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Abstract

Flash memory is one of the most important types of non-volatile memory

(NVM) in use today. The high interest and many applications of such mem-

ories increase the importance of this research and lead to a wide range of

stimulating problems. Flash memory cells are electrically programable to

one of q discrete states and therefore, can store log2 q bits. Reducing a cell

state into a lower state requires the erasure of the whole block to which the

cell belongs. This operation is very costly and should be avoided if possible.

To decrease the probability of over-shooting errors, charge is injected into a

cell over several iterations, which results in a slow programming. This PhD

research focus on two coding frameworks for flash memory: the asymmetric

limited magnitude error model and the rank modulation scheme.

The asymmetric limited magnitude error model addresses the inherit

asymmetric behavior of common error types in flash memory, under the rea-

sonable assumption that errors are not likely to exceed a certain limit. My

research in this context is restricted to the study of perfect error-correcting

codes. Using two concepts which are equivalent to perfect linear codes,

namely, lattice tiling and group splitting, constructions of perfect error-

correcting codes for the asymmetric limited magnitude error model are pre-

sented. It is also proved that perfect linear error-correcting codes for this

model do no exist for infinitely many parameters.

In many error models, error-correcting codes can be viewed as packings

of the n-dimensional Euclidian space with a certain shape. If the code is

perfect then the corresponding packing becomes a tiling, which is a parti-

tion of the space into translations of the shape. The asymmetric limited

magnitude error model is one example of such model. Another important

example is the binary symmetric channel for which error-correcting codes

can be viewed as packing of the n -dimensional Euclidian space with a shape

called the n-dimensional cross. The exact values of n for which a tiling with

the n-dimensional cross with arms of length half are presented along with

constructions of such tilings that are based on perfect coded for the binary
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and ternary symmetric channels.

Rank modulation is a coding scheme that was designed to improve the

efficiency of programming a flash memory cell. Under this setup, data is

encoded into permutations which are derived by the relative charge levels of

the cells, rather than by their absolute levels. In this thesis the rank mod-

ulation scheme is studied for three fundamental concepts in coding theory;

perfect codes, systematic codes, and constrained codes. The main results in

this context include the nonexistence of some perfect single-error-correcting

codes, construction of systematic codes, and capacity computations of codes

under certain constraints.

2
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Abbreviations and Notations

Z — The set of integers

R — The set of real numbers

er — The rth unit vector.

0 — The all-zero vector (the origin).

1 — The all-one vector.

An — The Cartesian product of the set A,

Andef
={(a1, a2, . . . , an) : ai ∈ A, for all 1 ≤ i ≤ n}

u + S — The translation of S ⊆ Rn by a vector u ∈ Rn,

u + Sdef
={u + x : x ∈ S}.

αS — The multiplication of S ⊆ Rn by a scalar α ∈ Rn,

αSdef
={α · x : x ∈ S}.

S1 + S2 — The addition of S1,S2 ⊆ Rn,

S1 + S2
def
={x + y : x ∈ S1, y ∈ S2}.

[n] — The set {1, 2, . . . , n}.
[a, b] — The set {a, a+ 1, . . . , b}, a, b ∈ Z, a ≤ b.
M — A multiset.

Sn — The set of all permutations on [n].

S([a, b]) — The set of all permutations on [a, b].

S(M) — The set of all multipermutations on the multiset M.

Gn — The graphic representation of Sn with the Kendall’s

τ -metric.

G(M) — The graphic representation of S(M) with the

Kendall’s τ -metric.

Gcn — The graphic representation of Sn with the cyclic

Kendall’s τ -metric.

ε — The identity permutation.

π ◦ σ — The multiplication of σ ∈ Sn and π ∈ Sn.

π ◦ σ(i)
def
=σ(π(i)), for all i ∈ [n].

σ(S) — For σ ∈ Sn, S ⊆ Rn,

3
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σ(S)
def
={(xσ(1), xσ(2), . . . , xσ(n)) : (x1, x2, . . . , xn) ∈ S}.

P — A packing.

T — A tiling.

P — A set of points such that {x + S : x ∈ P}
is a packing with S. Also called a packing.

T — A set of points such that {x + S : x ∈ T}
is a tiling with S. Also called a tiling.

Λ — A lattice.

V (Λ) — The volume of the lattice Λ.

G(Λ) — The generator matrix of the lattice Λ.

C(x) — The n-dimensionl unit cube centered at x ∈ Rn,

C(x)
def
={(y1, y2, . . . , yn) ∈ Rn : |xi − yi| ≤ 0.5, 1 ≤ i ≤ n}.

C — A code.

E(C) — The expanded code of C.
dH(x,y) — The Hamming distance between x and y.

dM (x,y) — The Manhattan distance between x and y.

dL(x,y) — The Lee distance between x and y.

dC(x,y) — The cross distance between x and y.

dK(σ, π) — The Kendall’s τ -distance between the permutations

σ and π.

dκ(σ, π) — The cyclic Kendall’s τ -distance between the permutations

σ and π.

dI(σ, π) — The inversion distance between the permutations

σ and π.

wH(x) — The Hamming weight of x.

||x|| — The Manhattan weight of x.

wC(x) — The cross weight of x.

wK(σ) — The Kendall’s τ - weight of the permutations σ.

wκ(σ) — The cyclic Kendall’s τ -weight of the permutations σ.

dH(C) — The minimum Hamming distance between of the code C.
dC(C) — The minimum cross distance of the code C.
Υn — The (0.5, n)-cross scaled by two.

S`,k — The n-dimensional chair for `,k ∈ Rn.

SK(n, t, σ) — The Kendall’s τ -sphere of radius t centered at σ ∈ Sn.

SK(n, t) — The Kendall’s τ -sphere of radius t centered at the identity

permutation ε ∈ Sn.

SI(n, t, σ) — The inversion sphere of radius t centered at σ ∈ Sn.

sI(n, t) — The size of SI(n, t, σ).

An,k — The set of all permutations in Sn that satisfied the

4
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two-neighbor k-constraint.

Bn,k — The set of all permutations in Sn that satisfied the

asymmetric two-neighbor k-constraint.

SI(Ak,n, t, σ) — The set An,k ∪ SI(n, t, σ).

Hn — The set [n]n.

SM (S, t, σ) — The set {y ∈ S : dM (y,x) ≤ t}, for S ⊂ Hn.

C(ε) — The capacity of two-neighbor k-constrained

codes, where k = Θ(nε).

C̃(ε) — The capacity of asymmetric two-neighbor k-constrained

codes, where k = Θ(nε).

C(ε, δ) — The capacity of two-neighbor k-constrained

t-error-correcting codes, where k = Θ(nε) and t = Θ(nδ).

C̃(ε, δ) — The capacity of asymmetric two-neighbor k-constrained

t-error-correcting codes, where k = Θ(nε) and t = Θ(nδ).

5
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Introduction

Flash memory is a nonvolatile memory that is both electrically programmable

and electrically erasable. Its reliability, high storage density, and relatively

low cost have made it a dominant nonvolatile memory technology. In the

standard flash technology, every flash cell has q discrete levels and therefore

can store log2 q bits. The most conspicuous property of flash storage is its

inherent asymmetry between cell programming and cell erasing. While in-

jecting charge to a single cell is a fast and simple operation, reducing the

charge level of a single cell requires the erasure and reprogramming of a large

block of cells. Thus, a single-cell erase operation requires the cumbersome

process of copying an entire block to a temporary location, erasing it, and

then programming all the cells in the block. As a consequence, flash cells

programming is relatively costly in time and energy, since in order to avoid

over-shooting errors, cells should essentially injected with their exact des-

ignated charge level. The asymmetry between programming and erasing of

flash memory cells, causes significant error sources to change cell levels in one

dominant direction. Moreover, all reported common flash error mechanisms

induce errors whose magnitudes are small and independent of the alphabet

size, that may be significantly larger than the typical error magnitude. In

this PhD research two coding frameworks for flash memory are studied: the

asymmetric limited magnitude error model and the rank modulation scheme.

The asymmetric limited magnitude error model addresses the asymmet-

ric nature of common errors in multi level cell flash memory. Errors in this

model are in one direction and are not likely to exceed a certain limit. This

means that a cell in level i can be raised by an error to level j, such that

i < j ≤ q − 1 and j − i ≤ ` ≤ q − 1, where ` is the error limited-magnitude.

Asymmetric error-correcting codes with limited-magnitude were proposed

in [2] and were first considered for nonvolatile memories in [9, 10]. Recently,

several other papers have considered these codes, e.g. [22, 23, 48, 104].

The rank modulation scheme has been proposed to improve program-

ming efficiency in flash memory [43]. Codes in this model are subsets
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of Sn, the set of all permutations on n elements, where each permuta-

tion corresponds to a ranking of n cells’ levels. Permutation codes were

mainly studied in this context using two metrics, the infinity metric and

the Kendall’s τ -metric. Codes in Sn under the infinity metric were consid-

ered in [49, 77, 92, 94]. The Kendall’s τ -distance between two permutations

σ, π ∈ Sn is the minimum number of adjacent transpositions needed to

change σ into π, where an adjacent transposition is the exchange of two ad-

jacent elements in a permutation. Under the Kendall’s τ -metric, codes in Sn
with minimum distance d should correct up to

⌊
d−1

2

⌋
errors that are caused

by charge leakage and read disturbance. A comprehensive work on error-

correcting codes in Sn using the Kendall’s τ -metric [46], is given in [44]. In

that paper a construction of single-error-correcting codes using codes in the

Lee metric, is also presented. This method was generalized in [5] for the con-

struction of t-error-correcting codes that are of optimal size, up to a constant

factor, where t is fixed. In [108, 109] systematic-error-correcting codes for

permutations were proposed and in [73] the capacity of permutation codes

under a certain constraint was studied.

This PhD dissertation comprises of two parts. The first part deals

with the concept of tiling of the n-dimensional Euclidian space with a cer-

tain shape. Such tilings are studied for two shapes, the (0.5, n)-cross and

the n-dimensional chair. Tilings with the n-dimensional chair form error-

correcting codes for the asymmetric limited magnitude error model. The

second parts is devoted to the study of error-correcting codes for permuta-

tions using the Kendall’s τ -metric.

Error-correcting codes and packing and tiling of the n-dimensional Eu-

clidian space with a certain shape are closely connected concepts. There-

fore, packing and tiling with a certain shape are two concept that attract

a substantial interest from coding theory researchers. A tiling of the n-

dimensional Euclidian space with a shape S is a partition of the space into

translations of S. Basic definitions for tiling and packing are given in Chap-

ter 1, along with a discussion on the connection between these concepts and

error-correcting codes. Two of the most studied shapes in this context are

the semicross and the cross. A (k, n)-semicross is an n-dimensional shape

whose center is an n-dimensional unit cube from which n arms consisting of

k n-dimensional unit cubes are spanned in the n positive directions. A (k, n)-

cross is an n-dimensional shape whose center is an n-dimensional unit cube

from which 2n arms consisting of k n-dimensional unit cubes are spanned

in the n directions (one for the positive and one for the negative). Examples

of a (2, 3)-cross and a (2, 3)-semicross are given in Figure 1. Packing and

tiling with semicrosses and crosses is a well studied topic (see [86, 88] and

8
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references therein). The high interest in packing and tiling with semicrosses

and crosses lies in the fact that such packing and tiling correspond to error-

correcting codes with the Hamming metric, which are codes that correct

symmetric errors [58].
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Figure 1: A (2, 3)-cross and a (2, 3)-semicross.

Tiling with the (0.5, n)-cross are studied in Chapter 2. The (0.5, n)-cross

consists of one complete (non-fractional) unit cube and 2n halves unit cubes.

Usually, it is more convenient to handle tiling with complete unit cubes.

Hence, after scaling the (0.5, n)-cross by two a new shape is obtained. This

shape comprises of an n-dimensional unit cube of length 2, which consists

of 2n n-dimensional unit cubes, and to each of which n − 1-dimensional

faces attached are n-dimensional unit cubes. Example of the (0.5, 3)-cross

and its scaling by two is given in Figure 2.1. In addition to the high inter-

est on crosses mentioned above, another motivation for the study of tiling

with (0.5, n)-cross was pointed out by Italo J. Dejter [18]. Such a tiling is

equivalent to a perfect dominating set in Zn, where each of its connectivity

components are n-dimensional unit cubes of length 2. This problem was

considered by several authors, e.g. [4, 100] and references therein. The main

result of Chapter 2, solves one of the main open problems on this topic. This

result states that an integer tiling of the n-dimensional Euclidian space with

the (0.5, n)-cross, scaled by 2, exists if and only if n = 2t − 1 or n = 3t − 1,

where t is a positive integer.

In Chapter 3, tilings with the n-dimensional chair are studied. An n-

dimensional chair is an n-dimensional box from which a smaller n-dimensional

box is removed from one of its corners (example of a three dimensional chair

is given in Figure 3.1). The study of tiling with the n-dimensional chair

is motivated by the asymmetric limited magnitude error model, since such

tilings correspond to codes that correct up to n − 1 asymmetric limited

magnitude errors. These tilings have another application for constructing

WOM codes with multiple writing. Only lattice tilings are considered in

the context of the n-dimensional chair. An equivalent way to present a

lattice tiling is given. This method is called a generalized splitting and it

generalizes the concepts of splitting defined in [82]; and the concept of Bh[`]

9
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sequences defined and used for construction of codes correcting asymmetric

errors with limited-magnitude in [48]. Two constructions of tilings based

on generalized splitting are presented. A lattice tiling is derived based on

a construction of a splitting sequence. Mihalis Kolountzakis and James H.

Schmerl [53] pointed on [87], where this lattice tiling was first proposed, and

further discussed in [52, 75].

In the second part of this dissertation, codes for permutations using the

Kendall’s metric are discussed. Recently, to improve the number of rewrites,

the rank modulation scheme was extended such that multiple cells can share

the same ranking [24, 25]. Thus, the cells no longer determine permutations

but rather multipermutations, which are also known as permutations with

repetitions. Error-correcting codes for multipermutations subject to the

Kendall’s τ -metric were presented in [74] and also studied in [7]. Multiper-

mutations are used to construct codes in Chapters 6 and 7. Basic definitions

and properties of permutations, multipermutations, and Kendall’s τ -metric

are presented in Chapter 4.

In Chapter 5 the concepts of perfect codes and diameter perfect codes

for permutations are studied. Perfect codes for permutations, using the

Kendall’s τ -metric are shortly discussed in [108]. In this paper systematic

single-error codes in Sn of size (n− 2)! are constructed. These codes are of

optimal size, assuming that a perfect single-error-correcting code does not

exist. However, the nonexistence of perfect single-error-correcting codes is

proved only for n = 4. The first section of this chapter is devoted to perfect

single-error-correcting codes in Sn, using the Kendall’s τ -metric. Perfect

codes is one of the most fascinating topics in coding theory. A perfect t-

error-correcting code with the Kendall’s τ -metric is a code C ⊆ Sn such that

every permutation in Sn is at Kendall’s τ -distance at most t from exactly

one codeword of C. In Section 5.1 it is proved that perfect single-error-

correcting codes in Sn, where n > 4 is a prime or 4 ≤ n ≤ 10, do not exist.

It is also proved that if such a code exists for n which is not a prime then the

code should have some uniform structure. In Section 5.2 diameter perfect

codes in Sn, using the Kendall’s τ -metric, are studied. As a result, known

upper bounds on the size of a code in Sn with even minimum Kendall’s

τ -distance are improved. A natural variation of the Kendall’s τ -distance is

the cyclic Kendall’s τ -distance. In Section 5.3 perfect single-error-correcting

code in S5 and single-error-correcting code, using the cyclic Kendall’s τ -

distance, are presented. These codes are also single-error-correcting codes,

using the Kendall’s τ -distance, and they are larger than the known ones

in S5 and S7. This cyclic Kendall’s τ -metric was studied in [42], where an

algorithm to compute the distance between two permutations in Sn with

10
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running time O(n2) was given. A simpler and more explicit algorithm to

compute the cyclic Kendall’s τ -distance between two permutations in Sn
with running time O(n2) is presented in Section 5.3 . The cyclic Kendall’s

τ -distance also has applications in Biology, as was suggested in [31], since

it capture the genetic difference between some bacteria and viruses, that

usually have a circular genome. A lower bound on the maximum cyclic

Kendall’s τ -distance between two permutations in Sn was also given in [31],

while in [106] it was shown that this lower bound is tight.

Chapter 6 deals with systematic error-correcting codes for permuta-

tions. As mentioned above, this concept for permutations was proposed

in [108, 109]. A systematic code C for permutations in Sn is a code consists

of k! codewords. Each permutation of Sk (on a given set of specific k sym-

bols) is a sub-permutation (subsequence) of exactly one codeword of C. In

this PhD research some of the results in [108, 109] are improved. A con-

struction of systematic error-correcting codes for permutations is presented

in Section 6.2. This construction is based on two ingredients. The first is

a partition of Sk into t-error-correcting codes. The second is a code Cr for

multipermutations with minimum Kendall’s τ -distance 2t, whose size is the

number of parts in the partition. Each code from the partition of Sk is sub-

stituted into a different codeword of Cr. It is proved that for large enough k,

this construction uses less redundancy symbols than the number of redun-

dancy symbols in the codes of the known constructions. In particular, for a

given t and for sufficiently large k we can obtain r = t+1. This construction

is generalized in Section 6.3 to systematic codes for multipermutations.

Constrained codes for permutations are discussed in Chapter 7. This

work was inspired from a recent research by Sala and Dolecek [73, 72] who

studied a certain constraint that is motivated by the inter-cell interference

(ICI) in flash memory. The ICI is a phenomena in which the level of a cell,

called a victim cell might increase, if its neighbor cells are programmed to

significantly higher levels [54]. The ICI is caused by the parasitic capaci-

tance between neighboring cells and in particular, multilevel cell program-

ming is severely influenced by this effect. In the model studied in [73], the

authors explored the single-neighbor constraint in which the differences be-

tween charge levels of adjacent cells are upper bounded. This constraint

prevents the scenario in which a high-level cell affects its low-level neighbor

cell. In this work, two constraints that captures the ICI phenomenon are

considered, the two-neighbor constraint and the asymmetric two-neighbor

constraint. The former constraint was proposed in [72]. A permutation sat-

isfies this constraint if the difference between the level of a cell and the level

of one of its neighbors is bounded by some prescribed value k. In the asym-
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metric version, the differences between charge levels are constrained only

for sequences of the form high-low-high. This constraint is motivated by the

fact that the ICI in flash memories mainly affects sequences of the form high-

low-high and not the other ones. The capacities of these two constraints are

computed in Sections 7.1 and 7.2. The constraints studied in this work as

well as in [73] are effective in reducing the errors caused by the ICI. However,

random errors may still happen. In Section 7.3 error-correcting codes with

the Kendall’s τ -distance that, yet consist of only permutations that satisfy

the constraints are studied.

12
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Part I

Tiling of the n-Dimensional

Euclidian Space and its

Applications
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Chapter 1

Preliminaries: Tiling,

Packing, and

Error-Correcting Codes

Definitions and properties of tiling and packing are given in this chapter,

and the connection between tiling and packing and error-correcting codes

is explained. The basic concepts presented in this chapter are widely used

throughout this part of the dissertation.

For a set S ∈ Rn and a vector u ∈ Rn the translation of S by u is

u + Sdef
={u + x : x ∈ S}. The multiplication of S by a scalar α ∈ R is

defined by αSdef
={α · x : x ∈ S}. For two sets S1 ⊆ Rn and S2 ⊆ Rn the

set addition S1 + S2 is defined by S1 + S2
def
={x + y : x ∈ S1, y ∈ S2}.

Let S be an n-dimensional shape in the n-dimensional Euclidian space

(Rn). We say that two translations of S, S1 and S2, are disjoint if their

intersection is contained in an (n− 1)-dimensional space.

Definition 1.1 A packing P of the n-dimensional Euclidian space with the

shape S is a set of disjoint translations of S.

Definition 1.2 A tiling T of the n-dimensional Euclidian space with the

shape S is a packing of the n-dimensional Euclidian space, Rn, with the

shape S such that each point (x1, x2, . . . , xn) ∈ Rn is contained in at least

one translation of S.

For a given shape S we choose a fixed point which will be called the

balanced point of the shape. In any other translation of S the balanced point

will be chosen in the same relative position. The set of balanced points in

the translations of S contained in the packing P defines the packing. Hence,
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a packing P will be defined by a set of points P ⊂ Rn and a shape S. A point

x belongs to P if and only if the translation x+S belongs to P. Henceforth,

P will be called a packing if the shape S is known. In particular, for a tiling

T with a shape S, the set Tdef
={x ∈ Rn : x + S ∈ T } will also be called a

tiling with the shape S.

Lemma 1.3 If P is a packing (a tiling) with a shape S and u ∈ Rn then

u + P is also a packing (a tiling) with S.

For a set S ⊆ Rn and a permutation σ = [σ(1), σ(2), . . . , σ(n)] of

{1, 2, . . . , n}, let σ(S)
def
={(xσ(1), xσ(2), . . . , xσ(n)) : (x1, x2, . . . , xn) ∈ S}.

Lemma 1.4 If P is a packing (a tiling) with an n-dimensional shape S
and σ is a permutation of [n] then σ(P) is a packing (a tiling) with the

n-dimensional shape σ(S).

Definition 1.5 A packing (a tiling) P with a shape S is called an integer

packing (an integer tiling), if P ⊆ Zn. An integer packing (tiling) is also

called a Z-packing (a Z-tiling).

Definition 1.6 For x ∈ Rn, x = (x1, x2, . . . , xn), an n-dimensional unit

cube centered at x, C(x), is defined as the set C(x)
def
={(y1, y2, . . . , yn) ∈

Rn : |xi − yi| ≤ 0.5, 1 ≤ i ≤ n}.

Definition 1.7 An n-dimensional shape S is a discrete shape if S is a

union of n-dimensional unit cubes, whose centers are in Zn.

A discrete n-dimensional shape S can be identified by a set of points in

Zn. Conversely, a set of points in Zn defines a discrete shape. By abuse of

notation, the same notation will be used for the discrete shape and the set

of points in Zn that defines the shape, where the meaning should be clear

from the context. If T is an integer tiling with a discrete shape S, then each

point of Zn is contained in exactly one translation of S by an element of

T. By abuse of language, T is called a tiling of Zn with the set S ⊆ Zn.

Similarly, if P is an integer packing with S, then P is called a packing of Zn

with the set S ⊆ Zn.

The vector (x1, x2, . . . , xn) is called the r-th unit vector and will be de-

noted by er if xr = 1 and for all i 6= r, xi = 0. The origin (0, 0, . . . , 0) ∈ Rn

is denoted by 0. The all-one vector (1, 1, . . . , 1) ∈ Rn is denoted by 1.

Definition 1.8 A set A is called periodic with period p if x ∈ A implies

that x + α · p · ei ∈ A, for all α ∈ Z and 1 ≤ i ≤ n. A packing (a tiling) P
with the shape S is a periodic packing (a periodic tiling) if it is a periodic

set.
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Lemma 1.9 A tiling T is periodic with period p if and only if x ∈ T implies

that x + p · ei ∈ T for all i, 1 ≤ i ≤ n.

Definition 1.10 A lattice Λ is a discrete, additive subgroup of the real n-

space Rn,

Λ
def
={u1v1 + u2v2 + · · ·+ unvn : u1, u2, · · · , un ∈ Z},

where {v1,v2, . . . ,vn} is a set of linearly independent vectors in Rn, i.e. the

lattice has rank n. The set of vectors {v1,v2, . . . ,vn} is called a basis for

Λ, and the n× n matrix

G(Λ)
def
=


v11 v12 . . . v1n

v21 v22 . . . v2n

...
...

. . .
...

vn1 vn2 . . . vnn


having these vectors as its rows is said to be a generator matrix for Λ.

The volume of a lattice Λ, denoted by V (Λ), is inversely proportional to

the number of lattice points per a unit volume. More precisely, V (Λ) may

be defined as the volume of the fundamental parallelogram Π(Λ), which is

given by

Π(Λ)
def
= {ξ1v1 + ξ2v2 + · · ·+ ξnvn : 0 ≤ ξi < 1, 1 ≤ i ≤ n} .

There is a simple expression for the volume of Λ, namely, V (Λ) = | det G|.
A lattice Λ is a lattice tiling with S if Tdef

= Λ forms a tiling with S. A

lattice tiling Λ is an integer lattice tiling with if all entries of G are integers.

The following lemma is well known.

Lemma 1.11 A necessary condition that a lattice Λ defines a lattice packing

(tiling) with a shape S is that V (Λ) ≥ |S| (V (Λ) = |S|). A sufficient

condition that a lattice packing Λ with a shape S defines a lattice tiling with

the shape S is that V (Λ) = |S|.

A code C of length n over Zq (over Z) is a subset of Znq (of Zn). The

elements of C are called codewords. Let Λn be the lattice generated by the

basis {q · ei : 1 ≤ i ≤ n}. A code C ⊆ Znq can be viewed also as a subset of

Zn.
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Definition 1.12 The code E(C) = C + Λn is the expanded code of C. If

E(C) is a packing (a tiling) of Zn with the shape S then we also call C a

packing (a tiling) of Znq with the shape S.

Conversely, a tiling T ⊆ Zn with a period p can be viewed as an expanded

code, E(C), of a code C of length n over Zp, where C = T∩{0, 1, . . . , p−1}n.

If C is a packing of Znq with the shape S then C is called an error-correcting

code with S, and S is called an error sphere. The elements of S are called

error-vectors. If C is an error-correcting code with and error sphere S then

for every y ∈ Znq there exists at most one codeword x ∈ C such that y ∈ x+S.

Therefore, if y = x + e, where x ∈ C and e ∈ S, then x can be uniquely

determined from y. If C is a tiling of Znq with the shape S then C is called

a perfect error-correcting code for S. In that case, for every y ∈ Znq there

exists exactly one codeword x ∈ C such that y − x ∈ S.

One important example are error-correcting codes with the Hamming

metric. These codes are also known as error-correcting codes for the sym-

metric channel.

Definition 1.13 For every two given words x,y ∈ Znq the Hamming dis-

tance dH(x,y) is the number of positions in which x and y differ, i.e.

dH(x,y)
def
= |{i : xi 6= yi, 1 ≤ i ≤ n}| .

The Hamming weight of x ∈ Znq , wH(x), is the Hamming distance of x and

0.

A code C is a t-error-correcting code with the Hamming metric if for every

y ∈ Znq there exists at most one codeword x ∈ C such that dH(x,y) ≤ t. Let

S = {y ∈ Zn : wH(y) ≤ t}. The shape S is called the Hamming sphere of

radius t and C is a t-error-correcting code with the Hamming metric if and

only if C is a packing of Znq with the shape S. A perfect t-error-correcting

code with the Hamming metric over Znq is equivalent to a tiling of Znq with

the shape S. In particular, a perfect single-error-correcting code with the

Hamming metric is equivalent to a tiling of Znq with the ((q− 1)/2, n)-cross.

For a code C, its minimum Hamming distance is the largest integer d for

which dH(x,y) ≥ d, for every two distinct codewords x,y ∈ C. A code

C ⊆ Znq with minimum Hamming distance d is a t-error-correcting code if

and only if d ≥ 2t+1. If d ≥ 2t+1 then C is a perfect t-error-correcting code

if for every y ∈ Znq there exists a codeword x ∈ C such that dH(y,x) ≤ t.
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Chapter 2

Tiling with the (0.5, n)-Cross

Packing and covering are two fundamental concepts in combinatorics. Tiling

is a concept which combines both packing and covering and hence it attracts

a substantial interest. Tiling of the Euclidian space with specific shapes

is one of the main interest in this respect. The (k, n)-cross and (k, n)-

semicross are two shapes that were intensively studied in this context. A

(k, n)-semicross is an n-dimensional shape whose center is an n-dimensional

unit cube from which n arms consisting of k n-dimensional unit cubes are

spanned in the n positive directions. A (k, n)-cross is an n-dimensional

shape whose center is an n-dimensional unit cube from which 2n arms con-

sisting of k n-dimensional unit cubes are spanned in the, ,n directions, one

for the positive direction and one for the negative direction (see Figure 1

for example of a (2, 3)-cross and a (2, 3)-semicross). As mentioned in [88],

the origins of the study of the cross and semicross are in several indepen-

dent sources [36, 45, 82, 95], some of which are pure mathematics and some

are connected to coding theory. Semicross and cross are two types of “error

spheres” as explained in [35]. Golomb and Welch [36] proved that the (1, n)-

cross tiles the n-dimensional Euclidian space for all n ≥ 1. Such a tiling is a

perfect code in the Manhattan metric and if the tiling is periodic then it is

also a perfect code in the Lee metric. Their work inspired future work (see

[27] and references therein) on perfect codes in the Lee (and Manhattan)

metric.

As said before, packing and tiling with semicrosses and crosses are well

studied topics [14, 30, 36, 38, 39, 57, 82, 83, 85, 89, 90, 91]. The results

in these research works include bounds on the size of the arms, construc-

tions for such packings and tilings, parameters for which such tilings cannot

exist, lattice and non-lattice tilings, etc. Recently, the topic has gained a

new interest since the (k, n)-semicross is the error sphere of the asymmet-
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ric error model associated with flash memories [10, 48], the most advanced

type of storage currently used. Schwartz [76] investigated lattice tilings with

generalized crosses and semicrosses in the connection of unbalanced limited

magnitude error model for multi level flash memories.

Not much is known about tiling of crosses with arms which are not of

integer length. Moreover, most tilings considered in the literature are integer

lattice tilings. In this chapter the existence of tiling of the n-dimensional

Euclidian space with a (0.5, n)-cross is studied.

A unit cube centered at (c1, c2, . . . , cn) ∈ Rn is a union of two disjoint

half unit cubes in one of the n directions. For the r-th direction one half

unit cube is defined by the set of points {(x1, x2, . . . , xn) : 0 ≤ xr − cr ≤
0.5, |xi− ci| ≤ 0.5, 1 ≤ i ≤ n, i 6= r} and a second half unit cube is defined

by the set of points {(x1, x2, . . . , xn) : −0.5 ≤ xr − cr ≤ 0, |xi − ci| ≤
0.5, 1 ≤ i ≤ n, i 6= r}. A (0.5, n)-cross is a unit cube to which two half

unit cubes are attached in the r-th direction for each 1 ≤ r ≤ n, one in its

negative direction and one in its positive direction. It is more convenient to

handle shapes with complete unit cubes (discrete shapes) and therefore the

(0.5, n)-cross is scaled by two to obtain a new shape which will be denoted

by Υn. Examples of a (0.5, 3)-cross and Υ3 are given in Figure 2.1. The

complete unit cube in the (0.5, n)-cross is transferred into an n-dimensional

cube with sides of length two in Υn. This cube in Υn will be called the core

of Υn; the core consists of 2n unit cubes. In the sequel, only integer tilings

with Υn will be considered. In such an integer tiling Υn can be represented

by 2n(n+ 1) points of Zn which are the centers of its 2n(n+ 1) unit cubes.

The discussion on the shape Υn is restricted only for integer tiling (also

known as Z-tiling) which is a tiling in which the centers of the unit cubes

are placed on points of Zn. Such a tiling is proven to exists if and only if

n = 2t − 1 or n = 3t − 1, where t > 0. The related tiling with a (0.5, n)-

cross (obtained after scaling by 0.5) will be called a 1
2Z-tiling. Analysis of

the structure obtained from such a tiling is presented. The tiling which is

considered for the (0.5, n)-cross is usually not an integer tiling. Moreover,

general tilings are considered and not just lattice tilings as done in most

literature.
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Figure 2.1: A (0.5, 3)-cross and an Υ3.
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Dejter [18] has pointed out that a tiling with Υn is a perfect dominating

set in Zn. This problem was considered by several authors, e.g. [4, 100] and

references therein. The problem that is considered in this chapter is one of

the main open problems on this topic.

To handle tilings with the (0.5, n)-cross, three distance measures are

needed, the well known Hamming distance (see Definition 1.13), the Man-

hattan distance, and the new defined cross distance.

Definition 2.1 For every two given points x,y ∈ Zn the Manhattan dis-

tance dM (x,y) is defined as follows.

dM (x,y)
def
=

n∑
i=1

|xi − yi| .

Definition 2.2 For every two given points x,y ∈ Rn the cross distance

dC(x,y) is defined as follows.

dC(x,y)
def
=

n∑
i=1

max{0, |yi − xi| − 1}.

The Manhattan weight and cross weight of x ∈ Znq are defined by

wM (x)
def
=dM (x,0) and wC(x)

def
=dC(x,0), respectively.

While the Hamming distance is an association scheme, the Manhattan

distance is only a metric distance and not an association scheme (see [58]

for the definition of an association scheme). The cross distance is not a

metric, but it will be most important in the discussion on tilings with a

(0.5, n)-cross.

Let T be a tiling with Υn. It is assumed throughout this chapter that if

x = (x1, x2, . . . , xn) ∈ T then the set {(c1, c2, . . . , cn) : ci ∈ {xi−1, xi}, 1 ≤
i ≤ n} is the related core of the translation x + Υn. The core of Υn is

{−1, 0}n and Υn
def
={u ∈ Zn : dM (x,u) = 1, x ∈ {−1, 0}n}. If T is a

tiling with Υn then 0.5T is a tiling with a (0.5, n)-cross. Clearly, if for each

(x1, x2, . . . , xn) ∈ T, xi is even for all 1 ≤ i ≤ n, then also 0.5T is an integer

tiling. However, if there exists a point (x1, x2, . . . , xn) ∈ T such that for at

least one j we have that xj is odd then 0.5T is not an integer tiling. To this

end, a 1
2Z-tiling is defined. A tiling T is a 1

2Z-tiling if T ⊆ 0.5Zn.

Lemma 2.3 The tiling T is an integer tiling with Υn if and only if 0.5T is

a 1
2Z-tiling with a (0.5, n)-cross.

Given a set T ⊂ Zn, it should be determined whether T is a tiling with

Υn. To show that T is a tiling it is sufficient to prove the following.
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(P.1) For each point Y ∈ Zn there exists a translation S1 of Υn in the tiling

such that S1 contains Y .

(P.2) A point Y ∈ Zn is not contained in more than one translation of Υn in

the tiling, i.e. for each two translations S1 and S2 of Υn in the tiling

we have S1 ∩ S2 = ∅.

A set T ⊂ Zn is a covering with Υn if it satisfies property (P.1) and it

is a packing with Υn if it satisfies property (P.2). A tiling is clearly both

a covering and a packing.

The following two lemmas are immediate results from the definition of

Υn.

Lemma 2.4 If S is a translation of Υn and x ∈ S is not a core point of S
then there exists a core point y ∈ S such that dM (x,y) = 1.

Lemma 2.5 If S1 and S2 are two translations of Υn for which S1∩S2 6= ∅
then there exists a point x ∈ S1 ∩ S2 which is not in the core of S1.

Corollary 2.6 If S1 and S2 are two translations of Υn for which S1∩S2 6= ∅
then there exist two core points x1 ∈ S1 and x2 ∈ S2 such that dM (x1,x2) ≤
2.

Lemma 2.7 If S1 and S2 are two translations of Υn for which there exist

two core points x1 ∈ S1 and x2 ∈ S2 such that dM (x1,x2) ≤ 2, then S1∩S2 6=
∅.

Proof. If dM (x1,x2) ≤ 2 then there exists a point y ∈ Zn such that

dM (x1,y) ≤ 1 and dM (x2,y) ≤ 1. By definition y ∈ S1 ∩ S2.

2

Corollary 2.8 Let S1 and S2 be two translations of Υn. Then S1 ∩S2 = ∅
if and only if for every two core points x1 ∈ S1 and x2 ∈ S2 we have

dM (x1,x2) ≥ 3.

Theorem 2.9 Let S1 = x + Υn and S2 = y + Υn, where x,y ∈ Zn, be two

translations of Υn. Then S1 ∩ S2 = ∅ if and only if dC(x,y) ≥ 3.

Proof. Let x̃ = (x̃1, x̃2, . . . , x̃n) and ỹ = (ỹ1, ỹ2, . . . , ỹn) be the centers of

mass of S1 and S2, respectively. Clearly, x̃ and ỹ are in (0.5, 0.5, . . . , 0.5) +

Zn. The core points of S1 are {(c1, c2, . . . , cn) : ci ∈ {x̃i − 0.5, x̃i + 0.5}}
and the core points of S2 are {(c1, c2, . . . , cn) : ci ∈ {ỹi − 0.5, ỹi + 0.5}}.
Let x′ = (x′1, x

′
2, . . . , x

′
n) and y′ = (y′1, y

′
2, . . . , y

′
n) be the two core points of
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S1 and S2, respectively, defined as follows. If x̃i = ỹi then x′i
def
= x̃i + 0.5 and

y′i
def
= ỹi + 0.5. If x̃i < ỹi then x′i

def
= x̃i + 0.5 and y′i

def
= ỹi − 0.5. If x̃i > ỹi then

x′i
def
= x̃i − 0.5 and y′i

def
= ỹi + 0.5. Clearly, dC(x,y) = dC(x̃, ỹ) = dM (x′,y′)

and for any two core points x̂ ∈ S1 and ŷ ∈ S2 we have that dM (x̂, ŷ) ≥
dM (x′,y′). Now, by Corollary 2.8 we have that S1 ∩ S2 = ∅ if and only if

dC(x,y) ≥ 3.

2

Corollary 2.10 The set T induces a packing of the n-dimensional Euclidian

space with Υn if and only if for every two elements x,y ∈ T, we have

dC(x,y) ≥ 3.

To prove that a set is a tiling with Υn it is sufficient to show that it

satisfies properties (P.1) and (P.2). For this purpose it is proven that

each point of Zn is contained (covered) in exactly one translation S of Υn

in the tiling. A point u ∈ Zn is covered by a codeword x in a tiling T if u is

contained in the translation x + Υn. In this case it is said that x covers u.

Given a tiling T with Υn it has to satisfy properties (P.1) and (P.2). By

considering how each point u ∈ Zn is covered by a codeword x ∈ T (property

(P.1)), the structure of T will be discovered. To this end, property (P.2)

is used, i.e. for each two codewords x,y ∈ T we have that dC(x,y) ≥ 3 (by

Corollary 2.10).

2.1 The Nonexistence of Tilings with the (0.5, n)-

Cross

In this section it is proved that an integer tiling T with Υn exists only if

n = 2t − 1 or n = 3t − 1, for some t > 0. First, this claim is proved

for odd n if T is an integer tiling and for all n if T is a lattice tiling (see

Definition 1.10). Then, the proof is completed for even n. This goal is

obtained by proving that given a tiling T with Υn, certain elements of Zn

must be contained in T. It is proved by considering how elements with a

small cross weight are covered. For the rest of this section let T be a tiling

with Υn. By Lemma 1.3, for every u ∈ Zn, u + T is also a tiling with

Υn, thus, without loss of generality we assume throughout this section that

0 ∈ T. By Corollary 2.10, if x,y ∈ T \ {0}, where x 6= y, then wC(x) ≥ 3,

wC(y) ≥ 3, and dC(x,y) ≥ 3.

The first lemma is an immediate result from the definition of Υn.
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Lemma 2.11 Let x ∈ T and u = (u1, u2, . . . , un) ∈ Zn. The point u is

covered by x if and only if xi ∈ {ui− 1, ui, ui + 1, ui + 2}, for 1 ≤ i ≤ n, and

for at most one i we have xi ∈ {ui − 1, ui + 2}.

Let D1 be the set of points from {0, 1, 2, 3}n in which 2 and 3 appear

exactly once.

Lemma 2.12 If x ∈ D1 ∩ T then x = 3er + 2es for some r 6= s.

Proof. Assume without loss of generality that x = (3, 2, 1, x4, . . . , xn), where

xi ∈ {0, 1}, for 4 ≤ i ≤ n. The point u = (1, 1,−1, 0, . . . , 0) is covered by

a codeword y ∈ T. By Lemma 2.11 we have that y 6∈ {x,0} and we can

distinguish between three cases:

Case 1: If yi ∈ {ui, ui + 1} for all i, 1 ≤ i ≤ n, then wC(y) ≤ 2, a

contradiction.

Case 2: There exists a j such that yj = uj − 1 and yi ∈ {ui, ui + 1}
for all i 6= j. Since wC(Y ) ≥ 3 it follows that j = 3 and hence y =

(2, 2,−2, y4, . . . , yn), where yi ∈ {0, 1}, for 4 ≤ i ≤ n. This implies that

dC(x,y) = 2, a contradiction.

Case 3: There exists a j such that yj = uj + 2 and yi ∈ {ui, ui + 1} for all

i 6= j. Since wC(y) ≥ 3 it follows that j 6= 3. Without loss of generality it

implies that y can take one of the following forms:

• y = (3, 2, y3, y4, . . . , yn) or y = (2, 3, y3, y4, . . . , yn), where y3 ∈ {−1, 0}
and yi ∈ {0, 1}, for 4 ≤ i ≤ n.

• y = (2, 2, y3, 2, y5, . . . , yn), where y3 ∈ {−1, 0} and yi ∈ {0, 1}, for

5 ≤ i ≤ n.

Both forms implies that dC(x,y) ≤ 2, a contradiction.

Therefore, there is no codeword y ∈ T which covers u, a contradiction.

Thus, if x ∈ D1 ∩ T then x = 3er + 2es for some r 6= s.

2

Let D2 be the set of points from {0, 1, 4}n in which 4 appears exactly

once.

Lemma 2.13 If x ∈ D2 ∩ T then x = 4er for some 1 ≤ r ≤ n.

Proof. Assume without loss of generality that x = (4, 1, x3, . . . , xn), where

xi ∈ {0, 1}, for 3 ≤ i ≤ n. The point u = (1, 1, 0, . . . , 0) is covered by a

codeword y ∈ T. By Lemma 2.11 we have that y 6∈ {x,0} and we can

distinguish between two cases:
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Case 1: If yi ∈ {ui, ui + 1} for all i, 1 ≤ i ≤ n, with a possible exception

for at most one j, for which yj = aj − 1, then wC(Y ) ≤ 2, a contradiction.

Case 2: There exists a j such that yj = uj + 2 and yi ∈ {ui, ui + 1} for

all i 6= j. Without loss of generality it implies that y can take one of the

following forms:

• y = (3, 2, y3, . . . , yn), y = (2, 3, y3, . . . , yn), where yi ∈ {0, 1} for 3 ≤
i ≤ n.

• y = (2, 2, 2, y4, . . . , yn), where yi ∈ {0, 1} for 4 ≤ i ≤ n.

Hence, dC(x,y) ≤ 2, a contradiction.

Therefore, there is no codeword y ∈ T which covers u, a contradiction.

Thus, if x ∈ D2 ∩ T then x = 4er for some 1 ≤ r ≤ n.

2

Corollary 2.14 For each r, 1 ≤ r ≤ n, the point 2er is covered by a

codeword x ∈ T, where either x = 4er or x = 3er + 2es for some s 6= r.

Proof. By Lemma 2.11, x is not the all-zero codeword. Moreover, since

wC(x) ≥ 3 it can be easily verified that either x ∈ D1 or x ∈ D2. It follows

from Lemmas 2.12 and 2.13 that either x = 4er or x = 3er + 2es for some

s 6= r.

2

Let D3 be the set of points from {0, 1, 2}n in which 2 appears exactly

three times.

Lemma 2.15 If x = 3er + 2es ∈ T then for every k 6∈ {r, s} there exists a

unique j 6∈ {r, s, k} and a codeword y ∈ D3 ∩ T such that yr = 1, ys = yk =

yj = 2.

Proof. Let k 6∈ {r, s} and consider the point u = er +es+ek. Assume with-

out loss of generality that r = 1, s = 2, and k = 3, i.e. x = (3, 2, 0, . . . , 0)

and u = (1, 1, 1, 0 . . . , 0). The point u is covered by a codeword y ∈ T. By

Lemma 2.11 we have that y 6∈ {x,0} and we can distinguish between three

cases:

Case 1: If yi ∈ {ui, ui + 1} for 1 ≤ i ≤ n, then since wC(y) ≥ 3 it follows

that y = (2, 2, 2, y4, . . . , yn), where yi ∈ {0, 1}, for 4 ≤ i ≤ n. Hence,

dC(x,y) = 1, a contradiction.

Case 2: There exists a j such that yj = uj − 1 and yi ∈ {ui, ui + 1} for

all i 6= j. If j ≤ 3 then wC(y) ≤ 2, a contradiction. If j > 3 then since

wC(y) ≥ 3 it follows that y = (2, 2, 2, y4, . . . , yn), where yi ∈ {−1, 0, 1} for

4 ≤ i ≤ n, and hence dC(x,y) = 1, a contradiction.
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Case 3: There exists a j such that yj = uj + 2 and yi ∈ {ui, ui + 1} for

all i 6= j. If j ≤ 3 then since wC(y) ≥ 3 and dC(x,y) ≥ 3 it follows that

y = (1, 2, 3, y4, . . . , yn), where yi ∈ {0, 1}, for 4 ≤ i ≤ n, a contradiction to

Lemma 2.12.

Therefore, there exists a j > 3 such that yj = uj +2 and yi ∈ {ui, ui+1}
for all i 6= j. Assume without loss of generality that j = 4. Since wC(y) ≥ 3

and dC(x,y) ≥ 3 it follows that y = (1, 2, 2, 2, y5, . . . , yn), where yi ∈ {0, 1},
for 5 ≤ i ≤ n. The uniqueness of j follows from the fact that if there exists

another j and a related codeword y′ then dC(y,y′) ≤ 2.

2

Corollary 2.16 If 3er + 2es ∈ T, for some r, s ∈ [n], r 6= s, then n is even.

Proof. By Lemma 2.15 all coordinates except for r and s should be paired,

in disjoint pairs (such a pair {k, j} induces a codeword of the form y =

(y1, y2, . . . , yn) ∈ D3 ∩ T, where yr = 1, ys = yk = yj = 2). Thus, n is even.

2

From Corollaries 2.14 and 2.16 it is infered that

Corollary 2.17 If n is odd then for all x ∈ T and 1 ≤ r ≤ n we have

x + 4er ∈ T, i.e. T is a periodic tiling with period 4.

Theorem 2.18 If T is an integer tiling with Υn, where n is an odd integer,

then n = 2t − 1 for some t > 0.

Proof. By Corollary 2.17 we have that T is a periodic tiling with period

4. Therefore, C = T ∩ {0, 1, 2, 3}n is a tilling of Zn4 with Υn. Therefore,

|C| · |Υn| = 4n and |Υn| divides 4n. The size of Υn is 2n(n + 1) and hence

n = 2t − 1 for some t > 0.

2

Lemma 2.19 If there exist two distinct codewords x = 3ei + 2ej and x′ =

3er + 2es in T then {i, j} ∩ {r, s} = ∅.

Proof. Assume without loss of generality that i = 1 and j = 2. Since

dC(x,x′) ≥ 3 it follows that r 6= 1 and x′ 6= 3e2 + 2e1. If r = 2 or s = 2

then assume without loss of generality that x′ = (0, 3, 2, 0, . . . , 0) or x′ =

(0, 2, 3, 0, . . . , 0). By Lemma 2.15 we have a codeword y = (1, 2, 2, y4, . . . , yn) ∈
D3∩T. It implies that dC(x′,y) = 1, a contradiction. The case where s = 1

and r > 2 is symmetric to the case where r = 2 and s > 2.

2

From Corollary 2.14 and Lemma 2.19 we have that
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Corollary 2.20 If 3er + 2es ∈ T then 4es ∈ T.

Theorem 2.21 If T is an integer lattice tiling with Υn then either n = 2t−1

or n = 3t − 1 for some t > 0.

Proof. Assume that there are exactly k codewords of the form 3ei + 2ej in

T. From Corollaries 2.14 and 2.20 and by Lemma 2.19 the lattice T contains

a sublattice defined by these k codewords and n− k codewords of the form

4es. The generator matrix of this sublattice is a block-diagonal matrix with

k 2×2 blocks of the form
[

3 2

0 4

]
and n−2k 1×1 blocks of the form [ 4 ].

The volume of this sublattice is divided by the volume of the lattice T. The

volume of the sublattice is 3k4n−k and therefore, the volume of the lattice

T is of the form 3`2m, for some ` ≥ 0 and m ≥ 0. On the otherhand the

volume of the lattice T is the volume of the shape Υn, i.e. 2n(n + 1). By

Theorem 2.18 we have that if n is odd then n = 2t − 1 for some t > 0. If

n is even then n + 1 is odd and since 3`2m = 2n(n + 1) we must have that

n = 3` − 1 for some ` > 0.

2

It remains to prove that if there exists an integer tiling of Zn with Υn,

where n is even, then n = 3t−1, for some t > 0. To this end, the concept of

packing triple system is required, which will be used to prove that if n is even

then T contains exactly n
2 codewords of the form 3er + 2es, where the union

of their nonzero coordinates is the set of all n coordinates. The structure

of the codewords in T combined with arguments based on reflections and

translations of the tiling, will imply a period 12 for the tiling when n is even.

As a consequence it is infered that if n is even then n = 3t − 1, for some

t > 0.

A packing triple system of order n is a pair (Q,B), where Q is an n-set

and B is a collection of 3-subsets of Q, called blocks such that each 2-subset

of Q is contained in at most one block of B. Spencer [81] proved that if

n 6≡ 5 (mod 6) then

|B| ≤
⌊
n

3

⌊
n− 1

2

⌋⌋
. (2.1)

Lemma 2.22 For each 1 ≤ i < j ≤ n, the point ei + ej is covered by a

codeword x ∈ T, where x = 3ei + 2ej or x = 3ej + 2ei or x ∈ D3, where

xi = xj = 2.

Proof. Follows from Lemmas 2.11 and 2.12 and the fact that for each nonzero

codeword x ∈ T we have wC(x) ≥ 3.

2
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Let

F1
def
={{i, j} : 3ei + 2ej ∈ T}

and

F2
def
={{i, j, k} : 2ei + 2ej + 2ek +

∑
m 6∈{i,j,k}

αmem ∈ T, αm ∈ {0, 1}} .

Since T is a tiling it follows that each point ei + ej , i 6= j, is covered by

exactly one codeword of T. As a consequence of Lemma 2.22, we have that

each pair {r, s} is a subset of exactly one element from F1 ∪ F2. Therefore,

F2 is a packing triple system of order n.

Theorem 2.23 If T is an integer tiling with Υn then n 6≡ 4 (mod 6).

Proof. Assume T is an integer tiling with Υn, n ≡ 4 (mod 6). By (2.1) we

have that

|F2| ≤
n2 − 2n− 2

6
.

Since each pair {i, j} ⊂ {1, 2, . . . , n} is contained in either F1 or F2 it follows

that

|F1|+ 3|F2| =
(
n

2

)
.

Hence, |F1| ≥ n
2 + 1. Lemma 2.19 implies that |F1| ≤ n

2 , a contradiction.

2

By using the same arguments as in the proof of Theorem 2.23 we have

that if n ≡ 0 or 2 (mod 6) then |F1| ≥ n
2 . Hence, by Lemma 2.19 the

following lemma is inferred

Lemma 2.24 If n is even and T is an integer tiling with Υn, then there are

exactly n
2 codewords of the form 3er + 2es.

Combing Lemmas 2.19 and 2.24 results in the following corollary.

Corollary 2.25 If n is even and T is an integer tiling with Υn, then there

are exactly n
2 codewords of the form 3er+2es and the set {i : 3ei+2ej ∈ T

or 3ej + 2ei ∈ T} contains all the integers between 1 and n.

Let T′ be the tiling of Zn with Υn defined by T′def
={x : −x ∈ T}. Since

T′ is a tiling of Zn with Υn, it follows that the lemmas and the corollaries

that hold for the tiling T hold also for T′. They imply new lemmas and

corollaries for T. For example we have

Corollary 2.26 For each r, 1 ≤ r ≤ n, the point −2er is covered by a

codeword x ∈ T, where either x = −4er or x = −3er − 2es for some s 6= r.
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In a similar way we can define 2n tilings of Zn with Υn. For a = (a1, a2, . . . , an),

where ai ∈ {−1, 1}, let Ta be the tiling of Zn with Υn defined by

Ta
def
={(x1, x2, . . . , xn) : (a1x1, a2x2, . . . , anxn) ∈ T}.

As for T′ = T(−1,−1,...,−1), each lemma and each corollary holds for Ta and

thus implies new claims on T. Without loss of generality we assume (based

on Lemma 1.4, Corollaries 2.20 and 2.25) that 3e2i−1+2e2i ∈ T and 4e2i ∈ T,

for all 1 ≤ i ≤ n
2 .

Lemma 2.27 If x = 3er + 2es ∈ T then −4es ∈ T.

Proof. Without loss of generality we will prove the claim for r = 1 and

s = 2; let a = (1,−1, 1, . . . , 1). Since 3e2i−1 + 2e2i ∈ T, for all 2 ≤ i ≤ n
2 ,

it follows that 3e2i−1 + 2e2i ∈ Ta, for all 2 ≤ i ≤ n
2 , and by Corollary 2.25

we have that either 3e1 + 2e2 ∈ Ta or 2e1 + 3e2 ∈ Ta. If 2e1 + 3e2 ∈ Ta

then Corollary 2.20 implies that y = 4e1 ∈ Ta. Therefore, y = 4e1 ∈ T,

and since dC(x,y) = 1 we have a contradiction. Hence, 3e1 + 2e2 ∈ Ta, and

therefore, by Corollary 2.20 we have that 4e2 ∈ Ta, i.e. −4e2 ∈ T.

2

Corollary 2.28 4es ∈ T if and only if −4es ∈ T.

Lemma 2.29 If x = 3er + 2es ∈ T then −3er − 2es ∈ T.

Proof. Without loss of generality we will prove the claim for r = 1 and

s = 2; let a = (−1,−1, 1, . . . , 1). Since 3e2i−1 + 2e2i ∈ T, for all 2 ≤ i ≤ n
2 ,

it follows that 3e2i−1 + 2e2i ∈ Ta, for all 2 ≤ i ≤ n
2 , and by Corollary 2.25

we have that either 3e1 +2e2 ∈ Ta or 2e1 +3e2 ∈ Ta. If 2e1 +3e2 ∈ Ta then

Lemma 2.27 implies that −4e1 ∈ Ta. Therefore, y = 4e1 ∈ T, and since

dC(x,y) = 1 we have a contradiction. Hence, 3e1 + 2e2 ∈ Ta, and therefore

we have that −3e1 − 2e2 ∈ T.

2

Corollary 2.30 3er + 2es ∈ T if and only if −3er − 2es ∈ T.

Lemma 2.31 If 3er + 2es ∈ T then 12er, 12es ∈ T.

Proof. By Corollary 2.20 we have that 4es ∈ T. The translation T1 = −4es+

T is a tiling with Υn for which 0,−4es ∈ T1. It follows by Corollary 2.28

that 4es ∈ T1 and hence 8es ∈ T. Similarly, 12es ∈ T.

Similarly, by Corollary 2.30 we have that 0, 3er + 2es ∈ T implies that

6er + 4es, 9er + 6es, 12er + 8es ∈ T. The translation T1 = −12er − 8es + T
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is a tiling with Υn for which 0,−3er − 2es ∈ T1. By Corollary 2.30 and

Lemma 2.27 we have that −4es ∈ T1, and hence 12er + 4es ∈ T. Similarly,

by Corollary 2.28 we have 12er + 4es, 12er + 8es ∈ T which implies that

12er ∈ T.

2

Corollary 2.32 If n is even and T is an integer tiling with Υn, then T is

a periodic tiling with period 12.

Theorem 2.33 If T is an integer tiling with Υn, where n is an even integer,

then n = 3t − 1 for some t > 0.

Proof. By Corollary 2.32 we have that T is a periodic tiling with period 12.

Therefore, the size of Υn divides 12n. The size of Υn is 2n(n+ 1) and hence

n + 1 divides 2n3n. Since n is even it follows that n + 1 is odd and thus

n = 3t − 1 for some t > 0.

2

Theorems 2.18 and 2.33 are combined to obtain

Corollary 2.34 If T is an integer tiling with Υn, then either n = 2t − 1 or

n = 3t − 1, for some t > 0.

Corollary 2.35 If T is a 1
2Z-tiling with a (0.5, n)-cross, then either n =

2t − 1 or n = 3t − 1, for some t > 0.

2.2 Tilings based on Perfect Codes in the Ham-

ming Scheme

In section 2.1 it is proved that a 1
2Z-tiling with (0.5, n)-cross exists only if

n = 2t − 1 or n = 3t − 1, for some t > 0. In this section it is proved that

this necessary condition is also sufficient. Surprisingly, two constructions

which produce the related tilings are based on perfect codes in the Hamming

scheme (for definition of Hamming distance see Definition 1.13) . If n = 2t−1

then the perfect code is binary of length n and the construction of the tiling

is very simple. If n = 3t − 1 then the perfect code is ternary of length n
2 .

Recall that for a code C, its minimum Hamming distance, dH(C), is the

largest integer d for which dH(x,y) ≥ d, for every two distinct codewords

x,y ∈ C. The minimum cross distance of a code C, dC(C), is defined simi-

larly. A code C ⊂ Znq with minimum Hamming distance 2t + 1 is a perfect

t-error-correcting code if for each word a ∈ Znq there exists a codeword x ∈ C
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such that dH(a,x) ≤ t. Such a code is capable to correct up to t transmis-

sion errors [58]. The Hamming sphere of radius t centered at u ∈ Znq is the

set {v ∈ Znq : dH(u,v) ≤ t}. The code C is a perfect single-error-correcting

code if and only if C is a tiling of Znq with a Hamming sphere of radius one.

Only single-error-correcting are used in this section. Henceforth, a perfect

single-error-correcting code will shortly be called a perfect code. Binary

(q = 2) perfect codes exists if and only if n = 2t − 1, where t > 0. Ternary

(q = 3) perfect codes exists if and only if n = 3t−1
2 , where t > 0. These

are the only perfect codes which are of interest in this section. Finally, we

note that a perfect code is identified by its size, its minimum distance, and

the fact that each element of Znq is covered by at least one codeword. One

can easily verify that given any two of these parameters one can determine

whether the code is perfect or not perfect. This fact will be used throughout

this section.

Remark 2.1 A perfect code C of length n over Zq is known to exist if q is

a power of a prime and n = qt−1
q−1 , where t > 0. The related sphere of radius

one can be viewed as a (q − 1, n)-semicross or as a ( q−1
2 , n)-cross. Thus,

these perfect codes form tilings with the related semicrosses and crosses.

Only if q is a prime some of the known tilings are lattice tilings (they are

related to linear perfect codes). If q is not a prime then the tiling of Zn is

done first by using any one-to-one mapping between GF(q) (on which the

codes are defined) and Zq. Tilings of this type have applications in flash

memories [76]. If q = 2 then C is a tiling of Zn2 with (0.5, n)-cross and E(C)
forms a tiling of Zn with (0.5, n)-cross.

2.2.1 Binary Perfect Codes

Since the size of of a sphere with radius one in Zn2 is n+ 1, it follows that a

binary perfect code of length n = 2t − 1 has 2n−t codewords.

Theorem 2.36 There exists an one-to-one correspondence between the set

of binary perfect codes of length n = 2t−1 and the set of integer tilings with

Υn in which each codeword has only even entries.

Proof. Note first, that by Corollary 2.17 a tiling T of Zn with Υn is periodic

with period 4 and hence it can be reduced to a tiling of Zn4 with Υn.

The size of an (1, n)-semicross is equal the size of a (0.5, n)-cross. It im-

plies that the number of codewords in a binary perfect single-error-correcting

code C of length n = 2t − 1 is equal the number of codewords in a tiling T
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of Zn4 with Υn. If x,y ∈ {0, 2}n then 0.5x and 0.5y are binary words and it

is easy to verify that dC(x,y) = dH(0.5x, 0.5y).

Therefore, if C is a binary perfect code of length n = 2t − 1 then 2E(C)
is a tiling of Zn with Υn in which each codeword has only even entries.

Similarly, if T is a tiling of Zn with Υn, in which each codeword has only

even entries, then 0.5T ∩ {0, 1}n is a binary perfect code.

2

Corollary 2.37 There exists an one-to-one correspondence between the set

of binary perfect codes of length n = 2t−1 and the set of integer tilings with

(0.5, n)-cross.

Do there exists any integer tilings with Υn, where n = 2t− 1, except for

those implied by Theorem 2.36? The answer is that there exist many such

tilings. Let C be a binary code of length n. Its punctured code C′ of length

n− 1 is defined by C′def
={c : (c, x) ∈ C, x ∈ {0, 1}}.

Construction 2.38 Let C be a binary perfect code of length n and C′ its

punctured code. Let C′e and C′o be the set of codewords from C′ with even

weight and odd weight, respectively. We define a code C∗def
=C∗1 ∪ C∗2 over Zn4 ,

where

C∗1
def
={(2c, 2x) : c ∈ C′e, (c, x) ∈ C} and C∗2

def
={(2c, 2x+1) : c ∈ C′o, (c, x) ∈ C} .

Theorem 2.39 The expanded code of C∗,

E(C∗) = {x ∈ Zn : (x1( mod 4), x2( mod 4), . . . , xn( mod 4)) ∈ C∗},

defines a tiling of Zn with Υn, in which not all entries are even.

Proof. Since dH(C) = 3 it follows that dH(C′) = dH(C′e) = dH(C′o) = 2

and dC(C∗1) = dC(C∗2) = 3. If c̃1 ∈ C′e and c̃2 ∈ C′o then dH(c̃1, c̃2) is an odd

integer. Hence, since dH(C′) = 2, it follows that dH(c̃1, c̃2) ≥ 3. Therefore, if

c̃∗1 ∈ C1 and c̃∗2 ∈ C2 then dC(c̃∗1, c̃
∗
2) ≥ 3 and thus dC(C∗) ≥ 3. The minimum

distance of the code C∗ and its number of codewords implies that C∗ is a

tiling of Zn4 with Υn. It is easy to verify that C′o has at least one codeword

(in fact it can be proved that it contains exactly half of the codewords) and

hence the last entry in at least one of the codewords of C∗ is 1 or 3.

2
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Example 2.40 The following code forms a tiling of Z7
4 with Υ7:

0000000 0000222 2222000 2222222

2200201 2200023 0022201 0022023

2020021 2020203 0202021 0202203

2002002 2002220 0220002 0220220

Remark 2.2 Let ξ be a mapping from Z4 to Z2 defined by ξ(0) = ξ(1) = 0,

ξ(2) = ξ(3) = 1. If T forms a tiling of Zn4 with Υn then the code C =

{ξ(x) : x ∈ T}, where ξ(x1, x2, . . . , xn) = (ξ(x1), ξ(x2), . . . , ξ(xn)) is a

binary perfect code of length n.

Remark 2.3 By Corollary 2.17 an integer tiling with Υn, where n is odd,

has period 4. Hence, the related 1
2Z-tiling T with (0.5, n)-cross has period 2.

It implies that this tiling is also a tiling with the (1, n)-semicross (even if T
is not a Z-tiling).

2.2.2 Ternary Perfect Codes

Let ν = n
2 . Since the size of a sphere with radius one in Zν3 is 2ν+1, it follows

that a ternary perfect code of length ν has 3ν−t codewords. Let Λn be the

lattice generated by the basis {3e2i−1 + 2e2i : 1 ≤ i ≤ ν} ∪ {4e2i : 1 ≤
i ≤ ν}. Let Gn be the quotient group Zn/Λn. The following lemma can be

readily verified.

Lemma 2.41 The group G2 has size 12 and the 12 representatives of ele-

ments from G2 (the cosets of Λ2 in Z2) can be taken as {0, 1, 2}×{0, 1, 2, 3} =

[0, 2]× [0, 3].

Let ([0, 2]×[0, 3])m
def
= ([0, 2]× [0, 3])× ([0, 2]× [0, 3])× · · · × ([0, 2]× [0, 3])︸ ︷︷ ︸

m times

.

Corollary 2.42 The group Gn has size 12ν and the 12ν representatives of

elements from Gn (the cosets of Λn in Zn) can be taken as the elements of

([0, 2]× [0, 3])ν .

Consider the mapping Φ : Zν3 → Gn defined by

Φ(x1, x2, ..., xν) = (φ(x1), φ(x2), ..., φ(xν)) ,
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where φ : Z3 → G2 is a mapping defined by

φ(x) =


(0, 0) if x = 0

(1, 2) if x = 1

(2, 0) if x = 2

.

It is easy to verify that both φ and Φ are injective group homomorphisms.

Let C be a ternary perfect code of length ν with 3ν−t codewords, and

let Φ(C)def
={Φ(c̃) : c̃ ∈ C}. Since the elements of Φ(C) are representatives of

elements of Gn (see Corollary 2.42) it follows that the elements of Φ(C) can

be considered as elements in Zn. Let Tn
def
= Φ(C) + Λn.

Theorem 2.43 The set Tn is a tiling of Zn with Υn.

Proof. Clearly, Λn is a lattice with period 12 and hence Tn is a periodic code

of Zn with period 12. Therefore, without loss of generality we can restrict

our discussion to Zn12. i.e. codewords of Tn ∩ [0, 11]n. Since |Υn| = 22ν3t

it follows that the size of the tiling Tn in [0, 11]n, |Tn ∩ [0, 11]n|, should be

22ν32ν−t. To prove that Tn is a tiling of Zn with Υn we will show that the

size of Tn ∩ [0, 11]n is 22ν32ν−t and we will prove that each point of Zn is

covered by an element of Tn.

Claim: For any two codewords c̃1, c̃2 ∈ C, and two lattice points y1,y2 ∈
Λn, we have Φ(c̃1) + y1 6= Φ(c̃2) + y2, unless c̃1 = c̃2 and y1 = y2.

Proof: Assume that Φ(c̃1) + y1 = Φ(c̃2) + y2, i.e. Φ(c̃1)−Φ(c̃2) = y2−y1,

c̃1, c̃2 ∈ C and y1,y2 ∈ Λn. Hence, y2 − y1 = (α1, . . . , αn) is a lattice

point and unless y1 = y2 we have that for at least one i, |αi| > 2. Denote

Φ(c̃1)− Φ(c̃2) = (β1, . . . , βn). By the definition of Φ, for each i, 1 ≤ i ≤ n,

we have |βi| ≤ 2. Therefore, y1 = y2 and Φ(c̃1) = Φ(c̃2) and since Φ is an

injective mapping it implies that c̃1 = c̃2 and the claim is proved.

The claim implies that |Tn ∩ [0, 11]n| = |Φ(C)| · |Λn ∩ [0, 11]n|. Since Φ

is an injective mapping we also have that |Φ(C)| = |C|. Since Λn has period

12 and V (Λn) = 12ν it follows that |Λn ∩ [0, 11]n| = 12ν . Therefore,

|Tn∩[0, 11]n| = |Φ(C)|·|Λn∩[0, 11]n| = |C|·|Λn∩[0, 11]n| = 3ν−t12ν = 22ν32ν−t

as required.
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class [(0,0)] (0,0) (0,3) (2,2) (2,1) ←− (x1, x2)

(P.1) [(y1, y2)] = [(0, 0)] (0,0) (0,4) (3,2) (3,2) ←− (u1, u2) + (y1, y2)

(P.2) [(y1, y2)] = [(1, 2)] (1,2) (1,2) (1,2) (1,2) ←− (u1, u2) + (y1, y2)

(P.2) [(y1, y2)] = [(2, 0)] (2,0) (2,4) (2,4) (2,0) ←− (u1, u2) + (y1, y2)

class [(1,2)] (1,2) (1,1) (0,1) (0,2) ←− (x1, x2)

(P.2) [(y1, y2)] = [(0, 0)] (3,2) (3,2) (0,0) (0,4) ←− (u1, u2) + (y1, y2)

(P.1) [(y1, y2)] = [(1, 2)] (1,2) (1,2) (1,2) (1,2) ←− (u1, u2) + (y1, y2)

(P.2) [(y1, y2)] = [(2, 0)] (2,4) (2,0) (-1,2) (-1,2) ←− (u1, u2) + (y1, y2)

class [(2,0)] (2,0) (1,3) (2,3) (1,0) ←− (x1, x2)

(P.2) [(y1, y2)] = [(0, 0)] (3,2) (0,4) (3,2) (0,0) ←− (u1, u2) + (y1, y2)

(P.2) [(y1, y2)] = [(1, 2)] (4,0) (1,2) (4,4) (1,2) ←− (u1, u2) + (y1, y2)

(P.1) [(y1, y2)] = [(2, 0)] (2,0) (2,4) (2,4) (2,0) ←− (u1, u2) + (y1, y2)

Table 2.1: Properties (P.1) and (P.2).

To show that every point of Zn is covered by an element of Tn we first

partition the elements of [0, 2]× [0, 3] into three classes:

[(0, 0)] = {(0, 0), (0, 3), (2, 2), (2, 1)}
[(1, 2)] = {(1, 2), (1, 1), (0, 1), (0, 2)}
[(2, 0)] = {(2, 0), (1, 3), (2, 3), (1, 0)}

,

The following two properties are readily verified (as can be verified from

Table 2.1).

(P.1) For each element (x1, x2) in a class [(y1, y2)] there exists an element

(u1, u2) ∈ Λ2 such that ui + yi ∈ {xi, xi + 1}, for i ∈ {1, 2}.

(P.2) For each element (x1, x2) ∈ [0, 2]× [0, 3] and each class [(y1, y2)] there

exists an element (u1, u2) ∈ Λ2 such that ui+yi ∈ {xi−1, xi, xi+1, xi+

2}, for i ∈ {1, 2}, and for at most one i we have ui+yi ∈ {xi−1, xi+2}.

Consider the mapping Ψ : ([0, 2]× [0, 3])ν → [0, 2]ν defined by

Ψ(x1, x2, ..., xn) = (ψ(x1, x2), ψ(x3, x4), ..., ψ(xn−1, xn)) ,

where ψ : [0, 2]× [0, 3]→ Z3 is a mapping defined by

ψ(x1, x2) =


0 if (x1, x2) ∈ [(0, 0)]

1 if (x1, x2) ∈ [(1, 2)]

2 if (x1, x2) ∈ [(2, 0)]

.

For a given point z = (z1, z2, . . . , zn) ∈ Zn we will exhibit a point x ∈ Tn
which covers z. By Corollary 2.42 we have that there exists an element
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y ∈ Λn such that z + y ∈ ([0, 2] × [0, 3])ν . Let b = z + y = (b1, b2, . . . , bn)

and let Ψ(b) = (α1, α2, . . . , αν) ∈ Zν3 . Since C is a perfect code of length ν

over Z3 it follows that there exists a codeword (c1, c2, . . . , cν) ∈ C such that

dH((α1, α2, . . . , αν), (c1, c2, . . . , cν)) ≤ 1. Let γ = Φ(c1, c2, . . . , cν), where

γ = (γ1, γ2, . . . , γn). Note that by the definitions of Φ and Ψ it follows that

(b2i−1, b2i) and φ(αi) are in the same class, for all 1 ≤ i ≤ ν. Now, we

distinguish between two cases:

Case 1: If (α1, α2, . . . , αν) = (c1, c2, . . . , cν) then by property (P.1) there

exists an element (u1, u2, . . . un) ∈ Λn such that ui + γi ∈ {bi, bi + 1}, for

1 ≤ i ≤ n. Therefore, by Lemma 2.11 we have that (u1, u2, . . . , un) +

(γ1, γ2, . . . , γn) covers b and hence the required x is

x = (u1, u2, . . . un) + (γ1, γ2, . . . , γn)− y.

Case 2: If (α1, α2, . . . , αν) 6= (c1, c2, . . . , cν) then the Hamming distance

between (α1, α2, . . . , αν) and (c1, c2, . . . , cν) is one, and hence there exists

exactly one coordinate s such that αs 6= cs. By properties (P.1) and (P.2)

there exists an element (u1, u2, . . . , un) ∈ Λn such that ui+γi ∈ {bi−1, bi, bi+

1, bi+2}, for 1 ≤ i ≤ n, and for at most one i we have ui+γi ∈ {bi−1, bi+2}.
Therefore, by Lemma 2.11 we have that (u1, u2, . . . , un) + (γ1, γ2, . . . , γn)

covers b and hence the required x is

x = (u1, u2, . . . , un) + (γ1, γ2, . . . , γn)− y.

Since we proved that the size of Tn ∩ [0, 11]n is 22ν32ν−t and each point

of Zn is covered by an element of Tn, the theorem is proved.

2

Theorem 2.44 If C is a linear code then Tn is a lattice tiling.

Proof. Follows immediately from Theorem 2.43 and the facts that C is a

linear code and Φ is a group homomorphism.

2
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Chapter 3

Tiling with n-Dimensional

Chairs and Their

Applications to Asymmetric

Codes

Storage media which are constrained to change of values in any location of

information only in one direction were constructed throughout the last fifty

years. From the older punch cards to later optical disks and modern storage

such as flash memories, there was a need to design coding which enables the

values of information to be increased but not to be decreased. These kind of

storage medias are asymmetric memories. The codes used in these medias

are called, asymmetric codes. Some of these memories behave as write-once

memories (or WOMs in short) and coding for them was first considered in

the seminal work of Rivest and Shamir [70]. This work initiated a sequence

of papers on this topic, e.g. [16, 32, 33, 101, 107].

The emerging new storage media of flash memory raised many new inter-

esting problems. Flash memory is a nonvolatile reliable memory with high

storage density. Its relatively low cost makes it the ideal memory to replace

the magnetic recording technology in storage media. A multilevel flash cell

is electronically programmed into q threshold levels which can be viewed

as elements of the set {0, 1, . . . , q − 1}. Raising the charge level of a cell

is an easy operation, but reducing the charge level of a single cell requires

to erase the whole block to which the cell belongs. This makes the reduc-

ing of a charge level to be a complicated, slow, and unwanted operation.

Hence, the cells of the flash memory act as an asymmetric memory as long

as blocks are not erased. This has motivated new research work on WOMs,
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e.g. [11, 79, 99, 103, 105].

Moreover, usually in programming of the cells, the charge level in a

single cell of a flash memory can only to be raised, and hence the errors

in a single cell are asymmetric. Asymmetric error-correcting codes were

subject to extensive research due to their applications in coding for computer

memories [68]. The errors in a cell of a flash memory are a new type of

asymmetric errors which have limited-magnitude. Errors in this model are

in one direction and are not likely to exceed a certain limit. This means that

a cell in level i can be raised by an error to level j, such that i < j ≤ q − 1

and j − i ≤ ` ≤ q − 1, where ` is the error limited-magnitude. Asymmetric

error-correcting codes with limited-magnitude were proposed in [2] and were

first considered for nonvolatile memories in [9, 10]. Recently, several other

papers have considered the problem, e.g. [22, 23, 48, 104].

In this work solutions for both the construction problem of asymmetric

codes with limited-magnitude and the coding problem in WOMs are pre-

sented. The proposed solutions use the concept of tiling. Tiling is a well

established concept in combinatorics and especially in combinatorial geom-

etry. There are many algebraic methods related to tiling [88] and it is an

important topic also in coding theory. Tiling in this work is done with a

shape S and only shapes which form an error sphere for asymmetric limited-

magnitude codes or their immediate generalization in Rn are considered (see

Chapter 1 for definition of tiling).

As mentioned in Chapter 2, two of the most considered shapes for tiling

are the cross and the semi-cross [86, 88]. These were also considered in con-

nections to flash memories [76]. In this chapter another shape which will be

called in the sequel an n-dimensional chair is considered. An n-dimensional

chair is an n-dimensional box from which a smaller n-dimensional box is

removed from one of its corners (example of a three dimensional chair is

given in Figure 3.1). This is a generalization of the original concept which

is an n-dimensional cube from which one vertex was removed [55]. Lattice

tiling with this shape is discussed, regardless of the length of each side of

the larger box and the length of each side of the smaller box.

An equivalent way to present a lattice tiling is given. This method is

called a generalized splitting and it generalizes the concepts of splitting

defined in [82]; and the concept of Bh[`] sequences defined and used for

construction of codes correcting asymmetric errors with limited-magnitude

in [48]. Two applications of tilings with such a shape are presented. One

application is for construction of codes which correct up to n−1 asymmetric

limited-magnitude errors with any given magnitude for each cell; and a

second application is for constructing WOM codes with multiple writing.

38

Technion - Computer Science Department - Ph.D. Thesis  PHD-2014-11 - 2014



An n-dimensional chair S`,k ⊂ Rn, ` = (`1, `2, ..., `n), k = (k1, k2, ..., kn) ∈
Rn, 0 < ki < `i for each i, 1 ≤ i ≤ n, is an n-dimensional `1× `2× · · · × `n
box from which an n-dimensional k1× k2× · · · × kn box was removed from

one of its corners. Formally, it is defined by

S`,k
def
=

{
(x1, x2, . . . , xn) ∈ Rn :

0 ≤ xi < `i , and there exists a j,

1 ≤ j ≤ n, such that xj < `j − kj

}
.

The following lemma on the volume of S`,k is an immediate consequence

of the definition.

Lemma 3.1 If ` = (`1, `2, ..., `n), k = (k1, k2, ..., kn) are two vectors in Rn,

where 0 < ki < `i for each i, 1 ≤ i ≤ n, then

|S`,k| =
n∏
i=1

`i −
n∏
i=1

ki .

If ` = (`1, `2, ..., `n), k = (k1, k2, ..., kn) ∈ Zn then the n-dimensional

chair, S`,k, is a discrete shape. In this case the formal definition of the

n-dimensional chair, which considers only points of Zn, is

S`,k
def
=

{
(x1, x2, . . . , xn) ∈ Zn :

0 ≤ xi < `i , and there exists a j,

1 ≤ j ≤ n, such that xj < `j − kj

}
.

For n = 2, if `1 = `2 = ` and k1 = k2 = ` − 1, then the chair coincides

with the shape known as a corner (or a semi-cross) [85]. Examples of a two-

dimensional semi-cross and a three-dimensional chair are given in Figure 3.1.
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Figure 3.1: A semi-cross with ` = 4 and a 3-dimensional chair with ` = (5, 4, 3)
and k = (3, 3, 1).

Let G be an Abelian group and let β = β1, β2, ..., βn be a sequence with

n elements of G. For every x = (x1, x2, ...xn) ∈ Zn we define

x · β =
n∑
i=1

xiβi,
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where addition and multiplication are performed in G.

A set S ⊂ Zn splits an Abelian group G with a splitting sequence

β = β1, β2, ..., βn, βi ∈ G, for each i, 1 ≤ i ≤ n, if the set {e · β : e ∈ S}
contains |S| distinct elements from G. We will call this operation a general-

ized splitting. The splitting defined in [37] and discussed in [40, 82, 84, 86] is

a special case of the generalized splitting. It was used for the shapes known

as cross and semi-cross [84, 85], and quasi-cross [76]. The Bh[`] sequences

defined in [48] and discussed in [48, 50] for construction of codes which cor-

rect asymmetric errors with limited-magnitude are also a special case of the

generalized splitting. These Bh[`] sequences are modification of the well

known Sidon sequences and their generalizations [63]. The generalized split-

ting also makes generalization for a method discussed by Varshamov [96, 97].

The generalization can be easily obtained, but to our knowledge a general

and complete proven theory was not given before.

Lemma 3.2 If Λ is a lattice packing of Zn with a shape S ⊂ Zn then there

exists an Abelian group G of order V (Λ), such that S splits G.

Proof. Let G = Zn/Λ and let φ : Zn → G be the group homomorphism

which maps each element x ∈ Zn to the coset x+Λ. Clearly, | detG| = V (Λ).

Let β = β1, β2, ..., βn, be a sequence defined by βi = φ(ei) for each i,

1 ≤ i ≤ n. Clearly, for each x ∈ Zn we have φ(x) = x · β.

Now assume that there exist two distinct elements e, f ∈ S, such that

φ(e) = e · β = f · β = φ(f) .

It implies that

φ(e− f) = (e− f) · β = e · β − f · β = 0 .

Since φ(x) = 0 if and only if x ∈ Λ it follows that there exists x ∈ Λ, x 6= 0,

such that

e = f + x .

Therefore, S ∩ (x + S) 6= ∅ which contradicts the fact that Λ is a lattice

packing of Zn with the shape S.

Thus, S splits G with the splitting sequence β.

2

Lemma 3.3 Let G be an Abelian group and let S be a shape in Zn. If S
splits G with a splitting sequence β then there exists a lattice packing Λ of

Zn with the shape S, for which V (Λ) ≤ |detG|.
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Proof. Consider the group homomorphism φ : Zn → G defined by

φ(x) = x · β.

Clearly, Λ = ker(φ) is a lattice and the volume of Λ, V (Λ) = |φ(Zn)| ≤
| detG|.

To complete the proof we have to show that Λ is a packing of Zn with

the shape S. Assume to the contrary that there exists x ∈ Λ such that

S ∩ (x +S) 6= ∅. Hence, there exist two distinct elements e, f ∈ S such that

e = f + x and therefore,

φ(e) = φ(f + x) = φ(f) + φ(x) = φ(f).

Therefore, e · β = f · β, which contradicts the fact that S splits G with the

splitting sequence β.

Thus, Λ is a lattice packing with the shape S.

2

Corollary 3.4 A lattice tiling of Zn with the shape S ⊆ Zn exists if and

only if there exists an Abelian group G of order |S| such that S splits G.

If our shape S is a discrete shape, i.e. S can be viewed as a subset of Zn,

then an integer lattice tiling with the shape S is equivalent to a group split-

ting. In fact, both methods are complementary. If we consider the matrix

H = [β1 β2 · · · βn] then the vector x = (x1, x2, . . . , xn) ∈ Zn is contained in

the related lattice if and only if HxT = 0. Therefore, H has some similarity

to a parity-check matrix in coding theory. The representation of a lattice

with its generator matrix seems to be more practical. But, sometimes it is

not easy to construct one. Moreover, the splitting sequence has in many

cases a nice structure and from its structure the general structure of the lat-

tice can be found. This is the case in the next two sections. In Section 3.1 two

constructions of tilings based on generalized splitting are presented. Even

though the second one generalizes the first one, the mathematical structure

of the first one has its own beauty and hence both constructions are given.

The construction of the lattice, in Rn, given in Section 3.2, was derived

based on the structure of the lattices, in Zn, obtained from the construction

of the splitting sequences in Section 3.1. Mihalis Kolountzakis and James

H. Schmerl [53] pointed on [87], where this lattice was first proposed, and

further discussed in [52, 75].
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3.1 Constructions based on Generalized Splitting

In this section a construction of a tiling with n-dimensional chairs based

on generalized splitting is presented. The n-dimensional chairs which are

considered in this section are discrete, i.e. `,k ∈ Zn. First, a construction

in which all the `i’s are equal to `, and all the ki’s are equal to ` − 1 is

given. This construction is generalized to a case in which all the ki’s, with a

possible exception of one, have multiplicative inverses in the related Abelian

group.

For the ring G = Zq, the ring of integers modulo q, let G∗ be the mul-

tiplicative group of G formed from all the elements of G which have multi-

plicative inverses in G.

Lemma 3.5 Let n ≥ 2, ` ≥ 2, be two integers and let G be the ring of

integers modulo `n − (`− 1)n, i.e. Z`n−(`−1)n. Then,

(P1) `− 1 and ` are elements of G∗.

(P2) α = `(`− 1)−1 is an element of order n in G∗.

(P3) 1 + α+ α2 + · · ·+ αn−1 equals to zero in G.

Proof.

(P1) By definition, `n−(`−1)n is zero in G = Z`n−(`−1)n . We also have that

`n − (`− 1)n =
∑n−1

i=0

(
n
i

)
(`− 1)i = 1 + (`− 1)

∑n−1
i=1

(
n
i

)
(`− 1)i−1. It

follows that (`− 1)(−
∑n−1

i=1

(
n
i

)
(`− 1)i−1) = 1 in G, and hence, `−1 ∈

G∗. Since `n − (`− 1)n is zero in G, it follows that `n = (`− 1)n, and

hence ` ∈ G∗ if and only if `− 1 ∈ G∗.

(P2) Clearly, αn = `n((` − 1)−1)n and since `n = (` − 1)n, it follows that

αn = (`− 1)n(`− 1)−n = 1. This also implies that α has a multiplica-

tive inverse and hence α = `(`− 1)−1 ∈ G∗.

Now, note that for each i, 1 ≤ i ≤ n−1, we have 0 < `i−(`−1)i < `n−
(`−1)n. Therefore, `i 6= (`−1)i in G and hence αi = `i((`−1)−1)i 6= 1.

Thus, the order of α in G∗ is n.

(P3) Clearly, 0 = αn − 1 = (α− 1)(1 + α+ α2 + ...+ αn−1). By definition,

α = `(`−1)−1 and hence α(`−1) = `, α`−α = `, α−α`−1 = 1, α−1 =

α`−1, α−1 = (`−1)−1. Therefore, 0 = (`−1)−1(1+α+α2+...+αn−1)

which implies that 1 + α+ α2 + ...+ αn−1 = 0.

2
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Theorem 3.6 Let n ≥ 2, ` ≥ 2, be two integers, G = Z`n−(`−1)n, and

α = `(` − 1)−1. Then S`,k, ` = (`, `, . . . , `), k = (` − 1, ` − 1, . . . , ` − 1),

splits G with the splitting sequence β = β1, β2, ..., βn defined by

βi = αi−1, 1 ≤ i ≤ n .

Proof. We will show by induction that every element in G can be ex-

pressed in the form e · β, for some e ∈ S`,k.

The basis of induction is 0 = 0 · β.

For the induction step we have to show that if x ∈ G can be presented

as x = e · β for some e ∈ S`,k (i.e. e = (e1, e2, ..., en) ∈ Zn, 0 ≤ ei ≤ ` − 1,

1 ≤ i ≤ n, and for some j, ej = 0), then also x+ 1 can be presented in the

same way. In other words, x+ 1 = ẽ · β, where ẽ = (ẽ1, ẽ2, ..., ẽn) ∈ S`,k.

If e1 < `− 1 and there exists j 6= 1 such that ej = 0 then

x+ 1 = ẽ · β,

where ẽ1 = e1 + 1 and ẽj = ẽ, for all 2 ≤ j ≤ n, and the induction step is

proved.

If e1 = 0 and there is no j 6= 1 such that ej = 0 then by Lemma 3.5 (P3)

we have that
∑n

i=1 βi = 0 and hence

x+ 1 = (e + e1 − 1) · β ,

i.e. ẽ = e + e1 − 1 is the required element of S`,k and the induction step is

proved.

Now, assume that e1 = ` − 1. Let j, 2 ≤ j ≤ n be the smallest index

such that ej = 0.

x+ 1 = `β1 +
n∑
i=2

eiβi.

Note that for each i, 1 ≤ i ≤ n− 1,

`βi = ``i−1((`− 1)−1)i−1 = (`− 1)`i((`− 1)−1)i = (`− 1)βi+1.

Therefore,

x+ 1 = (`− 1 + e2)β2 +

n∑
i=3

eiβi.

If j = 2 then ẽ = (0, ` − 1, e3, . . . , en) and the induction step is proved. If
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e2 > 0, i.e. j > 2, then

x+ 1 = (e2 − 1)β2 + `β2 +

n∑
i=3

eiβi = (e2 − 1)β2 + (`− 1 + e3)β3 +

n∑
i=4

eiβi.

By iteratively continuing in the same manner we obtain

x+ 1 =

j−1∑
i=2

(ei − 1)βi + (`− 1 + ej)βj +
n∑

i=j+1

eiβi

and since ej = 0 we have that

ẽ = (0, e2 − 1, . . . , ej−1 − 1, `− 1, ej+1, . . . , en)

and the induction step is proved.

Since |detG| = |S`,k|, it follows that the set {e · β : e ∈ S`,k} has |S`,k|
elements.

2

Corollary 3.7 For each n ≥ 2 and ` ≥ 2 there exists a lattice tiling of Zn

with S`,k, ` = (`, `, . . . , `), k = (`− 1, `− 1, . . . , `− 1).

The next theorem and its proof are generalizations of Theorem 3.6 and

its proof.

Theorem 3.8 Let ` = (`1, `2, ..., `n), k = (k1, k2, ..., kn) be two vectors in

Zn such that 0 < ki < `i for each i, 1 ≤ i ≤ n. Let τ =
∏n
i=1 `i, κ =

∏n
i=1 ki,

G = Zτ−κ and assume that for each i, 2 ≤ i ≤ n, ki ∈ G∗. Then S`,k splits

G with the splitting sequence β = β1, β2, ..., βn defined by

β1 = 1

βi+1 = k−1
i+1`iβi 1 ≤ i ≤ n− 1 .

Proof. First we will show that k1β1 = `nβn. Since τ − κ equals zero

in G, it follows that τ = κ in G and hence k1 = `1`2 · · · `nk−1
2 k−1

3 · · · k−1
n .

Therefore,

`nβn = `nk
−1
n `n−1βn−1 = · · · = `n`n−1 · · · `1k−1

n k−1
n−1 · · · k

−1
2 β1 = k1β1 .

As an immediate consequence from definition we have that for each i, 1 ≤
i ≤ n− 1,

`iβi = ki+1βi+1 .
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Next, we will show that

(`− k) · β = 0. (3.1)

(`− k) · β =

n∑
i=1

(`i − ki)βi =

n∑
i=1

(`iβi − kiβi)

= `nβn − knβn +
n−1∑
i=1

(ki+1βi+1 − kiβi)

= `nβn − knβn + knβn − k1β1 = 0

Since |S`,k| = |detG| it follows that to prove Theorem 3.8, it is sufficient

to show that each element in G can be expressed as e ·β, for some e ∈ S`,k.

The proof will be done by induction.

The basis of induction is 0 = 0 · β.

In the induction step we will show that if x ∈ G can be presented as

e · β for some e ∈ S`,k then the same is true for x + 1. In other words,

x+ 1 = ẽ · β, where ẽ = (ẽ1, ẽ2, ..., ẽn) ∈ S`,k.

Assume

x = e · β,

where e = (e1, e2, . . . , en), 0 ≤ ei < `i for each i, and there exists a j such

that ej < `j − kj .
If e1 < `1 − k1 − 1 or if e1 < `1 − 1 and there exists j 6= 1 such that

ej < `j − kj , then since β1 = 1 it follows that

x+ 1 = ẽ · β,

where ẽ = e+ e1. Clearly, 0 ≤ ẽi ≤ `i − 1; ẽ1 < `1 − k1 if e1 < `1 − k1 − 1

and otherwise ẽj < `j − kj . Hence, the induction step is proved.

If e1 = `1 − k1 − 1 and there is no j 6= 1 such that ej < `j − kj then by

(3.1) we have that (`− k) · β = 0 and hence

x+ 1 = (e+ e1 − (`− k)) · β ,

i.e. ẽ = e+ e1− `+k is the required element of S`,k and the induction step

is proved.

Now, assume that e1 = `1− 1. Let 2 ≤ j ≤ n be the smallest index such

that ej < `j − kj .

x+ 1 = `1β1 +
n∑
i=2

eiβi = (k2 + e2)β2 +
n∑
i=3

eiβi.

45

Technion - Computer Science Department - Ph.D. Thesis  PHD-2014-11 - 2014



If j = 2 then ẽ = (0, k2 +e2, e3, . . . , en) and the induction step is proved.

If e2 ≥ `2 − k2 then

x+ 1 = `2β2 + (e2 − (`2 − k2))β2 +
n∑
i=3

eiβi

= (e2 − (`2 − k2))β2 + (k3 + e3)β3 +
n∑
i=4

eiβi.

By iteratively continuing in the same manner we obtain

x+ 1 =

j−1∑
i=2

(ei − (`i − ki))βi + (kj + ej)βj +
n∑

i=j+1

eiβi ,

and since ej < `j − kj it follows that

ẽ = (0, e2 − `2 + k2, . . . , ej−1 − `j−1 + kj−1, kj + ej , ej+1, . . . , en)

is the element of S`,k, and the induction step is proved.

2

Corollary 3.9 Let ` = (`1, `2, ..., `n), k = (k1, k2, ..., kn) be two vectors in

Zn such that 0 < ki < `i for each i, 1 ≤ i ≤ n. Let τ =
∏n
i=1 `i and assume

that gcd(ki, τ) = 1 for at least n − 1 of the ki’s. Then there exists a lattice

tiling of Zn with S`,k.

3.2 Tiling based on a Lattice

Next, lattice tiling of Rn with S`,k ⊂ Rn, where ` = (`1, `2, ..., `n), k =

(k1, k2, ..., kn) ∈ Rn, is considered. As mentioned above, Mihalis Kolountza-

kis and James H. Schmerl pointed on [52, 75, 87], where this lattice tiling

can be found. For completeness and since the presented proof is slightly

different, this part is included in this work. The following lemma will be

useful in the proof of the next theorem.

Lemma 3.10 Let x = (x1, x2, . . . , xn) ∈ Rn. Then, S`,k ∩ (x + S`,k) 6= ∅
if and only if |xi| < `i, for 1 ≤ i ≤ n, and there exist integers j and r,

1 ≤ j, r ≤ n, such that xj < `j − kj and −(`r − kr) < xr.

Proof. Assume first that S`,k ∩ (x + S`,x) 6= ∅, i.e. there exists an

a ∈ S`,k ∩ (x+S`,k|), a = (a1, a2, ..., an). By the definition of S`,k it follows

that
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0 ≤ ai < `i , for each i, 1 ≤ i ≤ n , (3.2)

and there exists a j such that

aj < `j − kj . (3.3)

Similarly, for x+ S`,k we have

xi ≤ ai < xi + `i , for each i, 1 ≤ i ≤ n , (3.4)

and there exists an r such that

ar < xr + `r − kr . (3.5)

It follow from (3.2) and (3.4) that xi ≤ ai < `i and −`i ≤ ai − `i < xi for

each i, 1 ≤ i ≤ n. Hence, |xi| < `i for each i, 1 ≤ i ≤ n. It follow from

(3.3) and (3.4) that xj ≤ aj < `j − kj . It follows from (3.5) and (3.2) that

xr > ar − (`r − kr) ≥ −(`r − kr).
Now, let x = (x1, x2, . . . , xn) ∈ Rn such that |xi| < `i for each i, 1 ≤ i ≤

n, and there exist j, r such that xj < `j −kj and xr > −(`r−kr). Consider

the point a = (a1, a2, ..., an) ∈ Rn, where ai = max{xi, 0}.
By definition, for each i, 1 ≤ i ≤ n,

0 ≤ ai < `i

and aj < `j − kj . Hence, a ∈ S`,k.

Clearly, if xi < 0 then ai = 0 and if xi ≥ 0 then ai = xi. In both cases,

since 0 < xi + `i, it follows that we have

xi ≤ ai < xi + `i .

We also have 0 < xr + `r− kr, and therefore xr ≤ ar < xr + `r − kr. Hence,

a ∈ x+ S`,k.

Thus, a ∈ S`,k ∩ (x+ S`,k), i.e. S`,k ∩ (x+ S`,k) 6= ∅.

2

The next Theorem is a generalization of Corollary 3.9.

Theorem 3.11 Let ` = (`1, `2, ..., `n) ∈ Rn and k = (k1, k2, ..., kn) ∈ Rn,

0 < ki < `i, for all 1 ≤ i ≤ n. Let Λ be the lattice generated by the matrix

47

Technion - Computer Science Department - Ph.D. Thesis  PHD-2014-11 - 2014



G
def
=



`1 −k2 0 0 . . . 0

0 `2 −k3 0 . . . 0
...

...
. . .

. . .
. . .

...

0 . . . 0 `n−2 −kn−1 0

0 0 . . . 0 `n−1 −kn
−k1 0 . . . 0 0 `n


.

Then Λ is a lattice tiling of Rn with S`,k.

Proof. It is easy to verify that V (Λ) = | det G| =
∏n
i=1 `i −

∏n
i=1 ki =

|S`,k|. We will use Lemma 1.11 to show that Λ is a tiling of Rn with S`,k.

For this, it is sufficient to show that Λ is a packing of Rn with S`,k.

Let x ∈ Λ, x 6= 0, and assume to the contrary that S`,k ∩ (x+ S`,k) 6= ∅.

Since x ∈ Λ it follows that there exist integers λ0, λ1, λ2, ..., λn = λ0, not all

zeros, such that xi = λi`i − λi−1ki, for every i, 1 ≤ i ≤ n. By Lemma 3.10

we have that for each i, 1 ≤ i ≤ n,

−`i < λi`i − λi−1ki < `i ,

i.e.
λi−1ki
`i

− 1 < λi <
λi−1ki
`i

+ 1 .

Since λi is an integer it follows that λi =
⌊
λi−1ki
`i

⌋
or λi =

⌈
λi−1ki
`i

⌉
. For

each i, 0 ≤ i ≤ n− 1, if λi = ρ ≥ 0 then since ki+1 < `i+1 we have that

0 ≤
⌊
ρki+1

`i+1

⌋
≤ λi+1 ≤

⌈
ρki+1

`i+1

⌉
≤ ρ .

Hence,

0 ≤ λi+1 ≤ λi . (3.6)

Similarly, if λi ≤ 0 we have that

λi ≤ λi+1 ≤ 0 .

If λ0 ≥ 0 then by (3.6) we have

λ0 = λn ≤ λn−1 ≤ · · · ≤ λ1 ≤ λ0 ,

and hence λi = ρ for each i, 1 ≤ i ≤ n. Similarly, we have λi = ρ for each

i, 1 ≤ i ≤ n if λ0 ≤ 0. If ρ > 0 then since ρ is an integer we have that

xi = ρ(`i−ki) ≥ `i−ki, for each i, 1 ≤ i ≤ n. Hence, there is no j such that
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xj < `j − kj , which contradicts Lemma 3.10. Similarly, if ρ < 0 then for

each i, 1 ≤ i ≤ n, xi = ρ(`i − ki) ≤ −(`i − ki), and hence there is no r such

that xr > −(`j − kj), which contradicts Lemma 3.10. Therefore, ρ = 0, i.e.

for each i, 0 ≤ i ≤ n, λi = 0, a contradiction. Hence, Λ is a lattice packing

of Rn with S`,k
Thus, by Lemma 1.11, Λ is a lattice tiling of Rn with S`,k.

2

Remark 3.1 Note, that the construction (Theorem 3.11) is based on lattices

covers all the parameters of integers which are not covered in Section 3.1.

3.2.1 Asymmetric Errors with Limited-magnitude

The first application for a tiling of Zn with an n-dimensional chair is in con-

struction of codes of length n which correct asymmetric errors with limited-

magnitude.

Let Q = {0, 1, . . . , q−1} be an alphabet with q letters. A code C of length

n over the alphabet Q is a subset of Qn. A vector e == (e1, e2, . . . , en) is

a t-asymmetric-error with limited-magnitude ` if the Hamming weight of e,

wH(e) (i.e. the number of nonzero entries in e), is at most t and 0 ≤ ei ≤ `
for each 1 ≤ i ≤ n. The sphere S(n, t, `) is the set of all t- asymmetric-errors

with limited-magnitude `. A code C ⊆ Qn can correct t-asymmetric-errors

with limited-magnitude ` if for any two codewords x,y, and any two t-

asymmetric-errors with limited-magnitude `, e, f , such that x + e ∈ Qn,

y + f ∈ Qn, we have that x+ e 6= y + f .

The size of the sphere S(n, t, `) is easily computed.

Lemma 3.12 |S(n, t, `)| =
∑t

i=0

(
n
i

)
`i.

Corollary 3.13 |S(n, n− 1, `)| = (`+ 1)n − `n.

For simplicity it is more convenient to consider the code C as a subset

of Znq , where all the additions are performed modulo q. Recall, that a code

C can be viewed also as a subset of Zn formed by the expanded code of C,
E(C). Note, in this code there is a wrap around (of the alphabet) which

does not exist if the alphabet is Q, as in the previous code.

A linear code C, over Znq , which corrects t-asymmetric-errors with limited-

magnitude `, viewed as a subset of Zn, is equivalent to an integer lattice

packing of Zn with the shape S(n, t, `). Therefore, we will call this lattice a

lattice code.

Let A(n, t, `) denote the set of lattice codes in Zn which correct t-

asymmetric-errors with limited-magnitude `. A code L ∈ A(n, t, `) is called
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perfect if it forms a lattice tiling with the shape S(n, t, `). By Corollary 3.4

we have

Corollary 3.14 A perfect lattice code L ∈ A(n, t, `) exists if and only if

there exists an Abelian group G of order |S(n, t, `)| such that S(n, t, `) splits

G.

A code L ∈ A(n, t, `) is formed as an extension of a code over Znq . Assume

we want to form a code C ⊆ Σn, where Σ
def
={0, 1, . . . , σ − 1}, which corrects

t asymmetric errors with limited-magnitude `. Assume that a construction

with a large linear code C ⊂ Σn does not exist. One can take a lattice code

L ∈ A(n, t, `) over an alphabet with q letters q > σ. Then a code over the

alphabet Σ is formed by Cdef
=L ∩ Σn. Note that the code C is usually not

linear. This is a simple construction which always works. Of course, we

expect that there will be many alphabets in which better constructions can

be found.

There exists a perfect lattice code L ∈ A(n, t, `) for various parameters

with t = 1 [48, 50]. Such codes also exist for t = n and all ` ≥ 1 and for

the parameters of the Golay codes and the binary repetition codes of odd

length [58].

The existence of perfect codes which correct (n − 1)-asymmetric-errors

with limited magnitude ` was proved in [50]. The related sphere S(n, n−1, `)

is an n-dimensional chair S`,k, where ` = (` + 1, ` + 1, . . . , ` + 1) and k =

(`, `, . . . , `). Sections 3.1 and 3.2 provide constructions for such codes with

simpler description and simpler proofs that these codes are such perfect

codes.

In fact, the constructions in these sections provide tilings of many other

related shapes. More than that, there might be scenarios in which different

flash cells can have different limited magnitude. For example, if for some cells

we want to increase the number of charge levels. In this case we might need

a code which correct asymmetric errors with different limited magnitudes for

different cells. Assume that for the i-th cell the limited magnitude is `i. Our

lattice tiling with S`,k, ` = (`1+1, `2+1, . . . , `n+1) ∈ Zn, k = (`1, `2, . . . , `n),

produces the required perfect code for this scenario.

3.3 Nonexistence of some Perfect Codes

Next, we ask whether perfect codes, which correct asymmetric errors with

limited-magnitude, exist for t = n − 2. Unfortunately, such codes cannot

exist. The proof for this claim is the goal of this section. Most of the proof

50

Technion - Computer Science Department - Ph.D. Thesis  PHD-2014-11 - 2014



is devoted to the case in which the limited magnitude ` is equal to one. We

conclude the section with a proof for ` > 1.

For a word x = (x1, x2, . . . , xn) ∈ Zn, we define

N+(x) = |{xi | xi > 0}|, N−(x) = |{xi | xi < 0}|.

We say that a codeword x ∈ L, L ∈ A(n, t, `), covers a word y ∈ Zn if there

exists an element e ∈ S(n, t, `) such that y = x+ e.

Lemma 3.15 Let L ∈ A(n, t, `), and assume that there exists x ∈ L, x =

x1, x2, . . . , xn), x 6= 0, such that |xi| ≤ `, for every i, 1 ≤ i ≤ n. Then,

N+(x) ≥ t+ 1 or N−(x) ≥ t+ 1.

Proof. Let x = (x1, x2, . . . , xn) ∈ L, x 6= 0, such that |xi| ≤ `, for every

i, 1 ≤ i ≤ n. Assume to the contrary that N+(x) ≤ t and N−(x) ≤ t.

Let e+ = (e+
1 , e

+
2 , . . . , e

+
n ) where e+

i = max{xi, 0} and e− = (e−1 , e
−
2 , . . . , e

−
n )

where e−i = max{−xi, 0}. Clearly, e+, e− ∈ S(n, t, `) and x+ e− = e+.

Therefore, S(n, t, `) ∩ (x + S(n, t, `)) 6= ∅, which contradicts the fact

that L ∈ A(n, t, `). Thus, N+(x) ≥ t+ 1 or N−(x) ≥ t+ 1.

2

Lemma 3.16 Let L ∈ A(n, n − 2, `) be a lattice code. The word 1 ∈ Zn,

the all-one vector, can be covered only by a codeword of the form 1− λ · ei,
for some i, 1 ≤ i ≤ n; where λ is an integer, 0 ≤ λ ≤ `.

Proof. Assume that x ∈ L is the codeword that covers 1. Then there

exists e = (e1, e2, . . . , en) ∈ S(n, n−2, `) such that x+e = 1, i.e. xi = 1−ei
and therefore, 1 − ` ≤ xi ≤ 1 for each i, 1 ≤ i ≤ n. Since wH(e) ≤ n − 2

it follows that there are at least two entries which are equal to one in x.

By Lemma 3.15, it follows that N+(x) ≥ n − 1. Hence, there are at least

n− 1 entries of x which are equal to one. Therefore, x = 1− λei for some

i, 1 ≤ i ≤ n; where λ is an integer, 0 ≤ λ ≤ `.
2

Lemma 3.17 Let L ∈ A(n, n − 2, `) be a lattice code. For every j, 1 ≤
j ≤ n, the word wj = 1− ej can be covered only by a codeword of the form

1− λej, where λ is an integer, 1 ≤ λ ≤ `+ 1.

Proof. Assume that x ∈ L is a codeword that covers wj . Then there

exists e = (e1, e2, . . . , en) ∈ S(n, n − 2, `) such that x + e = wj . Clearly,

xj = −ej ≤ 0, and for each i 6= j, xi = 1 − ei and therefore −` ≤ xi ≤ 1

for each i, 1 ≤ i ≤ n. Since wH(e) ≤ n− 2 it follows that there are at most
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n− 2 negative coordinates in x. Therefore, by Lemma 3.15, it follows that

N+(x) ≥ n− 1. Hence, there are at least n− 1 coordinates of x which are

equal to one. Thus, x = 1− λej , where 1 ≤ λ ≤ `+ 1.

2

Lemma 3.18 If there exists a perfect lattice code in A(n, n− 2, `) then

|S(n, n − 2, `)| divides (`+ 1)n−2(`+ 1 + λ(n− 2− `)) for some integer λ,

0 ≤ λ ≤ `.

Proof. Let L ∈ A(n, n− 2, `) be a perfect lattice code. By Lemma 3.16

and w.l.o.g we can assume that 1 is covered by the codeword x = 1− λen,

where 0 ≤ λ ≤ `. Combining this with Lemma 3.17 we deduce that for

all i, 1 ≤ i ≤ n − 1, the word wi = 1 − ei is covered by the codeword

yi = 1−(`+1)·ei (yi cannot be equal 1−αei, 1 ≤ α ≤ ` since it would cover

1 which is already covered by x). We have n distinct codewords in L, and

since L is a lattice, the lattice L′ generated by the set {x,y1,y2, . . . ,yn−1}
is a sublattice of L, and therefore V (L) = |S(n, n− 2, `)| divides V (L′). Let

G be the matrix whose rows are x,y1,y2, . . . ,yn−1.

det G =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1 1− λ
−` 1 1 . . . 1 1

1 −` 1 . . . 1 1

1 1 −` . . . 1 1
...

...
. . .

. . .
...

...

1 1 1 . . . −` 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Subtracting the first row from every other row, we obtain the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1 1− λ
−(`+ 1) 0 0 . . . 0 λ

0 −(`+ 1) 0 . . . 0 λ

0 0 −(`+ 1)
. . . 0 λ

...
...

. . .
. . .

...
...

0 0 0 . . . −(`+ 1) λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Subtracting the first column from all the other columns, except from the
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last one, we obtain the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . 0 1− λ
−(`+ 1) `+ 1 `+ 1 . . . `+ 1 λ

0 −(`+ 1) 0 . . . 0 λ

0 0 −(`+ 1)
. . . 0 λ

...
...

. . .
. . .

...
...

0 0 0 . . . −(`+ 1) λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Finally, replacing the second row by the sum of all the rows, except for the

first one, we obtain the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . 0 1− λ
−(`+ 1) 0 0 . . . 0 λ(n− 1)

0 −(`+ 1) 0 . . . 0 λ

0 0 −(`+ 1)
. . . 0 λ

...
...

. . .
. . .

...
...

0 0 0 . . . −(`+ 1) λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Now, it is easy to verify that V (L′) = | det G| = |λ(n− 1)(`+ 1)n−2 + (1−
λ)(`+ 1)n−1| = |(`+ 1)n−2(`+ 1 + λ(n− 2− `))|.

2

Theorem 3.19 There are no perfect lattice codes in A(n, n− 2, 1) for all

n ≥ 4.

Proof. By Lemma 3.18, it is sufficient to show that |S(n, n − 2, 1)| =

2n − n− 1 does not divide 2n−2(2 + λ(n− 3)), for λ = 0, 1.

If λ = 0 then we have to show that 2n − n− 1 does not divide 2n−1. It

can be readily verified that 2n − n − 1 > 2n−1 for all n > 3, which proves

the claim.

If λ = 1 then we have to show that 2n−n−1 does not divide 2n−2(n−1).

If 2r = gcd(2n − n − 1, 2n−2) then 0 ≤ r ≤ log2(n+ 1). Hence, we have to

show that 2n−r− n+1
2r does not divide n−1. We will show that for all n ≥ 7,

2n−r − n+1
2r > n− 1. It is easy to verify that

2n−r − n+ 1

2r
≥ 2n−log2(n+1) − (n+ 1) =

2n

n+ 1
− n− 1 .

53

Technion - Computer Science Department - Ph.D. Thesis  PHD-2014-11 - 2014



Therefore, it is sufficient to show that

2n

n+ 1
− n− 1 > n− 1 ,

or equivalently

2n > 2n(n+ 1).

This is simply proved by induction on n for all n ≥ 7.

To complete the proof we should only verify that for n = 4, 5, and 6, we

have that 2n − n− 1 does not divide 2n−2(n− 1).

2

Theorem 3.20 There are no perfect lattice codes in A(n, n− 2, `) if n ≥ 4

and ` ≥ 2.

Proof. Let n ≥ 4 and ` ≥ 2 and assume to the contrary, that there exists

a perfect lattice code L ∈ A(n, n − 2, `). Without loss of generality, we

can assume by Lemma 3.16 that the word 1 ∈ Zn is covered by a codeword

x = 1−λen, where λ is an integer, 0 ≤ λ ≤ `. From the proof of Lemma 3.18

we have that for all i, 1 ≤ i ≤ n− 1, the word wi = 1− ei is covered by the

codeword yi = 1 − (` + 1) · ei. Therefore, y = (y1, y2, . . . , yn) = y1 + y2 =

2·1−(`+1)·e1−(`+1)·e2 is a codeword Clearly, y1 = y2 = 2−(`+1) = 1−`
and since ` ≥ 2 it follows that for all i, 1 ≤ i ≤ n, |yi| ≤ `. Moreover,

N−(x) = 2 ≤ n−2 andN+(x) = n−2, which contradicts Lemma 3.15. Thus,

if n ≥ 4 and ` ≥ 2, then there are no perfect lattice codes in A(n, n− 2, `).

2

Combining Theorems 3.19 and 3.20 we obtain the main result of this

section.

Corollary 3.21 There are no perfect lattice codes in A(n, n− 2, `) if n ≥ 4

for any limited magnitude ` ≥ 1.

The existence of perfect lattice codes in A(n, n − 1, `) and their nonex-

istence in A(n, n − 2, `) might give an evidence that such perfect codes do

not exist in A(n, n− ε, `) for ` ≥ 1 and some ε > 1. It would be interesting

to prove such a claim for n ≥ 4 and 2 ≤ ε ≤ bn2 c.

3.4 Application to Write-Once Memories

A second possible application for a tiling of Zn with an n-dimensional chair

is in constructions of multiple writing in n cells write-once memories. Each

cell has q charge levels {0, 1, . . . , q− 1}. A letter from an alphabet of size σ,
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Σ = {0, 1 . . . , σ − 1}, is written into the n cells as many times as possible.

In each round the charge level in each cell is greater than or equal to the

charge level in the previous round. It is desired that the number of rounds

for which we can guarantee to write a new symbol from Σ will be maximized.

An optimal solution for the problem can be described as follows. Let A

be an q×q×· · ·×q n-dimensional array. Let ψ : A→ Σ be a coloring of the

array A with the σ alphabet letters. The rounds of writing and raising the

charge levels of the n cells can be described in terms of the coloring ψ of the

array A. If in the first round the symbol s1 is written and the charge level

in cell i is raised to c1
i , 1 ≤ i ≤ n, then the color in position (c1

1, c
1
2, . . . , c

1
n)

is s1. Therefore, we have to find a coloring function ψ such that the number

of rounds in which a new symbol can be written will be maximal.

Cassuto and Yaakobi [11] have found that using a coloring ψ based on

a lattice tiling Λ with a two-dimensional chair provides the best known

writing strategy when there are two cells. A coloring ψ̃ of Zn based on a

lattice tiling Λ with a shape S has |S| colors. The lattice have |S| cosets,

and hence |S| coset representatives, x0,x1, . . . ,x|S|−1. The points in Zn of

the coset xi + Λ are colored with the i-th letter of Σ. Now, the coloring

of entry (x1, x2, . . . , xn) of A given by ψ is equal to the color of the point

(x1, x2, . . . , xn) ∈ Zn given by the coloring ψ̃. The method given in [11]

suggests that a generalization using coloring based on tiling of Zn with an

n-dimensional chair will be a good strategy for WOM codes with n cells [102].

The analysis with two cells, i.e. two-dimensional tiling was discussed with

more details in [11]. The analysis for the n-dimensional case will be discussed

in research work which follows by the same authors and another group as

well [102].
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Part II

Permutation Codes for Rank

Modulation
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Chapter 4

Preliminaries: Permutations,

Multipermutations, and the

Kendall’s τ-Metric

Basic definitions and properties for permutations, multipermutations, and

the Kendall’s τ -metric are given in this chapter. These basic concepts will

be used throughout this part of the dissertation.

Let Sn be the set of all permutations on the set of n elements [n]
def
={1, 2, . . . , n}.

For a, b ∈ Z, where a < b, the set {a, a + 1, . . . , b} is denoted by [a, b] and

the set of all permutations on [a, b] is denoted by S([a, b]). A permutation

σ ∈ Sn is denoted by σ = [σ(1), σ(2), . . . , σ(n)]. For two permutations

σ, π ∈ Sn, their multiplication π ◦ σ is defined as the composition of σ on π,

namely, π ◦ σ(i) = σ(π(i)), for all 1 ≤ i ≤ n. Under this operation, the set

Sn is a noncommutative group known as the symmetric group of order n!.

The identity permutation of Sn is denoted by ε = [1, 2, . . . , n].

A more general concept is multipermutations, which is also known as

permutations with repetitions. A multiset M = {vm1
1 , vm2

2 , · · · , vm`` } is a

collection of the elements {v1, v2, . . . , v`} in which vi appears mi times for

each i, 1 ≤ i ≤ `. The elements of {v1, v2, . . . , v`} are called ranks while

for every i, 1 ≤ i ≤ `, the positive integer mi is called the multiplicity of

the ith rank. If m1 = m2 = · · · = m` = m then M is called a balanced

multiset. A multipermutation on the multiset M is an ordering of all the

elements ofM. Note, that a permutation is a special case of a multipermu-

tation. By abuse of notation we denote a multiplication σ of length n by

σ = [σ(1), σ(2), . . . , σ(n)], n =
∑`

i=1mi, where it should be clear from the

context whether σ is a permutation or not. For example, ifM = {12, 23, 3},
then σ = [1, 2, 2, 1, 3, 2] is a multipermutation on M. We denote by S(M)
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the set of all multipermutations onM. The size of S(M) is equal to n!
Π`i=1mi!

.

Given a multipermutation σ ∈ S(M), an adjacent transposition, (i, i+1),

is an exchange of the two distinct adjacent elements σ(i), σ(i + 1) in σ, for

some 1 ≤ i ≤ n−1. The result is the multipermutation π = [σ(1), . . . , σ(i−
1), σ(i + 1), σ(i), σ(i+ 2), . . . , σ(n)]. If σ is a permutation then the permu-

tation π can also be written as π = (i, i+ 1) ◦ σ, where (i, i+ 1) is the cycle

decomposition of the permutation [1, 2, . . . , i− 1, i+ 1, i, i+ 2, . . . , n]. Two

adjacent transpositions (i, i + 1) and (j, j + 1) are called disjoint if either

i+ 1 < j or j + 1 < i.

For two multipermutations σ, π ∈ Sn, the Kendall’s τ -distance between

σ and π, dK(σ, π), is defined as the minimum number of adjacent transpo-

sitions needed to transform σ into π.

Example 4.1 If σ = [1, 1, 2, 2] and π = [2, 1, 2, 1], then dK(σ, π) = 3,

since at least three adjacent transpositions are required to change the multi-

permutation σ to π: [1, 1, 2, 2]→ [1, 2, 1, 2]→ [2, 1, 1, 2]→ [2, 1, 2, 1].

The Kendall’s τ -metric was originally defined for permutations [21, 46].

For two permutations σ, π ∈ Sn it is known [44, 51] that dK(σ, π) can be

expressed as

dK(σ, π) = |{(i, j) : σ−1(i) < σ−1(j), π−1(i) > π−1(j)}|. (4.1)

For σ ∈ Sn, the Kendall’s τ -weight of σ, wK(σ), is defined as the

Kendall’s τ -distance between σ and the identity permutation ε. The Kendall’s

τ -metric on Sn is right invariant [20], i.e. for every three permutations

σ, π, ρ ∈ Sn, we have dK(σ, π) = dK(σ ◦ ρ, π ◦ ρ).

For a multipermutation σ ∈ S(M), whereM = {vm1
1 , vm2

2 , . . . , vm`` }, we

distinguish between appearances of the same rank in σ, by their positions

in σ. We consider the increasing order of these positions. By abuse of

notation we sometimes write σ(j) = vi,r and j = σ−1(vi,r) to indicate that

the rth appearance of vi is in the jth position in σ. The computation of the

Kendall’s τ -distance between two permutations can be generalized to two

multipermutations σ, π ∈ S(M) as follows

dK(σ, π) =

∣∣∣∣{((i, r), (j, s)) :
σ−1(vi,r) < σ−1(vj,s)

π−1(vi,r) > π−1(vj,s)

}∣∣∣∣ . (4.2)

Let n0 = 0 and, for all 1 ≤ i ≤ `, let ni =
∑i

j=1mj , which im-

plies that n = n`. For a multipermutation σ ∈ S(M) and permutations

γ1, γ2, . . . , γ`, such that γi ∈ S([ni−1+1, ni]), for all i ∈ [`], the assignment of
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the permutations γ1, γ2, . . . , γ` in the multipermutation σ is the permutation

α = σ(γ1, γ2, . . . , γ`) ∈ Sn defined as follows. For all 1 ≤ j ≤ n, if σ(j) = vi,r
then α(j) = γi(r). For example, let σ = [1, 2, 1, 3, 2, 3] ∈ S({12, 22, 32}) and

let γ1 = [2, 1], γ2 = [3, 4] and γ3 = [6, 5]. Then σ(γ1, γ2, γ3) = [2, 3, 1, 6, 4, 5].

Lemma 4.2 Let σ, π ∈ S(M) and let γ1, γ2, . . . , γ`, δ1, δ2, . . . , δ`, where

γi, δi ∈ S([ni−1 + 1, ni], for all i ∈ [`]. If σ(γ1, γ2, . . . , γ`) = π(δ1, δ2, . . . , δ`),

then σ = π and γi = δi, for i ∈ [`].

Proof. Let α = σ(γ1, γ2, . . . , γ`) and let j ∈ [n]. If α(j) = s, then

ni−1 + 1 ≤ s ≤ ni for some i ∈ [`] and σ(j) = π(j) = i. Since this is true for

every j ∈ [n], it follows that σ = φ. Moreover, if γi(r) = s then α(j) = γi(r)

which implies that σ(j) = π(j) = ir. Therefore, α(j) = δi(r) = s and hence,

γi(r) = δi(r). Since this is true for every r ∈ [mi] and i ∈ [`], it follows that

γi = δi for all i ∈ [`].

2

Lemma 4.3 For every two multipermutations σ, π ∈ S(M) and permuta-

tions γ1, γ2, . . . , γ`, γi ∈ S([ni−1 + 1, ni]) for all i ∈ [`], we have

dK(σ, π) = dK(σ(γ1, γ2, . . . , γ`), π(γ1, γ2, . . . , γ`)).

Proof. Let α = σ(γ1, γ2, . . . , γ`) and β = π(γ1, γ2, . . . , γ`). Let

I1 =

{
((i, r), (j, s)) :

σ−1(vi,r) < σ−1(vj,s)

π−1(vi,r) > π−1(vj,s)

}
and

I2 =
{

(a, b) : α−1(a) < α−1(b), β−1(a) > β−1(b)
}
.

By equations (7.3) and (4.2) it follows that dK(σ, π) = |I1| and dK(α, β) =

|I2|. Let ((i, r), (j, s)) ∈ I1, i.e. σ−1(vi,r) < σ−1(vj,s) and π−1(vi,r) >

π−1(vj,s). By definition, if vi,r is in the kth position in σ, then γi(r) is in

kth position in α. Hence, α−1(γi(r)) = σ−1(vi,r). Similarly, α−1(γj(s)) =

σ−1(vj,s), β
−1(γi(r)) = π−1(vi,r), and β−1(γj(s)) = π−1(vj,s). It follows

that α−1(γi(r)) < α−1(γj(s)) and similarly, β−1(γi(r)) > β−1(γj(s)). This

implies that (γi(r), γj(s)) ∈ I2. Conversely, let (a, b) ∈ I2, i.e. α−1(a) <

α−1(b) and β−1(a) > β−1(b). There exist i, j ∈ [`], r ∈ [mi], and s ∈ [mj ],

such that a = γi(r) and b = γj(s). It follows that σ−1(vi,r) = α−1(a) <

α−1(b) = σ−1(vj,s) and π−1(vi,r) = β−1(a) > β−1(b) = π−1(vj,s), which

implies that ((i, r), (j, s)) ∈ I1. Hence, the mapping that maps ((i, r), (j, s))

to (γi(r), γj(s)) is a bijection of I1 into I2. Thus, dK(σ, π) = |I1| = |I2| =

dK(α, β).
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2

Example 4.4 If σ = [1, 1, 2, 2], π = [2, 1, 2, 1], γ1 = [2, 1], and γ2 = [3, 4],

then dK(σ, π) = 3 and dK(σ(γ1, γ2), π(γ1, γ2)) = dK([2, 1, 3, 4], [3, 2, 4, 1]) =

3.

The Kendall’s τ -metric is graphic, i.e. for every two multipermutations

σ, π ∈ S(M) their Kendall’s τ -distance is equal to the length of the shortest

path between σ and π in the graphG(M), whose vertices set is the set S(M),

and two vertices are connected by an edge if and only if their Kendall’s τ -

distance is one. We call the graph G(M) the graphic representation of S(M)

under the Kendall’s τ -distance. The graphic representation of Sn is denoted

by G(n). The graphic representation of the Kendall’s τ -metric is useful in

the proof of the following two lemmas.

Lemma 4.5 Let σ, π ∈ S(M) and let γ1, γ2, . . . , γ`, δ1, δ2, . . . , δ`, where

γi, δi ∈ S([ni−1 + 1, ni]) for all i ∈ `. Then

dK(σ(γ1, γ2, . . . , γ`), π(δ1, δ2, . . . , δ`)) ≥ dK(σ, π) +
∑̀
i=1

dK(γi, δi).

Proof.

Let α = σ(γ1, γ2, . . . , γ`), β = π(δ1, δ2, . . . , δ`), and dK(α, β) = t. There

exists a path Γ : α = ρ1 → ρ2 → . . . → ρt+1 = β in the graph G(n), where

n =
∑`

i=1mi. Every edge in the path Γ is of the form es = ρs → ρs+1 where

ρs+1 = (j, j + 1) ◦ ρs, for some j, 1 ≤ j ≤ n− 1.

If there exists an i ∈ [`] such that ρs(j), ρs(j+1) ∈ [ni−1 +1, ni] then the

edge es is correspond to the exchange of two adjacent elements in a permuta-

tion νs ∈ S([ni−1 + 1, ni], resulting in a permutation νs+1 ∈ S([ni−1 + 1, ni].

Let esi,1 , esi,2 , . . . , esi,ti be all such edges according to the order of their ap-

pearance in the path Γ. Then the path Γi : γi = νsi,1 → νsi,2 → . . . →
νsi,ti → νsi,ti+1 = δi is a path in the graph G([ni−1 + 1, ni]) from γi to δi.

Since the length of the path Γi is ti, it follows that ti ≥ dK(γi, δi).

If there exist i, ĩ ∈ [`], i 6= ĩ, such that ρs(j) ∈ [ni−1 + 1, ni], ρs(j + 1) ∈
[nĩ−1 +1, nĩ], then the edge es is correspond to the exchange of two adjacent

elements in a multipermutation µs ∈ S(M), resulting in a multipermutation

µs+1 ∈ S(M). Let es1 , es2 , . . . , est̃ be all such edges according to the order

of their appearance in the path Γ. Then the path Γ̃ : σ = µs1 → µs2 →
. . .→ µst̃ → µst̃+1 = π is a path in the graph G(M) from σ to π. Since the

length of the path Γ̃ is t̃, it follows that t̃ ≥ dK(σ, π).
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The paths Γ1,Γ2, . . . ,Γ`, and Γ̃ are correspond to a partition of the edges

of Γ into disjoint sets. Thus,

dK(α, β) = t = t̃+
∑̀
i=1

ti ≥ dK(σ, π) +
∑̀
i=1

dK(γi, δi).

2

A distance measure d(·, ·) over a space V, is called bipartite if every three

elements x, y, z ∈ V satisfies the equality d(x, y) + d(y, z) ≡ d(x, z) (mod 2).

The Kendall’s τ -metric on Sn is bipartite as stated in the next lemma.

Lemma 4.6 If ρ1, ρ2 and ρ3 are three multipermutations in S(M) then

dK(ρ1, ρ2) + dK(ρ2, ρ3) ≡ dK(ρ1, ρ3) (mod 2).

Proof. Let t1 = dK(ρ1, ρ2), t2 = dK(ρ2, ρ3), and t3 = dK(ρ1, ρ3). There

exist paths Γ1,Γ2,Γ3, in the graph G(M), where Γ1 is a path of length t1
between ρ1 and ρ2, Γ2 is a path of length t2 between ρ2 and ρ3, and Γ3 is a

path of length t3 between ρ3 and ρ2. By concatenating these paths we obtain

a cycle, ∆, of length t1 +t2 +t3 in G(M). Every edge in the cycle ∆ is of the

form γ → δ, γ, δ ∈ S(M), where δ is obtained from γ by exactly one adjacent

transposition. For every i, j ∈ [n], where i < j, there must be an even

number of edges in the cycle ∆ that correspond to an adjacent transposition

that exchanges the elements i and j. Therefore, the number of edges in the

cycle ∆ must be even i.e. dK(σ, π) + dK(π, ρ) + dK(σ, ρ) ≡ 0 (mod 2), and

the lemma follows.

2

Lemma 4.7 Let σ, ρ ∈ Sn be two permutations. Then

wK(σ ◦ ρ) ≡ wK(σ) + wK(ρ)( mod 2).

Proof. Since the Kendall’s τ -distance on Sn is right invariant it follows

that wK(σ ◦ ρ) = dK(σ, ρ−1) and dK(ρ−1, ε) = dK(ε, ρ) = wK(ρ). By

Lemma 4.6 we have that dK(ρ−1, σ) ≡ dK(σ, ε)+dK(ρ−1, ε)( mod 2). Thus,

wK(σ ◦ ρ) ≡ wK(σ) + wK(ρ)( mod 2).

2

For a permutation σ ∈ Sn, the sphere of radius t centered at σ is the set

SK(n, t, σ) = {π ∈ Sn : dK(σ, π) ≤ t}.

We denote by SK(n, t) the sphere of radius t centered at ε. Since the

Kendall’s τ -distance on Sn is right invariant it follows that the size of a

63

Technion - Computer Science Department - Ph.D. Thesis  PHD-2014-11 - 2014



sphere of radius t is Sn does not depend on its center, i.e. for all σ ∈ Sn,

|SK(n, t, σ)| = |SK(n, t)|.
A code C ⊆ Sn is a t-error-correcting code with the Kendall’s τ -distance

if for every ρ ∈ Sn there exists at most one codeword σ ∈ C such that

dK(σ, ρ) ≤ t. Equivalently, C is a t-error-correcting code with the Kendall’s

τ - distance if for every σ, π ∈ C such that σ 6= π we have that SK(n, t, σ) ∩
SK(n, t, π) = ∅.

Given a code C, where |C| ≥ 2, in a space V endowed with a distance mea-

sure (a metric) d(·, ·), the minimum distance of C is the minimum distance

between two distinct codewords in C, i.e.

min{d(x, y) : x, y ∈ C, x 6= y}.

A code C ⊆ Sn is a t-error-correcting code with the Kendall’s τ -distance

if and only if the minimum distance of C is at least 2t + 1. The following

theorem is known as the sphere packing bound.

Theorem 4.8 If C ⊆ Sn is a t-error-correcting code then

|C| · |SK(n, t)| ≤ n!.

A code C ⊆ Sn is called a perfect t-error-correcting code if C is a t-error-

correcting code and the size of C achieves the sphere packing bound with

equality, i.e. |C| · |SK(n, t)| = n!. A code C ⊆ Sn is a t-error-correcting code

if and only if for every π ∈ Sn there exists exactly one codeword σ ∈ C for

which dK(σ, π) ≤ t.
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Chapter 5

Permutation Codes

The rank modulation scheme has been proposed for efficient writing and

storing data in non-volatile memory storage [43]. In this model codes are

subsets of Sn, the set of all permutations on n elements, where each per-

mutation corresponds to a ranking of n cells’ levels. Permutation codes

were mainly studied in this context using two metrics, the infinity metric

and the Kendall’s τ -metric. In this chapter error-correcting codes using the

Kendall’s τ -metric and some variation of the Kendall’s τ -metric are consid-

ered. Under the Kendall’s τ -metric, codes in Sn with minimum distance

d should correct up to
⌊
d−1

2

⌋
errors that are caused by charge leakage and

read disturbance [44]. Error-correcting codes using codes in the Lee metric

were constructed in [5, 61, 61]. In [108], systematic-error-correcting codes

were proposed. In particular, they constructed a systematic single-error-

correcting code in Sn of size (n−2)!, which is of optimal size, assuming that

a perfect single-error-correcting code does not exist. But, they only prove

the nonexistence of perfect single-error-correcting codes for n = 4.

The first section of this chapter is devoted to perfect codes in Sn that

correct a single error, using the Kendall’s τ -metric. It is proved that perfect

single-error-correcting codes in Sn, where n > 4 is a prime or 4 ≤ n ≤ 10,

do not exist. It is also proved that if such a code exists for n which is not a

prime then the code should have some uniform structure.

In Section 5.2 we establish a Delsarte’s code-anticode type of bound

for the Kendall’s τ -metric and examine diameter perfect codes in Sn for

this metric. We find the sizes of optimal anticodes in Sn with diameter 2

and diameter 3. We combine these results with the code-anticode bound

to improve some known upper bounds on the size of a code in Sn for even

minimum distances. In Section 5.3 we first present the cyclic Kendall’s

τ -metric and show the existence of a perfect single-error-correcting code
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in S5, using the cyclic Kendall’s τ -distance. Furthermore, we consider the

set of (n−1)! necklaces of permutations of length n and define the Kendall’s

τ -metric on this set. We present one perfect code in S5 in this setting,

and using this setting we also show larger codes than the known ones in S5

and S7 with the Kendall’s τ -metric. These codes have a large automorphism

group. An algorithm that computes the cyclic Kendall’s τ -distance between

two permutations σ, π ∈ Sn is also presented in Section 5.3. The algorithm

running time is O(n2).

5.1 Uniform Codes and the Nonexistence of Some

Perfect Codes

In this section it is proved that a perfect single-error-correcting code in Sn
is r-uniform for r < n

4 , i.e. each r distinct symbols in [n] appear in each

r positions the same number of times. As a consequence it is proved that

there are no perfect single-error-correcting codes in Sn, where n is a prime

greater than 4. By using similar techniques we also show that there are no

perfect single-error-correcting codes in Sn for 4 ≤ n ≤ 10.

For each i, 1 ≤ i ≤ n, let Sn,i = {σ : σ ∈ Sn, σ(i) = 1}, i.e. Sn,i consists

of all the permutations σ ∈ Sn for which 1 appears in the ith position of σ.

Clearly, |Sn,i| = (n− 1)!.

Assume that there exists a perfect single-error-correcting code C ⊂ Sn.

For each i, 1 ≤ i ≤ n, let

Ci = C ∩ Sn,i and xi = |Ci|.

A codeword σ ∈ C covers a permutation π ∈ Sn if dK(σ, π) ≤ 1. Since

C is a single-error-correcting code, it follows that every permutation in Sn,1
must be at distance at most one from exactly one codeword of C and this

codeword must belong either to C1 or C2. Every codeword σ ∈ C1 covers

exactly n− 1 permutations in Sn,1. It covers itself and the n−2 permutations

in Sn,1 obtained from σ by exactly one adjacent transposition (i, i + 1),

1 < i < n. Each codeword σ ∈ C2 covers exactly one permutation π ∈ Sn,1,

π = (1, 2) ◦ σ. Therefore,

(n− 1)x1 + x2 = (n− 1)! . (5.1)

Similarly, by considering how the permutations of Sn,n are covered by

codewords of C, it follows that
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xn−1 + (n− 1)xn = (n− 1)! . (5.2)

For each i, 2 ≤ i ≤ n − 1, each permutation in Sn,i is covered by ex-

actly one codeword that belongs to either Ci−1, Ci, or Ci+1. Each codeword

σ ∈ Ci covers exactly n− 2 permutations in Sn,i. It covers itself and the

n − 3 permutations in Sn,i obtained from σ by exactly one adjacent trans-

position (j, j + 1), where 1 ≤ j < i − 1 or i < j < n. Each codeword in

Ci−1 ∪ Ci+1 covers exactly one permutation from Sn,i. Therefore, for each i,

2 ≤ i ≤ n− 1, we have the equation

xi−1 + (n− 2)xi + xi+1 = (n− 1)! . (5.3)

Let x = (x1, x2, . . . , xn) and let 1 denote the all-ones vector. Equations

(5.1), (5.2), and (5.3) can be written in matrix form as

Ax = (n− 1)! · 1, (5.4)

where A = (ai,j) is defined by

A =



n− 1 1 0 0 · · · 0 0 . . . 0

1 n− 2 1 0 · · · 0 0 . . . 0

0 1 n− 2 1 · · · 0 0 . . . 0
...

...
...

...
. . .

...
...

...
...

...
...

...
...

. . .
...

...
...

...

0 . . . 0 0 · · · 1 n− 2 1 0

0 . . . 0 0 · · · 0 1 n− 2 1

0 . . . 0 0 · · · 0 0 1 n− 1


.

Since the sum of every row in A is equal to n it follows that the linear

equation system (5.4) has a solution y = (n−1)!
n · 1. We will show that if

n > 3 then A is a nonsingular matrix and hence y is the unique solution

of (5.4), i.e. x = y. To this end, we need the following lemma, that can

be easily verified (a sketch of the proof is given), and is also an immediate

conclusion of the well known Gerschgorin circle theorem [34].

Lemma 5.1 Let B = (bi,j) be an n× n matrix. If |bi,i| >
∑

j 6=i |bi,j | for all

i, 1 ≤ i ≤ n, then B is nonsingular.

Proof. Let z = (z1, z2, . . . , zn) be a nonzero vector and let s be an index

such that |zs| ≥ |zi for each i, 1 ≤ i ≤ n. Clearly, the sth entry of Bz is not

zero.

2
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For n > 4, we have that for each i, 1 ≤ i ≤ n, Ai,i ≥ n − 2 > 2 ≥∑
j 6=iAi,j . By Lemma 5.1 it follows that A is nonsingular. For n = 4 it can

be readily verified that the matrix A is nonsingular. Hence, x = (n−1)!
n · 1

for n ≥ 4. If n = 4 or n is a prime greater than 4, then (n−1)!
n is not an

integer and therefore, a perfect single-error-correcting code does not exist.

Theorem 5.2 There is no perfect single-error-correcting code in Sn, where

n > 4 is a prime or n = 4.

Theorem 5.3 Assume that there exists a perfect single-error-correcting code

C ⊂ Sn, where n > 11. If r < n
4 , then for ezch sequence of r distinct el-

ements of [n], i1, i2, . . . , ir, and for each set of r positions 1 ≤ j1 < j2 <

. . . < jr ≤ n, there are exactly (n−r)!
n codewords in cC, such that for each

such codeword σ we have σ(j`) = i`, for each `, 1 ≤ ` ≤ r.

Proof. Let i1, i2, . . . , ir be a sequence of r distinct elements of [n]. For

every J = {j1, j2, . . . , jr} ⊂ [n], where 1 ≤ j1 < j2 < . . . < jr ≤ n, let

Sn,J = {σ ∈ Sn : σ(j`) = i`, for all 1 ≤ ` ≤ r}. Clearly, |Sn,J | = (n− r)!.
Let

CJ = C ∩ Sn,J and xJ = |CJ |.

Since C is a single-error-correcting code, it follows that every permutation

in Sn,J must be at distance at most one from exactly one codeword of C.
For every J, L ⊂ [n], |J | = |L| = r, let aJ,L be the number of permutations

in Sn,J which are covered by a given codeword in CL. Therefore, we have

the following linear equations system∑
L⊂[n], |L|=r

aJ,LxL = |Sn,J | = (n− r)!, for all J ⊂ [n], |J | = r. (5.5)

Each codeword σ ∈ CJ covers at least n− 2r permutations in Sn,J . It

covers itself and at least n− 2r− 1 permutations in Sn,J which are obtained

from σ by exactly one adjacent transposition (i, i+1), where i, i+1 ∈ [n]\J .

Hence, aJ,J ≥ n − 2r and since the size of a sphere of radius one is n, it

follows that ∑
L⊂[n], |L|=r

aJ,L = n, for all J ⊂ [n], |J | = r. (5.6)

Therefore, ∑
L⊂[n], |L|=r, L6=J

aJ,L =
∑

L⊂[n], |L|=r

aJ,L − aJ,J ≤ n− (n− 2r) = 2r.
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If r < n
4 then

aJ,J ≥ n− 2r > 2r ≥
∑

L⊂[n], |L|=r, L6=J

aJ,L.

Hence, by Lemma 5.1 it follows that the linear equations system (5.5) has

a unique solution and by (5.6) we have that xJ = (n−r)!
n , for every J ⊂ [n],

|J | = r. Thus, for each sequence of r distinct elements of [n], i1, i2, . . . , ir,

and for each set of r positions 1 ≤ j1 < j2 < . . . < jr ≤ n, there are

exactly (n−r)!
n codewords in C, such that for each such codeword σ we have

σ(j`) = i`, for each `, 1 ≤ ` ≤ r.
2

Theorem 5.3 implies that perfect single-error-correcting codes must have

a very symmetric structure. This might be useful to rule out the existence

of these codes for other parameters as well.

For the case n = 6, 8, 10, we use similar arguments and obtain systems

of linear equations. We use a computer to show that these systems have no

solutions over the non negative integers, and conclude that perfect single-

error-correcting codes in Sn do not exist for these values of n. More details

on these cases can be found in Appendix A.

5.2 Anticodes and Diameter Perfect Codes

In all the perfect codes the minimum distance of the code is an odd integer.

If the minimum distance of the code C is an even integer then C cannot

be a perfect code. The reason is that for any two codewords c1, c2 ∈ C
such that d(c1, c2) = 2δ, there exists a word x such that d(x, c1) = δ and

d(x, c2) = δ. For this case another concept is used, a diameter perfect code,

as was defined in [1]. This concept is based on the code-anticode bound

presented by Delsarte [19]. An anticode A of diameter D in a space V is a

subset of words from V such that d(x, y) ≤ D for all x, y ∈ A.

Theorem 5.4 If a code C, in a space V of a distance regular graph, has

minimum distance d and in an anticode A of the space V the maximum

distance is d− 1 then |C| · |A| ≤ |V|.

Theorem 5.4 which is proved in [19] is a generalization of Theorem 4.8

and it can be applied to the Hamming scheme since the related graph is

distance regular. It cannot be applied to the Kendall’s τ -metric since the

related graph is not distance regular if n > 3. This can be easily ver-

ified by considering the three permutations σ = [1, 2, 3, 4, 5, . . . , n], π =
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[3, 1, 2, 4, 5, . . . , n], and ρ = [2, 1, 4, 3, 5, . . . , n] in Sn. Clearly, dK(σ, π) =

dK(σ, ρ) = 2 and there exists exactly one permutation α for which dK(σ, α) =

1 and dK(α, π) = 1, while there exist exactly two permutations α, β for which

dK(σ, α) = 1, dK(α, ρ) = 1, dK(σ, β) = 1, and dK(β, ρ) = 1. Fortunately, an

alternative proof which was given in [1] and was modified in [27] will work

for the Kendall’s τ -metric.

Theorem 5.5 Let CD be a code in Sn with Kendall’s τ -distances between

codewords taken from a set D. Let A ⊂ Sn and let C′D be the largest code in

A with Kendall’s τ -distances between codewords taken from the set D. Then

|CD|
n!
≤
|C′D|
|A|

.

Proof. Let Bdef
={(σ, π) : σ ∈ CD, π ∈ Sn, σ ◦ π ∈ A}. For a given

codeword σ ∈ CD and a word α ∈ A, there is exactly one element π ∈ Sn
such that α = σ ◦ π. Therefore, |B| = |CD| · |A|.

Since the Kendall’s τ -metric is right invariant it follows that for every π ∈
Sn, the set {σ ◦ π : σ ∈ C′D} has Kendall’s τ -distances between codewords

taken from the set D. Together with the fact that C′D is the largest code in

A, with Kendall’s τ -distances between codewords taken from the set D, it

follows that for any given word π ∈ Sn the set {σ : σ ∈ CD, σ ·π ∈ A} has

at most |C′D| codewords. Hence, |B| ≤ |C′D| · n!.

Thus, |CD| · |A| ≤ |C′D| · n! and the claim is proved.

2

Corollary 5.6 Theorem 5.4 holds for the Kendall’s τ -metric, i.e. if a code

C ⊆ Sn, has minimum Kendall’s τ -distance d and in an anticode A ⊂ Sn
the maximum Kendall’s τ -distance is d− 1 then |C| · |A| ≤ n!.

Proof. Let D = {d, d + 1, . . . ,
(
n
2

)
} and let CD ⊆ Sn be a code with

minimum Kendall’s τ -distance d. Let A be a subset of Sn with Kendall’s τ -

distances between words of A taken from the set {1, 2, . . . , d−1}, i.e. A is an

anticode with diameter d− 1. Clearly, the largest code in A with Kendall’s

τ -distances from D has only one codeword. Applying Theorem 5.5 on D,

CD, and A, implies that |CD| · |A| ≤ n!.

2

If there exists a code C ⊂ Sn with minimum Kendall’s τ -distance d =

D+ 1, and an anticode A with diameter D such that |C| · |A| = n!, then C is

called a D-diameter perfect code. In that case, A must be an anticode with

maximum distance (diameter) D of largest size, and A is called an optimal

70

Technion - Computer Science Department - Ph.D. Thesis  PHD-2014-11 - 2014



anticode of diameter D. Thus, it is important to determine the optimal

anticodes in Sn and their sizes. Using the size of such optimal anticodes we

can obtain by Corollary 5.6 an upper bound on the size of the related code

in Sn.

Let S(σ, t) ⊆ Sn be the sphere of radius t centered at σ ∈ Sn. An in-

triguing question is whether a sphere with radius t in Sn, using the Kendall’s

τ -metric, is an optimal anticode of diameter 2t. Such types of questions for

other metrics were considered in [3]. For n = 4, the sphere with radius 1 has

size 4 and it is an optimal anticode of diameter 2. There exists an optimal

anticode of diameter 2 in S4, which is not a sphere with radius 1. For ex-

ample, the set A = {[1, 2, 3, 4], [2, 1, 3, 4], [1, 2, 4, 3], [2, 1, 4, 3]} is an optimal

anticode of diameter 2. A similar example exists for an optimal anticode of

size 9 and diameter 4 in S4. However, for n ≥ 5, it is showed that every

optimal anticode of diameter 2 in Sn is a sphere of radius 1. To this end,

the following lemma will be useful.

Lemma 5.7 Let A be an anticode in Sn with diameter 2 such that ε ∈ A,

and let B be the set of all permutations of weight two in A. If |B| ≥ 4 then B
is contained in a sphere of radius one centered at some permutation σ ∈ Sn
of weight one.

Proof. If there exists some i ∈ [n−2] such that (i, i+1)◦(i+1, i+2), (i+

1, i+2)◦(i, i+1) ∈ B, then one can easily verify that any other permutation

of weight two is at distance at least four from either (i, i+ 1) ◦ (i+ 1, i+ 2)

or (i+ 1, i+ 2) ◦ (i, i+ 1) and therefore |B| = 2.

If for some i ∈ [n−2] either (i, i+1)◦(i+1, i+2) or (i+1, i+2)◦(i, i+1)

belongs to B, say w.l.o.g. (i, i+ 1) ◦ (i+ 1, i+ 2) ∈ B, then every element of

B\{(i, i+1)◦(i+1, i+2)}must be at distance 2 from (i, i+1)◦(i+1, i+2) and

therefore, must be of the form (j, j+ 1) ◦ (i+ 1, i+ 2) for some j 6∈ {i, i+ 1}.
It follows that B ⊂ S((i+ 1, i+ 2), 1).

If each element of B is a multiplication of two disjoint adjacent trans-

positions then let ρ = (i, i + 1) ◦ (j, j + 1) ∈ B, where j 6∈ {i − 1, i, i + 1}.
Hence, all elements of B are of the form (`, ` + 1) ◦ (j, j + 1), where ` 6∈
{j, j + 1}, or (`, `+ 1) ◦ (i, i+ 1), where ` 6∈ {i, i+ 1}. Assume w.l.o.g. that

π = (`, ` + 1) ◦ (j, j + 1) ∈ B, π 6= ρ. If every element of B is of the form

(k, k + 1) ◦ (j, j + 1) then B ⊂ S((j, j + 1), 1). Otherwise, the only possible

other element of B is (i, i+ 1) ◦ (`, `+ 1) and hence |B| ≤ 3.

Thus, if |B| ≥ 4 then B ⊂ S(σ, 1), for some σ of weight one.

2
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Theorem 5.8 Every optimal anticode with diameter 2 (using the Kendall’s

τ -distance) in Sn, n ≥ 5, is a sphere with radius one whose size is n.

Proof. Let A ⊂ Sn, n ≥ 5, be an anticode of diameter 2. The Kendall’s

τ -metric is right invariant and hence w.l.o.g. we can assume that ε ∈ A.

Therefore, all the elements of A are of weight at most two. We distinguish

between four cases:

Case 1: If A does not contain a permutation of weight one then by Lemma 5.7

it follows that A is contained in a sphere of radius one centered at a

permutation of weight one or |A| ≤ 4.

Case 2: If A contains exactly one permutation σ ∈ Sn of wight one then by

Lemma 4.6, the distance between σ and any permutation of weight

two is an odd integer and therefore, all permutations of weight two in

A must be at distance one from σ. Thus, A ⊆ S(σ, 1).

Case 3: If A contains two elements of weight one then it can be readily verified

that A cannot contain more than one element of weight two and hence

|A| ≤ 4.

Case 4: If A contains at least three elements of weight one then A cannot

contain elements of weight two and therefore A ⊆ S(ε, 1).

Thus, we proved that either A is contained in a sphere of radius one or

|A| ≤ 4. Since the size of a sphere of radius one in Sn is n, it follows that if

n ≥ 5 then every optimal anticode of diameter 2 in Sn is a sphere of radius

one.

2

Theorem 5.9 Let n ≥ 4. Then the set

A = S(ε, 1) ∪ S((1, 2), 1)

is an optimal anticode of diameter 3, whose size is 2(n− 1).

Proof. The claim can be easily verified for n = 4. It can be readily

verified that A is an anticode of diameter 2 and of size 2(n− 1).

Let A be an optimal anticode of diameter 3 in Sn, where n ≥ 5, and let

Ae = {σ ∈ A : wK(σ) ≡ 0 (mod 2)}, Ao = {σ ∈ A : wK(σ) ≡ 1 (mod 2)}.

Since the Kendall’s τ -metric is bipartite, it follows that Ae and Ao are

anticodes of diameter 2. If n ≥ 5 then by Theorem 5.8 it follows that
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|Ae| ≤ n (|Ao| ≤ n, respectively) and |Ae| = n (|A0| = n, respectively) if

and only if Ae (A0, respectively) is a sphere of radius one. The anticodes

Ae and Ao cannot be spheres of radius one and therefore, |Ae| ≤ n− 1 and

|Ao| ≤ n− 1. Thus, |A| = |Ae|+ |Ao| ≤ 2(n− 1), for n ≥ 5.

2

The following corollary is derived by a combination of Corollary 5.6 and

Theorem 5.9.

Corollary 5.10 If C ⊂ Sn is a code with minimum Kendall’s τ -distance 4,

then

|C| ≤ n!

2(n− 1)
.

For a permutation σ ∈ Sn we define the reverse of σ to be the permuta-

tion σR = [σ(n), σ(n− 1), . . . , σ(2), σ(1)]. The following lemma is an imme-

diate consequence from the expression to compute the Kendall’s τ -distance

given in (7.3).

Lemma 5.11 For every σ ∈ Sn, the reverse of σ, σR, is the unique permu-

tation in Sn at distance
(
n
2

)
from σ. Moreover, for every π ∈ Sn,

dK(σ, π) + dK(π, σR) = dK(σ, σR) =

(
n

2

)
.

Theorem 5.12 If t <
(n2)
2 then every sphere of radius t in Sn is a maximal

anticode of diameter 2t .

Proof. Since the Kendall’s τ -metric is right invariant, it is sufficient

to prove that S(ε, t) is a maximal anticode of diameter 2t. For any given

π ∈ Sn \ S(ε, t) we show that the diameter of S(ε, t) ∪ {π} is greater than

2t. If the reverse of π, πR, belongs to S(ε, t), then by Lemma 5.11 the

anticode S(ε, t) ∪ {π} has diameter
(
n
2

)
> 2t. Hence, we can assume that

πR 6∈ S(ε, t), i.e. wK(πR) > t. By Lemma 5.11, there exists a simple

path (no repeat of vertices) Γ of length
(
n
2

)
on the graph G(n), from πR

to π, that passes through ε. Let ρ be the first vertex on Γ that belongs to

S(ε, t). Then wK(ρ) = t and by Lemma 5.11 dK(π, ρ) =
(
n
2

)
− dK(πR, ρ) =

wK(ρ) + wK(π) > 2t.

2

Theorem 5.13 A ⊂ Sn is an optimal anticode of diameter
(
n
2

)
− 1 if and

only if A contains either σ or σR, for each σ ∈ Sn.
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Proof. IfA is an optimal anticode of diameter
(
n
2

)
−1 then by Lemma 5.11,

for every σ ∈ Sn, A cannot contain both σ and σr. On the other hand, if

π 6= σr then dK(σ, π) ≤
(
n
2

)
− 1. Thus, the theorem follows.

2

5.3 The Cyclic Kendall’s τ-metric

In this section we discuss a new metric, a ”subclass” of Sn, and a metric

on this subclass. The new definitions will be related to the the Kendall’s

τ -metric. The motivation for these definitions is to find larger codes, than

the known ones, in Sn with the Kendall’s τ -metric. These codes will have

considerably large automorphism groups. Two such codes will be presented

in this section.

Given a permutation σ ∈ Sn, a c-adjacent transposition is either an

adjacent transposition or the exchange of the elements σ(1) and σ(n). For

two permutations σ, π ∈ Sn, the cyclic Kendall’s τ -distance between σ and

π, dκ(σ, π), is defined as the minimum number of c-adjacent transpositions

needed to transform σ into π. For example, if σ = [0, 1, 2, 3] and π =

[3, 2, 1, 0], then dκ(σ, π) = 2, since two c-adjacent transpositions are enough

to change σ into π: [0, 1, 2, 3] → [3, 1, 2, 0] → [3, 2, 1, 0], and we cannot

transform σ into π with only one c-adjacent transposition.

Remark 5.1 Since c-adjacent transpositions refer to elements that are ad-

jacent on a cycle of length n it is more convenient to consider the positions

and elements of the permutations as residues modulo n. Hence, throughout

this section the positions and elements of permutations of length n are taken

from the set {0, 1, 2, . . . , n− 1} (instead of the set [n]).

Clearly, dκ(σ, ρ) ≤ dK(σ, ρ) and therefore, if C has minimum cyclic

Kendall’s τ -distance d then C also has minimum Kendall’s τ -distance at

least d. For a permutation σ ∈ Sn, the cyclic Kendall’s τ -weight of σ,

wκ(σ), is defined as the cyclic Kendall’s τ -distance between σ and the iden-

tity permutation in Sn, ε. The cyclic Kendall’s τ -distance is also graphic,

right invariant, and bipartite. Jerrum [42] showed that for every permu-

tation σ ∈ Sn, wκ(σ) can be computed by solving a certain optimization

problem, which can be solve with running time O(n2). A simpler and ex-

plicit algorithm that computes wκ(σ) with running time O(n2) is proved in

Appendix B. The algorithm consists of the following five steps.
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1) For every i ∈ [0, n− 1], compute

distσ(i)
def
= min{i− σ−1(i) (mod n), σ−1(i)− i (mod n)}

and

signσ(i)
def
=


0 if σ(i) = i

+ if σ(i) 6= i and distσ(i) = i− σ−1(i)( mod n)

− otherwise

.

2) Compute

rσ
def
=

∑n−1
i=0 signσ(i)distσ(i)

n
.

3) Choose a set M ⊂ [0, n − 1] of |rσ| elements such that for every

i ∈ M , signσ(i)rσ ≥ 0 and for every j ∈ [0, n − 1] \ M , for which

signσ(j)sign(rσ) ≥ 0, we have that distσ(j) ≤ distσ(i).

4) For every i ∈ [0, n− 1] compute

dM,σ(i)
def
=

{
n− distσ(i) if i ∈M
distσ(i) otherwise

and

sM,σ(i)
def
=

{
−signσ(i) if i ∈M
signσ(i) otherwise

.

5) For every i, j ∈ [0, n− 1] compute

fM,σ(i, j)
def
=


1 if sM,σ(i) > 0, sM,σ(j) ≥ 0, and [σ−1(j), j] ⊂ [σ−1(i), i]

1 if sM,σ(i) < 0, sM,σ(j) < 0, and [j, σ−1(j)] ⊂ [i, σ−1(i)]

0 otherwise

,

where [a, b] is the set of elements {a (mod n), a+1 (mod n), . . . , b (mod n)}.

Finally,

wκ(σ) =
∑

i∈[0,n−1] s.t. sM,σ(i)>0

dM,σ(i) +

n−1∑
i=0

n−1∑
j=0

fM,σ(i, j).

By Theorem 5.2, there is no perfect single-error-correcting code in S5,

using the Kendall’s τ -distance. However, there exists a perfect single-error-

75

Technion - Computer Science Department - Ph.D. Thesis  PHD-2014-11 - 2014



correcting code in S5, using the cyclic Kendall’s τ -distance. The following

20 codewords form such a code.

[0, 1, 2, 3, 4], [0, 2, 4, 1, 3], [0, 3, 1, 4, 2], [0, 4, 3, 2, 1]

[1, 2, 3, 4, 0], [2, 4, 1, 3, 0], [3, 1, 4, 2, 0], [4, 3, 2, 1, 0]

[2, 3, 4, 0, 1], [4, 1, 3, 0, 2], [1, 4, 2, 0, 3], [3, 2, 1, 0, 4]

[3, 4, 0, 1, 2], [1, 3, 0, 2, 4], [4, 2, 0, 3, 1], [2, 1, 0, 4, 3]

[4, 0, 1, 2, 3], [3, 0, 2, 4, 1], [2, 0, 3, 1, 4], [1, 0, 4, 3, 2].

Note, that the permutations in each column are cyclic shifts of the first

permutation in the column. Moreover, the permutations in the first row

are of the form [0, α, 2α, 3α, 4α], where 1 ≤ α ≤ 4 and the multiplication

is taken modulo 5. These 20 codewords also form a code with minimum

Kendall’s τ -distance three in S5, which is the largest known such code.

Another related distance measure is defined when we consider the follow-

ing equivalence relation E on Sn. For two permutations σ, π ∈ Sn, (σ, π) ∈ E
if there exist an integer i, 1 ≤ i ≤ n, such that σ = [π(i), π(i+1), . . . , π(n−
1), π(0), . . . , π(i− 1)]. If θ = [1, 2, . . . , n− 1, 0] then the permutation σ can

be written as the multiplication θi ◦ π. Clearly, E is an equivalence relation

on Sn with (n− 1)! equivalence classes, each one of size n. Each such equiv-

alence class can be regarded as a necklace with the integers 0, 1, . . . , n − 1.

Let Scn denote the set of these (n− 1)! equivalence classes (necklaces). Two

elements of Scn are at Kendall’s τ -distance one if there exist two representa-

tives of the two necklaces whose Kendall’s τ -distance in one. The Kendall’s

τ -distance on Scn is also bipartite. Note that, the size of a sphere of radius

one in this metric space is n (similarly to the size of a sphere of radius one

in the cyclic Kendall’s τ -metric on Sn), but there cannot be any distinction

between the Kendall’s τ -metric and the cyclic Kendall’s τ -metric on Scn.

One can easily verified that

Lemma 5.14 For a given σ ∈ Sn, n ≥ 2, the minimum cyclic Kendall’s

τ -distance of the equivalence class of σ, i.e. {π ∈ Sn : (σ, π) ∈ E}, is n−1.

Let C ⊂ Scn be a code with minimum Kendall’s τ -distance d ≤ n − 1.

Lemma 5.14 implies that the union of the equivalence classes of codewords

from C is a code in Sn with minimum Kendall’s τ -distance at least d. For ex-

ample, [0, 1, 2, 3, 4], [0, 2, 4, 1, 3], [0, 3, 1, 4, 2], and [0, 4, 3, 2, 1] are four repre-

sentatives of four equivalence classes in Sc5, and the union of their equivalence

classes forms the perfect single-error-correcting code in S5 with minimum

cyclic Kendall’s τ -distance 3.
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Example 5.15 Let µ = [0, 1, 2, 4, 3, 6, 5] and let ν = [0, 1, 2, 3, 6, 4, 5]. For

a scalar x ∈ {1, 2, 3, 4, 5, 6} and a permutation σ ∈ S7, let x ·σdef
= [x ·σ(0), x ·

σ(1), . . . , x · σ(6)], where the multiplication is taken modulo 7. The code

C = {θi ◦ (x · σ) ◦ θj : σ ∈ {µ, ν}, 1 ≤ x ≤ 6, 0 ≤ i, j ≤ 6}

is a code in S7 of size 2 · 7 · 7 · 6 = 588 whose minimum cyclic Kendall’s τ -

distance is 3. The code C is the largest known single-error-correcting code in

S7 (the previous known lower bound on the size of a single-error-correcting

code in S7 was 526 [44]. The upper bound on the size of such code is less

than 720 since there is no perfect single-error-correcting code in S7 with

the Kendall’s τ -distance). Clearly, this code has a very large automorphism

group.
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Chapter 6

Systematic Codes for

Permutations with Kendall’s

τ-Metric

The rank modulation scheme has motivated the study of permutation codes

in Sn, with the Kendall’s τ -metric [43, 44]. Recently, to improve the number

of rewrites, the model of rank modulation was extended such that multiple

cells can share the same ranking [24, 25]. Thus, the cells no longer determine

permutations but rather multipermutations, which are also known as per-

mutations with repetitions. Error-correcting codes for multipermutations

subject to the Kendall’s τ -metric were presented in [74] and also studied

in [7].

The main goal of this chapter is to construct systematic error-correcting

codes for permutations. This concept for permutations was proposed in [108,

109]. A systematic code C for permutations in Sn is a code consists of k!

codewords. Each permutation of Sk is a sub-permutation of exactly one

codeword of C. The k symbols of [k] are called information symbols while

the n− k symbols of [n] \ [k] are called redundancy symbols.

In this work some of the results in [108, 109] are improved. A con-

struction of systematic t-error-correcting codes for permutations that uses r

redundancy symbols is presented in Section 6.2. This construction is based

on two ingredients. The first is a partition of Sk into t-error-correcting

codes. The second is a code Cr for multipermutations from the multiset

{0k, k + 1, . . . , k + r} with minimum Kendall’s τ -distance 2t, whose size is

the number of parts in the partition. Each code from the partition of Sk will

be substituted into a different codeword of Cr. We will also perform some

analysis for the number of redundancy symbols of these codes. For a given
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large enough number of information symbols k, and for any integer t, the

construction uses less redundancy symbols than the number of redundancy

symbols in the codes of the known constructions. In particular, for a given

t and for sufficiently large k we can obtain r = t+ 1. The construction will

be generalized in Section 6.3 to systematic codes for multipermutations.

6.1 Error-Correcting Codes

For the construction of systematic error-correcting codes for permutations

and multipermutations given in Sections 6.2 and 6.3, general error-correcting

codes for multipermutations are needed. In this section constructions for

such error-correcting codes for multipermutations with the Kendall’s τ -

distance are discussed. Such a construction was given in [74]. It is based on

a metric embedding (mapping) of S(M), where M is a balanced multi-set,

into the metric space Zn−m, where m is the multiplicity of the ranks. The

Manhattan distance (also called the L1-distance) is used in Zn−m. This con-

struction is a generalization of the constructions in [5, 44] for error-correcting

codes for permutations.

Let x,y ∈ ZN , x = (x1, x2, . . . , xN ), y = (y1, y2, . . . , yN ). Recall, that

the Manhattan distance dM (x,y) is defined by

dM (x,y)
def
=

N∑
i=1

|xi − yi|.

This metric embedding (mapping) is injective and for every two multiper-

mutations σ and π in S(M), dK(σ, π) is greater or equal to the Manhattan

distance between their images in Zn−m. These properties allow to construct

error-correcting codes in S(M) from error-correcting codes in the Manhat-

tan metric over Zn−m.

We present a slightly modified version of this mapping. It will be defined

on S(M), where M is any multi-set, not necessarily a balanced multi-set.

We will also restrict its range to its image, in order to obtain a bijective

mapping. This is important for encoding purpose. We will show an encoding

of S(M), based on the enumerative encoding algorithm of Cover [17] in the

full version of this paper.
A vector x = (x1, x2, . . . , xk) ∈ Zk is monotone if x1 ≥ x2 ≥ . . . ≥ xk.

For a set S of integers let [S]k be the set of all monotone vectors of length
k over S. Let

[Z]M
def
= [Zn1+1]m2 × [Zn2+1]m3 × . . .× [Zn`−1+1]m` .
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The mapping ψ : S(M)→ [Z]M is defined as follows. For every σ ∈ S(M),

ψ(σ) is the vector x ∈ [Z]M, x = (x2,x3, . . . ,x`), where for each i, 2 ≤ i ≤ `,
xi = (xi,1, xi,2, . . . , xi,mi), and for each r, 1 ≤ r ≤ mi,

xi,r
def
= |{k : k > σ−1(vi,r) ∧ σ(k) < vi}|.

Namely, xi,r counts the number of ranks, vj , where vj < vi, which appear to

the right of the rth appearance of vi. For example, if σ = [2, 1, 3, 4, 3, 2, 1, 4]

then ψ(σ) = (x2,x3,x4) = ((2, 1), (2, 2), (3, 0)).

Lemma 6.1 The mapping ψ is bijective.

Proof. Let σ, π ∈ S(M), σ 6= π, and let ψ(σ) = x, ψ(π) = y, where

x = (x2,x3, . . . ,xm) and y = (y2,y3, . . . ,ym). Let k be the largest integer

in [n] such that σ(k) 6= π(k), and let σ(k) = vi,r, π(k) = vj,s. Assume

with out loss of generality that vi < vj . Let σ−1(vj,s) = k′. By definition,

xj,s is the number of positions a ∈ {k′ + 1, k′ + 2, . . . , n}, where σ(a) < vj .

Similarly, yj,s is the number of positions a ∈ {k + 1, k + 2, . . . , n}, where

π(a) < vj . Since σ(k̂) = π(k̂) for all k̂ < k ≤ n and since σ(k) = vi, where

vi < vj , it follows that k < k′ and xj,r < yj,r. Hence, x 6= y. This proves

that ψ is injective. To complete the proof, the reader can readily verified

that |[Z]m,
−→r | = n!∏m

i=1 ri!
= |S(M)|, and therefore, ψ is bijective.

2

Lemma 6.2 For every two multipermutations σ, π ∈ S(M), if dK(σ, π) = 1

then dM (ψ(σ), ψ(π)) = 1.

Proof. Let σ, π ∈ S(M) such that dK(σ, π) = 1. Then there exists a k ∈
[n] such that σ = [π(1), π(2), . . . , π(k− 1), π(k+ 1), π(k), π(k+ 2), . . . , π(n)]

and π(k) 6= π(k + 1). Let π(k) = vi,r, π(k + 1) = vj,s, and assume w.l.o.g.

that vi < vj . Let ψ(σ) = x and ψ(π) = y, x = (x2,x3, . . . ,xm), y =

(y2,y3, . . . ,ym). For every k′ 6∈ {k, k + 1}, 1 ≤ k′ ≤ n, we have that

σ(k′) = π(k′) = vi′,r′ for some 1 ≤ i′ ≤ ` and 1 ≤ r′ ≤ mi′ , and if i′ > 1

then xi′,r′ = yi′,r′ . Since vi,r = σ(k+1) = π(k) < π(k+1) = σ(k) = vj,s and

σ(k′) = π(k′) for all k + 1 < k′ ≤ n, it follows that if i > 1 then xi,r = yi,r.

Moreover, since vi < vj it follows that xj,s = yj,s + 1. Then

dM (x,y) =

m∑
i′=2

ri′∑
b=1

|xi′,b − yi′,b| = |xi,a − yi,a| = 1.

This completes the proof.

2
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Lemma 6.3 For any two multipermutations σ, π ∈ S(M) we have

dM (ψ(σ), ψ(π)) ≤ dK(σ, π).

Proof. Let dK(σ, π) = s. Then there exists a path Γ : sigma = ρ1 →
ρ2 → . . . → ρs−1 → ρs+1 = π in the graphic representation of S(M) under

the Kendall’s τ -distance, G(M), i.e. dK(ρu, ρu+1) = 1 for all 1 ≤ u ≤ s. By

Lemma 6.2 it follows that dM (ψ(ρu), ψ(ρu+1)) = 1 for all 1 ≤ u ≤ s. By the

triangle inequality it follows that

dM (ψ(σ), ψ(π)) ≤
s∑

u=1

dM (ψ(ρu), ψ(ρu+1)) = s.

2

Let ZNq be the set of all vectors of length N over the alphabet Zq. For

every two vectors x,y ∈ ZNq , the Lee distance dL(x,y) is defined by

dL(x,y)
def
=

N∑
i=1

min{|xi − yi|, q − |xi − yi|}.

Clearly, dM (x,y) ≥ dL(x,y) for all x,y ∈ ZNq . The set [Z]M is a subset

of Zn−m1
q , where q > n`−1. Hence, dL(ψ(σ), ψ(π)) ≤ dK(σ, π) for every two

multipermutations σ, π ∈ S(M). We are now in a position to present a

construction which transfers codes with the Lee metric to codes with the

Kendall’s τ -metric. The related theorem is a slight generalization of the

result in [74]. This construction will be a major component in the main

construction of systematic codes, which is the primary goal of this chapter.

Theorem 6.4 If there exists a code CL ⊆ Zn−m1
q , q > n`−1, with minimum

Lee distance d then there exists a code CK ⊆ S(M) with minimum Kendall’s

τ -distance at least d and of size |CK | = |CL ∩ [Z]M|.

Proof. Let CK = {σ ∈ S(M) : ψ(σ) ∈ CL}. By Lemma 6.3 , the

minimum distance of CK is at least d. Since ψ is a bijection on [Z]M it

follows that the size of CK is exactly |CL ∩ [Z]M|.
2

By Theorem 6.4, error-correcting codes in S(M) with the Kendall’s τ -

metric can be constructed from error-correcting codes over Zn−m1
q in the Lee

metric. Next, we present some of the known constructions of error-correcting

codes in the Lee metric and use Theorem 6.4 to obtain error-correcting codes

in S(M) and to estimate the size of these codes. First, we consider single-

error-correcting codes in the Lee metric. Golomb and Welch [36] presented
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the following construction of a perfect linear single-error-correcting code in

the Lee metric.

Theorem 6.5 For every positive integer N , the code

CL =

{
x ∈ ZN2N+1 :

N∑
i=1

i · xi ≡ 0 (mod 2N + 1)

}

is a perfect linear single-error-correcting code in ZN2N+1 with the Lee metric.

The construction in Theorem 6.5 was used in [44] to construct single-

error-correcting codes for permutations with the Kendall’s τ -distance. Com-

bining this construction with Theorem 6.4 implies the following corollary.

Corollary 6.6 There exists a single-error-correcting code CK ⊂ S(M) of

size |CK | ≥ |S(M)|
2(n−m1)+1 .

The following construction was first proposed by Varshamov and Tenen-

golts [98] (see also [5]) for codes which correct a single asymmetric error.

Let ||x|| denote the Manhattan weight of x.

Theorem 6.7 Let q ≥ N and let h1, h2, . . . , hN be integers, 0 < hi < q

for all 1 ≤ i ≤ N . Assume that for every e ∈ ZN with ||e|| ≤ t, the sums∑N
i=1 ei · hi are all distinct modulo q. Then the code

C =

{
x ∈ ZNq |

N∑
i=1

xi · hi ≡ 0 (mod q)

}

is a linear t-error-correcting code in ZNq with the Lee metric.

In order to use the construction in Theorem 6.7 we need the following

theorem of Barg and Mazumdar [5].

Theorem 6.8 Let q be a power of a prime and M = (qt+1 − 1)/(q − 1). Let

Mt =

{
t(t+ 1)M, t is odd

t(t+ 2)M, t is even

Then there exist integers h1, h2, . . . , hq+1 such that for all e ∈ Zq+1, ||e|| ≤ t,
the sums

∑q+1
i=1 eihi are all distinct modulo Mt.

The construction in Theorem 6.7 of a t-error-correcting code in the Lee

metric, combined with Theorem 6.8, was used in [5] to construct t-error-

correcting codes for permutations with the Kendall’s τ -metric, and also used
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in [74] to construct t-error-correcting codes with the Kendall’s τ -metric for

multipermutations over a balanced multi-set. Other constructions of codes

with the Kendall’s τ -distance that might useful in this context can be found

in [61]. By combining the construction in Theorems 6.4, 6.7, and 6.8 we

obtain the following Corollary.

Corollary 6.9 Let M = ((n−m1−1)t+1−1)/(n−m1−2), where n−m1−1

is a power of a prime. There exists a t-error-correcting code C ⊂ S(M) in

the Kendall’s τ -metric, whose size satisfies

|C| ≥

{ |S(M)|
t(t+1)M , t is odd
|S(M)|
t(t+2)M , t is even

Now, after presenting the concepts and ideas in constructions of error-

correcting codes for multipermutations, we are ready to present our main

results on systematic error-correcting codes for permutations and multiper-

mutations in the next two sections.

6.2 Systematic ECC for Permutations

In this section we present systematic t-error-correcting codes for permu-

tations. Let k, n be integers such that n ≥ k ≥ 1. For a permutation

α ∈ Sn, we define α↓k to be the permutation obtained from α by deleting

all the elements of {k + 1, k + 2, . . . , n} from α. We also define αk 7→0 to

be the multipermutation obtained from α by replacing in α every element

of {1, 2, . . . , k} by 0. For example, if α = [2, 5, 4, 1, 3, 6] and k = 3 then

α↓k = [2, 1, 3] and αk 7→0 = [0, 5, 4, 0, 0, 6]. In [108], the authors define sys-

tematic codes in the following way. A code C ⊆ Sn is an (n, k) systematic

code if for every σ ∈ Sk there exists exactly one α ∈ C such that α↓k = σ,

which implies that |C| = k!. The number of redundancy symbols of an (n, k)

systematic code is r = n− k.

Let r be a positive integer and let Mk,r
def
={0k, k + 1, k + 2, . . . , k + r}.

For every permutation σ ∈ Sk and multipermutation ρ ∈ S(Mk,r), we define

the permutation σ ∗ ρ to be the permutation in Sk+r obtained from ρ by

replacing the k zeros in ρ by the k elements of {1, 2, . . . , k}, in the same

order as in σ. For example, if k = 4, r = 3, ρ = [0, 6, 0, 0, 5, 7, 0], and

σ = [2, 4, 1, 3], then σ ∗ ρ = [2, 6, 4, 1, 5, 7, 3].

Lemma 6.10 For every ρ ∈ S(Mk,r) and σ ∈ Sk we have

1) (σ ∗ ρ)↓k = σ.
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2) (σ ∗ ρ)k 7→0 = ρ.

By Lemma 4.5 we have.

Lemma 6.11 Let σ, π ∈ Sk and ρ1, ρ2 ∈ S(Mk,r). Then

dK(σ ∗ ρ1, π ∗ ρ2) ≥ dK(σ, π) + dK(ρ1, ρ2) .

We are now in a position to present our construction for systematic

error-correcting codes for permutations.

Theorem 6.12 Let h1, h2, . . . , hk−1, and Mt, be integers such that for ev-

ery e ∈ Zk−1 with ||e|| ≤ t, the sums
∑k−1

i=1 eihi are all distinct modulo

Mt. Assume further that there exists a code Cr ⊂ S(Mk,r) with minimum

Kendall’s τ -distance 2t and of size |Cr| ≥ Mt. Let ρ0, ρ1, . . . , ρMt−1 be dis-

tinct multipermutations in Cr. Let C be the code in Sk+r defined as follows.

C = {σ ∗ ρj : σ ∈ Sk,
k−1∑
i=1

(ψ(σ))i+1hi ≡ j ( mod Mt)}.

Then the code C is a (k + r, k) systematic t-error-correcting code.

Proof. The code C from Theorem 6.12 is clearly a (k + r, k)-systematic

code. We have to show that the minimum Kendall’s τ -distance of C is at

least 2t + 1. Let α, β ∈ C be two distinct codewords and let α↓k = σ,

αk 7→0 = ρj1 , β↓k = β, βk 7→0 = ρj2 . By definition of C we have

k−1∑
i=1

(ψ(σ))i+1hi ≡ j1 ( mod Mt),

and
k−1∑
i=1

(ψ(π))i+1hi ≡ j2 ( mod Mt).

We have to show that dK(α, β) ≥ 2t+ 1. By Lemma 6.11

dK(α, β) ≥ dK(σ, π) + dK(ρj1 , ρj2).

If dK(σ, π) ≥ 2t+ 1 then dK(α, β) ≥ 2t+ 1. Assume dK(σ, π) ≤ 2t. We

show that j1 6= j2. Assume to the contrary that j1 = j2. Then

k−1∑
i=1

((ψ(σ))i+1 − (ψ(π))i+1)hi ≡ 0 ( mod Mt).
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Since dK(σ, π) ≤ 2t it follows that dM (ψ(σ), ψ(π)) ≤ 2t. This implies

that there exist e, f ∈ Zk−1, where e = (e1, e2, . . . , ek−1), f = (f1, f2, . . . , fk−1),

and ||e|| ≤ t, |f | ≤ t, such that ψ(σ) + e = ψ(π) + f .

Then

k−1∑
i=1

(fi − ei)hi ≡ 0 ( mod Mt).

It follows that

k−1∑
i=1

fihi ≡
k−1∑
i=1

eihi ≡ 0 ( mod Mt),

which is a contradiction to the assumption on the integers h1, h2, . . . , hk−1.

Hence, j1 6= j2, and therefore, dK(ρj1 , ρj2) ≥ 2t which implies that

dK(α, β) ≥ dK(σ, π) + dK(ρj1 , ρj2) ≥ 1 + 2t.

This completes the proof.

2

Example 6.13 Let k be an integer, let r = 2, and let M1 = 2(k − 1) + 1.

As in Theorem 6.5, for every e ∈ Zk−1, ||e|| ≤ 1, the sums
∑k−1

i=1 eii are all

distinct modulo M1. For the construction, we need a code in S(Mk,2) with

minimum distance 2 and of size at least M1. To this end, fix a multipermuta-

tion ρ ∈ S(Mk,2) and consider the codes Ce2 = {γ ∈ S(Mk,2) : dK(ρ, γ) ≡
0 ( mod 2)} and Co2 = {γ ∈ S(Mk,2) : dK(ρ, γ) ≡ 1 (mod 2)}. By

Lemma 4.6, the minimum distance of both Ce2 and Co2 is 2. Clearly, the size

of either Ce2 or Co2 is at least
|S(Mk,2)|

2 = (k+2)!
k!·2 = (k+2)(k+1)

2 . For all k ≥ 1 we

have that (k+2)(k+1)
2 ≥ 2(k − 1) + 1 and hence by Theorem 6.12 there exists

a (k + 2, k) systematic single-error-correcting code.

Example 6.14 Let k be an integer such that k − 2 is a power of a prime,

let r = 3, and let M2 = 8((k − 2)3 − 1)/(k − 3) = 8((k − 2)2 + k − 1).

By Theorem 6.8, it follows that there exist h1, h2, . . . , hk−1 such that for all

e ∈ Zk−1, ||e|| ≤ 2, the sums
∑k−1

i=1 eihi are all distinct modulo M2. We have

to show the existence of a code in S(Mk,3) with minimum distance 4 and

of size at least M2. By Corollary 6.6, there exists a single-error-correcting

code CK ⊂ S(Mk,3) of size |CK | ≥
|S(Mk,3)|

2·3+1 . We fix a multipermutation

ρ ∈ S(Mk,3) and consider the codes Ce3 = {γ ∈ CK : dK(ρ, γ) ≡ 0 (mod 2)}
and Co3 = {γ ∈ CK : dK(ρ, γ) ≡ 1 (mod 2)}. By Lemma 4.6, it follows

that the minimum distance of the codes Ce3 and Co3 is 4. One of these codes
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must be of size at least |CK |2 . If C3 is this code then |C3| ≥
|S(Mk,3)|

14 =
(k+3)!
k!·14 = (k+3)(k+2)(k+1)

14 . For all k ≥ 113 we have that (k+3)(k+2)(k+1)
14 ≥

8((k − 2)2 + k − 1) and hence by Theorem 6.12, if k ≥ 113 such that k − 2

is a power of a prime then there exists a (k + 3, k) systematic double-error-

correcting code.

In [108, 109] a construction of systematic (k, k+2) single-error-correcting

codes for permutations with two redundancy symbols, which is the same

number of redundancy symbols as in Example 6.13, was given. The authors

in [108, 109] construct (n, k) systematic t-error-correcting codes with at

most 2t + 1 redundancy symbols. If k and t have the same magnitude

then our construction uses the same number of redundancy symbols, but

for most parameters the number of redundancy symbols of the codes in our

construction is considerably better. Our main theorem is stated as follows.

Theorem 6.15 Let k be an integer, let t = kε be a positive integer, and let

r = dµte, where {
µ > 1 + ε for 0 ≤ ε ≤ 1

µ > 1 + 1
ε for 1 < ε .

If k is large enough then there exists a (k+r, k) systematic t-error-correcting

code.

Proof. Let k′ = 2dlog2 ke, let M = ((k′ − 2)t+1 − 1)/(k′ − 3), and let

Mt =

{
t(t+ 1)M, t is odd

t(t+ 2)M, t is even

Since k′ ≥ k and by Theorem 6.8, it follows that there exist h1, h2, . . . , hk−1

such that for all e ∈ Zk−1, ||e|| ≤ t, the sums
∑k−1

i=1 eihi are all distinct

modulo Mt. We have to show the existence of a code in S(Mk,r) with

minimum distance 2t and of size at least Mt. Let r′ = 2dlog2 re, and let

Mr = ((r′ − 1)t+1 − 1)/(r′ − 2). Since r ≤ r′ and by corollary 6.9 it follows

that there exists a t-error-correcting code CK ⊂ S(Mk,r) in the Kendall’s

τ -metric, whose size satisfies

|CK | ≥

{ |S(Mk,r)|
t(t+1)Mr

, t− 1 is odd
|S(Mk,r)|
t(t+2)Mr

, t− 1 is even

We have to show that if k is large enough then |CK | ≥Mt. Since

|CK | ≥
|S(Mk,r)|

2(t− 1)(t+ 1)Mr
≥ (k + r)!(r − 2)

k! · 2(t− 1)(t+ 1)((2r − 1)t+1 − 1)
,
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and

Mt ≤ t(t+ 2)(2k)t

It is sufficient to show that if k is large enough then

(k + r)! > t4ktk!4trt. (6.1)

By the Stirling approximation, n! ∼
√

2πn
(
n
e

)n
, and therefore, the right

hand side of inequality (6.1) is approximately

√
2πk

(
k

e

)k
t4kt(4µt)t ≤

√
2πke−kkk+4ε+kε+εkε(4µ)k

ε
.

Similarly, the left hand side of inequality (6.1) is approximately

√
2π(k + µkε)

(
k + µkε

e

)k+µkε

Hence, it is enough to show that

(k + µkε)k+µkε > (4eµµ)k
ε
kk+4ε+kε+εkε (6.2)

The left hand side of inequality (6.2) is at least kk+µkε .

For 0 ≤ ε ≤ 1, we show that

kk+µkε > (4eµµ)k
ε
kk+4ε+kε+εkε .

If k is large enough and

k + µkε > k + kε + εkε,

i.e. µ > 1 + ε, then inequality (6.1) is satisfied.

For ε > 1, the left hand side of inequality (6.2) is at least (µkε)k+µkε .

If k is large enough and

εk + εµkε > k + kε + εkε,

i.e. µ > 1 + 1
ε , then inequality (6.1) is satisfied.

2

The following corollary is a special case of Theorem 6.15.

Corollary 6.16 Let t be an integer and let r = t + 1. Then there exists

an integer Kt such that for every integer k ≥ Kt there exists a (k + r, k)

systematic t-error-correcting code.
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6.3 Systematic ECC for Multipermutations

In this section we generalize the construction in Section 6.2 to obtain sys-

tematic error-correcting codes for multipermutations. In the most general

definition of systematic codes for multipermutations we have a multiset K
with k elements (with repetitions) serving as the information symbols and

a multiset R with r elements serving as the redundancy symbols. The

intersection between K and R must be empty. The codewords are mul-

tipermutations over the multiset K ∪ R. The number of codewords in the

error-correcting code must be the number of distinct multipermutations over

the multiset K. In the systematic code C each multipermutation over the

multiset K, appears as a sub-multipermutation of exactly one codeword from

C. The construction for systematic multipermutations will be a direct gen-

eralization of the construction in Theorem 6.12. Instead of the setMk,r we

use the set M defined by Mdef
={0k} ∪ R, where 0 is a symbol which does

not appear in R. The size of the code Cr ⊂ S(M) is at least Mt.

The challenge for systematic permutations codes is to minimize the num-

ber of redundancy symbols of the codes. For systematic error-correcting

codes for multipermutations there is a tradeoff between the number of re-

dundancy ranks and the magnitudes of their multiplicities. For example, in

a systematic code for multipermutations with only one redundancy rank, the

multiplicity of the redundancy rank might be large. However, by allowing

two redundancy ranks, the multiplicity of each redundancy rank should be

smaller. The construction in Theorem 6.12 allows any desirable number of

redundancy ranks.

Example 6.17 Let K = {1m1 , 2m2 , . . . , `m`} be a multi-set which consists

of k =
∑`

i=1mi information symbols, let R = {` + 1, ` + 1} and M =

{0k, `+ 1, `+ 1}. Let M1 = 2(k −m1) + 1. For every e ∈ Zk−m1, ||e|| ≤ 1,

the sums
∑k−m1

i=1 eii are all distinct modulo M1. For the construction, we

need a code in S(M) with minimum distance 2 and of size at least M1. To

this end, fix a multipermutation ρ ∈ S(M) and consider the codes Ce2 =

{γ ∈ S(M) : dK(ρ, γ) ≡ 0 (mod 2)} and Co2 = {γ ∈ S(M) : dK(ρ, γ) ≡
1 (mod 2)}. By Lemma 4.6 it follows that the minimum distance of both Ce2
and Co2 is 2. Clearly, the size of either Ce2 or Co2 is at least |S(M)|

2 = (k+2)!
k!·2!·2 =

(k+2)(k+1)
4 . For all k ≥ 1 we have that (k+2)(k+1)

4 ≥ 2(k − m1) + 1 and

hence by Theorem 6.12 there exists a systematic single-error-correcting code

in S(K ∪R).
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Chapter 7

Constrained Codes for Rank

Modulation

Motivated by the rank modulation scheme, a recent study by Sala and Dole-

cek explored the idea of constrained codes for permutations. The constraint

studied by them is inherited by the inter-cell interference phenomenon in

flash memories, where high-level cells can inadvertently increase the level of

low-level cells. It was said that a permutation σ ∈ Sn satisfies the single-

neighbor k-constraint if |σi−σi+1| ≤ k for all 1 ≤ i ≤ n−1. In this chapter,

the model studied by Sala and Dolecek is extended into two constraints.

Definition 7.1 Let n and k be positive integers such that k < n. A per-

mutation σ ∈ Sn is said to satisfy the two-neighbor k-constraint if for all

i, 2 ≤ i ≤ n − 1, either |σ(i − 1) − σ(i)| ≤ k or |σ(i) − σ(i + 1)| ≤ k. We

denote by An,k the set of all permutations in Sn satisfying the two-neighbor

k-constraint. A two-neighbor k-constrained code is a subset of An,k. Fi-

nally, for 0 ≤ ε ≤ 1, the capacity of the two-neighbor k-constraint, where

k = dnεe, is defined as

C(ε) = lim sup
n→∞

log |An,k|
log n!

.

For example, the permutation σ = [4, 7, 5, 3, 1, 2, 6] satisfies the two-

neighbor 2-constraint but not the two-neighbor 1-constraint. Clearly, if

k = n − 1 then An,k = Sn. Note that the two-neighbor constraint does

not distinguish between high-low-high and low-high-low patterns and thus

eliminates them both. A weaker constraint which may fit better to the

inter-cell interference problem is defined next.

Definition 7.2 Let n and k be positive integers such that k < n. A permu-
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tation σ ∈ Sn is said to satisfy the asymmetric two-neighbor k-constraint if

for all i, 2 ≤ i ≤ n−1, either σ(i−1)−σ(i) ≤ k or σ(i+1)−σ(i) ≤ k. The

set of all permutations satisfying the asymmetric two-neighbor k-constraint

is denoted by Bn,k. An asymmetric two-neighbor k-constrained code is a

subset of Bn,k and the constraint’s capacity, where k = dnεe, for 0 ≤ ε ≤ 1,

is defined as

C̃(ε) = lim sup
n→∞

log |Bn,k|
log n!

.

For example, the permutation [5, 3, 1, 6, 4, 2] satisfies the asymmetric two-

neighbor 2-constraint but not the asymmetric two-neighbor 1-constraint.

Note that every permutation which satisfies the two-neighbor k-constraint

satisfies the asymmetric two-neighbor k-constraint as well and thus for any

0 ≤ ε ≤ 1, C(ε) ≤ C̃(ε).

We show that the capacity of the first constraint is (1 + ε)/2 in case that

k = Θ(nε) and the capacity of the second constraint is 1 regardless to the

value of k. We also extend our results and study the capacity of these two

constraints combined with error-correction codes in the Kendall’s τ -metric.

7.1 The Two-Neighbor Constraint

In this section we study the two-neighbor constraint and in particular find

its capacity. This will be done first by a construction of two-neighbor k-

constrained codes which provides a lower bound on the capacity. The con-

struction is based upon assigning permutations into a special family of mul-

tipermutations. Then, we will show how to bound the size of the set An,k
which will result with an upper bound on the capacity that will coincide

with the lower bound.

We denote by M`,m = {1m, 2m, . . . , `m} the balanced multiset whose

ranks are the elements of [`], each rank appears m times (definition of a

balanced multiset can be found in 4. The set of all multipermutations over

M`,m is denoted by P`,m.

Note, that multipermutations, besides of being a tool in our solutions,

find interest also in flash memory applications. The rank modulation scheme

was recently generalized such that multiple cells can hold the same rank and

thus represent a multipermutation; see e.g. [24, 25]. As a consequence, error-

correction codes for multipermutations have attracted attention as well [7,

74]. Hence, the generalization of the aforementioned constraints and similar

ones for multipermutations is also very important and interesting, however

is out of the scope of this work.
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For an even integer m, the set D`,m ⊆ P`,m is defined as follows. A

multipermutation ρ ∈ P`,m belongs to D`,m if for every j, 1 ≤ j ≤ `m/2,

ρ(2j − 1) = ρ(2j). For example, let ρ = [1, 1, 2, 2, 2, 2, 3, 3, 1, 1, 3, 3]. Then

ρ ∈ k = D3,4 since ρ(1) = ρ(2), ρ(3) = ρ(4), and so on. The size of D`,m is

equal to the size of P`,m/2.

Recall that for a multipermutation ρ ∈ P`,m and permutations γ1, γ2,

. . . , γ`, such that γi ∈ S([(i − 1)m + 1, im]) for i ∈ [`], the assignment of

the permutations γ1, γ2, . . . , γ` in the multipermutation ρ is the permutation

α = ρ(γ1, γ2, . . . , γ`) ∈ S`m defined as follows. For all 1 ≤ j ≤ n, if ρ(j) =

ir then α(j) = γi(r). Recall, also that by Lemma 4.2 the assignment of

the permutations γi in the multipermutation ρ is an injective operation.

This fact will be useful in the following construction of a two-neighbor k-

constrained code.

Construction 7.3 Let n = `(k + 1), where k is an odd positive integer

and ` is a positive integer. Let Csymn,k ⊆ Sn be the code consists of all the

permutations σ ∈ Sn of the form σ = ρ(γ1, γ2, . . . , γ`), where ρ ∈ D`,k+1 and

γi ∈ S([(i− 1)(k + 1) + 1, i(k + 1)]), for i ∈ [`]. That is,

Csymn,k =

{
ρ(γ1, . . . , γ`) :

ρ ∈ D`,k+1, and for all i ∈ [`],

γi ∈ S([(i− 1)(k + 1) + 1, i(k + 1)])

}
.

The correctness of Construction 7.3 as well as the code cardinality are proved

in the next lemma.

Lemma 7.4 Let n, k, ` be as specified in Construction 7.3. Then, the code

Csymn,k is a two-neighbor k-constrained code and its cardinality is

|Csymn,k | =
(
n
2

)
!(k + 1)!`(
k+1

2

)
!`

.

Proof. Let σ ∈ Csymn,k . Then there exist ρ ∈ D`,k+1, and γ1, γ2, . . . , γ`,

where γi ∈ S([(i − 1)(k + 1) + 1, i(k + 1)]), for all i ∈ [`], such that σ =

ρ(γ1, γ2, . . . , γ`). Let 2 < j ≤ n − 1 be an odd integer and assume that

ρ(j) = ir for some i ∈ [`] and r ∈ [k + 1]. By the definition of D`,k+1, it

follows that ρ(j+1) = ir+1. Hence, σ(j) = γi(r) ∈ [(i−1)(k+1)+1, i(k+1)]

and similarly σ(j + 1) = γi(r + 1) ∈ [(i− 1)(k + 1) + 1, i(k + 1)]. It follows

that |σ(j) − σ(j + 1)| ≤ k. The case of j even is handled the same with

respect to the symbol in position j − 1. Thus, σ satisfies the two-neighbor

k-constraint.
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For the computation of the cardinality of Csymn,k , note that by Lemma 4.2

it follows that every choice of ρ ∈ D`,k+1 and γ1, γ2, . . . , γ`, where γi ∈
S([(i− 1)(k+ 1) + 1, i(k+ 1)]), for i ∈ [`], generates a different codeword of

the form ρ(γ1, γ2, . . . , γ`). Therefore,

|Csymn,k | = |D`,k+1| · (k + 1)!` =
(n2 )!(k + 1)!`

(k+1
2 )!`

.

2

Even though Construction 7.3 provides two-neighbor constrained codes

only to the case where k is odd, it can be easily modified for the case that k

is even as well. In any event, we will not need this modification in order to

calculate a lower bound on the capacity, which is stated in the next theorem.

Theorem 7.5 For all 0 ≤ ε ≤ 1, C(ε) ≥ 1+ε
2 .

Proof. Assume that k = dn′εe that n′ = `(k + 1), for some integer `. By

Lemma 7.4 we have that

|An′,k| = Ω


(
n′

2

)
!(k + 1)!

n′
k+1(

k+1
2

)
!
n′
k+1

 = Ω
(
n′(

1+ε
2 )n′

)
.

Then,

lim
n′→∞

log |An′,k|
log n′!

≥ lim
n′→∞

log
(
n′(

1+ε
2 )n′

)
log n′!

=
1 + ε

2
.

, where the limit is over values of n′ that are divided by k. Thus, 1+ε
2 is a

partial limit of the sequence
log |An,k|

logn! and therefore C(ε) ≥ 1+ε
2

2

In order to derive an upper bound on the capacity C(ε) we show an

upper bound on the size of An,k.

Lemma 7.6 For all positive integers n, k such that k < n,

|An,k| ≤ 4n−1k
n
2 n

n
2

+1.

Proof. Let ψ : An,k → Zn be the following mapping. For a permutation

σ ∈ An,k, ψ(σ) = x = (x1, x2, . . . , xn) ∈ Zn, where x1 = σ(1), and for

each i, 2 ≤ i ≤ n, xi = σ(i) − σ(i − 1). Clearly, ψ is an injection and

therefore, the size of the set An,k is equal to the size of the image of ψ,

ψ(An,k) = {ψ(σ) : σ ∈ An,k}. We will show an upper bound on the size of

ψ(An,k).
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Let x = ψ(σ) for some σ ∈ An,k. For any position j, 2 ≤ j ≤ n − 1,

either |σ(j) − σ(j − 1)| ≤ k or |σ(j + 1) − σ(j)| ≤ k. Therefore, at least⌊
n−1

2

⌋
of the n− 1 elements x2, x3, . . . , xn are in the range [−k, k] \ {0}. Let

I ⊆ [2, n] be a set with at least
⌊
n−1

2

⌋
elements and let DI be the set of

all vectors x ∈ ψ(An,k) for which xi ∈ [−k, k] \ {0}, for every i ∈ I and

xj ∈ [−n, n] \ [−k, k], for every j ∈ [2, n] \ I. Then,

|ψ(An,k)| ≤
∑

I⊆[2,n], |I|≥bn−1
2 c
|DI |. (7.1)

For each i ∈ I there are 2k choices for xi and for each j ∈ [2, n] \ I there

are at most 2(n− k) < 2n choices for xj . Finally, there are n choices for x1.

Therefore,

|DI | ≤ n · (2k)b
n−1
2 c · (2n)d

n−1
2 e = 2n−1kb

n−1
2 cnd

n−1
2 e+1.

Since the number of choices for I is less than 2n−1, according to (7.1),

the following upper bound on the cardinality of An,k and ψ(An,k) is derived

|An,k| = |ψ(An,k)| ≤ 2n−1 · 2n−1kb
n−1
2 cnd

n−1
2 e+1

≤ 4n−1k
n
2 n

n
2

+1.

2

As a result of the last lemma we derive the following which provides an

upper bound on the capacity.

Theorem 7.7 For all 0 ≤ ε ≤ 1, C(ε) ≤ 1+ε
2 .

Proof. By Lemma 7.6, |An,k| ≤ 4n−1k
n
2 n

n
2

+1 and thus, if k = dnεe then

C(ε) ≤ lim
n→∞

log(4n−1k
n
2 n

n
2

+1)

log n!

= lim
n→∞

log(4n−1k
n
2 n

n
2

+1)

n log n

= lim
n→∞

2n− 2 + n
2 log k + n

2 log n+ log n

n log n

= lim
n→∞

n
2 ε log n+ n

2 log n

n log n
=

1 + ε

2
.

2

The following Corollary, which is an immediate result of Theorems 7.5

and 7.7, summarizes the discussion of this section.
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Corollary 7.8 For all 0 ≤ ε ≤ 1, C(ε) = 1+ε
2 .

7.2 The Asymmetric Two-Neighbor Constraint

In this section we find the capacity of the asymmetric two-neighbor con-

straint. Our main result states that for all 0 ≤ ε ≤ 1, C̃(ε) = 1. Since the

capacity is at most 1, and the capacity is nondecreasing when ε increases,

we will need to show that C̃(0) = 1. This will be done by a construction of

an asymmetric two-neighbor 1-constrained code that confirms this capacity

result.

For a set I, let I↗, respectively I↘, denote the ordering of all elements

in I according to their increasing, respectively decreasing, order. For the

construction of an asymmetric two-neighbor 1-constrained code we will need

the code Csymr′,1 , where r′ is even, from Construction 7.3. Recall that a per-

mutation π ∈ Csymr′,1 is of the form

π = ρ(γ1, γ2, . . . , γ r′
2

),

where ρ(2i − 1) = ρ(2i) and γi ∈ S([2i − 1, 2i]), for all 1 ≤ i ≤ r′

2 . In

other words, for every j, 1 ≤ j ≤ r′

2 , there exists 1 ≤ i ≤ r′

2 such that

{π(2j − 1), π(2j)} = {2i− 1, 2i}.

Construction 7.9 Let m be an integer, 1 ≤ m < n
4 .

For r = 2m+ 1, let the code Cr ⊂ Sn defined as follows. A permutation

σ ∈ Sn belongs to Cr if there exists a partition of the set [r, n] into r nonempty

sets I1, I2, . . . , Ir, and a permutation π ∈ Csymr−1,1 such that

σ = [I↗1 , I↘2 , π(1), π(2), I↗3 , I↘4 , . . . , π(r − 2), π(r − 1), I↗r ].

For r = 2m + 2 , the code Cr ⊂ Sn is defined in a similar way. A

permutation σ ∈ Sn belongs to Cr if there exists a partition of the set [r−1, n]

into r nonempty sets I1, I2, . . . , Ir, and a permutation π ∈ Csymr−2,1 such that

σ= [I↗1 ,I
↘
2 ,π(1),π(2),I↗3 ,I

↘
4 ,. . .,π(r − 3),π(r − 2), I↗r−1, I

↘
r ].

Finally, let Casymn ⊂ Sn be the code

Casymn =

bn/4−1c⋃
m=1

C2m+1 ∪ C2m+2.
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Example 7.10 For n = 15 and r = 5, let I1 = {5, 8, 10}, I2 = {6, 12}, I3 =

{7, 15}, I4 = {9, 13}, I5 = {11, 14} be a partition of [5, 14] into 5 nonempty

sets and let π = [4, 3, 1, 2]. Note, that π = ρ(γ1, γ2) where ρ = [2, 2, 1, 1],

γ1 = [1, 2] ∈ S([1, 2]), and γ2 = [4, 3] ∈ S([3, 4]), hence, π is a codeword in

Csym4,1 . Let σ ∈ S14 be a permutation of the form

σ = [I↗1 , I↘2 , π(1), π(2), I↗3 , I↘4 , π(3), π(4), I↗5 ]

= [5, 8, 10, 12, 6, 4, 3, 7, 15, 13, 9, 1, 2, 11, 14].

. Then σ ∈ C5. Note, that σ can also be obtained from other partitions such

as Ĩ1 = {5, 8, 10, 12}, Ĩ2 = {6}, and Ĩi = Ii, for all 3 ≤ i ≤ 5.

A position i, 2 ≤ i ≤ n − 1, is called a valley in a permutation σ ∈ Sn
if σ(i − 1) > σ(i) and σ(i) < σ(i + 1). For example, in the permutation

σ = [4, 7, 5, 6, 1, 2, 3], the third and fifth positions are valleys. The next

lemma will be used in proving the correctness of the construction, which

will be proved next.

Lemma 7.11 Let m be an integer, 0 ≤ m ≤ n−2
4 . Then, every permutation

σ ∈ C2m+1 ∪ C2m+2 has exactly m valleys.

Proof. Let σ ∈ C2m+1 ∪ C2m+2. Then σ is formed as described in Con-

struction 7.9 by a permutation π ∈ C2m,1 and a partition of the set [2m+1, n],

I1, I2, . . . , Ir, where r ∈ {2m+1, 2m+2}. If σ(i) ∈ Is for some 2 ≤ i ≤ n−1

and 1 ≤ s ≤ r, then either σ(i − 1) < σ(i) or σ(i + 1) < σ(i), and hence i

cannot be a valley in σ. Therefore, if i is a valley then σ(i) = π(j) for some

1 ≤ j ≤ 2m. Since for every j′, 1 ≤ j′ ≤ n
2 , there exists an i′, 1 ≤ i′ ≤ n

2 ,

such that {π(2j′ − 1), π(2j′)} = {2i− 1, 2i} and since π(2j′ − 1) and π(2j′)

are adjacent elements in σ, it follows that i is a valley in σ if and only if

π(j) is odd. Hence, every element in C2m+1 ∪ C2m+2 has exactly m valleys.

2

The correctness of the construction of the code CA is proved in the next

lemma.

Lemma 7.12 For all n ≥ 1, the code Casymn is an asymmetric two-neighbor

1-constrained code.

Proof. Let σ ∈ Casymn and let m be the number of valleys in σ. By Lemma

7.11 it follows that σ ∈ C2m+1 ∪ C2m+2. According to Construction 7.9 it

follows that there exists a permutation π ∈ Csym2m,1 such that the valleys of σ

are the positions i where σ(i) = π(j), for some 1 ≤ j ≤ 2m, and π(j) is odd.
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It follows that either σ(i − 1) = σ(i) + 1 or σ(i + 1) = σ(i) + 1. Then the

valleys in σ do not violate the asymmetric two-neighbor 1-constraint and

therefore σ satisfies the asymmetric two-neighbor 1-constraint.

2

Next, we will analyze a lower bound on the cardinalities of the codes

from Construction 7.9. First, we use the following observation.

Lemma 7.13 For all n ≥ 1, let σ ∈ Casymn and let m be the number of

valleys in σ. Then there exist at most 2m+1 different ways to obtain σ as

described in Construction 7.9.

Proof. By Lemma 7.11 it follows that σ belongs to C2m+1 ∪ C2m+2. Let

i1 < i2 < · · · < i2m be the 2m positions in which the elements of the set

[2m] appear in σ. If π ∈ C2m,1 is a permutation from which σ is obtained as

described in Construction 7.9 then π = [σ(i1), σ(i2), . . . , σ(i2m)], and hence

π is uniquely determined by σ. If I1, I2, . . . , I2m+1, I2m+2 is a partition of

the set [2m+1, n] into either 2m+1 or 2m+2 nonempty sets (we allow only

the set I2m+2 to be empty), then [I↗1 , I↘2 ] = [σ(1), σ(2), . . . , σ(i1 − 1)]. Let

j, 1 ≤ j ≤ i1− 1 be the position such that σ(j) ≥ σ(i) for all 1 ≤ i ≤ i1− 1.

If σ(j) ∈ I1 then I1 = {σ(1), σ(2), . . . , σ(j)} and I2 = {σ(j + 1), σ(j +

2), . . . , σ(i1 − 1)], and if σ(j) ∈ I2 then I1 = {σ(1), σ(2), . . . , σ(j − 1)} and

I2 = {σ(j), σ(j + 1), . . . , σ(i1 − 1)]. Hence, there are at most two ways to

determine the sets I1 and I2 from σ. Similarly, there are at most two ways

to determine each of the pair of sets I2i+1, I2i+2, where 1 ≤ i ≤ m− 1, and

at most two ways to determine the sets I2m+1, I2m+2, where I2m+2 may be

an empty set.

Thus, there exist at most 2m+1 different ways to obtain σ as described

in Construction 7.9.

2

For two positive integers `, r, where r ≤ `, the number of partitions of

` elements into r nonempty sets is denoted by S(`, r) and is known as the

Stirling number of the second kind.

Lemma 7.14 For all n ≥ 1, the cardinality of the code Casymn satisfies

|Casymn | ≥
bn
2
c∑

r=1

1

2
r!S
(
n− 2

⌊r − 1

2

⌋
, r
)⌊r − 1

2

⌋
!.

Proof. For every m, 0 ≤ m ≤ n−2
4 , we compute a lower bound on the

size of C2m+1 ∪ C2m+2. There are r!S(n − 2m, r) choices for the partition
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I1, I2, . . . , Ir, where r = 2m+ 1 or r = 2m+ 2, and there are m! · 2m choices

for the permutation π ∈ C2m,1. The expression

[(2m+ 1)!S(n− 2m, 2m+ 1) + (2m+ 2)!S(n− 2m, 2m+ 2)]m!2m

counts codewords in C2m+1 ∪ C2m+2 and by Lemma 7.13, each codeword in

C2m+1 ∪ C2m+2 is counted at most 2m+1 times. Hence, the size of C2m+1 ∪
C2m+2 is at least

[(2m+ 1)!S(n− 2m, 2m+ 1) + (2m+ 2)!S(n− 2m, 2m+ 2)]
m!

2
.

By Lemma 7.11 it follows that the sets C2m+1∪C2m+2 and C2m′+1∪C2m′+2

are disjoint if m′ 6= m, and therefore

|Casymn | ≥
bn
2
c∑

r=1

1

2
r!S
(
n− 2

⌊r − 1

2

⌋
, r
)⌊r − 1

2

⌋
!.

2

In order to show that C̃(0) = 1, we will need to use the following lower

bound on the Stirling numbers of the second kind, which is taken from [69].

Lemma 7.15 For 1 ≤ r ≤ `,

S(`, r) ≥ 1

2
(r2 + r + 2)r`−r−1 − 1.

Finally, the next theorem, which is a direct result of Lemma 7.14 and

a lower bound on the Stirling numbers of the second kind, highlights the

result of this section.

Theorem 7.16 For all 0 ≤ ε ≤ 1, C̃(ε) = 1.

Proof. Clearly C̃(0) ≤ 1. We will show that

lim
n→∞

log |Bn,1|
log n!

≥ 1,

by proving that for every 0 < δ < 1
2 ,

C̃(0) = lim
n→∞

log |Bn,1|
log n!

> 1− δ.
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Let δ be such that 0 < δ < 1
2 and let r = dδne. From Lemma 7.14 it

follows that

|Bn,1| >
1

2
r!S(n− r, r)

⌊
r − 1

2

⌋
!,

and by Lemma 7.15 and by the Stirling approximation, n! ∼
√

2πn
(
n
e

)n
,

|Bn,1| >
1

4
r!rn−2r+1

⌊
r − 1

2

⌋
! ≥ 1

4
dδne!(δn)n(1−2δ)+1

⌊
δn− 1

2

⌋
!

≥ 1

4

(
δn

e

)δn
(δn)n(1−2δ)+1

(
δn

2e

) δn
2

≥ (δn)n−
1
2
δn(2e)−

3δn
2 .

It follows that

lim
n→∞

log |Bn,1|
log n!

≥ lim
n→∞

log(δn)n(1− 1
2
δ)(2e)−

3δn
2

log nn
= 1− δ

2
> 1− δ.

This shows that C̃(0) ≥ 1 and consequently C̃(ε) = 1, for all 0 ≤ ε ≤ 1.

2

7.3 The Capacity of Error-Correcting Constrained

Codes

The two-neighbor constraint and the asymmetric two-neighbor constraint

were proposed to combat errors that are caused by the inter-cell interference

in flash memory cells. However, constrained codes should also be restricted

to have error-correction capabilities, which is the topic of this section. A

similar problem for the one-neighbor constraint was studied in [72].

For two permutations σ, π ∈ Sn, the inversion distance, denoted by

dI(σ, π), between σ and π is the Kendall’s τ -distance between their inverses,

i.e.

dI(σ, π) = dK(σ−1, π−1).

Recall that dK(σ−1, π−1) can be expressed as

dI(σ, π) = dK(σ−1, π−1) = |{(i, j) : σ(i) < σ(j), π(i) > π(j)}|.

Even though this distance was studied before, see e.g. [21], we are not

aware of any formal name for this metric and thus call it here the inversion

distance. In this section we study the capacity of the constraints in this

paper combined with a requirement of a minimum inversion distance.
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Remark 7.1 We study the inversion distance and not the Kendall’s τ one

since, according to our representation of the cells ranking in a permuta-

tion, this metric fits better with the error behavior in flash memory cells.

The motivation in studying codes in the Kendall’s τ -metric originated from

the observation that cells with adjacent levels may interchange their rank-

ings [44]. Therefore, codes in the Kendall’s τ -metric should be invoked over

the inverses of the permutations. However, in order to study these codes

with constrained codes, one should take the inversion distance applied for

the permutations.

Let E(n, k, d) be the maximum size of a code in An,k with minimum

inversion distance d. For 0 ≤ ε1 ≤ 1 and 0 ≤ ε2 ≤ 2, let k = dnε1e and

d = dnε2e, and define the capacity of two-neighbor k-constrained codes with

minimum inversion distance d by

C(ε1, ε2) = lim
n→∞

logE(n, k, d)

log n!
.

We will compute this capacity in terms of ε1 and ε2 by following some

of the methods used in [5] and later in [73]. We distinguish between three

cases:

1. 0 ≤ ε2 ≤ 1 and 0 ≤ ε1 ≤ 1,

2. 1 < ε2 ≤ 1 + ε1, and 0 ≤ ε1 ≤ 1,

3. 1 + ε1 < ε2 ≤ 2 and 0 ≤ ε1 ≤ 1.

We will find upper and lower bounds on the size of E(n, k, d) in each case

and use these bounds in order to compute the capacity of these codes.

For a permutation σ ∈ Sn, the sphere of radius t centered at σ is the set

SI(n, t, σ) = {π ∈ Sn : dI(σ, π) ≤ t}.

The size of the sphere SI(n, σ, r) does not depend on σ and thus we denote

it by sI(n, r). For σ ∈ An,k, the sphere in An,k of radius r centered at σ is

defined by

SI(An,k, σ, r)
def
={π ∈ An,k : dI(σ, π) ≤ r}.

A code in An,k with minimum inversion distance d can be constructed

by a greedy approach which leads to the following Gilbert-Varshamov type

of lower bound.
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Lemma 7.17 For every 1 ≤ k < n, 1 ≤ d ≤
(
n
2

)
, the following lower bound

on E(n, k, d) holds

E(n, k, d) ≥
|An,k|

sI(n, d− 1)
.

The next theorem is a combination of results from [5], [56], and [59].

Theorem 7.18 Let r = Θ(nδ), where 0 ≤ δ ≤ 2. Then there exist constants

c1 and c2 such that

sI(n, r) ≤

{
ec1n if 0 ≤ δ ≤ 1

(c2n
δ−1)n if 1 < δ ≤ 2

.

We are now in a position to compute the capacity C(ε1, ε2) for the first

case.

Theorem 7.19 For 0 ≤ ε1, ε2 ≤ 1, C(ε1, ε2) = 1
2 + ε1

2 .

Proof. Since E(n, k, d) ⊆ An,k it follows that

logE(n, k, d)

log n!
≤

log |An,k|
log n!

,

and hence from Corollary 7.8, C(ε1, ε2) ≤ C(ε1) = 1
2 + ε1

2 .

By Lemma 7.17 and Theorem 7.18 there exists a constant c such that

logE(n, k, d)

log n!
≥

log |An,k|
log n!

− log ecn

log n!
.

Then, C(ε1, ε2) ≥ C(ε1) = 1
2 + ε1

2 , and thus, C(ε1, ε2) = 1
2 + ε1

2 .

2

Before proceeding to the second case, let us introduce some more tools

that we will use in solving this case. Let Hn = {1, 2, . . . , n}n. Recall that for

x,y ∈ Hn, the Manhattan distance between x and y, dM (x,y), is defined

as

dM (x,y)
def
=

n∑
i=1

|xi − yi|.

The next lemma was proved in [21].

Lemma 7.20 For every σ, π ∈ Sn,

1

2
dM (σ, π) ≤ dI(σ, π) ≤ dM (σ, π).
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The definition of the two-neighbor k-constraint can be trivially extended

to Hn. A vector x ∈ Hn satisfies the two-neighbor k-constraint if either

|xi − xi−1| ≤ k or |xi+1 − xi| ≤ k, for all 2 ≤ i ≤ n− 1. Let An,k be the set

of all elements of Hn that satisfy the two-neighbor k-constraint.

For a subset S ⊆ Hn and x ∈ S, the Manhattan sphere in S of radius r

centered at x is defined by

SM (S,x, r)
def
={y ∈ S : dM (x,y) ≤ r}.

Combining the previous results along with the sphere packing upper

bound and Gilbert-Varshamov lower bound provides us with the following

lemma.

Lemma 7.21 For every 1 ≤ k < n, 1 ≤ d ≤
(
n
2

)
,

E(n, k, d) ≤
|An,k|

minx∈An,k{SM (An,k,x,
⌊
d−1

2

⌋
)|}
.

and

E(n, k, d) ≥
|An,k|

maxx∈An,k{|SM (An,k,x, 2d− 1)|}
.

Proof. From Lemma 7.20 it follows that every code in An,k with mini-

mum inversion distance d is also a code in An,k with minimum Manhattan

distance d. Hence, by the sphere packing bound for codes in An,k the fol-

lowing upper bound holds

E(n, k, d) ≤
|An,k|

minx∈An,k{|SM (An,k,x,
⌊
d−1

2

⌋
)|}
.

From Lemma 7.20 it follows that every code in An,k with minimum Man-

hattan distance 2d is also a code in An,k with minimum inversion distance

d. Hence,

E(n, k, d) ≥
|An,k|

maxx∈An,k{|SM (An,k,x, 2d− 1)|}
.

and since

max
x∈An,k

{|SM (An,k,x, 2d− 1)|}≤ max
x∈An,k

{|SM (An,k,x, 2d− 1)|},

we get

E(n, k, d) ≥
|An,k|

maxx∈An,k{|SM (An,k,x, 2d− 1)|}
.

2
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In order to apply the upper bound from Lemma 7.21, we state in the

next lemma a lower bound on the size of a Manhattan ball in An,k.

Lemma 7.22 Let k = dnεe and r = dnδe, where 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 2.

Then there exists a constant c such that

min
x∈An,k

{SM (An,k,x, r)|} ≥


(
nδ−1

2

)n
if 1 < δ < 1 + ε < 2(

nδ−1+ε

c

)n
2

if 1 + ε ≤ δ < 2
.

Proof. Let x ∈ An,k. We will show a construction of a subset of

SM (An,k,x, r) that verifies the lower bound stated in the lemma. Let

m = dn/2e and let

D1 =

{
(y1, y2, . . . , ym) :

m∑
i=1

yi =
r

4
, 0 ≤ yi ≤ m− k

}
,

D2 =

{
(z1, z2, . . . , zn−m) :

n−m∑
i=1

zi =
r

4
, 0 ≤ zi ≤ k

}
.

For every y ∈ D1, let w ∈ Hn be the following vector. For every 1 ≤ i ≤
m

w2i−1 =

{
x2i−1 + yi if x2i−1 ≤ m
x2i−1 − yi if x2i−1 > m

.

Since x ∈ An,k, for every 1 ≤ i < n−m, |x2i−x2i−1| ≤ k or |x2i+1−x2i| ≤ k,

and accordingly the even entries in w are defined to be

w2i =

{
x2i + w2i−1 − x2i−1 if |x2i − x2i−1| ≤ k
x2i + w2i+1 − x2i+1 if |x2i − x2i−1| > k

.

According to the construction of the vector w we get that w ∈ An,k and

dM (x,w) ≤ 3r
4 , that is, w ∈ BM (An,k,x, 3r

4 ).

Similarly, for every z ∈ D2, we define u ∈ Hn as follows. For every

1 ≤ i ≤ n−m, if |w2i − w2i−1| ≤ k then

u2i=


w2i − zi if 0 ≤ w2i − w2i−1 ≤ k,w2i > k

zi if 0 ≤ w2i − w2i−1 ≤ k,w2i < k

w2i + zi if − k ≤ w2i − w2i−1 ≤ 0, w2i ≤ n− k
n− zi if − k ≤ w2i − w2i−1 ≤ 0, w2i > n− k
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and if |w2i − w2i−1| > k then

u2i=


w2i − zi if 0 ≤ w2i − w2i+1 ≤ k,w2i > k

zi if 0 ≤ w2i − w2i+1 ≤ k,w2i < k

w2i + zi if − k ≤ w2i − w2i+1 ≤ 0, w2i ≤ n− k
n− zi if − k ≤ w2i − w2i+1 ≤ 0, w2i > n− k

.

Lastly, for every 1 ≤ i ≤ m, we set u2i−1 = w2i−1. It can be readily verified

that u belongs to SM (An,k,x, r) and that y, z are reconstructible from x

and u. Therefore,

|SM (An,k,x, r)| ≥ |D1| · |D2|.

For every three positive integers ñ, k̃, r̃ we define

Qñ,k̃,r̃
def
=

∣∣∣∣{(y1, y2, . . . , yñ) ∈ Zñ :

ñ∑
i=1

yi = r̃, 0 ≤ yi ≤ k̃
}∣∣∣∣.

According to the last definition, we get that |D1| = Qm,m−k, r
4

and |D2| =
Qn−m,k, r

4
. In [73] the authors proved that if k̃ = Θ(ñε̃) and r̃ = Θ(ñδ̃),

where 1 + ε̃ > δ̃, then

Qñ,k̃,r̃ ≥
(ñ+ r̃)ñ

ññ
.

Since ε < 1 it follows that m− k = Θ(n), and since δ < 2 we get

|D1| ≥
(
n
2 + r

4

)n
2

(n2 )
n
2

≥
(
nδ−1

2

)n
2

.

If 1 ≤ δ < 1 + ε < 2 we have that

|D2| ≥
(n2 + r

4)
n
2

(n2 )
n
2

≥
(
nδ−1

2

)n
2

.

Therefore,

|SM (An,k,x, t)| =
(
nδ−1

2

)n
.

If 1 + ε ≤ δ < 2 then since n
2k = Θ(n1+ε) = O(r), there exist a constant

c such that n
2

⌈
k
c

⌉
≤ r where n is sufficiently large, and therefore

|D2| ≥
(
k

c

)n
2

=

(
nε

c

)fracn2

.

103

Technion - Computer Science Department - Ph.D. Thesis  PHD-2014-11 - 2014



Therefore,

|SM (An,k,x, t)| ≥
(
nδ−1+ε

2c

)n
2

.

2

We are ready to prove the capacity for the second case.

Theorem 7.23 For 0 ≤ ε1 ≤ 1 and 1 < ε2 ≤ 1 + ε1,

C(ε1, ε2) =
3

2
+
ε1
2
− ε2.

Proof. Let k = dnε1e and d = dnε2e. By Lemma 7.17 and Theorem 7.18

it follows that there exists a constant c such that

logE(n, k, d)

log n!
≥

log |An,k|
log n!

− log cnn(ε2−1)n

log n!
.

Therefore,

C(ε1, ε2) ≥ 1

2
+
ε1
2

+ 1− ε2 =
3

2
+
ε1
2
− ε2.

Similarly, by Lemmas 7.21 and 7.22 it follows that

logE(n, k, d)

log n!
≤

log |An,k|
log n!

−
log
(
nε2−1

2

)n
log n!

,

and hence,

C(ε1, ε2) ≤ 1

2
+
ε1
2

+ 1− ε2.

Together we get, C(ε1, ε2) = 3
2 + ε1

2 −
ε2
2 .

2

For the last case, where 1 + ε1 < ε2 ≤ 2, 0 ≤ ε1 ≤ 1 we will need one

more lemma.

Lemma 7.24 Let k = dnεe and r = dnδe, where 0 ≤ ε ≤ 1 and 1 ≤ δ ≤ 2.

Then, there exists a constant c such that

max
x∈An,k

{|SM (An,k,x, r)|} ≤ cnn(δ−1+ε)n
2 .

Proof. Let x ∈ An,k, and m =
⌈
n
2

⌉
. For every y ∈ SM (An,k,x, r), define

the vectors (u,b) ∈ {0, 1, . . . , n− 1}m × {0, 1}m such that
∑m

i=1 ui ≤ r and

(z, c) ∈ {0, 1, 2, . . . , k}n−m × {0, 1, 2, 3}n−m as follows. For 1 ≤ i ≤ m,

(ui, bi) =

{
(y2i−1 − x2i−1, 0) if 0 ≤ y2i−1 − x2i−1

(x2i−1 − y2i−1, 1) if y2i−1 − x2i−1 < 0
.
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For 1 ≤ i ≤ n−m, if |y2i − y2i−1| ≤ k then

(zi, ci) =

{
(y2i − y2i−1, 0) if 0 ≤ y2i − y2i−1 ≤ k
(y2i−1 − y2i, 1) if − k ≤ y2i − y2i−1 ≤ 0

.

Otherwise, if |y2i − y2i−1| > k then

(zi, ci) =

{
(y2i − y2i+1, 2) if 0 ≤ y2i − y2i+1 ≤ k
(y2i+1 − y2i, 3) if − k ≤ y2i − y2i+1 ≤ 0

.

Note that y is reconstructible from (u,b), (z, c) and x, hence the map-

ping y → ((u,b), (z, c)) is an injection. Hence, the size of SM (An,k,x, r) is

at most the number of different choices of ((u,b), (z, c)) and therefore

|SM (An,k,x, r)| ≤ 2
n
2

+1

(⌈n
2

⌉
+ r + 2

r

)
(4(k + 1))

n
2 .

We will show that there exists a constant b such that(⌈n
2

⌉
+ r + 2

r

)
≤ bnn(δ−1)n

2 .

By the Stirling approximation, n! ∼
√

2πn
(
n
e

)n
, we have

(⌈n
2

⌉
+ r + 2

r

)
≤

(n+5
2 + r)

n+5
2

+r

rr
(
n+4

2

)n+4
2

≤ .

2
n+4
2 r

n+5
2

(
n+5
2r + 1

)n+5
2

+r

n
n+4
2

≤

bn1n
(δ−1)n

2

( 1
2r
n+5

+ 1

) 2r
n+5


n+5
2r

n+5
2

+r

≤

bn2n
(δ−1)n

2 e
(n+5)2

4r
+n+5

2 .

for some constants b1, b2.

Since δ ≥ 1 it follows that (n+5)2

4r + n+5
2 = Θ(n) and therefore there exists

a constant b such that (⌈n
2

⌉
+ r + 2

r

)
≤ bnn(δ−1)n

2 .
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Finally, we have that there exists a constant c such that

|SM (An,k,x, r)| ≤ cnn(1−δ)n
2 n

εn
2 .

2

We are ready to compute the capacity for the last case.

Theorem 7.25 If 1 + ε1 < ε2 ≤ 2 and 0 ≤ ε1 ≤ 1, then

C(ε1, ε2) = 1− ε2
2
.

Proof. Let k = dnε1e and d = dnε2e. For 1 + ε1 ≤ ε2 < 2, it follows from

Lemmas 7.21 and 7.24 that

logE(n, k, d)

log n!
≥

log |An,k|
log n!

− log(cnn(ε2−1+ε1)n
2 )

log n!
.

Thus,

C(ε1, ε2) ≥ 1

2
+
ε1
2

+
1

2
− ε2

2
− ε1

2
= 1− ε2

2
.

It follows from Lemmas 7.21 and 7.22 that

logE(n, k, d)

log n!
≤

log |An,k|
log n!

− log n(ε2−1+ε1)n
2

log n!
,

and therefore

C(ε1, ε2) ≤ 1

2
+
ε1
2
− ε2 + ε1 − 1

2
= 1− ε2

2
.

We conclude that if 1 + ε1 ≤ ε2 ≤ 2 then C(ε1, ε2) = 1− ε2
2 .

2

For conclusion, Theorems 7.19, 7.23, and 7.25 are summarized in the

following corollary.

Corollary 7.26 Let 0 ≤ ε1 ≤ 1 and 0 ≤ ε2 ≤ 2. Then

C(ε1, ε2) =


1
2 + ε1

2 if 0 ≤ ε2 ≤ 1
3
2 + ε1

2 − ε2 if 1 < ε2 ≤ 1 + ε1

1− ε2
2 if 1 + ε1 < ε2 ≤ 2

.

Let Ẽ(n, k, d) be the maximum size of a code in Bn,k (the set of all

permutations in Sn that satisfy the asymmetric two neighbor k-constraint)

with minimum inversion distance d. For 0 ≤ ε1 ≤ 1, 0 ≤ ε2 ≤ 2, k = dnε1e
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and d = dnε2e, the capacity and asymmetric two neighbor constrained code

with minimum inversion distance d is defined by

C̃(ε1, ε2) = lim
n→∞

log Ẽ(n, k, d)

log n!
.

Let E(n, d) be the maximum size of a code in Sn with minimum inversion

distance d. For 0 ≤ δ ≤ 2, and d = dnδe, the capacity of error-correcting

codes in Sn with minimum inversion distance d by

Cerr(δ) = lim
n→∞

logE(n, d)

log n!
.

Barg and Mazumdar [5] prove the following

Theorem 7.27 Let 0 ≤ δ ≤ 2. Then

Cerr(δ) =

{
1 if 0 ≤ δ ≤ 1

2− δ if 1δ ≤ 2
.

Following the same technique used in [5] we have

Theorem 7.28 Let 0 ≤ ε1 ≤ 1 and 0 ≤ ε2 =≤ 2. Then

C̃(ε1, ε2) = Cerr(ε2)

Proof. Since every code in Bn,k with minimum inversion distance d is also

a code in Sn with minimum inversion distance d it follows that Ẽ(n, k, d) ≤
E(n, d) and therefore, C̃(ε1, ε2) ≤ Cerr(ε2).

We have the following lower bound on Ẽ(n, k, d), which is a Gilbert-

Varshamov type of lower bound.

Ẽ(n, k, d) ≥
|Bn,k|

sI(n, d− 1)
.

Hence,

C̃(ε1, ε2) = lim
n→∞

log Ẽ(n, k, d)

log n!

≥ lim
n→∞

log |Bn,k|
log n!

− lim
n→∞

log sI(n, d− 1)

log n!
= C̃(ε1)− lim

n→∞

log sI(n, d− 1)

log n!

By Theorem 7.18 we have that if 0 ≤ ε2 ≤ 1 then there exist some
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constant c1 such that sI(n, d− 1) ≤ ec1n and therefore,

C̃(ε1, ε2) ≥ C̃(ε1) = 1 = Cerr(ε2).

By Theorem 7.18 it also follows that if 1 < ε2 ≤ 2 then there exist some

constant c2 such that sI(n, d− 1) ≤ (c2n
ε2−1)n and therefore,

C̃(ε1, ε2) ≥ C̃(ε1)− (ε2 − 1) = 2− ε2 = Cerr(ε2).

We conclude that C̃(ε, ε2) = Cerr(ε2) for all 0 ≤ ε1 ≤ 1 and 0 ≤ ε2 ≤ 2.

2
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Appendix A

In Theorem 5.2 we proved that a perfect single-error-correcting code in Sn
with the Kendall’s τ -metric does not exist if n > 4 is a prime or if n = 4. The

proof of Theorem 5.2 is based on a certain linear equations system, where the

existence of a perfect single-error-correcting code in Sn implies the existence

of a solution to the linear equations system over the integers, and thus,

by showing the nonexistence of such solution we derive the nonexistence

of a perfect single-error-correcting code. By using similar techniques we

prove the nonexistence of perfect single-error-correcting codes in Sn for n ∈
{6, 8, 9, 10}. For each such n, let C be a perfect single-error-correcting code

in Sn. We will describe the corresponding linear equations system and use a

computer to show that this linear equations system does not have a solution

over the integers.

n = 6: We denote by D6 the set of all vectors of {1, 2, 3}6 in which each of the

elements 1,2,3 appears twice. For each v ∈ D6 we define Sv to be the

set of eight permutations in S6, such that the elements 1 and 2 appear

in the two positions in which 1 appears in v, the elements 3 and 4

appear in the two positions in which 2 appears in v, and the elements

5 and 6 appear in the two positions in which 3 appears in v. Let

xv = |C ∩Sv| and let x = (xv1 , xv2 , . . . , xvm), where m = |D6| = 6!
2!2!2! .

By considering how the elements of Sv are covered (similarly to the way

it was done in the proof of Theorem 5.2), for each v ∈ D6, we obtain

a linear equations system of the form AxT = |Sv| · 1 = 8 · 1, where A

is a square matrix of order m. The kernel of A is an one-dimensional

vector space which is spanned by a vector y ∈ {0,−1, 1}9, that has

both negative and positive entries. Every solution for this system is of

the form 8
6 · 1 + α · y, α ∈ R, and therefore, the system does not have

a solution in which all entries are integers.

n = 8: We denote by D8 the set of all vectors v ∈ {1, 2, 3, 4}8 in which each

of the elements 1 and 2 appears three times and each of the elements 3

and 4 appears once. For every v ∈ D8 we define Sv to be the set of 36
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permutations in S8, such that the elements 1, 2, and 3 appear in the

three positions in which 1 appears in v, the elements 4, 5, and 6 appear

in the three positions in which 2 appears in v, the element 7 appears

in the position of 3 in v, and the element 8 appears in the position

of 4 in v. Let xv = |C ∩ Sv| and let x = (xv1 , xv2 , . . . , xvm), where

m = |D8| = 8!
3!3! . By considering how elements of Sv are covered,

for each v ∈ D8, we obtain a linear equations system of the form

AxT = 36 · 1, where A is a square matrix of order m. The system has

a unique solution, xT = 36
8 · 1, which has non-integer entries.

n = 9: We denote by D9 the set of all vectors v ∈ {1, 2, 3}9 in which the

element 1 appears five times and each of the elements 2 and 3 appears

twice. For every v ∈ D9 we define Sv to be the set of 480 permutations

in S8, such that the elements 1, 2, 3, 4, and 5 appear in the five positions

in which 1 appears in v, the elements 6 and 7 appear in the two

positions in which 2 appears in v, and the elements 8 and 9 appear

in the two positions in which 3 appears in v. Let xv = |C ∩ Sv| and

let x = (xv1 , xv2 , . . . , xvm), where m = |D9| = 9!
5!2!2! . By considering

how elements of Sv are covered, for each v ∈ D9, we obtain a linear

equations system of the form AxT = 480·1, where A is a square matrix

of order m. The system has a unique solution, xT = 480
9 ·1, which has

non-integer entries.

n = 10: We denote by D10 the set of all vectors v ∈ {1, 2, 3}10 in which each

of the elements 1 and 2 appears four times and the element 3 appears

twice. For every v ∈ D10 we define Sv to be the set of 1,152 permu-

tations in S10, such that the elements 1, 2, 3, and 4 appear in the four

positions in which 1 appears in v, the elements 5, 6, 7, and 8 appear in

the four positions in which 2 appears in v, and the elements 9 and 10

appear in the two positions in which 3 appears in v. Let xv = |C ∩Sv|
and let x = (xv1 , xv2 , . . . , xvm), where m = |D10| = 10!

4!4!2! . By con-

sidering how elements of Sv are covered, for each v ∈ D10, we ob-

tain a linear equations system of the form AxT = 1, 152 · 1, where

A is a square matrix of order m. The system has a unique solution,

xT = 1,152
10 · 1, which has non-integer entries.

Appendix B

In Section 5.3 an algorithm that calculate the cyclic Kendall’s-τ -weight of

a permutation σ ∈ Sn, wκ(σ), was presented. The running time of the

algorithm is O(n2) and it consists of the following five steps.
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1) For every i ∈ [0, n− 1], compute

distσ(i)
def
= min{i− σ−1(i) (mod n), σ−1(i)− i (mod n)}

and

signσ(i)
def
=


0 if σ(i) = i

+ if σ(i) 6= i and distσ(i) = i− σ−1(i)( mod n)

− otherwise

.

2) Compute

rσ
def
=

∑n−1
i=0 signσ(i)distσ(i)

n
.

3) Choose a set M ⊂ [0, n − 1] of |rσ| elements such that for every

i ∈ M , signσ(i)rσ ≥ 0 and for every j ∈ [0, n − 1] \ M , for which

signσ(j)sign(rσ) ≥ 0, we have that distσ(j) ≤ distσ(i).

4) For every i ∈ [0, n− 1] compute

dM,σ(i)
def
=

{
n− distσ(i) if i ∈M
distσ(i) otherwise

and

sM,σ(i)
def
=

{
−signσ(i) if i ∈M
signσ(i) otherwise

.

5) For every i, j ∈ [0, n− 1] compute

fM,σ(i, j)
def
=


1 if sM,σ(i) > 0, sM,σ(j) ≥ 0, and [σ−1(j), j] ⊂ [σ−1(i), i]

1 if sM,σ(i) < 0, sM,σ(j) < 0, and [j, σ−1(j)] ⊂ [i, σ−1(i)]

0 otherwise

,

where [a, b] is the set of elements {a (mod n), a+1 (mod n), . . . , b (mod n)}.

Finally, let

wM,σ =
∑

i∈[0,n−1] s.t. sM,σ(i)>0

dM,σ(i) +

n−1∑
i=0

n−1∑
j=0

fM,σ(i, j).

A set M that satisfies the requirements of step (3) is called a balancing

set for σ. Note, that M is not necessarily unique. For example, if σ =
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[4, 3, 6, 1, 2, 5, 0] then

rσ7 =

6∑
i=0

signσ(i)distσ(i) = 1− 2− 2 + 2− 3 + 0− 3 = −7

and rσ = −1. The set M = {6} is a set of size one and for every j ∈ [0, 5]

such that signσ(j) = −, distσ(j) ≤ distσ(6) = 3. Hence, M is a balancing

set for σ, dM,σ(6) = 4, and sM,σ(6) = +. M̂ = {4} is another balancing set

for σ. It will be proven in this appendix that wκ = wM,σ. The proof consists

of three arguments. The first argument is that wM,σ does not depend on the

choice of the balancing set for σ, M . The second argument is that for every

σ, π ∈ Sn, if dK(σ, π) = 1 then wM,σ = wM ′,π±1, where M,M ′ are balancing

sets for σ, π, respectively. The last argument is that for every σ ∈ Sn \ {ε}
there exists π ∈ Sn such that dK(σ, π) = 1 and wM ′,π = wM,σ − 1.

As mentioned in Section 5.3, it is more convenient to consider positions

and elements of permutations in Sn as residues modulo n. Henceforth,

throughout this appendix, both positions and elements of permutations in

Sn are taken from the set [0, n− 1] = {0, 1, . . . , n− 1}, and for every ` ∈ Z,

σ(`) = σ(` ( mod n)). Under this notations, (n−1, n)◦σ = (n−1, 0)◦σ is the

permutation obtained from σ by the exchange of the elements σ(0) and σ(n−
1). By abuse of notation, the set {a( mod n), a+1( mod n), . . . , b( mod n)}
is denoted by [a, b].

Lemma B.1 For every σ ∈ Sn,

n−1∑
i=0

signσ(i)distσ(i) ≡ 0( mod n).

Proof.

n−1∑
i=0

signσ(i)distσ(i) =
∑

i ∈ [0, n− 1],

signσ(i) ∈ {0,+}

distσ(i)−
∑

i ∈ [0, n− 1],

signσ(i) = −

distσ(i)

=
∑

i ∈ [0, n− 1],

signσ(i) ∈ {0,+}

i− σ−1(i)−
∑

i ∈ [0, n− 1],

signσ(i) = −

n− (i− σ−1(i)

≡
n−1∑
i=0

i− σ−1(i) ( mod n) ≡
n−1∑
i=0

i−
n−1∑
i=0

i ( mod n) ≡ 0 ( mod n).

2

Lemma B.1 implies that rσ is an integer.
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Lemma B.2 For every σ ∈ Sn such that rσ 6= 0 there exist at least |2rσ|
elements i ∈ [0, n− 1], for which signσ(i) = sign(rσ).

Proof. Assume to the contrary that there exist at most |2rσ|−1 elements

i ∈ [0, n− 1] for which signσ(i) = sign(rσ). If sign(rσ) = − then

n−1∑
i=0

signσ(i)distσ(i) > (2rσ + 1)
n

2
= rσn+

n

2
> rσn.

Similarly, if sign(rσ) = + then

n−1∑
i=0

signσ(i)distσ(i) ≤ (2rσ − 1)
n

2
= rσn−

n

2
< rσn.

2

Lemma B.2 implies that there exists a balancing set for σ.

Lemma B.3
n−1∑
i=0

sM,σ(i)dM,σ(i) = 0.

Proof.

n−1∑
i=0

sM,σ(i)dM,σ(i) =
∑

i∈[0,n−1]\M

signσ(i)distσ(i)−
∑
i∈M

signσ(i)(n−distσ(i)).

= −rσn+
n−1∑
i=0

signσ(i)distσ(i) = −rn+ rn = 0.

2

Let NM,σ,0, NM,σ,+, and NM,σ,− be a partition of the elements in [0, n−1]

into three classes according to their sign, sM,σ, i.e.

NM,σ,0 = {i : sM,σ(i) = 0}, NM,σ,+ = {i : sM,σ(i) = +},

and

NM,σ,− = {i : sM,σ(i) = −}.

Lemma B.4 Let i ∈ [0, n− 1] and let

I1 = {j ∈ NM,σ,+ \ {i} : i ∈ [σ−1(j), j]},

I2 = {j ∈ NM,σ,− \ {i} : i ∈ [j, σ−1(j)]}.
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Then, |I1| = |I2|.

Proof.

Assume w.l.o.g. that sM,σ(i) 6= −. For every j ∈ [0, n− 1] define

d̃(j) =

{
n− dM,σ(j), j ∈ I1 ∪ I2,

dM,σ(j), otherwise
.

and

s̃(j) =

{
−sM,σ(j), j ∈ I1 ∪ I2.

sM,σ(j), otherwise.
.

Let π = [σ(i + 1), σ(i + 2), . . . , σ(n − 1), σ(0), σ(1), . . . , σ(i)], and let

ρ = [i + 1, i + 2, . . . , n − 1, 0, 1, . . . , i]. For every j ∈ [0, n − 1], j 6= i,

d̃(j) = ρ−1(j) − π−1(j) if s̃(j) ∈ {0,+} and d̃(j) = π−1(j) − ρ−1(j) if

s̃(j) = −.

n−1∑
j=0

s̃(j)d̃(j) =
∑

j, s̃(j)≥0

ρ−1(j)− π−1(j)−
∑

j, s̃(j)<0

π−1(j)− ρ−1(j)

=
n−1∑
j=0

ρ−1(j)−
n−1∑
j=0

π−1(j) = 0.

On the other hand,

n−1∑
j=0

s̃(j)d̃(j) =
∑
j∈I1

−(n− dM,σ(j)) +
∑
j∈I2

n− dM,σ(j)+

∑
j∈[0,n−1]\(I1∪I2)

sM,σ(j)dM,σ(j) = n|I2| − n|I1|+
n−1∑
j=0

sM,σ(j)dM,σ(j).

By Lemma B.3 it follows that
∑n−1

j=0 sM,σ(j)dM,σ(j) = 0, and therefore,

n|I2| − n|I1| = 0, i.e. |I1| = |I2|.
2

Lemma B.5 Let σ ∈ Sn such that rσ 6= 0. Let M , be a balancing set for

σ, and assume that there exist a ∈ M and b ∈ [0, n − 1] \ M such that

signσ(a) = signσ(b) and distσ(a) = distσ(b). Let M̃ = (M \ {a}) ∪ {b}.
Then wM,σ = wM̃,σ.

Proof.
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Note, first thatNM̃,σ,−sign(rσ) = (NM,σ,−sign(rσ)\{a})∪{b}. By Lemma B.3

it follows that ∑
i∈NM,σ,+

dM,σ(i) =
∑

i∈NM,σ,−sign(rσ)

dM,σ(i).

Therefore,

wM,σ =
∑

i∈NM,σ,−sign(rσ)

dM,σ(i) +

n−1∑
i=0

n−1∑
j=0

fM,σ(i, j),

and similarly,

wM̃,σ =
∑

i∈NM̃,σ,−sign(rσ)

dM̃,σ(i) +
n−1∑
i=0

n−1∑
j=0

fM̃,σ(i, j).

Since dM,σ(i) = dM̃,σ(i) for every i ∈ [0, n−1]\{a, b} and since dM,σ(a) =

dM̃,σ(b), it follows that∑
i∈NM,σ,−sign(rσ)

dM,σ(i) =
∑

i∈NM̃,σ,−sign(rσ)

dM,σ(i).

Next, it is proved that

n−1∑
i=0

n−1∑
j=0

fM,σ(i, j) =

n−1∑
i=0

n−1∑
j=0

fM̃,σ(i).

Clearly, for every i, j ∈ [0, n− 1] \ {a, b}, fM,σ(i, j) = fM̃,σ(i, j). Moreover,

distσ(a) = distσ(b) ≤ distσ(i), for all i ∈ M \ {a}, which implies that

dM,σ(a) ≥ dM,σ(j), dM̃,σ(b) ≥ dM̃,σ(j), for all j ∈ [0, n − 1]. It also implies

that dM̃,σ(a) ≥ dM̃,σ(j), for all j ∈ NM̃,σ,sign(rσ), and dM,σ(b) ≥ dM,σ(j), for

all j ∈ NM,σ,sign(rσ). Therefore, fM,σ(j, a) = 0, fM̃,σ(j, b) = 0, fM̃,σ(j,a) =

0, and fM,σ(j, b) = 0, for all j ∈ [0, n− 1]. Hence, it is enough to show that

n−1∑
j=0

fM,σ(a, j) + fM,σ(b, j) =

n−1∑
j=0

fM̃,σ(a, j) + fM̃,σ(b, j),

or equivalently,

n−1∑
j=0

fM,σ(a, j)− fM̃,σ(a, j) =
n−1∑
j=0

fM̃,σ(b, j)− fM,σ(b, j). (B.1)
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Let

I1 = {j ∈ NM,σ,+ \ {a} : a ∈ [σ−1(j), j]},

and

I2 = {j ∈ NM,σ,− \ {a} : a ∈ [j, σ−1(j)]}.

By Lemma B.4, |I1| = |I2|. Since dM,σ(a) is maximal, it follows that

there are three types of elements in NM,σ,−sign(rσ) \ {a}: The first type

is j such that fM,σ(a, j) = 1. If sign(rσ) = − then this j is such that

[σ−1(j), j] ⊂ [σ−1(a), a] and if sign(rσ) = + then this j is such that

[j, σ−1(j)] ⊂ [a, σ−1(a)]. The second type is j, such that σ−1(j) ∈ [σ−1(a), a]

and j ∈ [a, σ−1(a)]. If sign(rσ) = − then these are exactly the elements of

I1, otherwise, let x be the number of such elements. The third type is j such

that σ−1(j) ∈ [a, σ−1(a)] and j ∈ [σ−1(a), a]. If sign(rσ) = + then these are

exactly the elements of I2, otherwise, let x be the number of such elements.

Note, that since dM,σ(a) is maximal, if sign(rσ) = − then x counts the num-

ber of elements j ∈ [0, n − 1] such that σ−1(j) ∈ [a, σ−1(a)], sM,σ(j) = +,

and fM,σ(a, j) = 0. There are |I2| +
∑n−1

j=0 fM̃,σ(a, j) elements j such that

σ−1(j) ∈ [a, σ−1(a)] and sM,σ(j) = −. Therefore,

x = n− dM,σ(a)−
n−1∑
j=0

fM̃,σ(a, j)− |I2|. (B.2)

Similarly, if sign(rσ) = + then x counts the number of elements j ∈ [0, n−1]

such that σ−1(j) ∈ [σ−1(a), a], sM,σ(j) = −, and fM,σ(a, j) = 0. There

are |I1| +
∑n−1

j=0 fM̃,σ(a, j) elements j such that σ−1(j) ∈ [σ−1(a), a] and

sM,σ(j) = +, and since |I1| = |I2|, it follows that in any case, x satisfies

equation (B.2). Thus,

|NM,σ,−sign(rσ)|−1 =
n−1∑
j=0

fM,σ(a, j)+ |I1|+n−dM,σ(a)−
n−1∑
j=0

fM̃,σ(a, j)−|I2|.

=

n−1∑
j=0

fM,σ(a, j)−
n−1∑
j=0

fM̃,σ(i1, j) + n− dM,σ(a).

It follows that,

n−1∑
j=0

fM,σ(a, j)−
n−1∑
j=0

fM̃,σ(a, j) = |NM,σ,−sign(rσ)| − 1− n+ dM,σ(a).
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The same arguments are applied to derive that

n−1∑
j=0

fM̃,σ(b, j)−
n−1∑
j=0

fM,σ(b, j) = |NM̃,σ,−sign(rσ)| − 1− n+ dM̃,σ(b).

Since |NM̃,σ,−sign(rσ)| = |NM,σ,−sign(rσ)| and dM,σ(a) = dM̃,σ(b), it fol-

lows that equation (B.1) holds, which completes the proof of the lemma.

2

Corollary B.6 The value of wM,σ does not depend on the choice of the

balancing set M .

Proof. Let M and M̃ be two balancing sets for σ, i.e. signσ(i) =

sign(rσ), for every i ∈ M ∪ M̃ , distσ(j) ≤ distσ(i) for every i ∈ M , j ∈
[0, n− 1] \M , and distσ(j) ≤ distσ(i),for every i ∈ M̃ , j ∈ [0, n− 1] \ M̃ . In

particular, for every a ∈M \M̃ and for every b ∈ M̃ \M , distσ(a) ≤ distσ(b)

and distσ(b) ≤ distσ(a), hence, distσ(a) = distσ(b). Moreover, since M and

M̃ are both sets of size |rσ| it follows that |M \M̃ | = |M̃ \M |. Let M \M̃ =

{a1, a2, . . . , a`}, M̃ \M = {b1, b2, . . . , b`}, and let M1 = (M \ {a1}) ∪ {b1}.
For every 2 ≤ t ≤ `, let Mt = (Mt−1 \ {at})∪ {bt}. Note, that M` = M̃ . By

Lemma B.5, it follows that wM,σ = wM1,σ = . . . = wMt,σ = wM̃,σ.

2

Corollary B.6 states that the value of wM,σ does not depend on the

choice of the balancing set M . Each permutation σ ∈ Sn is assigned with a

non-negative integer wσ, where wσ = wM,σ for some balancing set for σ, M ,

and this assignment is well defined. In what follows, it will be proved that

wσ = wκ(σ). To this end, it is proved that for every σ, π ∈ Sn, dκ(σ, π) = 1

then wπ = wσ±1. Let σ, π ∈ Sn such that dκ(σ, π) = 1, i.e. π = (`, `+1)◦σ,

where σ(`) = a, and σ(`+1) = b. In order to show that wπ = wσ±1 we will

show the existence of a balancing set for σ, M , and a balancing set for π, M̃ ,

such that sM,σ(i) = sM̃,π(i), for every i ∈ [0, n−1] (with exception for i = a

if sM,σ(a) = 0 or sM̃,π(i) = 0 and for i = b if sM,σ(b) = 0 or sM̃,π(b) = 0).

This will simplify the computation of dM̃,π(i) and fM̃,π(i, j), in terms of

dM,σ(i) and fM,σ(i), respectively, for every i ∈ [0, n− 1]. The balancing set

for π, M̃ , will depend on signσ(a), signσ(b), distσ(a), distσ(b), and whether

or not a, b ∈ M . In order to find such balancing sets for σ and π, it is

required to compute rπ in terms of rσ. This is done by simply computing

distπ(a), distπ(b), signπ(a), and signπ(b), in terms of distσ(a), distσ(b),

117

Technion - Computer Science Department - Ph.D. Thesis  PHD-2014-11 - 2014



signσ(a), and signσ(b), respectively, and substitute these values in

rπn =

n−1∑
i=0

signπ(i)distπ(i).

distπ(a) =



distσ(a)− 1 if signσ(a) = +

distσ(a) + 1 if signσ(a) = 0

distσ(a) + 1
if signσ(a) = − and

distσ(a) <
⌊
n−1

2

⌋
n− (distσ(a) + 1)

if signσ(a) = − and

distσ(a) =
⌊
n−1

2

⌋
. (B.3)

signπ(a) =



+ if signσ(a) = + and distσ(a) > 1

0 if signσ(a) = + and distσ(a) = 1

− if signσ(a) = 0

− if signσ(a) = − and distσ(a) <
⌊
n−1

2

⌋
+ if signσ(a) = − and distσ(a) =

⌊
n−1

2

⌋
. (B.4)

distπ(b) =



distσ(b)− 1 if signσ(b) = −
distσ(b) + 1 if signσ(b) = 0

distσ(b) + 1
if signσ(b) = + and

distσ(b) <
⌊
n
2

⌋
n− (distσ(b) + 1)

if signσ(b) = + and

distσ(b) =
⌊
n
2

⌋
. (B.5)

signπ(b) =



− if signσ(b) = − and distσ(b) > 1

0 if signσ(b) = − and distσ(b) = 1

+ if signσ(b) = 0

+ if signσ(b) = + and distσ(b) <
⌊
n
2

⌋
− if signσ(b) = + and distσ(b) =

⌊
n
2

⌋
. (B.6)

The values of rπ in terms of rσ are summarized in Table 7.1.
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XXXXXXXXXXXsignσ(b)
signσ(a)

signσ(a) ∈ {0,+} signσ(a) = −
distσ(a) <

⌊
n−1

2

⌋ signσ(a) = −
distσ(a) =

⌊
n−1

2

⌋
signb ∈ {0,−} rσ rσ rσ + 1

signσ(b) = +
distσ(b) <

⌊
n
2

⌋ rσ rσ rσ + 1

signσ(b) = +
distσ(b) =

⌊
n
2

⌋ rσ − 1 rσ − 1 rσ

Table 7.1: Values of rπ in terms of rσ

Lemma B.7 Let σ, π ∈ Sn, where π = (`, ` + 1) ◦ σ, σ(`) = a, and σ(` +

1) = b. Assume that distσ(a) = 0 and distσ(b) = 0, i.e. ` = a and

b ≡ `+ 1 ( mod n). Then wπ = wσ + 1.

Proof.

Let M be a balancing set for σ. As shown in Table 7.1, rπ = rσ. More-

over, distπ(a) = 1, distπ(b) = 1, and for every i ∈ M , distπ(i) = distσ(i) ≥
1. Therefore, M is also a balancing set for π. Since a, b 6∈ M it follows

that dM,π(a) = dM,π(b) = 1, sM,π(a) = −, and sM,π(b) = +. For every

i ∈ [0, n− 1] \ {a, b} we have that dM,π(i) = dM,σ(i) and sM,π(i) = sM,σ(i).

By definition,

wπ =
∑

i∈NM,π,+

dM,π(i) +

n−1∑
i=0

n−1∑
j=0

fM,π(i, j),

and fM,π(i, j) = fM,σ(i, j), for every i ∈ [0, n − 1], j ∈ [0, n − 1] \ {a}. By

Lemma B.4 it follows that

n−1∑
j=0

fM,σ(j, a) = |{j ∈ NM,σ,− : a ∈ [j, σ−1(j)]}| =
n−1∑
j=0

fM,π(j, a).

Note, that NM,π,+ = NM,σ,+ ∪ {b}. Therefore,

wπ =
∑

i∈NM,σ,+

dM,σ(i) +
n−1∑
i=0

n−1∑
j=0

fM,σ(i, j) + dM,π(b) = wσ + 1.

2

Lemma B.8 Let σ, π ∈ Sn, where π = (`, `+1)◦σ, σ(`) = a, and σ(`+1) =

b, and let M be a balancing set for σ. If sM,σ(a) = + and distσ(b) = 0, i.e.

b ≡ `+ 1 ( mod n), then wπ = wσ − 1.

Proof. We distinguish between two cases.
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Case 1: a ∈ M . In that case rσ < 0 and signσ(a) = −. If distσ(a) <
⌊
n−1

2

⌋
then rπ = rσ. Since distπ(a) = distσ(a) + 1, it follows that M is also

a balancing set for π and that dM,π(a) = dM,σ(a) − 1, dM,π(b) = 1,

sM,π(a) = +, and sM,π(b) = +. For every i ∈ [0, n−1]\{a, b} we have

that dM,π(i) = dM,σ(i) and sM,π(i) = sM,σ(i). By definition,

wπ =
∑

i∈NM,π,+

dM,π(i) +

n−1∑
i=0

n−1∑
j=0

fM,π(i, j),

and fM,π(i, j) = fM,σ(i, j), for every i ∈ [0, n− 1], j ∈ [0, n− 1], where

(i, j) 6= (a, b). Since b ∈ [σ−1(a), a] it follows that fM,σ(a, b) = 1 and

fM,π(a, b) = 0. Note, that NM,π,+ = NM,σ,+ ∪ {b}. Therefore,

wπ =
∑

i∈NM,σ,+

dM,σ(i)− 1 +

n−1∑
i=0

n−1∑
j=0

fM,σ(i, j)− 1 + dM,π(b) = wσ − 1.

If distσ(a) =
⌊
n−1

2

⌋
then rπ = rσ + 1 and M \ {a} is a balancing

set for π. The same arguments that were used to the case where

distσ(a) <
⌊
n−1

2

⌋
show that wπ = wσ − 1.

Case 2: a 6∈ M . In that case signσ(a) ∈ {0,+}, rπ = rσ, and M is also a

balancing set for π. The same arguments that were used to prove case

1 show that wπ = wσ − 1.

2

Lemma B.9 Let σ, π ∈ Sn, where π = (`, `+1)◦σ, σ(`) = a, and σ(`+1) =

b, and let M be a balancing set for σ. If distσ(a) = 0, i.e. ` = a, and if

sM,σ(b) = −, then wπ = wσ − 1.

Proof. The case distσ(a) = 0 and sM,σ(b) = − is symmetric to the case

sM,σ(a) = + and distσ(b) = 0 that was stated in Lemma B.8.

2

Lemma B.10 Let σ, π ∈ Sn, where π = (`, ` + 1) ◦ σ, σ(`) = a, and

σ(` + 1) = b, an let M be a balancing set for σ. If sM,σ(a) = + and

sM,σ(b) = − then wπ = wσ − 1.

Proof. We distinguish between three cases.

Case 1: a ∈ M . In that case rσ < 0 and signσ(a) = −. If distσ(a) <
⌊
n−1

2

⌋
then rπ = rσ. Since distπ(a) = distσ(a) + 1, it follows that M is

120

Technion - Computer Science Department - Ph.D. Thesis  PHD-2014-11 - 2014



also a balancing set for π and that dM,π(a) = dM,σ(a)− 1, dM,π(b) =

dM,σ(b) − 1, sM,π(a) = +, and sM,π(b) = −. For every i ∈ [0, n −
1] \ {a, b} we have that dM,π(i) = dM,σ(i) and sM,π(i) = sM,σ(i). By

definition,

wπ =
∑

i∈NM,π,+

dM,π(i) +
n−1∑
i=0

n−1∑
j=0

fM,π(i, j),

and fM,π(i, j) = fM,σ(i, j), for every i ∈ [0, n− 1], j ∈ [0, n− 1] \ {b}.
If distσ(b) > 1 then fM,π(i, b) = fM,σ(i, b). Otherwise, if distσ(b) = 1

then by Lemma B.4 it follows that

n−1∑
j=0

fM,π(j, b) = |{j ∈ NM,π,− : b ∈ [j, π−1(j)]}| =
n−1∑
j=0

fM,σ(j, b).

In any of these cases it follows that

n−1∑
i=0

n−1∑
j=0

fM,π(i, j) =

n−1∑
i=0

n−1∑
j=0

fM,σ(i, j).

Note, that NM,π,+ = NM,σ,+ and therefore wπ = wσ− 1. If distσ(a) =⌊
n−1

2

⌋
then rπ = rσ+1 and M \{a} is a balancing set for π. The same

arguments that were used to the case where distσ(a) <
⌊
n−1

2

⌋
show

that wπ = wσ − 1.

Case 2: b ∈M . This case is symmetric to case 1.

Case 3: a, b 6∈ M . In that case signσ(a) = +, signσ(b) = −, rπ = rσ, and M

is also a balancing set for π. The same arguments that were used to

prove case 1 show that wπ = wσ − 1.

2

Lemma B.11 Let σ, π ∈ Sn, where π = (`, ` + 1) ◦ σ, σ(`) = a, and

σ(` + 1) = b, an let M be a balancing set for σ. If sM,σ(a) = + and

sM,σ(b) = + then wπ = wσ ± 1.

Proof. We distinguish between four cases:

Case 1: b ∈M and there exists a c ∈ [0, n−1]\M , where signσ(c) = signσ(b),

such that M̃ = (M \ {b}) ∪ {c} is a balancing set for σ. In this case
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wπ = wσ − 1. Indeed, since b ∈ M it follows that signσ(b) = −.

Note, that c 6= a because otherwise, a 6∈ M and signσ(a) = + 6=
signσ(b), and it follows that a does not belong to any balancing set

for σ. Since M̃ is a balancing set for σ, b 6∈ M̃ , c 6= a, it follows that

sM̃,σ(a) = sM,σ(a) = + and sM̃,σ(b) = −. By Lemma B.10 it follows

that wπ = wσ − 1.

Case 2: Every balancing set for σ contains b. In this case wπ = wσ+1. Indeed,

since every balancing set for σ contains b it follows that for every

i 6∈ M , such that signσ(i) = signσ(b) = −, we have that distσ(i) <

distσ(b). If a 6∈ M or a ∈ M and distσ(a) <
⌊
n−1

2

⌋
then rπ = rσ and

M̃ = M is a balancing set for π. If a ∈M and distσ(a) =
⌊
n−1

2

⌋
then

M̃ = M \ {a} is a balancing set for π. Following the same arguments

used in the proofs of the previous Lemmas to compute dM̃,π(i) and

fM̃,π(i, j), for every i, j ∈ [0, n − 1], it can be readily verified that

wπ = wσ + 1.

Case 3: b 6∈ M and there exists a c ∈ M such that M̃ = (M \ {c}) ∪ {b}
is a balancing set for σ. In this case it is shown that wπ = wσ − 1.

Since b 6∈ M it follows that signσ(b) = +. Note, that c 6= a because

otherwise, a ∈ M , signσ(a) = − 6= signσ(b), and it follows that b

does not belong to any balancing set for σ. Since M̃ is a balancing set

for σ, b ∈ M̃ , and c 6= a, it follows that sM̃,σ(a) = sM,σ(a) = + and

sM̃,σ(b) = −. By Lemma B.10 it follows that wπ = wσ − 1.

Case 4: Every balancing set for σ does not contain b. In that case it is shown

that wπ = wσ + 1. Since b 6∈M it follows that signσ(b) = +. Assume

first that distσ(b) <
⌊
n
2

⌋
. If a 6∈ M or a ∈ M and distσ(a) <

⌊
n−1

2

⌋
then rπ = rσ and M̃ = M is a balancing set for π. If a ∈ M and

distσ(a) =
⌊
n−1

2

⌋
then M̃ = M \ {a} is a balancing set for π. For

distσ(b) =
⌊
n
2

⌋
, we have that M̃ = M ∪ {b} is a balancing set for π,

unless a ∈M and distσ(a) =
⌊
n−1

2

⌋
, in that case M̃ = (M \ {a})∪{b}

is a balancing set for π. Following the same arguments used in the

proofs of the previous Lemmas to compute dM̃,π(i) and fM̃,π(i, j), for

every i, j ∈ [0, n− 1], it can be readily verified that wπ = wσ + 1.

2

Lemma B.12 Let σ, π ∈ Sn, where π = (`, ` + 1) ◦ σ, σ(`) = a, and

σ(` + 1) = b, and let M be a balancing set for σ. If sM,σ(a) = − and

sM,σ(b) = − then wπ = wσ ± 1.
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Proof. The case sM,σ(a) = − and sM,σ(b) = − is symmetric to the case

sM,σ(a) = + and sM,σ(b) = + that was stated in LemmaB.11.

2

The following Lemma is derived by a similar arguments to those that

were used in the proofs of Lemmas B.8, B.10, and B.11.

Lemma B.13 Let σ, π ∈ Sn, where π = (`, ` + 1) ◦ σ, σ(`) = a, and

σ(` + 1) = b, an let M be a balancing set for σ. If distσ(a) = 0, i.e.

` = a, and if sM,σ(b) = + then wπ = wσ ± 1.

Lemma B.14 Let σ, π ∈ Sn, where π = (`, ` + 1) ◦ σ, σ(`) = a, and

σ(` + 1) = b, an let M be a balancing set for σ. If sM,σ(a) = − and

distσ(b) = 0 i.e. b ≡ `+ 1 ( mod n), then wπ = wσ ± 1.

Proof. The case distσ(a) = − and distσ(b) = 0 is symmetric to the case

distσ(a) = 0 and sσ(b) = + that was stated in LemmaB.13.

2

Lemma B.15 Let σ, π ∈ Sn, where π = (`, ` + 1) ◦ σ, σ(`) = a, and

σ(` + 1) = b, an let M be a balancing set for σ. If sM,σ(a) = − and

sM,σ(b) = + then wπ = wσ ± 1.

Proof.

If there exists a balancing set for σ, M̂ , such that sM̂,σ(a) = + or

sM̂,σ(b) = − then from Lemmas B.10, B.11, and B.12 it follows that wπ =

wσ ± 1. Otherwise, assume without loss of generality that rσ ≤ 0. This

implies that every balancing set for σ does not contain a and therefore,

signσ(a) = − and distσ(a) <
⌊
n−1

2

⌋
. Then either every balancing set for σ

contains b or every balancing set for σ does not contain b. Assume first that

every balancing set for σ contains b. In that case signσ(b) = − and for every

c ∈ [0, n− 1] \M , where signσ(c) = −, we have that distσ(c) < distσ(b). In

particular, 1 ≤ distσ(a) < distσ(b). It follows that M̃ = M is a balancing

set for σ.

For the case where every balancing set for σ does not contain b, we have

that signσ(b) = +. If distσ(b) <
⌊
n
2

⌋
then M̃ = M is a balancing set for

σ. Otherwise, if distσ(b) =
⌊
n
2

⌋
, then M̃ = M ∪ {b} is balancing set for

σ. Following the same arguments used in the previous Lemmas to compute

dM̃,π(i) and fM̃,π(i, j) for every i, j ∈ [0, n − 1], it can be readily verified

that wπ = wσ + 1.

2

Corollary B.16 For every σ, π ∈ Sn, dκ(σ, π) = 1 then wπ = wσ ± 1.
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Proof. Follows from Lemmas B.7, B.8, B.9, B.10, B.11, B.13, B.14, B.12,

and B.15.

2

Theorem B.17 For every σ ∈ Sn, wσ = wκ(σ).

Proof. Let σ ∈ Sn and let w = wσ. The theorem is proved by induction

on w. For the basis of the induction we have to show that w = 0 if and only

if σ is the identity permutation of Sn, ε. Clearly, wε = 0. Moreover, wσ = 0

implies that distσ(i) = 0, for every i ∈ [0, n − 1], and therefore σ = ε.

The induction hypothesis states that for every π ∈ Sn, if wπ < w then

wπ = wκ(π). Assume that w > 0 and let M be a balancing set for σ. Since

w > 0 it follows that σ 6= ε. Hence, there must exist a, b ∈ [0, n−1] such that

sM,σ(a) = + and sM,σ(b) = −. In particular, there must exist a ∈ [0, n− 1]

such that sMσ(a) = + and sM,σ,b 6= +, where b = σ(σ−1(a) + 1). Then by

Lemmas B.8 and B.10, it follows that for π = (`, `+1)◦σ, wπ = w−1. By the

induction hypothesis wπ = wκ(π) and from dκ(σ, π) = 1, we conclude that

wκ(σ) ≤ w. By Corollary B.16 and since wε = 0, it follows that w ≤ wκ(σ),

and therefore wσ = wκ(σ).

2
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למדעי בפקולטה יעקובי איתן ופרופסור עציון טובי פרופסור בהנחיית נעשה המחקר
המחשב.

במשך הרבה והתמיכה ההדרכה על עציון, טובי פרופסור שלי, למנחה להודות ברצוני
מזוויות מחקרית לבעיה לגשת כיצד אותי לימד טובי דוקטור. לתואר השלמותי תקופת
משלתמת שהסבלנות ממנו למדתי עוד המחקר. של הפוטנציאל מלוא את ולמצות שונות

ידיים. להרים לא ולעולם
במשך אותי שהדריך יעקובי, איתן פרופסור שלי, הנוסף למנחה גם להודות ברצוני
חדשות ושיטות בעיות בפניי הציג איתן דוקטור. לתואר להשתלמותי האחרונות השנתיים

אקדמי. נושא בכל לי לעזור מנת על ומעבר מעל לעשות מוכן היה ותמיד
מחקר עבודה את ולהקדיש בי האמינה שתמיד למשפחתי להודות רוצה אני לסיום,

גאווה. לו לגרום מקווה שאני שלי, ולאבא בחיי, והגאווה האושר יהלי, לבני זו

בהשתלמותי. הנדיבה הכספית התמיכה על ג'ייקובס ולמשפחת לטכניון מודה אני
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תקציר

המחקר חשיבות בימינו. ביותר הנפוצים נדיפים הבלתי הזכרונות אחד הוא פלאש זכרון
זכרון אלה. זכרונות של הישומים ריבוי עקב האחרונות בשנים גברה פלאש זכרון בנושא
פלאש לזכרון מידע כתיבת בלוקים. הנקראות תאים של גדולות מקבוצות מורכב פלאש
מתאימה בתא החשמלי המטען כמות כאשר תא, לתוך חשמלי מטען הזרקת ידי על נעשית
פעולה היא בודד מתא מידע של מחיקה סיביות. log2 q המייצגים מצבים q מ לאחד
כיוון הבלוק. של מחדש ותכנות שייך התא אליו הבלוק כל מחיקת את הדורשת מסובכת
תאים של רב מספר עבור מרוכז, באופן נעשית היא ובאנרגיה, בזמן יקרה זו שפעולה
הגורם עודף תכנות של מצב למנוע מנת על בודד. אחד תא עבור נעשית ואינה בבלוק,
מתבצעת שלב בכל כאשר שלבים, במספר זהיר באופן נעשה התאים תכנות לשגיאות,
במידת מזערית, חשמלי מטען כמות של נוספת והזרקה בתאים החשמלי הזרם מדידת
אחסון למערכות יחסית איטית פעולה היא פלאש בזכרון התאים שתכנות מכאן, הצורך.
בזכרון תאים של המחיקה פעולת לבין הכתיבה פעולת בין הסימטריה חוסר אחרות.
בנוסף, עיקרי. אחד בכיוון התא מצב את לשנות מרכזיים שגיאות למקורות גורמת פלאש

התא. במצב קטן לשינוי גורמות כלומר, קטנה, עוצמה בעלות הן השגיאות רוב

לשגיאות קידוד פלאש: לזכרונות קידוד סכימות בשתי עוסקת זו מחקר עבודת
וסכימת (asymmetric limited magnitude error model) מוגבלת בעוצמה אסימטריות

.(rank modulation scheme) הדרגה אפנון

נפוצות בשגיאות המובנית לאסימריה פונה מוגבלת בעוצמה האסימטרית השגיאה מודל
זה במודל שגיאות .(multi level cell flash memory) מצבי רב תא בעל פלאש בזכרון
במצב שתא היא הדבר משמעות כלשהו. חסם ידי על מוגבלת ועוצמתן אחד בכיוון הן
,j − i ≤ ` ≤ q − 1 וגם i < j ≤ q − 1 ש כך ,j למצב משגיאה כתוצאה לעלות יכול i
[2] ב הוצגו זה במודל שגיאות לתיקון צופנים השגיאה. עוצמת על החסם הוא ` כאשר
מאמרים מספר . [9, 10] ב נדיפים בלתי זכרונות עבור לראשונה שימוש בהם ונעשה

.[22, 23, 48, 104] למשל, אלו, לצופנים התייחסו נוספים

במודל צופנים .[43] פלאש לזכרון הכתיבה יעילות לשיפור נועדה השגיאה אפנון סכימת
מייצגת תמורה כל כאשר איברים, n על התמורות כל קבוצת ,Sn של קבוצות תתי הם זה
זה בהקשר נלמדו תמורות צופני מצביהם. של העולה הסדר לפי בזכרון תאים n של דירוג
.(Kendall’s τ -metric) קנדל של τ ה ובמטריקת האינסוף במטריקת שימוש תוך בעיקר

א
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חילופי של ביותר הקטן המספר הוא σ, π ∈ Sn תמורות שתי בין קנדל של τ ה מרחק
צופני .[46] π ל σ את לשנות כדי הנדרשים בתמורה, סמוכים איברים שני בין מקומות
הנגרמות שגיאות

⌊
d−1

2

⌋
כ עד לתקן יכולים זו במטריקה d מינימלי מרחק עם תמורות

שגיאות לתיקון תמורות צופני מהזכרון. קריאה ידי על הנגרמות ושגיאות מטען מדליפת
עבור סיסטמים צופנים של המושג הוצג [108, 109] ב .[5, 61, 44] ב נלמדו זו במטריקה

אילוצים. תחת תמורות צופני נלמדו [73] וב תמורות

האוקלידי המרחב בריצוף עוסק הראשון החלק חלקים. משני מורכבת זו תזה עבודת
n־ ה הקרוס צורות, שתי עבור נלמדים אלו ריצופים מסוימת. צורה עם n־מימדי ה
.(n-dimensional chair) n־מימדי ה והכסא ((0.5, n)-cross) 0.5 זרוע אורך עם מימדי
בעוצמה אסימטריות שגיאות לתיקון צופנים משרים n־מימדי ה הכסא עם ריצופים
τ ה במטריקת שגיאות לתיקון תמורות צופני לחקר כולו מוקדש השני החלק מוגבלת.

קנדל. של

מסוימת צורה עם מימדי n ה האוקלידי המרחב של וריצוף ואריזה שגיאות לתיקון צופנים
בקרב רב עניין מוקד שהיוו נושאים שני הם וריצוף אריזה כך, ומשום קשורים נושאים הם
,S מסוימת, צורה עם מימדי n ה האוקלידי המרחב של ריצוף הצפינה. בתורת חוקרים
אריזה המושגים עבור בסיסיות הגדרות .S של מוזזים לעותקים המרחב של חלוקה הוא
שתי .1 בפרק ניתנים שגיאות לתיקון צופנים לבין אלה מושגים בין הקשר על ודיון וריצוף
(semicross) הסמיקרוס הן שגיאות לתיקון צופנים של בהקשר ביותר הנלמדות הצורות
(ראה רבות שנלמד נושא הוא והקרוס הסמיקרוס עם וריצוף אריזה .(cross) והקרוס
עם וריצוף באריזה הרב לעניין הסיבה אלה). במאמרים המקורות רשימת ואת [86, 88]

,(Hamming) המינג של במטריקה שגיאות לתיקון צופנים משרים שהם היא אלו צורות
. [58] סימטריות שגיאות לתיקון צופנים המהווים

יחידה מקוביית מורכב ,0.5)־קרוס n) ה ,0.5)־קרוס. n) ה עם בריצופים עוסק 2 פרק
יחידה קוביית חצי מחוברת −n־מימדיות 1 ה מפאותיה אחת כל אל כאשר n־מימדית,
n־מימדיות, יחידה מקוביות המורכבות צורות עם לעבוד יותר שנוח כיוון מימדית. n

יחידה מקוביות כולה המורכבת חדשה צורה לקבלת שניים פי המידה קנה שינוי מתבצע
באיור מוצגות Υ3 ול ,0.5)־קרוס 3) ל דוגמאות .Υn ב מסומנת זו צורה n־מימדיות.
n ה האוקלידי המרחב של בשלמים ריצוף שקיים היא 2 בפרק המרכזית התוצאה .2.1

חיובי. שלם הוא t כאשר ,n = 3t − 1 או n = 2t − 1 אם ורק אם Υn עם מימדי

n־מימדית תיבה הוא n־מימדי כסא n־מימדי. ה הכסא עם ריצופים נלמדים 3 בפרק
ריצופים .(3.1 איור (ראה יותר קטנה מימדית n־ תיבה מפינותיה מאחת הוסרה אשר
עם אסימטריות שגיאות n− 1 עד לתקן היכולים צופנים משרים מימדי n ה הכסא עם
מפצלות סדרות לבין (lattice) שריג ריצופי בין בשקילות דן זה פרק מוגבלת. עוצמה
המפצלות הסדרות את המכליל מושג ,(generalized splitting sequences) מוכללות
שגיאות לתיקון צופנים בנית לצורך שהוגדרו ,Bh[`] ה סדרות ואת [82] ב שהוגדרו
הכסא עם ריצופים של בניות כולל הפרק בנוסף, .[48] ב בעוצמה מוגבלות אסימטריות
קיום אי והוכחת שריג, ידי על והן מוכללות מפצלות סדרות ידי על הן n־מימדי, ה

ב
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מסוימים. פרמטרים עבור ריצופים

5 בפרק קנדל. של τ ה מטריקת עם תמורות לצופני מוקדש זו תזה של השני החלק
צופנים תמורות. עבור קוטר לפי מושלמים וצופנים מושלמים צופנים המושגים נלמדים
שלא הוכח שם ,[108] ב בקצרה הוזכרו קנדל של τ ה מטריקת עם בתמורות מושלמים
קיימים לא כי מוכח זה בפרק .S4 ב אחת שגיאה לתיקון מושלמים צופנים קיימים
.4 ≤ n ≤ 10 או ראשוני הוא n ≥ 4 כאשר ,Sn ב אחת שגיאה לתיקון מושלמים צופנים
τ ה מטריקת של ובוריאציות קוטר לפי מושלמים צופנים של במושג דן זה פרק בנוסף,

קנדל. של

ב הוצא זה מושג כאמור, בתמורות. שגיאות לתיקון סיסטמטים בצופנים עוסק 6 פרק
ב תמורה שכל כך צופן, מילות k! המכיל צופן הוא Sn ב סיסטמטי צופן .[108, 109]

סיסטמים צופנים של בניה אחת. צופן מילת בדיוק של סדרה) (תת תמורה תת היא Sk
לבניות ביחס יתירות אותיות בפחות משתמשת זו בניה זה. בפרק ניתנת שגיאות לתיקון

קודמות.

הנובע מסוים אילוץ נלמד [73, 72] ב אילוצים. תחת תמורות בצופני עוסק 7 פרק
גבוהים, במצבים תאים שני בין הלכוד נמוך, במצב תא שבה פלאש בזכרון מתופעה
שני נלמדים זה בפרק שלו. השכנים התאים השפעת עקב יותר גבוה למצב לעבור עשוי
מילת הראשון, האילוץ תחת זו. תופעה למנוע שנועדו יותר, חלשים נוספים, אילוצים
קבוע ידי על חסום |σ(i) − σ(i + 1)| ,1 ≤ i ≤ n − 1 שלכל מקיימת σ ∈ Sn צופן
σ(i) − σ(i − 1) < k ,2 ≤ i ≤ n − 1 שלכל ודורש יותר חלש הוא השני האילוץ .k
למנוע. מעונינים אותה בפלאש לתופעה יותר תואם זה אילוץ .σ(i+ 1)− σ(i) < k או
חישוב ובנוסף האילוצים שני עבור לצופנים קיבולת חישוב כוללות זה בפרק התוצאות
הקנדל במטריקת שגיאות לתיקון יכולת גם משלבים אשר זה מסוג צופנים עבור קיבולת

.τ של

ג
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