A is a square matrix of orden. The kernel ofA
thank the anonymous reviewer of the 2014 Internationgl an one-dimensional vector space which is spanned by
Symposium on Information Theory for valuable coma vectory e {0,—1,1}? that has both negative and
ments. They thank Simon Litsyn for bringing valuablgyositive entries. Every solution for this system is of the
references to their attention. The authors also thamim 8.14a-y, a € R, and therefore, the system does

three anonymous reviewers whose detailed reviews angt have a solution in which all entries are integers.
comments helped to improve the presentation of th&e‘)

paper.

generalized for higher values of and to larger
distances? Are these codes of optimal size?
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= 8: We denote byDg the set of all vectors
v E {1,2,3,4}8 in which each of the elements 1 and 2
appears three times and each of the elements 3 and 4
appears once. For every € Ds we defineS, to be

In Theorem[ B we proved that a perfect single-errothe set of 36 permutations ifls, such that the elements
correcting code inS,, with the Kendallr-metric does 1,2, and 3 appear in the three positions in which 1

APPENDIXA



appears inv, the elementd, 5, and6 appear in the three distinguish between four cases. In the first two cases the
positions in which 2 appears #, the element appears permutationp is at distance 2 frona.
in the position of3 in v, and the element 8 appears | , = (j,j 4+ 1)o (i 4+ 1,i + 2). In this cases =

in the position of 4 inv. Let z, = |C N Sy| gnd let (i,i+1)o(j,j+1)op and thereforelx (o, p) < 2.

X = _(le_"TV2’ .-y Ty, ), Wherem = |Dg| = z5;. By By Lemmal2 we have that the Kendalmetric is
considering how elements ¢, are covered, for each bipartite and since andp are both of even weight
v € Dg, we obtain a linear equations system of the form it follows that d (o, p) > 2. Thus,dk (o, 7) = 2.
Ax™ =361, where A is a square matrix of orden. | ;= (i+1,i+2)o(i,i+1). In this case we have that
The system has a unique solutiot; = 3¢ - 1, which o = pop and similarly it follows thatix (o, p) = 2.
has non-integer entries. N If p= (4,5 +1) 0 (kk+1), wherej # k and
3) n = 9: We denote byDy the set of all vectors € j,k # i+ 1, then by [1) we have thatx (o, p) >

{1,2,3}? in which the element 1 appears five times and {(Gi+2,4),(i+2,i+1),(k,k+1)} > 2.
each of the element® and 3 appears twice. For every v, |f p = (i 4+ 1,i+ 2) o (j,j + 1). We distinguish be
v € Dy we defineS, to be the set of 480 permutations  petween four subcases.
in Sg, such that the elemenis?2, 3,4, and5 appear in 1) If j & {i,i+1,i+2), thenp = (j,j+1)o(i+
the five positions in which 1 appearsvnthe elements 6 1i+2) ’and t’his ca,se was con’sidered in 1.
and 7 appear in the two positions in which 2 appeanss in 2) .’: . was considered in Il

. . J]=1 .
_and tr_le elements 8 _and 9 appear in the two positions 3) If j=i+1thenp—e, i.e wi(p) = 0.
in which 3 appears iv. Let z, = |C N Sy 9z!;md let 4) If j—i+2thenp = (i+1,i+2)o(i+2,i+3)
X = (Ty,, vy, o Ty, ), Wherem = |Do| = gy By and by [1) we havésc (, p) = |{(i+2, 1), (i+
considering how elements &, are covered, for each 2+ 1), (i 4 1,i+3),(i+2,i+3)} =4
v € Dy, we obtain a linear equations system of the form ’ ’ ’ ’ ’ '
AxT = 480- 1, where A is a square matrix of order. u
The system has a unique solutiod, = 4%;0 -1, which  |emma 6. Leto = (i,i+1)o (i +1,i+2) andr =
has non-integer entries. (i+1,i+2)0(i,i + 1), wherei € [n — 2], and letp
4) n = 10: We denote byD;, the set of all vectors be a permutation of weight 2 # o and p # . Then
v € {1,2,3}'% in which each of the elements 1 and Zither dx (o, p) > 4 or dg(, p) > 4.
appears four times and the element 3 appears twice. For ) )
everyv € Dy, we defineS, to be the set of 1,152 Proof: By Lemmal$ it follows that ifds (o, p) = 2
permutations irSo, such that the elements2, 3, and 4 €Ny = (j, j+1)o(i+1,i+2)orp = . By symmetry it
appear in the four positions in which appears inv, follows thatifds (r, p) = 2thenp = (j, j+1)o(i,i+1)

the elements, 6,7, and 8 appear in the four positions " » = 7- Hence, there is no permutatipnof weight 2
in which 2 appears inv, and the element§ and 10 and distance 2 from botk and 7. By Lemmal2 we
appear in the two positions in which appears inv. also have that the Kenda#t-metric is bipartite and we

Let 2y = |C N Sy| and letx = (zy,, v.) conclude that any permutation of weight 2 other tlwen
v v - Vi Voy Vom /) .
wherem = [ Dyo| = 2% . By considering how elements@nd T must be at distance at least four fremor 7. =

of Sy are covered, for each € Dy, we obtain a linear Lemma 7. Let.A be an anticode irS,, with diameter 2

equations system of the foraix™ = 1,152-1, whereA  gych that € 4, and letB3 be the set of all permutations

is a square matrix of orden. The system has a uniqueof weight 2 in A. If |B| > 4 then B is contained in a

solution,x” = 552 . 1, which has non-integer entries. pa|l of radius one centered at some permutatiog S,
of weight one.

APPENDIXB Proof: If there exists someé € [n — 2] such that

The purpose of this appendix is to prove Theofdm (#,i + 1) o (i + 1,7 +2),(i + 1,i + 2) o (4,i + 1) € B,
given in Sectior V. then by Lemmal6 any other permutation of weight 2 is
Theorem 7. Every optimal anticode with diameter 2at distance at least four from eith@ri+1)o(i+1,:+2)
(using the Kendallr-distance) inS,, n > 5, is a ball or (i+ 1,4+ 2) o (i,i + 1), and therefore| = 2.
with radius one whose size is If for somei € [n — 2] either(i,i+1)o(: + 1,04+ 2)
or (i + 1,9+ 2)o (i, + 1) belongs tos, say w.l.o.g.

. . . i,i+1)o(i+ 1,7+ 2) € B, then every permutation of
be_a permutathn of yvelght 2 a_nd @stapce 2 frqrﬂ'hen %\ {(4,1 +( 1) o (i + 1),2' + 2)} must be at distance 2
p=0pg+D)eli+lit2)0rp=(i+1,i+2)e(h,i+1). from (i, + 1) o (i + 1,7 + 2), and by Lemmdl5 it

Proof: Recall first that for any two permutationsfollows that every such permutation must be of the
a, B, dk (o, ) = 1 if and only if there exists an adjacentform (5,7 + 1) o (i + 1,¢ + 2) for someyj ¢ {i,i + 1}.
transpositionk, k + 1), such thatx = (k,k+1)o 8. We Therefore, B C B((i + 1,i+2),1).

Lemma 5. Leto = (i,i+1)o(i+1,i+2) and letp # o



If each permutation o5 is a multiplication of two [5]
disjoint adjacent transpositions then Jet= (i,i + 1) o
(4,7 +1) € B, wherej ¢ {i —1,i,i+ 1}. Hence, all
permutations of3 are of the form(¢, ¢+ 1) o (4,5 + 1),
where?l ¢ {j,5 + 1}, or (¢, + 1) o (i,i + 1), where
¢ & {i,i + 1}. Assume w.l.o.g. thatr = (£,/ + 1) o
(j,7+1) € B, m # p. If every permutation of3 is of

(6]

[7]

the form(k,k+1)o(j,j+1) thenB c B((j,j+1),1). [8l
Otherwise, the only possible other permutationfofs
(i,i+1)o (¢,£+1) and henceB| < 3. [9]
Thus, if |B| > 4 then B C B(o,1), for someo of
weight one. LT
Proof of Theorem [t Let A C S,, n > 5, be an
anticode of diameter 2. The Kendattmetric is right [11]
invariant and hence w.l.o.g. we can assume thatA. [12]

Therefore, all the permutations ol are of weight at
most two. We distinguish between four cases:

Case 1:If A does not contain a permutation of weigh
one then by LemmA] 7 it follows thad is contained in
a ball of radius one centered at a permutation of weigii#]
one or|A| < 4.

Case 2:1f A contains exactly one permutatienc S,
of weight one then by Lemnid 2, the distance between
and any permutation of weight 2 is an odd integer arﬁiG]
therefore, all permutations of weight 2 4 must be at
distance one fron. Thus, A C B(o, 1).

Case 3: If.A contains two permutations of weight onef17]
o= (iyi+1) andn = (5,5 + 1), whereo and 7

are disjoint transpositions, then the only permutations]
of weight 2 and distance one from both and 7 is

(i,i + 1) o (j,j + 1) and therefored cannot contain %
more than one permutation of weight 2, herigé < 4. [20]
Case 4:1f A contains two permutations of weight one,
o= (i,i+1) andr = (i+1,i+2), for somei € [n—2],
then there is no permutation of weight 2 and distance
one from botho and 7 and therefored cannot contain
permutations of weight 2, hendel| < 3. [22]
Case 5:1f A contains at least three permutations gbs
weight one thenA cannot contain permutations of
weight 2 and thereforel C B(e, 1).

Thus, we proved that eithed is contained in a ball
of radius one orlA| < 4. Since the size of a ball of
radius one inS,, is n, it follows that if n > 5 then every [25]
optimal anticode of diameter 2 if,, is a ball of radius [26]
one. a

[13]

[15]

[24]
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