
640 

max W,.(hqt) < (p + 1)b + ri. (26) 
OS’t<Z 

To finish the proof, we examine the largest value of B(t) (max) 
such that h < ho. This is given by (y, y, a. * , y, Q - bi - 1). 
But this equals B - pi because [l] shows that B = (y, 7, . . . , 
y,g- ~j,O, *.a ,O);hence, 

I)‘*‘(max) = B - qi 
(27) 

= (p + 1)b - (pi - Tj). 

By (4), (@ - Tj) is positive. Therefore 

DCt’(max) < (p + l)b. 

Lemmas 1, 2, and 3 establish Theorem 9A. 
Theorem !?A: For ho given by (9) when QI, = 0, 

max JVaa(h,q’) = (p + 1)b + ri. 
OS*<. 

Further, for any h < ho and divisible by b, 

(2% 

Q.E.D. 

max W,.(hg’) < (p + l)b. 
05t<s 
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The Equivalence of Rank Permutation Codes to a New 
Class of Binary Codes 

Absfracf-An equivalence between the rank permutation codes 
and a new class of binary codes has been observed. A binary code 
may be generated by direct transformation of a permutation code. 
The binary codes are usually nonlinear and may be decoded by the 
inverse transformation and rank correlation of the equivalent 
permutation. 

The codewords of a rank permutation code’ are each one 
of the permutations of the n digits (1, 2, . . . , n). A permutation 
code is a subgroup of the n! permutations in the symmetric 
permutation group, S,. It was shown1 that when suitable 
weight and distance measurements are used, permutation 
codes, have many of the characteristics of binary codes. It is 
shown here that this similarity of behavior may be explained 
by the fact that each permutation code is equivalent to a binary 
code and that the weight and distance of the permutation 
codewords are the Hamming weight and distance of the equiv- 
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TABLE I 

Permuta- Binary Sequence 
tion ml2 ml3 ml4 m2a m24 ma4 Weight 

1234 

1243 

i 4 i ti 8 0 0 

1324 0 i, : 

1342 

i ,i 8 : 

1423 x i 8 1 : : ,; 
1432 3 

2134 : 0 k : A 
2143 0 

8 
0 2314 8 : 0 :, i A 

:: 
'2 

2341 2413 0 ii A 1 : : ,, i 

2431 0 3124 1 A :, :, I: i 
3142 1 1 0 0 1, 3 ---- 
3214 i : 0 0 0 3241 : 1 A : A : s 
3412 1 1 1 4 
3421 0 
4123 1 : : : il :, x 
4132 1 0 1.’ 4 
4213 

: : i 
0 4 

4231 1 

4312 : 

: 
: ii 

: tl 5 

4321 1 : : 1 1 1; 

dent binary codewords. Thus, there is a class of binary codes 
that may be generated by the use of permutation codes. 

It was shown’ that if the digits of the permutation code- 
word are (x1, x2, . *= , s,) then the weight of the codeword is 

1 5; > xj 
m;j = 

0 xi < xj. 

The equivalent binary codeword is formed simply by taking the 
n(n - 1)/2 mji values in sequence, or 

(m, m13, *. * , ml,, mz3, . * * , mznr * -. , mn--l.n). 

That each permutation generates a unique binary sequence is 
evident from the fact that no two digits in a permutation are 
the same, and that therefore changing one permutation into 
another requires a transposition of digits and a consequent 
change in the mii values. 

The binary codeword (a,, 6,, a.. , b,+& has a Hamming 
weight given by the number of l’s in the sequence, which is, 
in turn, equal to w. An interchange of the two digits xi and xi 
differing by 1, which either increases or decreases the weight w 
of the permutation by 1, will also change the value of mi, and, 
hence, -change the weight of the binary sequence by. the same 
amount. The codewords in a rank permutation code are thus 
completely equivalent to a set of binary codewords of length 
n(n - 1)/2 digits. 

The inverse transformation from a binary sequen?e to a 
permutation can be performed by using the expression ’ 

i-l 

xi = 1 + C (1 - mii> + 2 mii. 
i=l j-i*1 

This transformation is also unique for any binary sequence 
that will result in a legitimate permutation. Since 2n(n*)‘z > n! 
for all n, there wih always be some binary sequences that do 
not transform into legitimate permutations. These .sequences 



produce permutations with at least one digit appearing more 
than once. 

An example of the transformation is shown for n = 4 in 
Table I. The weight distribution of the codewords is shown by 
Chadwick and Kurz in an appendix. 1 A binary sequence that 
does not appear in the table is (OOOOlO), which transforms back 
into the permutation (1333). The permutation code (1234), 
(3142), (2413), (4321) that has a minimum permutation code 
distance of 3 becomes the linear binary code (000000), (101001), 
(OlOllO), (111111) with minimum Hamming distance of 3, 
but the permutation code (1234), (2341), (3412), (4123) becomes 
the nonlinear weight 3 code (000000), (OOlOll), (OllllO), 
(111000). The code (1234), (4213), (3241) becomes the nonlinear 
code (000000), (111100), (101011) with minimum weight 4. 
Decoding of such binary codes may be performed by trans- 
forming the received binary word into its equivalent permutation 
and using the correlation properties of permutations described.1 

The equivalence of these binary codes to the permutation 
codes offers a simple explanation of the properties of the permuta- 
tion codes, while at the same time giving rise to an interesting 
class of binary codes. 
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On Permutation Decoding of Binary Cyclic Double-Error- 
Correcting Codes of Certain Lengths 

INTRODUCTION 

Let’s represent an (n, k, 2) binary cyclic code [I], [2] generated 
by 

1 + X" 
s(X) = qX) 

where n is odd and h(X) has degree k. Suppose 

R(X) = V(X) + B(X) 

where V(X) belongs to V and E(X) has weight 2 or less. 
Suppose also that 

R&X) = (X@R”‘(X) modulo 1 + X”) modulo g(X) 

where /3 = 0, 1, 2, . . * , n - 1 and i = 0, 1, 2, . . * , q, where 
g is such that nc = 2n - 1, c being the smallest integer possible. 

It is known that under appropriate restrictions on the rate 
k/n, the consideration of Roa(X), RIB(X), . . * will yield E(X). 
The decoding procedure based on this fact is called permutation 
decoding [3]. 

Hereafter, by the statement that R,,@(X), RiZp(X), . . * , 
R,,B(X) will suffice, we mean that the consideration of these 
Rip(X) will yield E(X). Also, when we say that permutation 
decoding is not possible for a certain code, we mean that the 
consideration of Roa(X), RIO(X), . . . , R&X) will not yield 
E(X). 

The object of the present note is to give an analysis of codes 
‘u of certain specified lengths from the point of view of permuta- 
tion decoding. Specifically, we relate the particular R&X), to be 
considered, to the rate k/n. 
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In this connection, a brief description of how the bounds on 
k, which will be given later, are arrived at follows. These bounds 
are obtained by the consideration of cyclotomic cosets. We 
arrange the numbers 0, 1, 2, * . ., j, + . . , n - 1 in a row. Below 
this now we arrange j/2 below which we have j/4 and so on. All 
numbers are computed modulo n. Suppose, for example, we 
want to know the bound on k so that every E(X) can be obtained 
by considering just ROB(X) and RIO(X). Then we consider the 
first two rows from the top. We examine the last column and note 
down the two numbers in that column and their complements. 
By the complement of a number b we mean the number n - b. 
Next we move to the last but one column and note down from 
this column every number and its complement that are already 
not covered by the examination of the last column. We continue 
the process column after column until all the numbers 0, 1, . . . , 
n - 1 have been noted down. The number of the column at which 
we stop the examination is the upper bound on Ic + 1. For 
example, if n = 63 and we want to consider just R&X) and 
RIP(X), then we stop the examination at the 42nd column so 
that k 5 41. Generally if we wish to consider RoaRTo, . * * , RTB, 
then we consider the first r + 1 rows and examine all the r + 1 
numbers in each column. The validity of the method is based on 
the theory of permutation decoding [3]. We may also remark 
that the data, to be presented later, were obtained by implemen- 
ting the above-mentioned procedure on a digital computer. 

It is clear that whether or not a code exists for a given rate is 
not pertinent in the derivation of the bounds on k. Thus, for 
example, when we say that if in (17, k, 2) codes Ic f 11, R&X), 
and RIB(X) will suffice, we mean that any (17, lc, 2) existent code 
with k 5 11 can be decoded with R,,@(X) and RIO(X); we do not 
mean that codes for all k < 11 exist. 

Hereafter, by Ri we mean Rip(X). 
Since it is known [3] that every (n, k, 2) code with k/n < l/2 

can be decoded with just Ro, we shall consider here only cases 
with lc/~z 2 l/2. 

Now we give the actual results. 

(17, k, 2) Codes 
We find that if k < 11, R. and RI will suffice. If k 5 13, Ro, 

RI, and R3 will suffice. If Ic > 13, permutation decoding is not 
possible. The relevant BCH [4]-[6] codes are (17, 9, 2) and can 
be decoded with Ra and RI. 

(21, ii, 2) Codes 
For these codes we find that if k 5 13, R, and Rt,will suffice. 

The consideration of further R, does not improve the value of k. 
In other words if k > 13, permutation decoding is not possible. 

We note that the relevant BCH codes are (21, 12, 2) and there- 
fore require just Ra and RI. 

(23, k, 2) Codes 
The analysis of these codes is summarized in Table I. We find 

that the relevant BCH codes, which are (23, 12, 2), can be 
permutation decoded with R. and RI. 

(31, k, 2) Codes 
From Table II, which contains the summary of results, we 

find that the relevant BCH codes, which are (31, 21, 2), can be 
permutation decoded with Ro, RI, and R,. 

(45, k, 2) Codes /‘, 

We find that for k < 29, R. and RI will suffice. For k > 29, 
permutation decoding% not possible. 

To decode the relevant BCH codes, which are (45, 29, 2), we 
require R. and RI. 

(47, k, 2) Codes 
The relevant BCH aodes are (47,24,2). We find from Table III 

that they are d&addable ,with R. and R,. 


