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Abstract
We study permutation codes which are groups and all of whose non-identity code elements
have the same number of fixed points. It follows that over certain classes of groups such
permutation codes exist.
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1 Introduction and results

Let n be a positive integer and let Sn denote the symmetric group on n letters, i.e. the set
of all permutations of [n] := {1, . . . , n}. By a fixed point of α ∈ Sn we mean an element
i ∈ [n] such that α(i) = i . We denote by F(α) the set

{
i ∈ [n] ∣∣ α(i) = i

}
of all fixed points
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of α. For any two permutations σ, τ ∈ Sn the distance d(σ, τ ) between σ and τ is defined by
n − |F(στ−1)|.

By a permutation code (PC) of length n we simply mean a non-empty subset C of Sn . A
permutation code of length n is called equidistance (called EPC for short) whenever all two
distinct permutations in C have the same distance n−λwhich we call the distance of C, and λ

is called the fixity of the code. Themaximum size of an EPC of length n and the same distance
n − λ is denoted by Me(n, λ). EPCs have been studied since the 1970s. Some techniques
have been developed to derive lower and upper bounds on Me(n, λ) [6,9,10,23–25,30,31].
An EPC is a special kind of equidistant frequency permutation codes (EFPCs) (introduced
in [16]) which are an interesting kind of constant composition codes (CCC). CCCs have
many applications, for example in powerline communications and balanced scheduling . The
situation when CCCs are equidistant is of particular interest, since it is known that any CCC
which is optimal must be equidistant (see [22]). We refer the reader to [3,4,7,8,15,22] for
more details about CCCs and EFPCs.

By an equidistant permutation group code (EPGC) of length n we mean an EPC of length
n which is a subgroup of Sn . So if C is an EPGC of the length n, the size M and the distance
n − λ, then C is a subgroup of Sn of size M such that |F(α)| = λ for all non-trivial elements
α ∈ C. Due to the advantages of restricting the permutation codes with a group structure in
their construction and encoding (see [26, p. 2, lines 12–16] and [29, p. 1]), throughout this
paper, we focus on EPGCs.

In this paper, we study EPG codes C whose distances are less than their lengths and such
that there is no common fixed point for all elements of C, i.e., F(C) := ∩σ∈CF(σ ) is empty.
Note that if F(C) �= ∅, then C can be considered as a permutation code on [n] \ F(C).
Thus the restriction “having no common fixed point”can be easily put on any permutation
code since all coding theoretic parameters of C is unchanged except its length. The former
restriction “the same distance is less than the length”in our study of EPGC comes from the
following discussion.

Let G be a permutation group code of length n, i.e. G is a subgroup of Sn . By definition
the G-orbit containing i ∈ [n], denoted by O(i), is the set

{
σ(i)

∣∣ σ ∈ G} and G is called
transitive if it has exactly one orbit, that is, O(i) = [n] for all i ∈ [n]. As usual, G is called
semiregular if F(α) = ∅ for all non-trivial α ∈ G. Thus G is semiregular if and only if G
is equidistance whose distance is equal to its length. By definition G is called regular if it
is both transitive and semiregular. By Burnside’s lemma, the number of G-orbits is equal to
1

|G|
∑

g∈G |F(g)|. So if G is transitive, then there exists g0 ∈ G such that F(g0) = ∅. It

follows that if G is also equidistance, |F(g)| = 0 for all g ∈ G \ {1}. Hence, G is regular and
|G| = n and so G is permutation isomorphic to the permutation group GR = {ρg | g ∈ G} is
a subgroup of all permutations SG on G, where for each g ∈ G, ρg is the map on G defined
by right multiplication of g, i.e. ρ(x) = xg for all x ∈ G. Hence, the permutation group GR

is the only transitive EPGC.
We summarize the above as follows.

Proposition 1 1 A permutation group code is semiregular if and only if it is equidistance
with the property that whose distance is equal to its length.

2 A permutation group code is equidistance and transitive if and only if it is regular. In
particular, the distance is equal to its length.

A semiregular permutation group code is acting on each of its orbits as a regular permu-
tation group and so we focus our study to PGC which are non-semiregular.
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Definition 2 We call a permutation group code C which is not semiregular with F(C) = ∅,
a “non-trivial”permutation group code.

In the next section we shall see that the underlying group of a non-trivial equidistance
permutation group code must be isomorphic to one of the following groups and each of the
following groups can be isomorphic to a non-trivial EPGC.

(1) a p-group G with Hp(G) := 〈x ∈ G | x p �= 1〉 �= G and |G| > p;
(2) a Frobenius group;
(3) a non p-group G such that Hp(G) �= G for some prime p;
(4) projective general linear group PGL(2, ph) of degree 2 over the field with ph elements

for some odd prime p and some integer h > 0;
(5) projective special linear group PSL(2, ph) of degree 2 over the field with ph elements

for some prime p and some integer h > 0;
(6) Suzuki group Sz(22h+1) for some integer h > 0.

Therefore what remains is to find all (if not possible at least some) of their non-trivial
“equidistance”permutation representations of the above groups, that is, embeddings of these
groups into symmetric groups such that their images will be EPGC. We shall do the latter
for the classes (4), (5), (6) of above groups.

Our main result is the following.

Theorem 3 Let C be a non-trivial EPGC with the fixity λ.

(i) If C ∼= PSL(2, q), where q ≥ 4 is a 2-power, then λ ∈ { q2 ,
q
2 + 2, . . . , q − 2, q, q +

1, q + 2, . . .}.
(ii) If C ∼= PSL(2, q), where q = pn > 4 and p is an odd prime, then

λ ∈ {i | i ≥ q(p − 1)

2p
and i is an even integer}.

(iii) If C ∼= PGL(2, q), where q = pn > 4 and p is an odd prime, then λ ∈ {q(p − 1)

p
+

2i | i ∈ N}.
(iv) If C ∼= Sz(q), where q = 22m+1 ≥ 8, then λ ∈ {q + 4i | i ∈ N}.
Moreover, if C is not isomorphic to any of groups (i)–(iv), then C satisfies one of the

following conditions:

(1) C is a p-group with Hp(C) := 〈x ∈ C | x p �= 1〉 �= C and |C| > p, for some prime p;
(2) C is a Frobenius group;
(3) C is not a p-group and Hp(C) �= C, for some prime p.

Remark 4 The proof of Theorem 3 gives a way of embedding into symmetric groups of the
above groups for each given distance. We only mention “all” possible distances which can
be occurred in the statement of the theorem.

The proof of Theorem 3will be given in Sects. 2, 3, 4. In Sect. 5 non-trivial EPGCs of fixity
2 and minimum possible length are constructed where the underlying groups are isomorphic
to the alternating groups of degree 4 and 5 and the symmetric group of degree 4. In Sect. 6 we
study a combinatorial structure so-called generalized room squares related to equidistance
permutation codes and we determine which generalized room squares are corresponding to
EPGCs.We study the applications of EPGCs in Sect. 7, which is divided into two subsections.
In Sect. 7.1, we discuss an approach to use EPGC to construct permutation codes whose set of
distances between codewords are small and in Sect. 7.2, we consider an important application
of EPGCs in encoding process.
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2 Preliminaries

Let G be a finite group. A set M is called a G-set if there is a map � : G × M → M (called
an action), defined by �(g,m) 
→ g · m, such that

(1) 1 · m = m for all m ∈ M , where 1 denotes the unit element of G,
(2) g0 · (g · m) = (g0g) · m for any g, g0 ∈ G and m ∈ M .

For each g ∈ G, we let Fix(g) := {m ∈ M | g · m = m}. Obviously, [n] is a Sn-set and
Fix(σ ) = F(σ ) for all σ ∈ Sn .

Definition 5 A group G is called of positive type in [17] if there exist a positive integer k
and a G-set M with the following two properties:

(i) |Fix(g)| = k for all g ∈ G \ {1},
(ii) ∩g∈GFix(g) = ∅. (Such a G-set M is called to be of type k and also such a group G is

called a group of type k on the G-set M .)

Definition 6 For any finite group G of positive type we denote by K(G) the set
{
k ∈

N

∣∣G is of type k
}
and we let t(G) := min

(K(G)
)
.

Proposition 7 If G is a group of positive type, then K(G) is closed under addition and
multiplication.

Proof If M1 and M2 are two G-sets of types k1 and k2, respectively, then it is easy to see that
M1 � M2 (disjoint union of M1 and M2) and M1 × M2 := {(m1,m2) |m1 ∈ M1,m2 ∈ M2}
are G-sets of type k1 + k2 and k1 · k2 , respectively. This completes the proof. ��

The following proposition shows the relation between a non-trivial EPGC and a group of
positive type.

Proposition 8 A finite group G is a group of positive type if and only if G is a non-trivial
EPGC.

Proof If G is a group of type k on G-set M , then it follows from properties (i) and (i i) of
Definition 5 thatG can be embedded to SM by the map α : G → SM , defined by α(g) : m 
→
g · m and so G is an EPGC of length |M | such that F(G) = ∅ and |F(g)| = |Fix(g)| = k
for all non-trivial elements of G. Also if G is an EPGC of length n and distance λ < n such
that F(G) = ∅, then clearly G is a group of type n − λ on G-set [n]. This completes the
proof. ��

In view of Proposition 8, to study non-trivial EPGCs, it is sufficient to study groups of
positive type. To study groups of positive type the concept of partition of a group appears.

Definition 9 A non-trivial partition of a group G is a set π = {H1, . . . , Ht } of size t > 1
consisting of non-trivial subgroups Hi of G such that each non-trivial element of G belongs
to exactly one subgroup Hi of π .

In [18], it is proved that a finite groupG is of positive type if and only ifG has a non-trivial
partition. On the other hand, it follows from the series of the results of Baer [1], Kegel [19]
and Suzuki [28] (see [32, p. 5]) that a group G has a non-trivial partition if and only if it
satisfies one of the following conditions:

(1) G is a p-group with Hp(G) := 〈x ∈ G | x p �= 1〉 �= G and |G| > p;
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(2) G is a Frobenius group;
(3) G is not a p-group and Hp(G) �= G for some prime p;
(4) G is isomorphic with PGL(2, ph), p being an odd prime, h > 0;
(5) G is isomorphic with PSL(2, ph), p being a prime, h > 0;
(6) G is isomorphic with a Suzuki group Sz(q); q = 22h+1, h > 0.

Therefore, if G is a non-trivial EPGC, then G must satisfy one of the above 6 conditions.
In any of the above cases, by determining the setK(G), we can determine all possible positive
values for λ such that G is an EPGC with |F(σ )| = λ for all non-trivial σ ∈ G. In this paper,
we determine K(G) when G satisfies the conditions (4), (5) and (6). To achieve the latter,
we need some theorems and lemmas which are stated below.

In [17], Iwahori proved the following theorem:

Theorem 10 A finite group G is of type k if and only if there exist subgroups G1, . . . ,Gr of
G (not necessary distinct) such that

(a) G �= Gi �= {1} for i = 1, . . . , r .
(b) 1∗

G1
+ · · · + 1∗

Gr
= k · 1∗

G + (r − k) · 1∗
l ,

where 1∗
Gi

means the character of G induced by the unit character 1Gi of the subgroup Gi of

G, i.e. 1∗
Gi

(a) = |G|
|Gi | · |a

G ∩ Gi |
|aG | where aG = {g−1ag | g ∈ G}, and also 1∗

l is the character

of the regular representation of G, i.e. 1∗
l (a) = |G| if a = 1 and 1∗

l (a) = 0 if a �= 1.

Remark 11 By [18, Lemma 2], if H is a subgroup of a finite group G such that H ∩ Hx = H
or {1} for all x ∈ G, then for each g ∈ G, 1∗

H (g) = |NG(H)|/|H | if gG ∩ H �= ∅ and
1∗
H (g) = 0 if gG ∩ H = ∅ (note that Hx = {x−1hx | h ∈ H} and NG(H) is the normalizer

of H in G, i.e NG(H) = {g ∈ G | Hg = H}).
Definition 12 A subgroup H of a finite group G is called special if H �= {1}, H �= G and
1∗
H is constant on C \ {1} for any cyclic subgroup C of G.

Remark 13 Let G be a finite group and assume that there exist subgroups G1, . . . ,Gr of G
satisfying the conditions (a) and (b) of Theorem 10. Then by [17, Proposition 2.5], every Gi

is a special subgroup of G. Moreover, in view of the proof of [17, Theorem II], if we let M
be the disjoint union of the G-sets G/Gi = {xGi | x ∈ G} (i = 1, . . . , r ), then M is a G-set
of type k.

Lemma 14 Let G be a finite group and let C = 〈c〉 be a cyclic subgroup of G such that

(i) For any i ∈ {1, . . . , |C |} either |(ci )G ∩ C | = |cG ∩ C | or (ci )
G ∩ C = {ci , c−i },

(ii) C ∩ Cx = {1} or C for all x ∈ G.

Then if H is a special subgroup of G, then either Cx ≤ H or Cx ∩H = {1} for all x ∈ G.

Proof Let |cG ∩C | = t . Since H is a special subgroup of G, we must have 1∗
H (c) = 1∗

H (ci )
for all 1 ≤ i ≤ |C | − 1. Suppose for a contradiction that there exist s ∈ {2, . . . , |C | − 1}
and x ∈ G such that cx /∈ H and 〈cs〉x ≤ H . Suppose firstly that |(cs)G ∩ C | = t . Then
the part (ii) of the assumption implies |(cs)G | = t · |{Cg | g ∈ G}| = |cG |. It is clear that
|cG ∩ H | < |(cs)G ∩ H | and therefore

1∗
H (c) = |G|

|H | · |cG ∩ H |
|cG | <

|G|
|H | · |(cs)G ∩ H |

|(cs)G | = 1∗
H (cs),
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that is a contradiction. Now suppose that (cs)G ∩ C = {cs, c−s}. Then

1∗
H (c) = |G|

|H | · |cG ∩ C ||{Cx | x ∈ G,Cx ≤ H}|
|cG ∩ C ||{Cx | x ∈ G}|

<
|G|
|H | · |{ci , c−i }||{〈cs〉x | x ∈ G, 〈cs〉x ≤ H}|

|{ci , c−i }||{Cx | x ∈ G}| = 1∗
H (cs),

that is a contradiction. This completes the proof. ��

3 Equidistance actions of PGL(2,q) and PSL(2,q)

Let q be a prime power and let X = GF(q) ∪ {∞}. Then, the set of all mappings

γ : x 
→ ax + b

cx + d
,

on X such that a, b, c, d ∈ GF(q), ad − bc �= 0 and γ (∞) = a/c, γ (−d/c) = ∞
if c �= 0, and γ (∞) = ∞ if c = 0, is a group under composition of mappings called
the projective general linear group of degree 2 over GF(q) and is denoted by PGL(2, q).

We denote by

(
a, b

c, d

)
such element γ ∈ PGL(2, q). If we consider the mappings γ with

ad−bc = 1, then we find another group called the projective special linear group of degree 2
overGF(q)which is denoted by PSL(2, q). It is well known that |PGL(2, q)| = q(q2−1),
|PSL(2, q)| = q(q2 − 1)/d , where d = gcd(q − 1, 2), and PGL(2, q) ∼= PSL(2, q) if q
is even. Hereafter, we let p be a prime, q = pn and d = gcd(q − 1, 2).

Proposition 15 Let G = PGL(2, q) (resp. PSL(2, q)), where q ≥ 4. Then

(i) G possesses a cyclic subgroup A of order q − 1 (resp. (q − 1)/d) such that NG(A) is
a dihedral group of order 2(q − 1) (resp. 2(q − 1)/d).

(ii) G possesses a cyclic subgroup B of order q + 1 (resp. (q + 1)/d) such that NG(B) is
a dihedral group of order 2(q + 1) (resp. 2(q + 1)/d).

(iii) G possesses an elementary abelian p-group P of order q such that NG(P) is aFrobenius
group with kernel P and complement A.

(iv) The set {Ag, Bg, Pg | g ∈ G} is a partition of G.

Proof See [13, pp. 185–187 and pp. 191–193]. ��
Theorem 16 Let G = PSL(2, q), where q = 2n and n ≥ 2. Then

K(G) = {q
2
,
q

2
+ 2, . . . , q − 2, q, q + 1, q + 2, . . .}.

Proof Let A = 〈a〉, B = 〈b〉 and P be the subgroups of G introduced in Proposition 15 and
let D1 = NG(A), D2 = NG(B) and H = NG(P). There are q + 1 conjugacy classes of G
represented by the elements:

1, t, a, a2, a3, . . . , a
q−2
2 , b, b2, b3, . . . , b

q
2 ,

where (ai )G ∩ A = {ai , a−i }, (b j )G ∩ B = {b j , b− j } for all i ∈ {1, . . . , (q − 2)/2} and
j ∈ {1, . . . , q/2} and t is an element of order 2 of G. So by Lemma 14, if K is a special
subgroup of G, then for all x ∈ G, either K ∩ T x = {1} or T x , where T ∈ {A, B}. Hence
in view of the structure of subgroups of G (see [20, Theorem 1.2]), it can be seen that the
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special subgroups of G are as follows: A and its conjugates; B and its conjugates; D1 and its
conjugates; D2 and its conjugates; H and its conjugates; elementrary abelian 2-groups Pi of
order 2i and their conjugates, where 1 ≤ i ≤ n and Pn = P . It follows from Remark 11 that
1∗
T (g) = |NG(T )|/|T | if gG ∩T �= ∅ and 1∗

T (g) = 0 if gG ∩T = ∅ for any g ∈ G \ {1} and
T ∈ {A, B, P}. Before going on, let us state two points. First, since |yG ∩K | = |yG ∩K x | for
any subgroup K of G and x, y ∈ G, 1∗

K (y) = 1∗
K x (y). Second, recall that if R is a subgroup

of a finite group G, then |{Rg | g ∈ G}| = |G|
|NG (R)| . Since H is a Frobenius group with kernel

P and complement A, H is of the order q(q − 1) and H is the union of subgroup P and
exactly q conjugates of A. Hence H ∩ Bx = {1}, for all x ∈ G, implies 1∗

H (b j ) = 0 for all
j ∈ {1, . . . , q/2}, |(a j )G ∩ H | = 2q implies 1∗

H (a j ) = 2 for all j ∈ {1, . . . , (q − 2)/2} and
|tG ∩ H | = q − 1 implies 1∗

H (t) = 1. Since D1 = NG(A) (resp. D2 = NG(B)) is a dihedral
group of order 2(q − 1) (resp. 2(q + 1)), D1 (resp. D2) is the union of A (resp. B) and q − 1
(resp. q + 1) elements of order 2 and therefore 1∗

D1
(b j ) = 0 for all j ∈ {1, . . . , q/2} (resp.

1∗
D2

(ai ) = 0 for all i ∈ {1, . . . , (q − 2)/2}), 1∗
D1

(a j ) = 1 for all j ∈ {1, . . . , (q − 2)/2}
(resp. 1∗

D2
(b j ) = 1 for all j ∈ {1, . . . , q/2}) and 1∗

D1
(t) = q/2 (resp. 1∗

D2
(t) = q/2). It is

clear that since Pi , 1 ≤ i ≤ n, contains only 2i − 1 elements of order 2, 1∗
Pi (t) = q(2i − 1)

2i
and 1∗

Pi (t
′) = 0 for any element t ′ of order greater than 2 of G. Obviously, 1∗

T (1) = |G|/|T |
for all subgroups T of G. Table 1 depicts the characters of G induced by the unit characters
of special subgroups of G, where 1 ≤ r ≤ (q − 2)/2, 1 ≤ s ≤ q/2 and 1 ≤ i ≤ n.

From Table 1 we get immediately that

(
q

4
− j

2
)1∗

A + (
q

4
+ j

2
)1∗

B + j1∗
H + 1∗

P1 = (
q

2
+ j)1∗

G + 1∗
l , (3.1)

where j ≤ q/2 is an even number and

(
q − j − 1

2
)1∗

A + (
q + j − 1

2
)1∗

B + 1∗
D1

+ 1∗
D2

+ j1∗
H = (q + j)1∗

G + 1∗
l , (3.2)

where j ≤ q − 1 is an odd number. Now, Theorem 10 and Proposition 7 imply that

{q
2
,
q

2
+ 2, . . . , q − 2, q, q + 1, q + 2, . . .} ⊆ K(G).

It follows from Theorem 10 that if k ∈ K(G), then there exist

x1, x2, . . . , x5, x6,1, . . . , x6,n ∈ Z
+

such that ⎧
⎪⎨

⎪⎩

2x2 + x3 = k
2x1 + x4 + 2x5 = k
q

2
x3 + q

2
x4 + x5 + ∑n

i=1(q − 2n−i )x6,i = k
. (3.3)

So k <
q

2
implies x3 = x4 = x6,1 = · · · = x6,n = 0 and x5 = k. Then 2x1+2k = kwhich

leads to a contradiction. Also, if k is odd, then it follows from system of relations 3.3 that x3 �=
0 and x4 �= 0 and therefore k ≥ q+1. SoK(G) ⊆ { q2 ,

q
2 +2, . . . , q−2, q, q+1, q+2, . . .}

and this completes the proof. ��

Theorem 17 Let G = PSL(2, q), where q = pn > 4 and p �= 2. Then

K(G) = {i ≥ q(p − 1)

2p
| i is an even number}.
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Table 1 Characters of
G = PSL(2, q), where q is even,
induced by the unit characters of
special subgroups of G

1 t ar bs

1∗
A q(q + 1) 0 2 0

1∗
B q(q − 1) 0 0 2

1∗
D1

q(q+1)
2

q
2 1 0

1∗
D2

q(q−1)
2

q
2 0 1

1∗
H q + 1 1 2 0

1∗
Pi

q(q2−1)
2i

q(2i−1)
2i

0 0

Proof Let A = 〈a〉, B = 〈b〉 and P be the subgroups of G introduced in Proposition 15 and

let D1 = NG(A), D2 = NG(B) and H = NG(P). Also, let t ′ =
(
1, 1

0, 1

)
and t̃ =

(
1, μ

0, 1

)

be two elements of order p in G, whereμ is a generator of the multiplicative group GF(q)×.
If q ≡ 1(mod 4), then there are

q + 5

2
conjugacy classes of G represented by the elements:

1, t̃, t ′, a, a2, a3, . . . , a
q−1
4 , b, b2, b3, . . . , b

q−1
4 ,

and if q ≡ 3(mod 4), then there are
q + 5

2
conjugacy classes of G represented by the

elements:
1, t̃, t ′, a, a2, a3, . . . , a

q−3
4 , b, b2, b3, . . . , b

q+1
4 ,

where (ai )G ∩ A = {ai , a−i }, (b j )G ∩ B = {b j , b− j }, |(t ′)G ∩ P| = |(t̃)G ∩ P| = (q−1)/2
for all i ∈ {1, . . . , (q − 1)/4} and j ∈ {1, . . . , (q − 1)/4} if q ≡ 1(mod 4) and for all
i ∈ {1, . . . , (q−3)/4} and j ∈ {1, . . . , (q+1)/4} if q ≡ 3(mod 4). Note that if q ≡ 1(mod 4)

(resp. q ≡ 3(mod 4)), then {g ∈ G | g2 = 1} = (a
q−1
4 )G (resp.= (b

q+1
4 )G ). Therefore, since

in both of the cases q ≡ 1(mod 4) and q ≡ 3(mod 4) the cyclic subgroups A and B satisfy
Lemma 14, dihedral groups NG(A) and NG(B) can not be the special subgroups of G. By
the same argument as in the proof of Theorem 16 and by the structure of the subgroups of G
(see [20, Theorem 1.2]) we determine all of the special subgroups of G and the characters of
G induced by the unit character of all of them. The special subgroups of G are as follows: A
and its conjugates; B and its conjugates; H and its conjugates; elementrary abelian p-groups
Pi of order pi and their conjugates, where 1 ≤ i ≤ n and Pn = P . Suppose first that n is an
odd number. In view of [28, p. 263], if n is an odd number, then p − 1 non-trivial elements
of a cyclic subgroup of order p of G belong half to one and half to the other set of conjugacy

classes of G represented by the elements t̃ and t ′. So |(t ′)G ∩ Pi | = |(t̃)G ∩ Pi | = pi − 1

2
for all 1 ≤ i ≤ n. Table 2 shows the characters of G induced by the unit characters of
special subgroups of G, where n is an odd number, 1 ≤ i ≤ n, s ∈ {1, . . . , (q − 1)/4},
j ∈ {1, . . . , (q − 1)/4} and s ∈ {1, . . . , (q + 1)/4}, j ∈ {1, . . . , (q − 3)/4} if q ≡ 1(mod 4)
and q ≡ 3(mod 4), respectively.

From Table 2 we get immediately that

(
m

2
− r)1∗

A + m

2
1∗
B + r1∗

H + 1∗
P1 = m1∗

G + 1∗
l , (3.4)
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Table 2 Characters of
G = PSL(2, q), where q > 4 is
odd, induced by the unit
characters of special subgroups
of G

1 t ′ t̃ a j bs

1∗
A q(q + 1) 0 0 2 0

1∗
B q(q − 1) 0 0 0 2

1∗
H q + 1 1 1 2 0

1∗
Pi

q(q2−1)
2pi

q(pi−1)
2pi

q(pi−1)
2pi

0 0

where m = q(p − 1)

2p
+ r , r ∈ Z

+ and m is even. So {i ≥ q(p − 1)

2p
| i is an even number}

⊆ K(G). On the other hand, Theorem 10 implies that if k ∈ K(G), then there exist
x1, x2, x3, x4,1, . . . , x4,n ∈ Z

+ such that
⎧
⎪⎪⎨

⎪⎪⎩

2x2 = k
2x1 + 2x3 = k

x3 + ∑n
i=1

q(pi − 1)

2pi
x4,i = k

. (3.5)

Therefore k is an even number and also if k <
q(p − 1)

2p
, then x4,i = 0 for all i ∈

{1, . . . , n} and so 2x1 + 2k = k which leads to a contradiction. So t(G) = q(p − 1)

2p
and

K(G) = {i ≥ q(p − 1)

2p
| i is even }. Now suppose that n is even. In this case 1∗

A, 1
∗
B and

1∗
H have the same values as the case n is odd. In view of [28, p. 263], in this case all p − 1

non-trivial elements of a cyclic subgroup of order p of G belong to the same set of the
conjugacy classes of G represented by the elements t̃ or t ′. Therefore by the same argument

as the case n is odd and since in this case min{1∗
Pi (t

′), 1∗
Pi (t̃) | 1 ≤ i ≤ n} ≥ q(p2 − 1)

2p2
,

it can be seen that t(G) ≥ q(p2 − 1)

2p2
and if k ∈ K(G), then k is an even number. Hence

K(G) ⊆ {i ≥ q(p − 1)

2p
| i is even} and this completes the proof. ��

Theorem 18 Let G = PGL(2, q), where q = pn > 4 and p �= 2. Then K(G) =
{q(p − 1)

p
+ 2i | i ∈ Z

+}.

Proof Let A = 〈a〉, B = 〈b〉 and P be the subgroups of G introduced in Proposition 15 and
let H = NG(P). There are q + 2 conjugacy classes of G represented by the elements:

1, t, a, a2, a3, . . . , a
q−1
2 , b, b2, b3, . . . , b

q+1
2 ,

where t is an element of order 2 of G, |tG ∩ P| = q−1, (ai )G ∩ A = {ai , a−i }, (b j )G ∩ B =
{b j , b− j } for all i ∈ {1, . . . , (q−1)/2} and j ∈ {1, . . . , (q+1)/2}. So, the cyclic subgroups
A and B satisfy Lemma 14 and therefore in view of the structure of the subgroups of G
(see [2, Theorem 2]), it can be seen that the special subgroups of G are as follows: A and
its conjugates; B and its conjugates; H and its conjugates; elementrary abelian p-groups
Pi of order pi and their conjugates, where 1 ≤ i ≤ n and Pn = P . Table 3 depicts the
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Table 3 Characters of
G = PGL(2, q), where q > 4 is
odd, induced by the unit
characters of special subgroups
of G

1 t a j bs

1∗
A q(q + 1) 0 2 0

1∗
B q(q − 1) 0 0 2

1∗
H q + 1 1 2 0

1∗
Pi

q(q2−1)
pi

q(pi−1)
pi

0 0

characters of G induced by the unit characters of the special subgroups of G, where q is odd,
s ∈ {1, . . . , (q − 1)/2} and j ∈ {1, . . . , (q + 1)/2}.

It follows from Table 3 that

(
m

2
− i)1∗

A + m

2
1∗
B + i1∗

H + 1∗
P1 = m1∗

G + 1∗
l , (3.6)

where m = q(p − 1)

p
+ i and i is an even positive integer. Hence {q(p − 1)

p
+ 2i | i ∈

Z
+} ⊆ K(G). On the other hand by the same argument as in the proof of Theorem 17, it

can be seen that if k ∈ K(G), then k is an even number and k ≥ q(p − 1)

p
and therefore

K(G) = {q(p − 1)

p
+ 2i | i ∈ Z

+}. This completes the proof. ��

4 Equidistance actions of Suzuki groups

Let q = 22m+1 ≥ 8 and let π be the unique automorphism of the fieldGF(q)with π2x = x2

for all x ∈ GF(q). Then Suzuki groups Sz(q) :=
〈
S(a, b), M(λ), T | a, b ∈ GF(q), λ ∈

GF(q)×
〉
, where

S(a, b) :=

⎛

⎜⎜
⎝

1 0 0 0
a 1 0 0
b πa 1 0

a2(πa) + ab + πb a(πa) + b a 1

⎞

⎟⎟
⎠ ,

M(λ) :=

⎛

⎜⎜
⎝

λ1+2m 0 0 0
0 λ2

m
0 0

0 0 λ−2m 0
0 0 0 λ−(1+2m )

⎞

⎟⎟
⎠

and T :=

⎛

⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟⎟
⎠ (see [11, p. 3]). It is well known that |Sz(q)| = q2(q2 +1)(q −1).

Proposition 19 Let q = 22m+1 ≥ 8 and G = Sz(q). Then

(i) K := {M(λ) | λ ∈ GF(q)×} is a cyclic subgroup of order q − 1 of G. Moreover,
NG(K ) is a dihedral group of order 2(q − 1).

123



Equidistant permutation group codes

(ii) Q := {S(a, b) | a, b ∈ GF(q)} is a 2-subgroup of order q2 and exponent 4 of G.
Moreover, NG(Q) is a Frobenius group with kernel Q and complement K . We note that
Q is a suzuki 2-group (see [12]) and the center of Q (denoted Z(Q)) is an elementary
abelian 2-group of order q.

(iii) G possesses cyclic subgroups U1 and U2 of orders q + √
2q + 1 and q − √

2q + 1,
respectively. Moreover, NG(Ui ), for i ∈ {1, 2}, is a Frobenius group with kernel Ui and
complement 〈ti 〉, where ti is an element of order 4 such that uti = uq for all u ∈ Ui ,
and if ui ∈ Ui , then CG(ui ) = Ui .

(iv) The set {Ux
1 ,Ux

2 , K x , Qx | x ∈ G} is a partition of G.
(v) The maximal subgroups of G are as follows: NG(Q), NG(K ), NG(U1), NG(U2) and

Sz(s) for maximal s such that st = q for some positive integer t > 1, and their
conjugates.

Proof See [11, Theorem 4.1], [14, Lemma 3.1 and Theorem 3.10] and [21, Theorem 4.12].
��

Theorem 20 Let q = 22m+1 ≥ 8 and G = Sz(q). Then K(G) = {q + 4i | i ∈ Z
+}.

Proof Let K = 〈k〉,U1 = 〈u1〉,U2 = 〈u2〉 and Q be the introduced subgroups in Proposition
20. Let ρ = S(1, 0), ρ−1 = S(1, 1) and σ = S(0, 1) be three elements of G of orders 4,
4 and 2, respectively. There exist {i2, . . . , it1} ⊂ {2, . . . , q + √

2q} and { j2, . . . , jt2} ⊂
{2, . . . , q − √

2q}, where t1 = q + √
2q

4
and t2 = q − √

2q

4
, such that the q + 3 conjugacy

classes of G represented by the elements:

1, ρ, σ, ρ−1, u1, u1
i2 , . . . , u1

it1 , u2, u2
j2 , . . . , u2

jt2 , k, k2, k3, . . . , k
q−2
2 ,

where |(u1t )G ∩U1| = |(u2t ′)G ∩U2| = 4, (ks)G ∩ K = {ks, k−s}, |σG ∩ Q| = q − 1 and

|ρG∩Q| = |(ρ−1)
G∩Q| = q2 − q

2
for all t ∈ {1, . . . , q+√

2q}, t ′ ∈ {1, . . . , q−√
2q} and

s ∈ {1, . . . , q − 2}. So by Lemma 14, if H is a special subgroup of G and T ∈ {U1,U2, K },
then H ∩ T x = {1} or T x for all x ∈ G. We note that since 〈ρ〉 is a cyclic subgroup of order
4 of G, if H is a special subgroup of G, then we must have 1∗

H (ρ) = 1∗
H (ρ−1) = 1∗

H (σ ).
According to Remark 11 and part (iv) of Proposition 19, the subgroups U1, U2, K , Q and
their conjugates are the special subgroups of G. It follows from the part (ii) of Proposition
19 that Q′ = NG(Q) is the union of Q and exactly q2 conjugates of K . Hence 1∗

Q′(a) = 0,

where a ∈ U1 or U2, and also 1∗
Q′(ki ) = q2(q2 + 1)(q − 1)

q2(q − 1)
· 2q2

q2(q2 + 1)
= 2 for all

i ∈ {1, . . . , q − 2}, 1∗
Q′(σ ) = q2(q2 + 1)(q − 1)

q2(q − 1)
· q − 1

(q − 1)(q2 + 1)
= 1 and

1∗
Q′(ρ) = 1∗

Q′(ρ−1) = q2(q2 + 1)(q − 1)

q2(q − 1)
·

q2−q
2

q2−q
2 (q2 + 1)

= 1.

Therefore Q′ is a special subgroup ofG. Table 4 depicts the characters ofG induced by the

unit characters of the special subgroups ofG introduced above,where t ∈ {1, . . . , q + √
2q

4
},

s ∈ {1, . . . , q − √
2q

4
}, i1 = j1 = 1 and l ∈ {1, . . . , (q − 2)/2}.

From Table 4 we get immediately that

(
q − 1 + i

4
)1∗

U1
+(

q − 1 + i

4
)1∗

U2
+1∗

Q+(
q − 1 − i

2
)1∗

K +i1∗
Q′ = (q−1+i)1∗

G+1∗
l , (4.1)
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Table 4 Characters ofG = Sz(q), where q = 22m+1 ≥ 8, induced by the unit characters of special subgroups
of G

1 ρ σ ρ−1 uit1 u js
2 kl

1∗
U1

q2(q − 1)(q − √
2q + 1) 0 0 0 4 0 0

1∗
U2

q2(q − 1)(q + √
2q + 1) 0 0 0 0 4 0

1∗
Q (q2 + 1)(q − 1) q − 1 q − 1 q − 1 0 0 0

1∗
K q2(q2 + 1) 0 0 0 0 0 2

1∗
Q′ q2 + 1 1 1 1 0 0 2

where i ∈ N. Hence {q + 4i | i ∈ Z
+} ⊆ K(G). To prove the latter inclusion is an equality,

it is sufficient to prove that t(G) = q and any element of K(G) is a multiple of 4. Let
us show that if H is a special subgroup of G such that H ∩ {Ux

1 | x ∈ G} �= ∅, then
H ∈ {Ux

1 | x ∈ G}. Suppose for a contradiction that H /∈ {Ux
1 | x ∈ G} and U1 and

some conjugates of it are contained in H . The fact that every subgroup of a finite group
is contained in a maximal subgroup implies there exists maximal subgroup M such that
H ≤ M . Since |U1|

∣∣|M |, it follows from part (v) of Proposition 19 that M = NG(U1).
Hence either |H | = 2(q + √

2q + 1) or H = M . If |H | = 2(q + √
2q + 1), then since

2
∣∣|H | and 4 � |H |, it follows that 1∗

H (σ ) �= 0 and 1∗
H (ρ) = 0 that is a contradiction. Suppose

that H = NG(U1). So in view of the part (iii) of Proposition 19, H is the union of U1

and exactly q + √
2q + 1 conjugates of 〈t1〉 such that the intersection of any two of such

conjugates is equal to {1}. Therefore 1∗
H (σ ) = q2(q2 + 1)(q − 1)

4(q + √
2q + 1)

· q + √
2q + 1

(q − 1)(q2 + 1)
= q2

4

and 1∗
H (ρ) = q2(q2 + 1)(q − 1)

4(q + √
2q + 1)

· q + √
2q + 1

(q2−q)
2 (q2 + 1)

= q

2
and so 1∗

H (ρ) �= 1∗
H (σ ) that is a

contradiction. Hence, if k0 ∈ K(G), then it follows from Table 4, Theorem 10 and above
discussion that 4xU1 = k0, where xU1 is the number of existence of the subgroup U1 and
its conjugates belong to special subgroups G1, . . . ,Gr of Theorem 10. Therefore k0 is a
multiple of 4. Now suppose that H is a special subgroup of G such that H ⊂ ∪x∈GQx and
H /∈ {Qx | x ∈ G}. It is clear that all non-trivial elements of H are of orders 2 and 4 and
so |H |∣∣q2. Let |H | = 2i and let x and y be the number of elements of orders 2 and 4 in H ,
respectively. Hence x + y + 1 = 2i . Obviously y elements of order 4 in H belong half to
the conjugacy class represented by ρ and half to the conjugacy class represented by ρ−1. So

1∗
H (σ ) = |G|

|H | · x

(q − 1)(q2 + 1)
and 1∗

H (ρ) = |G|
|H | ·

y
2

q2−q
2 (q2 + 1)

. Since H is a special

subgroup, wemust have 1∗
H (ρ) = 1∗

H (σ ) and therefore qx = y. Hence x(1+q) = 2i −1 and
so q2 > 2i > q . Note that if 2i = q2 then x = q−1 and y = q2 −q and 1∗

H (g) = 1∗
Q(g) for

all g ∈ G. Let 2i/q = 2 j . So q(2 j −x) = x+1which leads to a contradiction. Therefore if H
is a special subgroup ofG such that H ⊂ ∪x∈GQx , then H ∈ {Qx | x ∈ G}. Now suppose that
H is a special subgroup of G containing Q and some conjugates of it. Let M be the maximal
subgroup of G containing H . Since q2

∣∣|M |, it follows from the part (v) of Proposition 19
that M = NG(Q). So the part (ii) of Proposition 19 implies M is the union of Q and exactly
q2 conjugates of K . By the same argument as above, it can be seen that Q∩H = {1} or Q. If
Q∩H = {1}, then clearly 1∗

H (σ ) = 1∗
H (ρ) = 1∗

H (ρ−1) = 0 and if Q∩H = Q and H �= Q,
then we must have H = M . Hence, if k0 ∈ K(G), then it follows from Table 4, Theorem
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10 and above discussion that (q − 1)xQ + xQ′ = k0, where xQ (resp. xQ′ ) is the number of
existence of the subgroup Q (resp. Q′) and its conjugates belong to G1, . . . ,Gr of Theorem
10. Now if xQ = 0, then xQ′ = k0. Hence if H = {H < G | H is a special subgroup ofG}
and H′ = H \ {Q′}, then Table 4 and Theorem 10 imply

∑
H ′∈H′ xH ′1∗

H ′(k) = −k0, where
xH ′ is the number of existence of the subgroup H ′ and its conjugates belong to the special
subgroups G1, . . . ,Gr of Theorem 10, that is a contradiction. Therefore xQ �= 0 and so
k0 ≥ q − 1. Now since k0 must be a multiple of 4 and q ∈ K(G), t(G) = q and this
completes the proof. ��
Proof of Theorem 3 The result follows from the series of the results of Baer [1], Kegel [19]
and Suzuki [28] (see page 3) and Theorems 16, 17, 18 and 20. ��

5 Non-trivial equidistance actions of some groups of fixity 2

It is proved in [17, Theorem III] the only non-trivial EPGC with fixity 2 must be isomorphic
to one the following groups:

1 alternating group A4 of degree 4;
2 symmetric group S4;
3 alternating group A5 ∼= PSL(2, 5) of degree 5;
4 a finite group G having a normal abelian subgroup A and an element x /∈ A such that

the Sylow 2-subgroup of A is cyclic, x−1ax = a−1 for all a ∈ A, the order of x is 2 and
G = A〈x〉.
In the following, using Remark 13, we exhibit some equidistance permutation represen-

tations of groups A4, S4 and A5 of fixity 2 with the minimum possible length 14, 26 and 62
respectively.
(1)

A4 ∼= 〈(2, 10, 4)(3, 6, 7)(5, 11, 13)(8, 12, 9), (1, 5)(2, 4)(6, 9)(7, 8)(10, 14)(11, 13)〉 ≤ S14
(2)

S4 ∼= 〈(1, 18, 20, 3)(2, 10, 19, 12)(4, 21, 23, 6)(5, 13, 22, 14)(7, 24, 26, 9)(8, 15, 25, 17),
(1, 26)(2, 23)(3, 20)(4, 25)(5, 22)(6, 19)(7, 24)(8, 21)(9, 18)(10, 17)(11, 14)(13, 16)〉 ≤ S26

(3)

A5 ∼= 〈(1, 44, 36, 33, 45)(2, 38, 52, 27, 18)(3, 21, 28, 51, 37)(4, 16, 29, 53, 39)(5, 42, 56, 30, 12),
(6, 14, 22, 50, 46)(7, 59, 15, 35, 23)(8, 24, 34, 10, 58)(9, 43, 47, 25, 13)(11, 40, 62, 32, 54),

(17, 55, 31, 61, 41)(26, 49, 57, 60, 48), (1, 48, 9, 8, 47)(2, 21, 20, 3, 52)(4, 16, 41, 42, 17),

(5, 56, 61, 62, 55)(6, 35, 57, 24, 13), (7, 14, 25, 58, 36)(10, 34, 49, 50, 33)(11, 30, 12, 54, 53),

(15, 59, 44, 43, 60), (18, 19, 27, 37, 28)(22, 23, 46, 26, 45)(29, 39, 32, 31, 40)〉 ≤ S62

6 Generalized room squares corresponding to EPGCs

One of the interesting classes of combinatorial designs which plays an important role in the
study of EPCs is Generalized Room square.

Let X be a set of cardinality υ. A generalized Room square (GRS) of side r and index λ

defined on X is an r × r array F having the following properties:

1. every cell of F contains a subset (possibly empty) of X ,
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2. each symbol of X occurs once in each row and column of F , and
3. any two distinct symbols of X occur together in exactly λ cells of F .

Denote such a GRS by S(r , λ;υ).
In [5], it is proved that the existence of any one of S(r , λ;υ) orEP (r , υ, λ) code implies the

existence of the other. The following remark explains how to construct theGRScorresponding
to an EPC.

Remark 21 Suppose that C is an EP (r , υ, λ) code and C = {c1, . . . , cυ}. Let X :=
{x1, . . . , xυ} and Ii, j := {h ∈ {1, . . . , υ} | ch(i) = j} for all (i, j) ∈ {1, . . . r} × {1, . . . , r}.
Let F be an r×r array such that for each (i, j) ∈ {1, . . . r}×{1, . . . , r}, the (i, j)th cell of F
contains the subset Xi, j := {xh | h ∈ Ii, j } of X . Then it is easy to see that F is an S(r , λ;υ).

In the sequel, we consider the properties of the GRS F introduced in Remark 21, where C
is an EPGC.

Proposition 22 Let C be an EPGC of length r and let F be the GRS corresponding to C. Then
for all i, j ∈ {1, . . . r}
(i) if j /∈ O(i), then the (i, j)th cell of F is entry.
(ii) if j ∈ O(i), then the (i, j)th cell of F contains a subset of size |Ci | (where Ci is the

stabilizer of i , i.e. Ci := {α ∈ C | α(i) = i}).
Proof Let C be an EPG (r , υ, λ) code. We follow the defnitions and notations as in Remark
21. If j /∈ O(i), then clearly Ii, j = ∅ and therefore the (i, j)th cell of F is entry. Suppose
that j ∈ O(i) and Ci = {ce1 = 1, ce2 , . . . , cen }. Since j ∈ O(i), there exists α ∈ C such
that α(i) = j . So αcet (i) = j for all t ∈ {1, . . . , n}. Now suppose that there is β ∈ C \ {α}
such that β(i) = j . Hence α−1β(i) = i and therefore α−1β ∈ Ci which implies β ∈ αCi .
Hence if αCi = {cs1 , . . . , csn }, then Ii, j = {s1, . . . , sn} and so the (i, j)th cell of F contains
a subset of size |Ci |. This completes the proof. ��
Remark 23 Let C be an EPG (r , υ, λ) code and let F be the introduced GRS in Remark 21.

(i) If C is transitive, then we must have λ = 0 and therefore Ci = {1} for all i ∈ {1, . . . , r}.
So Proposition 22 implies that F is a Latin square of order r (i.e. is an r ×r array defined
on the set X with every element of X occurring precisely once in each row and column)
such that the main diagonal cells of F contain the same element of X .

(ii) Proposition 22 implies that all of the non-empty cells of a row of F contain subsets of X
with the same size.

(iii) According to this fact that the stabilizers of elements in the same C-orbit are conjugate
and in view of Proposition 22, if O1,O2, . . . ,Os are all C-orbits, then by swapping the
rows and columns of F , F can be convert to the followingGRS, where Ai , i ∈ {1, . . . , s},
is an |Oi |× |Oi | array such that all its cells contain subsets with the same size

|C|
|Oi | (note

that by Orbit-Stabilizer Theorem, |O( j)| · |C j | = |C| for all j ∈ {1, . . . , r}) and for each
i �= j , the (Oi ,O j )th cell of F is an |Oi | × |O j | array such that all its cells are empty.
Table 5 shows GRS corresponding to an EPGC.

7 Applications for EPGCs

We divide this section into two subsections. In the first one, we explore some potential
applications of EPGCs in the construction of permutation codes of larger sizes. In the next
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Table 5 GRS corresponding to
an EPGC

O1 O2 · · · Os−1 Os

O1 A1 · · ·

O2 A2
.
.
.

.

.

.
.
.
. · · · . . .

.

.

.
.
.
.

Os−1 As−1

Os As

subsection, we will discuss the advantage of EPGCs in encoding process which comes from
the fact that they are subgroups instead of subsets.

7.1 Potential applications in code construction

As we saw in the previous section, the existence of an EPC with parameters (r , υ, λ) is
equivalent to the existence of S(r , λ;υ). On the other hand, when we restrict ourselves to
EPGCs, the structure of corresponding GRSs were obtained and observed that the resulting
GRSs have poor parameters. To fix this issue and construct better GRSs from EPGCs, we
may proceed with the following method. Let C ≤ Sr be an EPGC of distance r − λ and
T be a set of right coset representatives of C in Sn . Clearly, for any x in T , the right coset
Cx is also an EPC since for any c, d in C we have d(cx, dx) = d(c, d). Now we want to
add some right cosets of C to C such that the union is also an EPC. At the first step, we set
C (1) := C , and want to add one coset. If C ∪ Cx1 is an EPC then we need only to check
that all distances d(c, x1) is equal to r − λ, for all c ∈ C (1). If we find one such x1 in T
then we set C (2) := C ∪ Cx1. Now we look for the element x2 in T for which all distances
d(c, x2) is equal to r − λ, for all c ∈ C (2). If we proceed with this method and find elements
x1, x2, . . . , xl then C (l+1) := C ∪Cx1 ∪· · ·∪Cxl is an EPC with parameters (r , lυ, λ). This
improves the the parameters of the EPC and the corresponding GRS as well.

For example we have considered the permutation representation of the alternating group
A4 in the symmetric group S14 which gives us an EPGC with parameters (14, 12, 12). The
number of right cosets of A4 in S14 is 7264857600 which is a large number. We started
searching among these cosets to improve our EPC or its corresponding GRS. We only found
one of such cosets and hence we obtained a (14, 24, 12) EPC or an S(14, 12, 24). Note that
we have not completed the search in all cosets due to lack of time. Also, note that the best
known EPC of length 14 and distance 12 has 40 codewords. It seems interesting to find a
faster algorithm that can be run over all cosets of A4 and find the best EPC that can be found
from this method.

7.2 Application in encoding process

An important application of permutation group codes appears in encoding process. Like
classical codes in which when a code is linear, we use a generator matrix (whose rows form
a basis of the space) for the encoding process, here when the permutation code is a subgroup
of the symmetric group, we can find a representation of the code that enables us to encode
the data by using some generators of the code. Let us start with an example in our case.
Consider the group PSL(2, 4). By Remark 13 and theorem 16, we can embed this group
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into the symmetric group S62 which yield an EPGC. Let us denote this code by H . Set

a :=(1, 44, 36, 33, 45)(2, 38, 52, 27, 18)(3, 21, 28, 51, 37)(4, 16, 29, 53, 39)

(5, 42, 56, 30, 12)(6, 14, 22, 50, 46)

(7, 59, 15, 35, 23)(8, 24, 34, 10, 58)(9, 43, 47, 25, 13)(11, 40, 62, 32, 54)

(17, 55, 31, 61, 41)(26, 49, 57, 60, 48),

and

b :=(1, 48, 9, 8, 47)(2, 21, 20, 3, 52)(4, 16, 41, 42, 17)(5, 56, 61, 62, 55)

(6, 35, 57, 24, 13)(7, 14, 25, 58, 36)

(10, 34, 49, 50, 33)(11, 30, 12, 54, 53)(15, 59, 44, 43, 60)(18, 19, 27, 37, 28)

(22, 23, 46, 26, 45)(29, 39, 32, 31, 40).

Then we see that PSL(2, 4) ∼= H = 〈a, b〉 ≤ S62. Now, if we set

p1 :=(1, 26)(2, 28)(3, 27)(4, 29)(5, 30)(6, 23)(7, 22)(8, 25)(9, 24)(11, 12)(13, 14)

(16, 17)(18, 19)(20, 21)(31, 62)

(32, 61)(33, 58)(34, 57)(35, 60)(36, 59)(37, 51)(38, 52)(39, 54)(40, 53)(41, 56)

(42, 55)(43, 48)(44, 47)(45, 50)(46, 49),

p2 :=(2, 3)(4, 5)(6, 9)(7, 8)(10, 15)(11, 17)(12, 16)(13, 14)(18, 21)(19, 20)(22, 25)

(23, 24)(27, 28)(29, 30)(31, 32)

(33, 36)(34, 35)(37, 38)(39, 42)(40, 41)(43, 46)(44, 45)(47, 50)(48, 49)(51, 52)

(53, 56)(54, 55)(57, 60)(58, 59)(61, 62),

μ1 :=(1, 13, 10)(2, 18, 37)(3, 20, 51)(4, 31, 11)(5, 61, 12)(6, 43, 33)(7, 45, 57)(8, 47, 34)

(9, 49, 58)(14, 15, 26)

(16, 29, 32)(17, 30, 62)(19, 38, 27)(21, 52, 28)(22, 44, 35)(23, 46, 59)(24, 48, 36)

(25, 50, 60)(40, 41, 53)(42, 55, 54),

μ2 :=(1, 7, 59, 57, 9)(3, 18, 38, 37, 20)(4, 39, 41, 5, 61)(6, 23, 44, 10, 47)

(8, 49, 15, 46, 25)(11, 55, 62, 53, 16)

(12, 17, 40, 31, 42)(13, 60, 45, 43, 58)(14, 33, 48, 50, 35)(19, 27, 21, 51, 52)

(22, 26, 24, 34, 36)(29, 32, 30, 56, 54),

P := 〈p1, p2〉, Q1 := 〈μ1〉, Q2 := 〈μ2〉, then P is an elementary abelian 2-group of order
4 and Q1,Q2 are cyclic subgroups of C of orders 3, 5, respectively. In fact, P is a 2-sylow,
Q1 is a 3-sylow and Q2 is a 5-sylow subgroup of H . Moreover we have NH (P) = P � Q1,
NH (P) ∩ Q2 = {1} and |H | = |NH (P)||Q2|. Therefor H = PQ1Q2, and if g ∈ G, then
there exists unique

(δ1, δ2, δ3, δ4) ∈ {0, 1} × {0, 1} × {0, 1, 2} × {0, 1, 2, 3, 4},
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such that
g = pδ1

1 pδ2
2 μ

δ3
1 μ

δ4
2 . (7.1)

Since this representation for g is unique, by considering the data as elements in

{0, 1} × {0, 1} × {0, 1, 2} × {0, 1, 2, 3, 4},
and saving the generators p1, p2, μ1, μ2 in memory, we can do the encoding process

easily.
We have the same discussion for the group Sz(8). By Remark 13 and Theorem 16, we find

a representation of Sz(8) in S29128 which is an EPGC of fixity 8. Indeed, we find two elements
a and b of orders 2 and 4, respectively, in S29128 such that Sz(8) ∼= H = 〈a, b〉 ≤ S29128.
Also we find elements g1, g2, g3, h1, h2, h3 and k of orders 4,4,4,2,2,2 and 7, respectively, in
H such that Q = 〈g1, g2, g3〉 is a 2-sylow subgroup of G of order 64, Z(Q) = 〈h1, h2, h3〉
is an elementary abelian 2-group of size 8, k belongs to the normalizer of Q in S29128 and
any element g ∈ H can be written uniquely in one of the following forms (see Proposition
26, below)

g = gδ1
1 gδ2

2 gδ3
3 hδ4

1 hδ5
2 hδ6

3 , g = gδ1
1 gδ2

2 gδ3
3 hδ4

1 hδ5
2 hδ6

3 kδ7agδ8
1 gδ9

2 gδ10
3 hδ11

1 hδ12
2 hδ13

3 ,

(7.2)
where δi ∈ {0, 1}, i ∈ {1, . . . , 6, 8, . . . , 13}, and δ7 ∈ {0, 1, . . . , 6}. So, the uniqueness of
the representation for g implies that by considering the data as elements in

{{0, 1}6 × {0, 1, . . . , 6} × {0}7, {0, 1}6 × {0, 1, . . . , 6} × {1} × {0, 1}6},
and saving the generators g1, g2, g3, h1, h2, h3, k, a, g1, g2, g3, h1, h2, h3 in memory, we

can do the encoding process easily.
In general, we need to find a decomposition like 7.1 or 7.2, for all of the groups elements

prescribed in previous sections. In what follows, we introduce such a decomposition for the
elements of PGL(2, q), PSL(2, q) and Suzuki groups.

Proposition 24 let G := PGL(2, pn). Then G has a generating set {μ1, . . . , μn, a, b} such
that for each x ∈ G, there exists unique

(δ1, δ2, . . . , δn+2) ∈ {0, 1} × · · · × {0, 1} × {0, 1, . . . , pn − 2} × {0, 1, . . . , pn},
such that x = μ

δ1
1 μ

δ2
2 · · · μδn

n aδn+1bδn+2 .

Proof Let A = 〈a〉, B = 〈b〉 and P be the subgroups of G introduced in Proposition 15
and let H = NG(P). At first, we show that G = HB. In view of the parts i i i and iv

of Proposition 15, B ∩ H = {1}. So |HB| = |H ||B|
|H∩B| = q(q − 1)(q + 1) = |G|. Hence

G = HB. Therefore, if x ∈ G, then there exist h ∈ H and i ∈ {0, 1, . . . , pn} such that
x = hbi . On the other hand, since H is a Frobenius group with kernel P and complement
A, h = λa j , where j ∈ {0, 1, . . . , pn − 2} and λ ∈ P . So the result follows from this fact
that since P is an elementary abelian p-group, there are μ1, . . . , μn of order p in P such
that λ = μ

δ1
1 μ

δ2
2 · · · μδn

n , where 0 ≤ δ1, δ2, . . . , δn ≤ 1. This completes the proof. ��
Proposition 25 let G := PSL(2, q), q = pn and p �= 2. Then G has a generating set
{μ1, . . . , μn, a, t, b} such that for each x ∈ G, there exists unique

(δ1, δ2, . . . , δn+3) ∈ {0, . . . , p − 1}n × {0, 1, . . . , q − 3

2
} × {0, 1} × {0, 1, . . . , q − 1

2
},

such that x = μ
δ1
1 μ

δ2
2 · · · μδn

n aδn+1 tδn+2bδn+3 .
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Proof Let A = 〈a〉, B = 〈b〉 and P be the subgroups of G introduced in Proposition 15
and let H = NG(P) and D = NG(B). Since there exists t ∈ G of order 2 such that D =
{t i b j | 0 ≤ i ≤ 1, 0 ≤ j ≤ q−1

2 }, if we prove H∩Dy = {1} for some y ∈ G, thenG = HDy

and thus using the same argument as in the proof of Lemma 24, the result is obtained. Suppose

first that q ≡ 3(mod 4). In this case {x ∈ G | x2 = 1} = {(b q+1
4 )g | g ∈ G}. So H ∩ D = {1}.

Now suppose that q ≡ 1(mod 4). In this case {x ∈ G | x2 = 1} = {(a q−1
4 )g | g ∈ G}. Since

NG(D) = D, |{Dg | g ∈ G}| = q(q2−1)
2(q+1) = q(q−1)

2 . Each of the Dg’s contains q+1
2 elements

of order 2. It is clear that all elements of order 2 in G are conjugate and there are q(q + 1) of
them. So each one is in the same number of Dg’s. Hence by the counts so far, each element

of order 2 is in q(q2−1)
4q(q+1) = q−1

4 of the Dg’s. Then since H contains q elements of order 2, the

intersection of H with at most q(q−1)
4 of Dg’s is non-trivial. Therefore, there exists y ∈ G

such that H ∩ Dy = {1} and this completes the proof. ��
In the following, we follow the notations in Sect. 4.

Proposition 26 let G := Sz(2n), where n ≥ 3 is an odd number. If Q = 〈g1, . . . , gm〉,
Z(Q) = 〈h1, . . . , hn〉 and K = 〈k〉, then {g1, . . . , gm, h1, . . . , hn, k, T } is a generating set
of G such that for each x ∈ G, there exists unique

(δ1, δ2, . . . , δ2m+2n+2) ∈ {{0, 1}m+n × {0, . . . , 2n − 2} × {1} × {0, 1}m+n, {0, 1}m+n

×{0, . . . , 2n − 2} × {0}m+n+1
}
,

such that

x = gδ1
1 · · · gδm

m hδm+1
1 · · · hδm+n

n kδm+n+1T δm+n+2gδm+n+3
1 · · · gδ2m+n+2

m hδ2m+n+3
1 · · · hδ2m+2n+2

n .

Proof In view of [27, p. 3, lines 11–13], every element g ∈ G can be uniquely decomposed
into one of the following two products:

g = S(a, b)ki T S(a′, b′), g = S(a, b)ki ,

where a, a′, b, b′ ∈ GF(2n) and 0 ≤ i ≤ 2n − 2. Also, in view of [12, p. 2, lines 32–35], an
element of Q can be written uniquely in the form gα1

1 · · · gαm
m hβ1

1 · · · hβn
n , where the αi and

β j are 0 or 1. This completes the proof. ��
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