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Bounds on the Size of Permutation Codes
with the Kendallτ -Metric
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Abstract—The rank modulation scheme has been pro-
posed for efficient writing and storing data in non-volatile
memory storage. Error-correction in the rank modulation
scheme is done by considering permutation codes. In this
paper we consider codes in the set of all permutations onn
elements,Sn, using the Kendall τ -metric. The main goal
of this paper is to derive new bounds on the size of such
codes. For this purpose we also consider perfect codes,
diameter perfect codes, and the size of optimal anticodes
in the Kendall τ -metric, structures which have their own
considerable interest. We prove that there are no perfect
single-error-correcting codes inSn, wheren > 4 is a prime
or 4 ≤ n ≤ 10. We present lower bounds on the size of
optimal anticodes with odd diameter. As a consequence
we obtain a new upper bound on the size of codes inSn

with even minimum Kendall τ -distance. We present larger
single-error-correcting codes than the known ones inS5

and S7.

Index Terms—Anticodes, bounds, flash memory, Kendall
τ -metric, perfect codes, permutations

I. I NTRODUCTION

FLASH memory is a non-volatile technology that
is both electrically programmable and electrically

erasable. It incorporates a set of cells maintained at a
set of levels of charge to encode information. While
raising the charge level of a cell is an easy operation,
reducing the charge level requires the erasure of the
whole block to which the cell belongs. For this reason
charge is injected into the cell over several iterations.
Such programming is slow and can cause errors since
cells may be injected with extra unwanted charge. Other
common errors in flash memory cells are due to charge
leakage and reading disturbance that may cause charge
to move from one cell to its adjacent cells. In order
to overcome these problems, the novel framework of
rank modulation codeswas introduced in [20]. In this
setup the information is carried by the relative ranking
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of the cells charge levels and not by the absolute values
of the charge levels. This allows for more efficient
programming of cells, and coding by the ranking of
the cells’ levels is more robust to charge leakage than
coding by their actual values. In this model codes are
subsets ofSn, the set of all permutations onn elements,
where each permutation corresponds to a ranking ofn

cells’ levels. Permutation codes were mainly studied in
this context using three metrics, the infinity metric, the
Ulam metric, and the Kendallτ -metric. Codes inSn

under the infinity metric were considered in [24], [36],
[38], [40]. Anticodes inSn under the infinity metric were
considered in [23], [37], [39]. Codes inSn under the
Ulam metric were considered in [16]. Permutation codes
with other metrics were considered in many papers. A
survey on metrics related to permutations is given in [11].

In this paper we consider codes using the Kendall
τ -metric [22]. Under the Kendallτ -metric, codes inSn

with minimum distanced should correct up to
⌊

d−1
2

⌋

errors that are caused by small charge leakage and
read disturbance. For large charge leakage and read
disturbance the Ulam metric is used [16]. LetP (n, d)
denote the size of the largest code inSn with mini-
mum Kendallτ -distanced. A comprehensive work on
error-correcting codes inSn using the Kendallτ -metric
and bounds onP (n, d) were considered in [21]. In
that paper there is also a construction of single-error-
correcting codes using codes in the Lee metric. This
method was generalized in [3] for the construction of
t-error-correcting codes that are of optimal size up to
a constant factor, wheret is fixed. More constructions
of error-correcting codes were given in [28]. Systematic
single-error-correcting codes inSn of size (n − 2)!
were constructed in [41], [42]. The constructed codes
are of optimal size, assuming that perfect single-error-
correcting codes do not exist. But, only the nonexistence
of perfect single-error-correcting codes forn = 4 was
proved. Systematict-error-correcting codes were studied
in [6], [41], [42]. Linear programming and semi-definite
programming on permutation codes with the Kendallτ -
metric were considered in [26]. Unfortunately, no bounds
better than the sphere packing bound were found by these
methods.

The main goal of this paper is to provide new bounds
on the size of permutation codes in the Kendallτ -metric.
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As part of this goal we will prove the nonexistence
of perfect single-error-correcting codes inSn if n is a
prime. Although this improves the related upper bound
on P (n, 3) only by one, such a result is of interest for
itself. This is one of the two main results of this paper.
The second main result is a new upper bound on the
size of permutation codes in the Kendallτ -metric, where
the minimum distance is even. This bound is obtained
by introducing the notion of anticodes in the Kendall
τ -metric and proving a related code-anticode theorem.
Finally, we present two codes with minimum distance 3
in S5 and S7, which are considerably larger than the
previous known codes. These codes are of special interest
since the rank modulation scheme is more likely to be
applicable for small values ofn.

The rest of this work is organized as follows. In
Section II we define the basic concepts for the Kendall
τ -metric and for perfect codes. In Section III we prove
the nonexistence of a perfect single-error-correcting code
in Sn, using the Kendallτ -metric, wheren > 4 is a
prime or 4 ≤ n ≤ 10. This is the first known result
in this direction and it shows that the sphere packing
upper bound can not be attained in these cases. In
Section IV we establish the Delsarte’s code-anticode
bound for the Kendallτ -metric and examine diameter
perfect codes inSn for this metric. We find the sizes of
optimal anticodes inSn with diameter 2 and diameter 3
and consider the size of optimal anticodes for larger
diameters as well. Trivial diameter perfect codes are
considered in some of these cases. We combine these
results with the code-anticode bound to improve the
known upper bound on the size of a code inSn for
even minimum distances. In Section V we consider lower
bounds on the size of permutation codes in the Kendall
τ -metric for small values ofn. We search for such codes
by forcing a structure and a certain automorphism group
on the codes. Two large single-error-correcting codes for
n = 5 andn = 7 are constructed in this way and yield an
improvement on the related lower bounds. We conclude
in Section VI, where we also present some questions for
future research.

II. BASIC CONCEPTS

Let Sn be the set of all permutations on the set ofn

elements[n]
def
= {1, 2, . . . , n}. We denote a permutation

σ ∈ Sn by σ = [σ(1), σ(2), . . . , σ(n)]. For two
permutationsσ, π ∈ Sn, their multiplication π ◦ σ

is defined as the composition ofσ on π, namely,
π ◦ σ(i) = σ(π(i)), for all 1 ≤ i ≤ n. Under this
operation, the setSn is a noncommutative group,
known as the symmetric group of ordern!. We
denote by ε

def
= [1, 2, . . . , n] the identity permutation

of Sn. Given a permutationσ ∈ Sn, an adjacent
transposition, (i, i + 1), for some1 ≤ i ≤ n − 1, is

an exchange of the two adjacent elementsσ(i) and
σ(i + 1) in σ. The result is the permutationπ =
[σ(1), . . . , σ(i − 1), σ(i + 1), σ(i), σ(i + 2), . . . , σ(n)].
Observe that the notation(i, i + 1) is also used
for the cycle decomposition of the permutation
[1, 2, . . . , i− 1, i+1, i, i+2, . . . , n] and the permutation
π can also be written asπ = (i, i+ 1) ◦ σ. In other
words, left multiplication by(i, i + 1) exchanges the
elements in positionsi, i + 1. Right multiplication by
(i, i+ 1) exchanges the elementsi, i+ 1. Two adjacent
transpositions(i, i+1) and(j, j +1) are calleddisjoint
if either i + 1 < j or j + 1 < i. For two permutations
σ, π ∈ Sn, the Kendallτ -distance betweenσ and π,
dK(σ, π), is defined as the minimum number of adjacent
transpositions needed to transformσ into π [22]. For
σ ∈ Sn, the Kendallτ -weight of σ, wK(σ), is defined
as the Kendallτ -distance betweenσ and the identity
permutationε. The following expression fordK(σ, π)
is well known [21], [25].

dK(σ, π) = |{(i, j) : σ
−1(i) < σ

−1(j)∧π−1(i) > π
−1(j)}|.

(1)

For a permutationσ = [σ(1), σ(2), . . . , σ(n)] ∈ Sn,
the reverse of σ is the permutation
σrdef= [σ(n), σ(n − 1), . . . , σ(2), σ(1)]. It follows from
equation (1) that for everyσ, π ∈ Sn, dK(σ, π) ≤

(

n

2

)

and dK(σ, π) =
(

n
2

)

if and only if π = σr . The
following lemma is an immediate consequence from
the expression to compute the Kendallτ -distance given
in (1).

Lemma 1. For everyσ, π ∈ Sn,

dK(σ, π) + dK(σr, π) = dK(σ, σr) =

(

n

2

)

.

The Kendallτ -metric is right invariant [7], [11], i.e.
for every three permutationsσ, π, ρ ∈ Sn we have
dK(σ, π) = dK(σ ◦ ρ, π ◦ ρ). Note, that the Kendallτ -
metric is not left invariant. The Kendallτ -metric onSn

is graphic, i.e. for every two permutationsσ, π ∈ Sn their
Kendall τ -distance is equal to the length of the shortest
path betweenσ andπ in the graphGn, whose vertex set
is the setSn, and two vertices are connected by an edge
if and only if their Kendallτ -distance is one.

A distance measured(·, ·) over a spaceV , is called
bipartite if every three elementsx, y, z ∈ V satisfy the
equality d(x, y) + d(y, z) ≡ d(x, z) (mod 2), i.e. the
related graph is bipartite. The Kendallτ -metric onSn is
bipartite as stated in the next lemma.

Lemma 2. The Kendallτ -metric overSn is bipartite.

Proof: Just note that by (1) two permutations which
differ in exactly one adjacent transposition have different
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weights modulo 2. This implies that the related graphGn

and the Kendallτ -metric are bipartite.

Corollary 1. If σ and π are two permutations inSn

thenwK(σ) + wK(π) ≡ wK(σ ◦ π) (mod2).

Proof: Since the Kendallτ -metric is right invariant,
it follows that wK(π) = dK(π, ǫ) = dK(ǫ, π−1) =
wK(π−1). Hence, by the definition of the Kendallτ -
weight and by Lemma 2, we have that

wK(σ) + wK(π) = wK(σ) + wK(π−1)

= dK(σ, ǫ)+dK(π−1, ǫ) ≡ dK(σ, π−1) (mod2) . (2)

Since the Kendallτ -metric is right invariant, it follows
that

dK(σ, π−1) = dK(σ ◦ π, ǫ) = wK(σ ◦ π) (3)

Thus, by (2) and (3), we have thatwK(σ) + wK(π) ≡
wK(σ ◦ π) (mod 2).

Given a metric space, one can define codes. We say
that C ⊆ Sn hasminimum distanced if dK(σ, π) ≥ d,
for every two distinct permutationsσ, π ∈ C. For a
given spaceV with a distance measured(·, ·), a subset
C of V is a perfect codewith radius R if for every
element x ∈ V there exists exactly one codeword
c ∈ C such thatd(x, c) ≤ R. For a pointx ∈ V ,
the ball of radiusR centered atx, B(x,R), is defined

by B(x,R)
def
= {y ∈ V : d(x, y) ≤ R}. In the Kendall

τ -metric the size of a ball does not depend on the center
of the ball. This is a consequence of the fact that the
Kendallτ -distance is right invariant. It is readily verified
that

Theorem 1. Let V be a space with a distance measure
d(·, ·). For a codeC ⊆ V with minimum distance2R+1
and a ball B with radius R we have|C| · |B| ≤ |V|,
where|S| is the size of the setS.

Theorem 1 is known as thesphere packing bound
(even so it is really a ball packing bound). In a codeC

which attains this bound, i.e.|C| · |B| = |V|, the
balls with radiusR around the codewords ofC form a
partition ofV . Such a code is a perfect code. A perfect
code with radiusR is also called aperfect R-error-
correcting code.

Perfect codes is one of the most fascinating topics in
coding theory. These codes were mainly considered for
the Hamming scheme, e.g. [15], [29], [31]–[33]. They
were also considered for other schemes such as the
Johnson scheme, e.g. [12], [14], [35], the Grassmann
scheme [8], [27], and to a larger extent also in the Lee
and the Manhattan metrics, e.g. [13], [17], [18], [34].
Note, that the minimum distance of a perfect code is
always an odd integer. A more general concept in which
codes can have even minimum distances as well, is a

diameter perfect code [1]. This concept is based on
Delsarte’s code-anticode bound [10] for distance regular
graphs. Since the Kendallτ -metric overSn does not
induce a distance regular graph, Delsarte’s theorem may
not apply for this metric. However, an alternative proof
shows that such type of a bound is also valid for the
Kendall τ -metric.

III. T HE NONEXISTENCE OFSOME PERFECTCODES

In this section we prove that there are no single-error-
correcting codes inSn, wheren is a prime greater than 4.
Similarly, we also show that there are no perfect single-
error-correcting codes inSn, for 4 ≤ n ≤ 10.

For eachi, 1 ≤ i ≤ n, we defineTn,i
def
= {σ : σ ∈

Sn, σ(i) = 1}, i.e. σ ∈ Sn is an element ofTn,i if 1
appears in theith position ofσ. Clearly,|Tn,i| = (n−1)!.

Assume that there exists a perfect single-error-
correcting codeC ⊂ Sn. For eachi, 1 ≤ i ≤ n, let

Ci
def
= C ∩ Tn,i and xi

def
= |Ci|.

We say that a codewordσ ∈ C coversa permutation
π ∈ Sn if dK(σ, π) ≤ 1. SinceC is a perfect single-
error-correcting code, it follows that each permutation
in Tn,1 must be at distance at most one from exactly
one codeword ofC and this codeword must belong
to either C1 or C2. Every codewordσ ∈ C1 covers
exactlyn− 1 permutations inTn,1. It covers itself and
the n − 2 permutations inTn,1 obtained fromσ by
exactly one adjacent transposition(i, i+ 1), 1 < i < n.
Each codewordσ ∈ C2 covers exactly one permutation
π ∈ Tn,1, π = (1, 2) ◦ σ. Therefore, we have that

(n− 1)x1 + x2 = (n− 1)! . (4)

Similarly, by considering how the permutations
of Tn,n are covered by the codewords ofC, we have
that

xn−1 + (n− 1)xn = (n− 1)! . (5)

For eachi, 2 ≤ i ≤ n − 1, each permutation inTn,i

is covered by exactly one codeword that belongs to
eitherCi−1, Ci, or Ci+1. Each codewordσ ∈ Ci covers
exactlyn− 2 permutations inTn,i. It covers itself and
then−3 permutations inTn,i obtained fromσ by exactly
one adjacent transposition(j, j+1), where1 ≤ j < i−1
or i < j < n. Each codeword inCi−1 ∪ Ci+1 covers
exactly one permutation fromTn,i. Therefore, for each
i, 2 ≤ i ≤ n− 1, we have that

xi−1 + (n− 2)xi + xi+1 = (n− 1)! . (6)

Let x = (x1, x2, . . . , xn) and let1 denote the all-ones
column vector. Equations (4), (5), and (6) can be written
in a matrix form as
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AxT = (n− 1)! · 1, (7)

whereA = (ai,j) is ann× n matrix defined by

A =























n− 1 1 0 0 · · · 0 0 . . . 0
1 n− 2 1 0 · · · 0 0 . . . 0
0 1 n− 2 1 · · · 0 0 . . . 0
...

...
...

...
. . .

...
...

...
...

...
...

...
...

. . .
...

...
...

...
0 . . . 0 0 · · · 1 n− 2 1 0
0 . . . 0 0 · · · 0 1 n− 2 1
0 . . . 0 0 · · · 0 0 1 n− 1























.

Since the sum of every row inA is equal ton it
follows that the linear equation system defined in (7)
has a solutionyT = (n−1)!

n
· 1. We will show that if

n > 3 thenA is a nonsingular matrix and hencey is the
unique solution of (7), i.e.x = y. To this end, we need
the following theorem known as the Levy-Desplanques
Theorem [19, p. 125].

Theorem 2. Let B = (bi,j) be an n × n matrix. If
|bi,i| >

∑

j 6=i |bi,j | for all i, 1 ≤ i ≤ n, then B is
nonsingular.

For everyn > 4 we have that for eachi, 1 ≤ i ≤ n,
ai,i ≥ n − 2 > 2 ≥

∑

j 6=i ai,j . Hence, by Theorem 2
it follows that A is nonsingular. Forn = 4 it can be
readily verified that the matrixA is nonsingular. As a
consequence we have thatxT = (n−1)!

n
· 1 for every

n ≥ 4. If n = 4 or n is a prime greater than4 then
(n−1)!

n
is not an integer and therefore, a perfect single-

error-correcting code does not exist, i.e.

Theorem 3. There is no perfect single-error-correcting
code inSn, wheren > 4 is a prime orn = 4.

Remark 1. It was brought to our attention that Theo-
rem 3 is a special case of Theorem 5 in [9]. However,
there is a crucial mistake in the proof of this theorem,
which cannot be resolved. The proof follows by induction
on n, where the induction step is based on a partition
of Sn into

(

n

k

)

classes,2 ≤ k ≤ n − 2, according to
the set of thek first elements in the permutations. It is
stated that ifC ⊂ Sn is a code with minimum distance 3
and C is contained in one of these classes, then the
projection ofC into Sk has also minimum distance 3.
This argument is clearly wrong. For example, the code
{[1, 2, 3, 4, 5], [3, 1, 2, 5, 4]} has minimum distance 3 and
the first three elements in each of its codewords belong
to {1, 2, 3}. However, its projection intoS3 is the code
{[1, 2, 3], [3, 1, 2]}, which has minimum distance 2. A
similar example can be found for everyn ≥ 4 and for
each2 ≤ k ≤ n− 2.

The following theorem proved in [5] implies that
perfect single-error-correcting codes must have a very
symmetric and uniform structure. This might be useful to
rule out the existence of these codes for other parameters
as well. The proof of this theorem is a generalization of

the technique used to prove Theorem 3. It is omitted here
since the theorem is not used in the sequel.

Theorem 4. Assume that there exists a perfect single-
error-correcting codeC ⊂ Sn, where n > 11. If
r < n

4 then for each sequence ofr distinct elements
of [n], i1, i2, . . . , ir, and for each set ofr positions,
1 ≤ j1 < j2 < · · · < jr ≤ n, there are exactly(n−r)!

n

codewordsσ ∈ C, such thatσ(jℓ) = iℓ, for each ℓ,
1 ≤ ℓ ≤ r.

For n = 6, 8, 9, 10, we use similar arguments and
obtain systems of linear equations. We used a computer
to show that these systems have no solutions over the
nonnegative integers, and to conclude that perfect single-
error-correcting codes inSn do not exist for these values
of n. More details on these cases can be found in
Appendix A.

Corollary 2. P (n, 3) < (n− 1)! if n is a prime greater
than 4 or 4 ≤ n ≤ 10.

Proof: The size of a ball with radius one inSn,
when the Kendallτ -metric is used, isn. Hence, by
Theorem 1 and the discussion which follows this theorem
we have that, a single-error-correcting codeC ⊂ Sn is
perfect if and only if|C| = (n−1)!. Since such codes do
not exist ifn is a prime greater than 4 or if4 ≤ n ≤ 10,
it follows thatP (n, 3) < (n− 1)!.

IV. A NTICODES AND DIAMETER PERFECTCODES

In all the perfect codes of a graphic metric the mini-
mum distance of the code is an odd integer. If the min-
imum distance of the codeC is an even integer thenC
cannot be a perfect code. The reason is that for any two
codewordsc1, c2 ∈ C such thatd(c1, c2) = 2δ, there
exists a wordx such thatd(x, c1) = δ andd(x, c2) = δ.
For this case another concept is used, a diameter perfect
code, as was defined in [1]. This concept is based on
the code-anticode bound presented by Delsarte [10]. An
anticodeA of diameterD in a spaceV is a subset of
words fromV such thatd(x, y) ≤ D for all x, y ∈ A.

Theorem 5. If a codeC, in a spaceV of a distance
regular graph, has minimum distanced and in an anti-
codeA of the spaceV the maximum distance isd − 1
then |C| · |A| ≤ |V|.

Theorem 5 which was proved in [10] is a general-
ization of Theorem 1 (the sphere packing bound) and it
can be applied to the Hamming scheme since the related
graph is distance regular (see [4] for the definition of
a distance regular graph). It cannot be applied to the
Kendall τ -metric since the related graph is not distance
regular if n > 3. This can be easily verified by con-
sidering the three permutationsε = [1, 2, 3, 4, 5, . . . , n],
σ = [3, 1, 2, 4, 5, . . . , n], and π = [2, 1, 4, 3, 5, . . . , n]
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in Sn. Clearly, dK(ε, σ) = dK(ε, π) = 2 and there
exists exactly one permutationα for whichdK(ε, α) = 1
anddK(α, σ) = 1, while there exist exactly two permu-
tations β, γ for which dK(ε, β) = 1, dK(β, π) = 1,
dK(ε, γ) = 1, anddK(γ, π) = 1. Fortunately, an alter-
native proof which was given in [1] and was modified
in [13] will work for the Kendallτ -metric.

Theorem 6. Let CD be a code inSn with Kendall
τ -distances between codewords taken from a setD. Let
A ⊂ Sn and letC′

D be the largest code inA with Kendall
τ -distances between codewords taken from the setD.
Then

|CD|

n!
≤

|C′
D|

|A|
.

Proof: Let B
def
= {(σ, π) : σ ∈ CD, π ∈ Sn, σ◦π ∈

A}. For a given codewordσ ∈ CD and a wordα ∈ A,
there is exactly one elementπ ∈ Sn such thatα = σ◦π.
Therefore,|B| = |CD| · |A|.

Since the Kendallτ -metric is right invariant it follows
that for everyπ ∈ Sn, the setCπ

def
= {σ◦π : σ ∈ CD} has

the same Kendallτ -distances as inCD, i.e. the Kendall
τ -distances between codewords ofCπ are taken from the
setD. Together with the fact thatC′

D is the largest code
in A, with Kendallτ -distances between codewords taken
from the setD, it follows that for any given wordπ ∈ Sn

the set{σ : σ ∈ CD, σ ◦ π ∈ A} has at most|C′
D|

codewords. Hence,|B| ≤ |C′
D| · n!.

Thus, since|B| = |CD| · |A|, we have that|CD| · |A| ≤
|C′

D| · n! and the claim is proved.

Corollary 3. If a codeC ⊆ Sn has minimum Kendall
τ -distanced and in an anticodeA ⊂ Sn the maximum
Kendall τ -distance isd− 1 then |C| · |A| ≤ n!.

Proof: Let D = {d, d+1, . . . ,
(

n
2

)

} and letCD ⊆ Sn

be a code with minimum Kendallτ -distanced. Let A
be a subset ofSn with Kendall τ -distances between
words ofA taken from the set{1, 2, . . . , d− 1}, i.e. A
is an anticode with diameterd − 1. Clearly, the largest
code inA with Kendall τ -distances fromD has only
one codeword. Applying Theorem 6 onD, CD, andA,
implies that|CD| · |A| ≤ n!.

If there exists a codeC ⊆ Sn with minimum Kendall
τ -distanced = D+1 and an anticodeA with diameterD
such that|C| · |A| = n! then C is called aD-diameter
perfectcode. In this case,A must be an anticode with
maximum distance (diameter)D of the largest possible
size, andA is called anoptimalanticode of diameterD.
If D = 2R and the ball of radiusR is an optimal
anticode then aD-diameter perfect code is a perfectR-
error-correcting code. It is interesting to find the optimal
anticodes inSn and to determine their sizes. Using
the sizes of such optimal anticodes we can obtain by
Corollary 3 upper bounds onP (n, 2δ). In the rest of

this section we will mostly consider bounds on the size
of optimal anticodes and use these bounds to obtain new
upper bounds onP (n, 2δ). The proof of the next theorem
is given in Appendix B.

Theorem 7. Every optimal anticode with diameter 2
(using the Kendallτ -distance) inSn, n ≥ 5, is a ball
with radius one whose size isn.

We will now consider lower bounds on the size of
optimal anticodes with odd diameter. These bounds will
imply new lower bounds onP (n, 2δ). To this end we
will define a double ball of radiusR. For a given
spaceV with a distance measured(·, ·) and for two
elementsx, y ∈ V such thatd(x, y) = 1, the dou-
ble ball of radius R centered atx and y is defined
by DB(x, y,R)

def
=B(x, R) ∪ B(y, R). Let Bn,R be a

ball of radiusR in Sn. W.l.o.g., we may assume that
Bn,R = B(ε,R). For everyn ≥ 1 andR ≥ 0, we denote
by DBn,R the double ball of radiusR in Sn centered at
the identity permutationε and the permutation(1, 2).

Lemma 3. Let V be a space with a distance measure
d(·, ·). For everyx, y ∈ V such thatd(x, y) = 1 we have

(1) DB(x, y,R) is an anticode of diameter at most
2R+ 1.

(2) |DB(x, y,R)| = |B(x,R)|+|B(y,R)|−|B(x,R)∩
B(y,R)|.

(3) If d(·, ·) over V is bipartite then B(x,R) ∩
B(y,R) = DB(x, y,R − 1).

Proof: (1) follows immediately from the triangle
inequality and(2) is trivial.

If z ∈ B(x,R) ∩ B(y,R) then d(x, z) ≤ R and
d(y, z) ≤ R. Assume thatd(·, ·) is bipartite, i.e. every
three elementŝx, ŷ, ẑ ∈ V satisfies the equationd(x̂, ŷ)+
d(ŷ, ẑ) ≡ d(x̂, ẑ) (mod 2). If d(x, z) = d(y, z) = R

thend(x, y)+d(y, z) 6≡ d(x, z) (mod 2), a contradiction.
Hence,d(x, z) ≤ R−1 or d(y, z) ≤ R−1 and therefore,
z ∈ DB(x, y,R− 1).

On the other hand, ifz ∈ DB(x, y,R − 1) then
d(x, z) ≤ R−1 or d(y, z) ≤ R−1 and sinced(x, y) = 1
it follows from the triangle inequality thatd(x, z) ≤ R

andd(y, z) ≤ R. Therefore,z ∈ B(x,R) ∩B(y,R).
Thus, z ∈ B(x,R) ∩ B(y,R) if and only

if z ∈ DB(x, y,R − 1), i.e. B(x,R) ∩
B(y,R)= DN(x, y,R − 1).

Corollary 4. |DBn,R| = 2|Bn,R| − |DBn,R−1|.

Proof: By Lemma 3 (2) we have|DBn,R| =
2|Bn,R|− |B(ε,R)∩B((1, 2), R)|. By Lemma 3 (3) we
have that|B(ε,R) ∩ B((1, 2), R)| = DBn−1,R. Thus,
|DBn,R| = 2|Bn,R| − |DBn,R−1|.

Theorem 8. If n ≥ 4 thenDBn,1 is an optimal anticode
of diameter 3, whose size is2(n− 1).
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Proof: The claim can be easily verified forn = 4.
By the first part of Lemma 3 and by Corollary 4 it
follows that DBn,1 is an anticode of diameter 3 and
size2(n− 1).

Let A be an optimal anticode of diameter 3 inSn,
wheren ≥ 5, and let

Ae = {σ ∈ A : wK(σ) ≡ 0 (mod 2)},

Ao = {σ ∈ A : wK(σ) ≡ 1 (mod 2)}.

Since the Kendallτ -metric is bipartite, it follows thatAe

and Ao are anticodes of diameter 2. Ifn ≥ 5 then
by Theorem 7 it follows that|Ae| ≤ n (|Ao| ≤ n,
respectively) and|Ae| = n (|A0| = n, respectively) if
and only ifAe (A0, respectively) is a ball of radius one.
The anticodesAe andAo cannot be balls of radius one
and therefore,|Ae| ≤ n − 1 and |Ao| ≤ n − 1. Thus,
|A| = |Ae|+ |Ao| ≤ 2(n− 1), for n ≥ 5.

As a consequence of Corollary 3 and the fact that
DBn,R is an anticode of diameter2R + 1 we have
the following upper bound onP (n, 2δ), which generally
considerably improves the known upper bounds.

Corollary 5.

P (n, 2(R+ 1)) ≤
n!

|DBn,R|
.

Corollary 6.

P (n, 4) ≤
n!

2(n− 1)
.

Note, thatP (n, 4) ≥ (n)!
2(2n−1) [21] and hence the size

of the best known code is within a factor of two from
the new upper bound.

Note also, that since we proved thatDBn,1 is an
optimal anticode of diameter3, the upper bound of
Corollary 6 is the best bound that can be derived from
Corollary 3. An intriguing question is whetherBn,R is
an optimal anticode of diameterD = 2R, where0 ≤

R <
(n2)
2 and whetherDBn,R is an optimal anticode of

diameter2R+1, where0 ≤ R <
(n2)−1

2 . Table I present
the sizes of the largest known anticodes of diameterD

in Sn, for 4 ≤ n ≤ 12 and2 ≤ D ≤ max
{(

n
2

)

, 20
}

. For
even values ofD, the bound is the size of the related ball
of radiusD

2 and was computed by computer. A formula
to compute some of these values is given in [25], [30]
and also in [21]. Odd values ofD were computed using
Corollary 4. Related bounds onP (n, d) will be presented
in Section V.

For completeness, we will present in the next few
results some simple optimal anticodes and the related
perfect codes and diameter perfect codes inSn, which
might be considered as trivial. IfD =

(

n

2

)

then an
optimal anticode of diameterD in Sn is Sn itself. Hence,

if
(n2)
2 ≤ R <

(

n
2

)

then an optimal anticode with diameter

2R ≥
(

n
2

)

is Sn. Since|Bn,R| < n!, for (n2)
2 ≤ R <

(

n
2

)

,
it follows that Bn,R is not an optimal anticode with

diameter2R. Similarly, if
(n2)−1

2 ≤ R <
(

n
2

)

− 1 then
|DBn,R| < n! and hence,DBn,R is not an optimal
anticode with diameter2R+ 1.

Theorem 9. A ⊂ Sn is an optimal anticode of diameter
(

n
2

)

−1 if and only ifA contains eitherσ or σr, for each
σ ∈ Sn.

Proof: If A is an optimal anticode of diameter
(

n

2

)

− 1 then by Lemma 1, for everyσ ∈ Sn, A cannot
contain bothσ and σr. On the other hand, ifπ 6= σr

thendK(σ, π) ≤
(

n

2

)

− 1. Thus, the theorem follows.

Corollary 7. An optimal anticodeA ⊂ Sn of diameter
(

n

2

)

− 1 has sizen!
2 and can be chosen in2

n!

2 different
ways.

Corollary 8.
• For eachσ ∈ Sn, the set{σ, σr} is a D-diameter

perfect code,D =
(

n

2

)

− 1.
• If 2R+ 1 =

(

n
2

)

then{σ, σr} is a perfectR-error-
correcting code.

Theorem 10. If 2
3

(

n

2

)

< d ≤
(

n

2

)

thenP (n, d) = 2.

Proof: Any code of the form{σ, σr} has minimum
Kendallτ -distance at leastd, and thereforeP (n, d) ≥ 2.

Assume to the contrary thatP (n, d) ≥ 3, i.e. there ex-
ists a codeC ⊂ Sn with minimum Kendallτ -distanced
and of size 3. Since the Kendallτ -metric is right invari-
ant, we can assume w.l.o.g. thatC = {ε, σ, π}. We have
that d ≤ wK(σ) and d ≤ wK(π) and d ≤ dK(σ, π).
By Lemma 1 we have thatdK(σ, εr) ≤

(

n
2

)

− d and
dK(π, εr) ≤

(

n

2

)

−d. By the triangle inequality it follows
that dK(σ, π) ≤ 2

(

n
2

)

− 2d < 2
(

n
2

)

− 2 2
3

(

n
2

)

< d.

Corollary 9. If 2R =
(

n

2

)

− 1 thenBn,R is an optimal
anticode of diameter

(

n
2

)

− 1.

Proof: Follows from Lemma 1, Theorem 9, and
Corollary 7.

Lemma 4. If 2R+1 =
(

n
2

)

−1 thenDBn,R is an optimal
anticode of diameter

(

n

2

)

− 1.

Proof: Recall thatε and (1, 2) are the centers of
DBn,R. By Theorem 9 it is sufficient to show that for
every σ ∈ Sn, either σ ∈ DBn,R or σr ∈ DBn,R.
If wK(σ) ≤ R then by Lemma 1wK(σr) =

(

n

2

)

−
wK(σ) > R + 1 and therefore,σ ∈ DBn,R and
σr 6∈ DBn,R. Similarly, if wK(σ) > R + 1 then
σ 6∈ DBn,R and σr ∈ DBn,R. If wK(σ) = R + 1
then by Lemma 1wK(σr) = R + 1. By Lemma 2
and since wK((1, 2)) = 1 it follows that either
dK(σ, (1, 2)) = R or dK(σ, (1, 2)) = R + 2. Similarly,
eitherdK(σr, (1, 2)) = R or dK(σr , (1, 2)) = R+2. By
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P
P
P
P
PPn
D

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4 4 6 9 12 24 - - - - - - - - - - - - - -
5 5 8 14 20 29 38 49 60 120 - - - - - - - - - -
6 6 10 20 30 49 68 98 128 169 210 259 308 360 720 - - - - -
7 7 12 27 42 76 110 174 238 343 448 602 756 961 1,166 1,416 1,666 1,947 2,228 2,520
8 8 14 35 56 111 166 285 404 628 852 1,230 1,608 2,191 2,774 3,606 4,438 5,546 6,654 8,039
9 9 16 44 72 155 238 440 642 1,068 1,494 2,298 3,102 4,489 5,876 8,095 10,314 13,640 16,966 21,671
10 10 18 54 90 209 328 649 970 1,717 2,464 4,015 5,566 8,504 11,442 16,599 21,756 30,239 38,722 51,909
11 11 20 65 110 274 438 923 1,408 2,640 3,872 6,655 9,438 15,159 20,880 31,758 42,636 61,997 81,358 113,906
12 12 22 77 132 351 570 1,274 1,978 3,914 5,850 10,569 15,288 25,728 36,168 57,486 78,804 119,483 160,162 233,389

TABLE I: sizes of the largest known anticodes of diameterD in Sn

Lemma 1 we conclude that eitherdK(σ, (1, 2)) = R or
dK(σr , (1, 2)) = R.

The next theorem can be easily verified.

Theorem 11. Any set{σ, π} such thatdK(σ, π) = 1
is an optimal anticode of diameter one. The set of all
permutations of even Kendallτ -weight, known as the
alternating group,An, is a 1-diameter perfect code.
Similarly, the set of all permutations of odd Kendallτ -
weight,Sn \ An, is an 1-diameter perfect code. These
codes are the only1-diameter perfect codes inSn.

V. CONSTRUCTIONS OFLARGE CODES AND A TABLE

OF THE BOUNDS

In this section we present two large codes with mini-
mum Kendallτ -distance 3 inS5 andS7. These two codes
have large automorphism groups and can be represented
only by one or two codewords, respectively. We hope
that the method in which we constructed these codes
can be applied for other values ofn and minimum
Kendall τ -distance. In addition, we present a table of
the lower and upper bounds onP (n, d) for small values
of n. Throughout this section the positions and elements
of permutations of lengthn are taken from the set
{0, 1, 2, . . . , n− 1} (instead of the set[n]).

By Theorem 3, there is no perfect single-error-
correcting code inS5, using the Kendallτ -distance.
However, if we add to the set of adjacent transpositions,
which defines the Kendallτ -metric, the transposition
(0, n − 1), we obtain a new metric in which the code
C5, consists of the following 20 codewords, is a perfect
single-error-correcting code inS5.

[0, 1, 2, 3, 4], [0, 2, 4, 1, 3], [0, 3, 1, 4, 2], [0, 4, 3, 2, 1]
[1, 2, 3, 4, 0], [2, 4, 1, 3, 0], [3, 1, 4, 2, 0], [4, 3, 2, 1, 0]
[2, 3, 4, 0, 1], [4, 1, 3, 0, 2], [1, 4, 2, 0, 3], [3, 2, 1, 0, 4]
[3, 4, 0, 1, 2], [1, 3, 0, 2, 4], [4, 2, 0, 3, 1], [2, 1, 0, 4, 3]
[4, 0, 1, 2, 3], [3, 0, 2, 4, 1], [2, 0, 3, 1, 4], [1, 0, 4, 3, 2]

Note, that if[σ(0), σ(1), . . . , σ(4)] is a codeword then
[σ(1), . . . , σ(4), σ(0)] and [2σ(0), 2σ(1), . . . , 2σ(4)] are
also codewords, where the computations are performed
modulo 5. Hence, this code can be represented by only
one codeword[0, 1, 2, 3, 4] and it has an automorphism
group of size 20. Note, also that the minimum Kendall
τ -distance of this code is at least 3 (since the Kendall

τ -distance can only be increased by removing the trans-
position (0,n-1)) and hence ,

Theorem 12.
P (5, 3) ≥ 20.

In general, we suggest to search for codes in
Sn, for small n, n prime, and small minimum
Kendall τ -distance as follows. We require that if
σ = [σ(0), σ(1), . . . , σ(n− 1)] is a codeword in the
codeC then[σ(1), . . . , σ(n−1), σ(0)], [σ(0)−1, σ(1)−
1, . . . , σ(n− 1)− 1], and[ασ(0), ασ(1), . . . , ασ(n− 1)]
are also codewords, where the computations are done
modulon andα is a primitive root modulon. Note, that
[σ(0)−1, σ(1)−1, . . . , σ(n−1)−1] = σ◦ [1, 2, . . . , n−
1, 0]. A computer search for such a code is easier since
the code has a large automorphism group. We leave as
a nice exercise to the reader to verify that a codeword
in such a code represents eithern(n− 1) codewords (if
and only if [0, 1, . . . , n − 1] is one of the represented
codewords, as inC5) or n2(n− 1) codewords.

Theorem 13.
P (7, 3) ≥ 588.

Proof: Verify that the two representatives
µ = [0, 1, 2, 4, 3, 6, 5] and ν = [0, 1, 2, 3, 6, 4, 5]
yield the require code of size 588.

The previous known lower bounds onP (5, 3) and
P (7, 3) were 18 and 526, respectively [21]. We sum-
marise with the best known bounds onP (n, d), for
5 ≤ n ≤ 7 and 3 ≤ d ≤ 9, which are presented in
Table II.

VI. CONCLUSIONS ANDOPEN PROBLEMS

We have considered several questions related to
bounds on the size of codes in the Kendallτ -metric.
We gave a novel technique to exclude the existence of
perfect single-error-correcting codes using the Kendall
τ -metric. We applied this technique to prove that there
are no perfect single-error-correcting codes inSn, where
n > 4 is a prime or4 ≤ n ≤ 10, using the Kendall
τ -metric. We examine the existence question of diameter
perfect codes inSn and the sizes of optimal anticodes
with the Kendallτ -distance. We obtained a new upper
bound on the size of a code inSn with even Kendall
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❍
❍

❍
❍n
d

3 4 5 6 7 8 9

5 f20− 23b h10 − 15c d6− 8a j4− 6c i2i i2i i2i

6 d90− 119b h45 − 72c d23− 36a h12− 24c d10− 14a h5− 10c d4− 7a

7 e588− 719b h294 − 420c d110− 186a h55 − 120c d34− 66a h17− 45c d14− 28a

• a - The sphere packing bound.
• b - The sphere packing bound + Theorem 3.
• c - Corollary 5.
• d - Lower bounds from [21].
• f - Theorem 12.
• e - Theorem 13.
• h - P (n, 2δ) ≥ 1

2
P (n, 2δ − 1) [21].

• i - Theorem 10.
• j - C = {[1, 2, 3, 4, 5], [1, 5, 2, 3, 4], [2, 3, 4, 1, 5], [1, 4, 3, 2, 5]}.

TABLE II: Best known lower and upper bound onP (n, d).

τ -distance. Finally, we constructed two large codes with
large automorphism groups inS5 andS7.

Our discussion raises many open problems from which
we choose a few as follows.

1) Prove the nonexistence of perfect codes inSn,
using the Kendallτ -metric, for more values ofn
and/or other distances.

2) Do there exist moreD-diameter perfect codes
in Sn with the Kendallτ -metric, for 2 ≤ D <
(

n

2

)

− 1? We conjecture that the answer is no.
3) Is a ball with radiusR in Sn always optimal

as an anticode with diameter2R in Sn, for

2 ≤ R <
(n2)
2 ?

4) Is the double ball with radiusR in Sn always
optimal as an anticode with diameter2R+1 in Sn,

for 2 ≤ R <
(n2)−1

2 ?
5) What is the size of an optimal anticode inSn with

diameterD?
6) Improve the lower bounds on the sizes of codes

in Sn with even minimum Kendallτ -distance.
7) Can the codes inS5 and S7 from Section V be

generalized for higher values ofn and to larger
distances? Are these codes of optimal size?
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APPENDIX A

In Theorem 3 we proved that a perfect single-error-
correcting code inSn with the Kendallτ -metric does

not exist if n > 4 is a prime or ifn = 4. The proof
of Theorem 3 is based on a certain linear equations
system, where the existence of a perfect single-error-
correcting code inSn implies the existence of a solution
to the linear equations system over the integers, and
thus, by showing the nonexistence of such solution
we derive the nonexistence of a perfect single-error-
correcting code. By using similar techniques we prove
the nonexistence of perfect single-error-correcting codes
in Sn for n ∈ {6, 8, 9, 10}. For each suchn, let C
be a perfect single-error-correcting code inSn. We will
describe the corresponding linear equations system and
use a computer to show that this linear equations system
does not have a solution over the integers.

1) n = 6: We denote byD6 the set of all vectors of
{1, 2, 3}6 in which each of the elements 1,2,3 appears
twice. For eachv ∈ D6 we defineSv to be the set
of eight permutations inS6, such that the elements1
and 2 appear in the two positions in which1 appears
in v, the elements3 and4 appear in the two positions in
which 2 appears inv, and the elements5 and6 appear
in the two positions in which3 appears inv. Let xv =
|C ∩ Sv| and letx = (xv1

, xv2
, . . . , xvm

), wherem =
|D6| =

6!
2!2!2! . By considering how the elements ofSv are

covered (similarly to the way it was done in the proof
of Theorem 3), for eachv ∈ D6, we obtain a linear
equations system of the formAxT = |Sv| · 1 = 8 · 1,
whereA is a square matrix of orderm. The kernel ofA
is an one-dimensional vector space which is spanned by
a vectory ∈ {0,−1, 1}9, that has both negative and
positive entries. Every solution for this system is of the
form 8

6 ·1+α ·y, α ∈ R, and therefore, the system does
not have a solution in which all entries are integers.

2) n = 8: We denote byD8 the set of all vectors
v ∈ {1, 2, 3, 4}8 in which each of the elements 1 and 2
appears three times and each of the elements 3 and 4
appears once. For everyv ∈ D8 we defineSv to be
the set of 36 permutations inS8, such that the elements
1, 2, and 3 appear in the three positions in which 1
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appears inv, the elements4, 5, and6 appear in the three
positions in which 2 appears inv, the element7 appears
in the position of3 in v, and the element 8 appears
in the position of 4 inv. Let xv = |C ∩ Sv| and let
x = (xv1

, xv2
, . . . , xvm

), wherem = |D8| =
8!
3!3! . By

considering how elements ofSv are covered, for each
v ∈ D8, we obtain a linear equations system of the form
AxT = 36 · 1, whereA is a square matrix of orderm.
The system has a unique solution,xT = 36

8 · 1, which
has non-integer entries.
3) n = 9: We denote byD9 the set of all vectorsv ∈
{1, 2, 3}9 in which the element 1 appears five times and
each of the elements2 and 3 appears twice. For every
v ∈ D9 we defineSv to be the set of 480 permutations
in S8, such that the elements1, 2, 3, 4, and5 appear in
the five positions in which 1 appears inv, the elements 6
and 7 appear in the two positions in which 2 appears inv,
and the elements 8 and 9 appear in the two positions
in which 3 appears inv. Let xv = |C ∩ Sv| and let
x = (xv1

, xv2
, . . . , xvm

), wherem = |D9| =
9!

5!2!2! . By
considering how elements ofSv are covered, for each
v ∈ D9, we obtain a linear equations system of the form
AxT = 480 · 1, whereA is a square matrix of orderm.
The system has a unique solution,xT = 480

9 · 1, which
has non-integer entries.
4) n = 10: We denote byD10 the set of all vectors
v ∈ {1, 2, 3}10 in which each of the elements 1 and 2
appears four times and the element 3 appears twice. For
every v ∈ D10 we defineSv to be the set of 1,152
permutations inS10, such that the elements1, 2, 3, and 4
appear in the four positions in which1 appears inv,
the elements5, 6, 7, and 8 appear in the four positions
in which 2 appears inv, and the elements9 and 10
appear in the two positions in which3 appears inv.
Let xv = |C ∩ Sv| and letx = (xv1

, xv2
, . . . , xvm

),
wherem = |D10| =

10!
4!4!2! . By considering how elements

of Sv are covered, for eachv ∈ D10, we obtain a linear
equations system of the formAxT = 1, 152 ·1, whereA
is a square matrix of orderm. The system has a unique
solution,xT = 1,152

10 · 1, which has non-integer entries.

APPENDIX B

The purpose of this appendix is to prove Theorem 7
given in Section IV.
Theorem 7. Every optimal anticode with diameter 2
(using the Kendallτ -distance) inSn, n ≥ 5, is a ball
with radius one whose size isn.

Lemma 5. Letσ = (i, i+1)◦(i+1, i+2) and letρ 6= σ

be a permutation of weight 2 and distance 2 fromσ. Then
ρ = (j, j+1)◦(i+1, i+2) or ρ = (i+1, i+2)◦(i, i+1).

Proof: Recall first that for any two permutations
α, β, dK(α, β) = 1 if and only if there exists an adjacent
transposition(k, k+1), such thatα = (k, k+1)◦β. We

distinguish between four cases. In the first two cases the
permutationρ is at distance 2 fromσ.

I. ρ = (j, j + 1) ◦ (i + 1, i + 2). In this caseσ =
(i, i+1)◦ (j, j+1)◦ρ and thereforedK(σ, ρ) ≤ 2.
By Lemma 2 we have that the Kendallτ -metric is
bipartite and sinceσ andρ are both of even weight
it follows that dK(σ, ρ) ≥ 2. Thus,dK(σ, π) = 2.

II. ρ = (i+1, i+2)◦(i, i+1). In this case we have that
σ = ρ◦ρ and similarly it follows thatdK(σ, ρ) = 2.

III. If ρ = (j, j + 1) ◦ (k, k + 1), where j 6= k and
j, k 6= i + 1, then by (1) we have thatdK(σ, ρ) ≥
|{(i+ 2, i), (i+ 2, i+ 1), (k, k + 1)}| > 2.

IV. If ρ = (i+ 1, i+ 2) ◦ (j, j + 1). We distinguish be
between four subcases.

1) If j 6∈ {i, i+1, i+2}, thenρ = (j, j+1)◦ (i+
1, i+ 2) and this case was considered in I.

2) j = i was considered in II.
3) If j = i+ 1 thenρ = ε, i.e wK(ρ) = 0.
4) If j = i+2 thenρ = (i+1, i+2)◦(i+2, i+3)

and by (1) we havedK(σ, ρ) = |{(i+2, i), (i+
2, i+ 1), (i+ 1, i+ 3), (i+ 2, i+ 3)}| = 4.

Lemma 6. Let σ = (i, i + 1) ◦ (i + 1, i + 2) and π =
(i + 1, i + 2) ◦ (i, i + 1), where i ∈ [n − 2], and letρ
be a permutation of weight 2,ρ 6= σ and ρ 6= π. Then
either dK(σ, ρ) ≥ 4 or dK(π, ρ) ≥ 4.

Proof: By Lemma 5 it follows that ifdK(σ, ρ) = 2
thenρ = (j, j+1)◦(i+1, i+2) or ρ = π. By symmetry it
follows that ifdK(π, ρ) = 2 thenρ = (j, j+1)◦(i, i+1)
or ρ = π. Hence, there is no permutationρ of weight 2
and distance 2 from bothσ and π. By Lemma 2 we
also have that the Kendallτ -metric is bipartite and we
conclude that any permutation of weight 2 other thenσ

andπ must be at distance at least four fromσ or π.

Lemma 7. Let A be an anticode inSn with diameter 2
such thatε ∈ A, and letB be the set of all permutations
of weight 2 inA. If |B| ≥ 4 thenB is contained in a
ball of radius one centered at some permutationσ ∈ Sn

of weight one.

Proof: If there exists somei ∈ [n − 2] such that
(i, i + 1) ◦ (i + 1, i + 2), (i + 1, i + 2) ◦ (i, i + 1) ∈ B,
then by Lemma 6 any other permutation of weight 2 is
at distance at least four from either(i, i+1)◦(i+1, i+2)
or (i+ 1, i+ 2) ◦ (i, i+ 1), and therefore|B| = 2.

If for somei ∈ [n− 2] either(i, i+1) ◦ (i+1, i+2)
or (i + 1, i + 2) ◦ (i, i + 1) belongs toB, say w.l.o.g.
(i, i+ 1) ◦ (i+ 1, i+ 2) ∈ B, then every permutation of
B \ {(i, i + 1) ◦ (i + 1, i + 2)} must be at distance 2
from (i, i + 1) ◦ (i + 1, i + 2), and by Lemma 5 it
follows that every such permutation must be of the
form (j, j + 1) ◦ (i+ 1, i+ 2) for somej 6∈ {i, i + 1}.
Therefore,B ⊂ B((i+ 1, i+ 2), 1).
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If each permutation ofB is a multiplication of two
disjoint adjacent transpositions then letρ = (i, i + 1) ◦
(j, j + 1) ∈ B, wherej 6∈ {i − 1, i, i + 1}. Hence, all
permutations ofB are of the form(ℓ, ℓ+1) ◦ (j, j + 1),
where ℓ 6∈ {j, j + 1}, or (ℓ, ℓ + 1) ◦ (i, i + 1), where
ℓ 6∈ {i, i + 1}. Assume w.l.o.g. thatπ = (ℓ, ℓ + 1) ◦
(j, j + 1) ∈ B, π 6= ρ. If every permutation ofB is of
the form(k, k+1)◦ (j, j+1) thenB ⊂ B((j, j+1), 1).
Otherwise, the only possible other permutation ofB is
(i, i+ 1) ◦ (ℓ, ℓ+ 1) and hence|B| ≤ 3.

Thus, if |B| ≥ 4 then B ⊂ B(σ, 1), for someσ of
weight one.

Proof of Theorem 7: Let A ⊂ Sn, n ≥ 5, be an
anticode of diameter 2. The Kendallτ -metric is right
invariant and hence w.l.o.g. we can assume thatε ∈ A.
Therefore, all the permutations ofA are of weight at
most two. We distinguish between four cases:
Case 1: If A does not contain a permutation of weight
one then by Lemma 7 it follows thatA is contained in
a ball of radius one centered at a permutation of weight
one or|A| ≤ 4.
Case 2: If A contains exactly one permutationσ ∈ Sn

of weight one then by Lemma 2, the distance betweenσ

and any permutation of weight 2 is an odd integer and
therefore, all permutations of weight 2 inA must be at
distance one fromσ. Thus,A ⊆ B(σ, 1).
Case 3: IfA contains two permutations of weight one,
σ = (i, i + 1) and π = (j, j + 1), where σ and π

are disjoint transpositions, then the only permutation
of weight 2 and distance one from bothσ and π is
(i, i + 1) ◦ (j, j + 1) and thereforeA cannot contain
more than one permutation of weight 2, hence|A| ≤ 4.
Case 4:If A contains two permutations of weight one,
σ = (i, i+1) andπ = (i+1, i+2), for somei ∈ [n−2],
then there is no permutation of weight 2 and distance
one from bothσ andπ and thereforeA cannot contain
permutations of weight 2, hence|A| ≤ 3.
Case 5: If A contains at least three permutations of
weight one thenA cannot contain permutations of
weight 2 and thereforeA ⊆ B(ε, 1).

Thus, we proved that eitherA is contained in a ball
of radius one or|A| ≤ 4. Since the size of a ball of
radius one inSn is n, it follows that if n ≥ 5 then every
optimal anticode of diameter 2 inSn is a ball of radius
one. ✷
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