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Upper Bounds on Permutation Codes via Linear Programming

HANNU TARNANEN

An upper bound on permutation codes of lengtis given. This bound is a solution of a certain
linear programming problem and is based on the well-developed theory of association schemes. Several
examples are presented. For instance, the 255 values of the boumckf8rare tabulated. It turns
out that, forn < 8, the Kiyota bound for group codes also holds for unrestricted codes at least in 178
cases. Also an easier (but weaker) polynomial version of the bound is given. Itis obtained by showing
that the mapping&y (0) (0 < k < n/2), whereFy is the Charlier polynomial of degrdeandé the
natural character of the symmetric gro8p are mutually orthogonal charactersS.
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1. INTRODUCTION

Letn be a positive integer and denote®ythe symmetric group ofthe sk = {1, 2, ..., n}
and by| X| the cardinality of a finite seX. Hence§, is composed of alh! =1-2....-n
permutations ofN, that is, of all bijectionsx : N, — N, the productzp in S, is the
composite mapeB)(X) = a(B(x)) and the identity element @&, is the identity permutation
1:x+— x of N,. The mapping

() = [{x € Nn | a(x) = x]|

of S, which counts the number of fixed points of a given permutadion S,, is called the
natural characterof S,. Thusf(1) = nand 0< 6(a) <n—2forallain $\ {1}, since no
permutation ofN,, has exactlyn — 1 fixed points. The condition

S, ) =n—0(@B) = {x € Nn | a(x) # OO} 1)

defines a metric org,. In fact, if a permutatione € S, is interpreted as a vecter =
(¢(D),...,a(n)), thens(a, B) (o, B € &) is the Hamming distance between vecterand
B, that is, the number of component places in which the veectaaad g differ. Nonempty
subsets 0fS, are calledpermutation codes of length riLet D be a subset of the ring of
integers. A nonempty subsétof S is said to be @-codein S, if 6(«~18) € D whenever
«a and g are distinct elements &. Denote byM (n, D) the maximum cardinality of such a
D-code. TherM(n,?) = 1, M(n,Z) = nlandM(n, D) = M(n,DN{0,1,...,n—2})
since 0< 6(a~1B) < n — 2 for all distinct permutations andg of Nj,.

In this paper an upper bound di(n, D) is given. This bound is a solution of a certain
linear programming problem and is based on the well-developed theory of association schemes.
Sections 2 and 3 are preliminary: we introduce association schemes, characters of symmetric
groups and the conjugacy scheme which seems to be a suitable frame for studying permutation
codes. In Section 4 the linear programming boundvign, D) is given and several examples,
both numerical and theoretical, are presented. In Section 5 we consider charac¥grs of
associated with the Charlier polynomiddg(x) of degreek in the real variable. It is shown
that the mapping&k(0) (0 < k < n/2) are mutually orthogonal characters®f This yields
an easier (but weaker) polynomial version of the linear programming bound. Finally, examples
illustrating the method are given.
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2. ASSOCIATION SCHEMES

Let m be a nonnegative integer atla symmetric association schemgéth m classes on
a finite nonempty seX having cardinalityv. HenceR is a collection ofm + 1 symmetric
relationsRy, . .., Rm on X forming a partition of the cartesian pow¥f, Ry is thediagonal
relation{(x, x) | x € X} of X and, for any triple of integeiis j, k =0, ..., m, the cardinality

pijk =Hze X1 (X,2 € R, (z,y) € Rj}

is independent of the choice 0%, y) € Rc. The numbergjjk are called thentersection
numbersof the scheme. Ifx,y) € R;, elementx andy are said to bé-associatesn R.
The positive integepijo is called thevalenceof R, and is denoted by;. By definition,v; is
the number of thé-associates of an arbitrary elementXf Denote byR(X, X) the algebra
of all square matrice$ of orderv over the fieldR of real numbers, where the entries are
numbered by the elements ¥, the (x, y)-entry of S being written asS(x, y). Let B be the
linear subspace @& (X, X) generated by thadjacency matrices . .., Am € R(X, X) for
which Aj(x,y) = 1if (X,y) € R andA;j(x,y) =0if (X, y) ¢ R. Then is a commutative
(m + 1)-dimensional subalgebra &f(X, X) and is composed of symmetric matrices (cf. [9,
p. 653]). This algebra is called tlBose—Mesner algebraf the scheme. It has a unique basis
of primitive idempotentsgl= v, 30, ..., I (J is the all-one matrix) which are nonzero
matrices inB3 satisfyingJ; J; = 6ij Ji whered;; is the Kronecker symbol (see [9, pp. 653 and
654]). Their ranksuj = rankJ; are called themultiplicities of the scheme. Given the two
baseqd A} and{J} of B, we have the basis transformations

A = § Pk (i) J; and k= " E k() A (k=0,...,m).
i=0 i=0

Call the real coefficientpy (i) andgk(i) the first and second eigennumbeds the scheme.
These parameters have the following properties (cf. [9, pp. 654 and 655]):

m m
D k@G ) =Y ki) pi(r) = vkr, @)
i=0 i=0
Po(i) = do(i) =1, pi (0) = vj, Gi (0) = i, ()
vigk() = ukpi (K). (4)

Let D be a subset of the index s8t,. A nonempty subset of X is called aD-cliquein
R if any two distinct elements of arei-associates for somein D. Denote byM (D) the
maximum cardinality of aD-clique inR. ThenM @) = 1, M(Ny) = v andM(D) is an
increasing set function in the sense tNatD) < M(E) for D C E C Ny,

The following theorem is called tHaear programming boun@= LP bound) for cliques in
R (see [3, Section 3.3.2]).

THEOREM 1. Let D be a subset df,. Subject to the constraints

ap=14a >0 fori € Ny, (5)
a =0 fori €e Nm\ D, (6)
a0k (0) + - - - + amQk(m) > 0 fork € Np, )

the sum g+ - - - + ay has the maximum value M (D) and M(D) < M p(D).
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Instead of the maximization problem of Theorem 1 it is sometimes useful to consider the
dual minimization problem which is given in the next theorem (see [3, Section 3.3.2]).

THEOREM 2 (THE DUAL LP BOUND). Let D be a subset dfi,,. If the mapping Ki) =
Bodo(i) + - - - + BmAm(i) of {0, ..., m} satisfies the following two conditions

Bo, - - ., Bm are nonnegative real numbers and Bo >0, (8)
F@i)=<0 fori € D, (9)

then M_p(D) < F(0)/fo. Also, M_p(D) = F(0)/po for some mapping F) = Bodo(i) +
-+ 4+ Bm0m(i) of {0, ..., m} satisfying condition$8) and (9).

REMARKS. Evidently, the conditior8y > 0 in Theorem 2 can be replaced by the condition
Bo = 1. Thus, accordingto (3M_ p (D) equals the minimum of the sura-B1u1+- - -+ Bmim
subject to the constraings > 0 (i € Nyy) andB1q1(i)+- -+ Bmdm(i) < —1(i € D). Hence
M p(D) can be found by linear programming if the second eigennumbers of the scheme are
at disposal. Also, if a solutiog, ..., Bm of the above minimization problem is obtained
by some numerical algorithm, then the validity of the bowidD) < 1 + Biu1 + --- +
Bmum is easily verified by showing that the numbeks . . ., Bm satisfy the constraints of the
problem.

The following result is a slight improvement of a theorem of Delsarte [3, Theorem 3.9].
THEOREM 3. M p(D)M_p(Njy\ D) < v for D C Np,.

PROOF. LetM_p(D) = ag+ - - - + an Where the numberg satisfy the conditions (5), (6)
and (7). Consider the map(i) = Bodo(i) + - - - + BmOm(i) where

1 m
= =S aq). 10
Bk Mk;ale(U (10)

By (7)and (3)8« > Ofork € NyyandBo = ag+- - - +am = M_p(D) > 0. Accordingto (10),
(4)and (2),F(@i) =auv/vj fori =0,...,m. By (5), (3) and (6)F(0) = v andF (i) = O for
i € Nym\ D. Hence Theorem 2 yields the boult] p (N \ D) < F(0)/B0 = v/M_p(D). O

3. ON CHARACTERS OF THE SYMMETRIC GROUP

Let xo, ..., xm be the distinct irreducible complex charactersSsfnumbered such that
xo : @ — 1 is the unit character. Further, ldf = xx(1) be thedegreeof yx. Hence
di, ..., dm are positive integersly = 1 and

24 +d3 =S =n! (11)

(see [6, Corollary 2.7]). Recall that the valuesypfare all integers (see [7, Theorem 1.2.17]).
It is well-known (see [6, Corollary 2.7] and [7, Lemma 1.2.8]) that the number of distinct
conjugacy classe8(x) = {Baf™1 | B € S} (@ € §) of S, equals the numbem + 1 of
irreducible complex characters &f andS, is ambivalenin the sense tha (« 1) = C(«) for

alla € §,. LetCj = C(¢j) (i =0,...,m) be the distinct conjugacy classesSfnumbered
such thatxyg = 1. HenceCp = {1}.
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THEOREM 4. The relations

R={pecSFlalfeC} (=01..,m)

form a symmetric association scheme with m classespoftédled the conjugacy scheme
of §). The valences; and second eigennumberg() of this scheme are; = |Cj| and

Ok (i) = di (o).

PROOF. Since§, is ambivalent, the relation® are symmetric. The assertion follows from
[3, Example 2.4.2]. O

Denote by CfS,) the set of all real valued class functions®f Henceamap : S, —> R
belongs to CfSy) iff p(xBa—1) = ¢(B) holds for all elements andg in S,. Consider the set
Cf(S,) as a real linear algebra where the operations are defined pointwise and e¢fgp Cf
with the inner product

1
@ == ey @.
taeS
It is well-known (cf. [6, Theorem 2.8 and Corollary 2.14]) that the characers. ., xm
constitute an orthonormal basis of(Sf). Thus each mapping in Cf(S,) has a unique basis
representatiop = Boxo + - - - + Bmxm Where thes; are real numbers and we have

ﬂi = (§07 Xi>n (I :O7 19"'1m)- (12)

We call these numbeg thecharacter coefficients @f. In particular,8p is called thdeading
character coefficiendf ¢. A nonzero map in GfS,) is a character o%, iff all its character
coefficients are nonnegative integers (cf. [6, p. 15]).

Let - be anactionof S, on a finite nonempty s&2. Hence: is a mappings, x Q — Q,
(a, X) — ax satisfying the conditionsXl = x anda(Bx) = (ef)x for all «, B € S, and
x € Q. The mapr(«x) = |{X € Q | ax = x}| of §, is a character 0§, (see [6, p. 68]) called
the permutation characteof S, associated with the action. The action and the associated
permutation character are callgdnsitiveif, for all x andy in 2, there exists a permutation
a € § such thatux = vy. Itis well-known (cf. [6, Corollary 5.15]) thatr, xo)n equals
the number of the distinarbits $x = {ax | @ € §} (x € Q) of the action. Hence is

transitive iff (, xo)n = 1. Letr < || be a positive integer. A vect@ky, ..., %) is called
anr-permutationof Q if its componentsy, . .., x; are distinct elements §t. Denote by
the set of alr -permutations of2. Evidently, the conditiofa (X1, ..., %) = (X1, ..., aX;)

defines an action o&, on Q") and the associated permutation character is

r—1
m =[] r —kxo) (13)
k=0

If v is transitive then the actionand characterr are called -transitive. Thusr -transitive
(r > 2) permutation characters afre— 1)-transitive. Furthery is 2-transitive iffr = o+ x;

for somei > 2. (see [6, Corollary 5.17]). For example, thatural actionax = «(x) of §

onNj, is n-transitive and the associated permutation character is the natural charat &y
In the casen > 2, we number the characteys, . .., xm such that = xo + x1.

A vector p = (p1,..., pn) Of nonnegative integers is calledpartition of n if p; >
p2 > -+ > ppandpr+ p2+---+ pp = n. Let P, be the set of all partitions afi.
A partition (p1,..., pr,0,...,0) € P, is also denoted byps,..., pr). The conjugate
of a partitonp = (p1,..., pn) € Py is defined to be the vectop* = (pj, ..., p;) of
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nonnegative integerg’ = |[{j € Ny | pj > i}|. Thenp* € P, and(p*)* = p for all
partitionsp of n. Forp = (py,..., pn) € Pn, let Qp be the set of all vectoreXy, ..., Xn)
of subsets ofN,, satisfyingX; U---U Xp = Ny and|Xj| = p; fori = 1,...,n. Then
the condition (Xy, ..., Xp) = (@(Xyp), ..., a(Xp)) defines a transitive action & on Q.
Denote by P the permutation character &, associated with this action. By definition,
nP(a) = [{X € Qp | «X = X}| for p € Py ande € S,. Hencer ™ is the unit charactexo
andz "—1.D the natural character &. Denote by sgn thalternating character of $Sdefined
by sgna) = 1if o € S iseven, and sgv) = —1if « € S, is odd. Since the products
of characters are characters (see [6, Corollary 4.2]), téa) = sgna)7P(a) (¢ € §)) is
a character of, for all p € P,. Itis well-known (see [7, Section 2.1]) that the irreducible
charactersyo, ..., xm of § have a unique numberingP (p € P,), called theFrobenius
numbering such tha{z P, x P)y # 0 and(z P*, x P),, £ O for p € Py.

Considers, as the subgroufe € S,41 | «(n+1) = n+ 1} of ;1. Given a class function
¢ € Cf(Sy), define thanduced functiorp 1 of S,41 by

1
@D@== 30 eap™ (@€ Sia),
IS

where we have sei(y) = 0fory ¢ S,. Theng te Cf(S4+1) and(p 1)(1) = (n+ D)D)
for all ¢ € Cf(S,). Evidently, the mapping €&,) — Cf(Si+1), ¢ — ¢ 1 is linear. Also,
if x is a character 0§,, theny % is a character 08,1 (see [6, Corollary 5.3]) called the
character of {1 induced byy. For exampleyo 1 is the natural character &1 (see [6,
Lemma 5.14]). Denote by | the restriction of a class functiop € Cf(S,) to the group
S-1=f{x € § | a(n) = n}. Theng |e Cf(S-1) for ¢ € Cf(S,) and the mapping
Cf(S) — Cf(S-1), ¢ — ¢ | is an algebra morphism. Evidently,| is a character 0%,_1,
if x is a character 0§,.

Given partitionsp = (p1, ..., pn) € Py andq € Pyy1, denotep < g orq > pif the

vectors(pi, ..., pn, 0) andq differ in exactly one component place. Then, by 8&hur’s
branching law(see [7, Theorem 2.4.3]), for gl € P,,, we have
xPr= > x% and  xPl= ) O (14)
e e

4. LINEAR PROGRAMMING BOUNDS FOR PERMUTATION CODES

As in Section 3, letyo, ..., xm be the distinct irreducible complex charactersSfand
Ci =C(j) (i =0,..., m)the distinct conjugacy classes & numbered such thaf is the
unit charactergg = 1 and, forn > 2,0 = xo + x1. Further, letD be a set of integers.

Since the natural characteris a class function, then thB-codes inS, are the{i € N, |
0(aj) € D}-cliques in the conjugacy scheme®f. Hence Theorems 1 and 4 yield

THEOREM 5 (THE LP BOUND FOR PERMUTATION CODES). Subject to the constraints

ap=1a >0 fori € Np, (15)
a =0 fori € Ny, such that («j) € Ny \ D, (16)
aoxk(ao) + -+ - + amxk(em) > 0 for k € Npm, 17)

the sum g+ - - - + ap has the maximum value M (n, D) and M(n, D) < M_p(n, D).
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A class functionp € Cf(S,) is nonnegativef (¢, xj)n > O fori = 0,...,m. Call a
nonnegative class functign € Cf(S,) a D-program of § if (¢, xo)n > 0 andp(«j) < 0 for
alli € Ny, satisfyingf(«j) € D.

Identify a real valued map of {0, 1, ..., m} with the class functiop € Cf(S,) defined by
¢(a) = F(i) fora € Cj. Then (12) and Theorems 2 and 4 yield

THEOREM 6 (THE DUAL LP BOUND FOR PERMUTATION CODES). If ¢ is a D-program of
S, then

MLp(n, D) < ¢(1)/(¢, xon.

Also, M_p(n, D) = ¢(1)/{¢, xo)n for some D-progranp of S,.

REMARKS. The maximum valueM p(n, D) can be found by linear programming if the
character table d#, is at disposal. For example, in [7, pp. 348—355] these tables are given for
n < 10. Denote

(D) = [T -
ieD’

whereD’ = DN {0,1,...,n — 2}. Kiyota [8] has shown that if a subgroup of S, is a
D-code inS,, then|G| dividesIT,(D) and sqG| < IT,(D). The determination of sef3, for
which

M(n, D) < ITn(D) (18)
holds, is an open problem (see [1, p. 36]). According to Theorem 3,
MLp(n, D)M_p(n, D% <n! (19)

whereD® = Z \ D. Sincell,(D)IT,(D€) = n! then, by (19), the bound (18) always holds
for M(n, D) or for M(n, D°).

ExAMPLE 1. Given an integed with 2 < d < n, call a nonempty subsé& of S, ad-code
in & if 5(o, B) > d wheneverr and g are distinct elements ¢€. Denote byM (n, d) the

maximum cardinality of @-code inS,. Accordingto (1)M(n,d) = M(n, {0, 1, ..., n—d}).
Letr < n be a positive integer. Since, by (13),

r—1
b =[] —kxo
k=0

is a transitive permutation character®f, theng, is nonnegative an¢b,, xo)n = 1. We also
haved; («) = Oforalla € S, suchthad (o) <r—1. Henc&y_g+1isa{0, ..., n—d}-program
of S, and Theorem 6 gives the bound of Bladeal. [2]:

M(n,d) <dd+1)...n. (20)

HenceM (n, d) satisfies (18) for all positive integensandd with 2 < d < n.

EXAMPLE 2. The simplex algorithm yields that, for < 6, we haveM| p(n, D) = IT,(D)
with the exception of the following 20 cases:
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n D Mip(n,D) (D) Mip(n, D% In(D°)

5 013 20 40 6 3
5 023 15 30 8 4
6 013 60 90 12 8
6 014 30 60 24 12
6 023 48 72 15 10
6 124 30 40 24 18
6 134 15 30 48 24
6 0124 120 240 6 3
6 0134 60 180 12 4
6 0234 48 144 15 5
where, as well as in Tables 1 and 2, the Bet= {a1, ap, ..., &} is given as a sequence

ajaz...ar. Thus
Mpp(n, D)M_p(n, D) = n!

foralln < 6 andD € Z. Forn < 8, Tables 1 and 2 show that in the totality of 255
cases the bount(n, D) < IT,(D) holds at least in 178 cases. Also, for< 8 andD C
{0,1,...,n— 2}, we haveM (n, D) < ITn(D) if |D| > n/2 and(n, D) is none of the three
pairs(8, 0124, (8, 0456 and(8, 1456.

In Tables 1 and 2 the valued p(n, D) were calculated solving the dual LP bound by
Mathematica subroutine LinearProgramming (see [11, p. 819]) which operates with exact
rational numbers. The results were tested by veryfying that the solution vectors were indeed
D-programs. The required character tables were taken from [7, pp. 350 and 351] and, in
addition to the manual checking, the copied data were tested by the orthogonality relations of
the characters.

ExamPLE 3. Denote byxk_1 andCk_1 the charactegy and conjugacy clasSi of S, in
the tables [7, pp. 349-355]. Seven out of the 15 irreducible charact&savé given in the
following table:

X1 X2 X3 X4 X11 X12 X13
Co 6 14 15 14 14 14 6
C1 4 6 5 4 -4 -6 -4
Co 2 2 -1 2 2 2 2
Ca 0 2 -3 0 0o -2 0
Ca 3 2 3 -1 -1 2 3
Cs 1 0o -1 1 -1 0 -1
Cs -1 2 -1 -1 -1 2 -1
C7 0o -1 0 2 2 -1 0
Cs 2 0 1 -2 2 0 -2
Co 0 o -1 0 0 0 0
Cio -1 0 1 1 -1 0 1
Cu1 1 -1 o -1 -1 -1 1
Cip -1 1 0o -1 1 -1 1
Cis 0o -1 0 0 0 1 0
Cis -1 0 1 0 0 0 -1
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TABLE 1.
The integer parM of M| p(7, D) and the values ofT = I1T7(D).
D M I D M 7 D M I D M 7
[4] 1 1 23 60 20 123 120 120 0234 93 420
0 7 7 24 15 15 124 108 90 0235 140 280
1 30 6 25 15 10 125 60 60 0245 63 210
2 15 5 34 26 12 134 72 72 0345 168 168
3 12 4 35 12 8 135 72 48 1234 360 360
4 8 3 45 9 6 145 54 36 1235 120 240
5 2 2 012 140 210 234 60 60 1245 108 180
01 42 42 013 205 168 235 60 40 1345 72 144
02 52 35 014 84 126 245 15 30 2345 120 120
03 46 28 015 84 84 345 32 24 01234 2520 2520
04 42 21 023 93 140 0123 543 840 01235 630 1680
05 14 14 024 63 105 0124 420 630 01245 420 1260
12 30 30 025 52 70 0125 172 420 01345 280 1008
13 72 24 034 84 84 0134 280 504 02345 168 840
14 36 18 035 46 56 0135 205 336 12345 720 720
15 48 12 045 42 42 0145 84 252 012345 5040 5040
TABLE 2.
The integer parM of M| p(8, D) and the values ofT = ITg(D).
D M 7 D M 7 D M 7 D M 7
] 1 1 015 224 168 0123 926 1680 2356 180 180
0 8 8 016 112 112 0124 1489 1344 2456 104 144
1 42 7 023 192 240 0125 584 1008 3456 120 120
2 42 6 024 192 192 0126 403 672 01234 4135 6720
3 15 5 025 226 144 0134 625 1120 01235 2520 5040
4 13 4 026 224 96 0135 373 840 01236 1032 3360
5 8 3 034 160 160 0136 280 560 01245 1792 4032
6 2 2 035 120 120 0145 224 672 01246 1489 2688
01 56 56 036 112 80 0146 270 448 01256 660 2016
02 192 48 045 211 96 0156 287 336 01345 625 3360
03 100 40 046 96 64 0234 192 960 01346 695 2240
04 96 32 056 67 48 0235 330 720 01356 373 1680
05 64 24 123 147 210 0236 264 480 01456 395 1344
06 16 16 124 253 168 0245 432 576 02345 480 2880
12 42 42 125 177 126 0246 384 384 02346 384 1920
13 75 35 126 84 84 0256 226 288 02356 338 1440
14 108 28 134 175 140 0345 480 480 02456 478 1152
15 105 21 135 105 105 0346 226 320 03456 960 960
16 70 14 136 79 70 0356 120 240 12345 2520 2520
23 102 30 145 152 84 0456 261 192 12346 630 1680
24 104 24 146 112 56 1234 543 840 12356 420 1260
25 58 18 156 136 42 1235 420 630 12456 403 1008
26 64 12 234 138 120 1236 188 420 13456 192 840
34 60 20 235 135 90 1245 360 504 23456 720 720
35 15 15 236 180 60 1246 253 336 012345 20160 20160
36 15 10 245 104 72 1256 252 252 012346 5040 13440
45 38 12 246 104 48 1345 180 420 012356 2520 10080
46 13 8 256 64 36 1346 175 280 012456 1792 8064
56 9 6 345 96 60 1356 136 210 013456 960 6720
012 336 336 346 62 40 1456 190 168 023456 960 5760
013 280 280 356 15 30 2345 360 360 123456 5040 5040
014 224 224 456 43 24 2346 180 240 0123456 40320 40320
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where thgC;i, x|) entry gives the valug; («i) of xj inthe conjugacy clags; andd = xo+ x1.
Henced has the inverse imagés(0) = CgUC10UC12UC14, 6 1(1) = C3UC7UCoUC13
and9_1(2) = CsUCq1.

Forg = 6xo + 21x1 + 14x2 + 18x3 + x4 + 7x11 + 8x12 + 3x13, We havep(l) = 840,
@(az) = —36, p(ag) = —12 andyp(aj) = 0 (i = 6,10,12 14,7,13,5,11). Thusg is a
{0, 1, 2}-program ofS; and M (7, 5) < 140. Similarly, solving the dual LP bound by linear
programming, one obtains the following improvements of (20):

n d Mnd < dd+1...n

7 4 543 840
7 5 140 210
8 4 4135 6720
8 5 926 1680
9 4 32989 60480
9 5 7128 15120
9 6 1962 3024
10 4 302400 604800
10 5 64800 151200
10 6 16941 30240
10 7 4699 5040

Hence the inequaliti (n,d) < nM(n—1,d) (2 <d < n—1) (see [2]) yields the following
bound: forn > 10 andd = 4, 5, 6, 7, we have

M, d)<Cq-d(d+1)...n

whereC4 = 1/2,Cs = 3/7 < 0.4286,Ce = 5647/10080< 0.5603 andC7 = 46995040 <
0.9324.

LEMMA 1. Denote D= {d + 1| d € D}. If ¢ is a D-program of &, then the induced

mappinge 1 is a ({0} U D 1)-program of &1, (¢ 1)(1) = (n + De(1) and the leading
character coefficient ap 1 equals(g, xo)n.

PROOF. We use the Frobenius numbering of the irreducible charact&safdS, 1. Since
¢ is aD-program then

pePn
wheregp = (¢, xP)n = 0 andBn) = (¢, xo)n > 0. By Schur’s branching law (14),

pr= Y (Zﬁp)xq.

gePnhy1 N P<q
Henceyp % is nonnegative and the leading character coefficiegt ¢fis

Y Bp=Bm = (. xohn > 0.
p<(n+1)

Let 6’ be the natural character 8f1. Supposer € Sy+1 \ {1} andé’(«) = d + 1 where
deD. If € Si1andBapt € S, thenn + 1 is a fixed point offaf~1 and hence
0(Bap™) = 0/ (Bap™) —1 =0(@) —1 = d € D. Consequently(¢ 1)(@) < 0. On
the other hand, if a permutatien € S,,1 has no fixed points thew 1)(@) = 0, since the
conditionsg € Syy1 andBaft € S, imply a(8~1(n + 1)) = B~ L(n+1). Thusy 1 is a
({0} U D 1)-program ofS, 1 and the proof is complete. O
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ExAMPLE 4. Use aD-programg of S, satisfyingM_p(n, D) = ¢(1)/{, xo)n- Then
Lemma 1 yields the inequality

MLp(n+1,{0}UD 1) < (n+1)M_p(n, D).
Also, sincelln+1({0} U D 1) = (n+ 1)11,(D), then
Mip(n+1,{0}UD 1) < IMh+1({0}UD 1)

providedM_p(n, D) < IT,(D). Forinstance, Table 2 gives 80 subdetsfthe sef0, 1, ..., 7}
for which the inequalityM | p (9, D) < ITg9(D) holds.

LEMMA 2. Denote D|={d — 1| d € D}. If ¢ is a D-program of §, where n> 2, then
¢ | isa(D |)-program of $_1 and the leading character coefficientf| equals(g, 0)n.

PROOF. Sinceg is a D-program then
¢ = Z Bpx P,
pePn
wherefp = (¢, x Ph>0 andfm = (¢, xo)n > 0. By (14),
¢ = Z (Zﬁp)Xq~
gePn-1 “P>Q

Henceyp | is nonnegative and the leading character coefficiept pfis

> Bp=Bm +Bn-11 = (¢, xohn + (9. x1)n = (9. 0)n > O.
p>(n-1)

Let 6’ be the natural character &_1. Supposex € S,—1 \ {1} and¢’(«) = d — 1 where
d € D. Sincea(n) = n, thenf(a) = 6'(e) +1=d € D and(¢ |)(a) = ¢(a) < 0. Thus
¢ | isa(D |)-program ofS,_1. U

LEMMA 3. M p(n—1,D) <M. p(n,D %) forn > 2.

PROOF. Let ¢ be a(D 1)-program ofS, such thatM p(n, D 1) = ¢(1)/{¢, xo)n. By
Lemma 2,¢ | is a D-program ofS,_1 and its leading character coefficient(is, 6)n =
(¢, x0)n + (@, x1)n = (@, xo)n. Consequently,

MLp(n =1, D) = (¢ LD /{p,0)n = ¢(D)/{®, xo)n = MLp(n, D 1). O
EXAMPLE 5. Suppose > 2 andD C {0,1,...,n— 3}. ThenlTy(D 1) = I1,-1(D) and
henceM_p(n, D 1) > ITn(D 1) andM_p(n, (D 1)) < ITh((D 1)) providedM p(n —

1, D) > II,_1(D). For instance, Table 2 gives 76 subsétsof {0, 1, ..., 7} satisfying
MLp(9, D) < Ig(D).

5. CHARACTERS ASSOCIATED WITH CHARLIER POLYNOMIALS

Let wx be the number of elements 8 having exactlyk fixed points (see [4]):

1K (—)
m=lloeS 0@ =ki=1Y T k=0_..m.
PNt
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Note thatwn_1 = 0 and all the other numbeis (k = 0, ..., n,k # n — 1) are positive.
Equip the algebr&[x] of all real polynomials in the variabbe with the symmetric bilinear
form

1 n
(f,9n =~ kzowkf(k)g(k)- (21)

Then (21) defines an inner product on thelimensional vector spacd&n[x] of all real
polynomials of degre& — 1 or less in the variable. Associate with each polynomial
f(X) = ax"+---+aix+ap (g € R)inR[x]the classfunctiord (§) = a 0" +- - -+a10+apxo
in Cf(§,). Evidently, the mappin@®[x] — Cf(S,), f — f(0) is an algebra morphism and
f(0)(ax) = f(@(x)) holds for all f € R[x] anda € S,. Hence

(f©,9@0)n =, pn  (f,geRXD. (22)
In particular, the leading character coefficientfaf) is

(£0). xom=(f,Dn  (f e R[XD).

Our aim is to upper boun (n, D) by using polynomial functions af associated with the
Charlier polynomials k = Fx(x) (k =0, 1, 2, ...) defined by

K (K
F() = Y (=D (i )xm,
i=0

wherex) = 1 andxg = x(x —1)...(x —i + 1) fori > 1. Evidently, Fc(x) is a monic
polynomial of degred,

Fox)=1 and Fi(x) =x—1 (23)
We also have the three-term recurrence relation (cf. [5, p. 163])
Fkri(X) = X =k = DFRc(X) —kFRc1(x)  (k=1,2..)). (24)
Hence

Fo(X) = X2 — 3x + 1,
Fa(x) = x3 — 6x% 4+ 8x — 1,

Fax) = x* — 10x3 + 29x2 — 24x + 1,

Fs(x) = x° — 15x* + 75x3 — 145 + 89x — 1.

LEMMA 4. 6¢p = (p |) 1 for ¢ € Ci(S).

PROOF. Itis well-known (see [10, p. 20]) thay 1)¢ = (n(¢ })) 1 for all characterg of
Si—1and¢ of §,. Sinced = x 1 wherey is the unit character d§,_; then, for all characters
¢of §y,wehaveds = (x 1)¢ = (x(¢ 1)) = (¢ |) 1. The assertion follows by the linearity
of the mappingg and+. =]

Given a partitionp = (p1, ..., pn) of n and an integer > n, denote bydP the degree
x P(1) of xP and by(r, p) the partition(r, p1, ..., pn) of r +n.

THEOREM 7. For 0 < k < n/2, we have

k(@) = Y dPx P, (25)
pe Pk
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PrROOF. Denote by, the right-hand side of (25). According to (18? = d® = 1 and
hence, by (230 = d@x ™ = yo = Fo(®) andéy = dVx 1Y = y1 =6 — xo = F1(0).
By (24), it is sufficient to prove that
Ekr1=(0 —k—Dék — k&1 forl<k=<(n-2)/2 (26)

Suppose Kk k < (n — 2)/2 and letp be a partition ok. By (14) and Lemma 4,

ex(n—k,p) _ (X(nkl, P4 Z X(nk,q)) 4

a<p
— X(n—k, 9)] + Z X(n—k—l,q) + Z X(n—k+1,q) + Z Zx(n—k,r).
q>p a<p q<pr>q
Hence
0k =&+ AL+ Ao+ Az
where
A= Y APy g rkta - 3 <Z dP)X(n—k—l,q)7
pePc  d>p qePr1 N P<q
o= 3 (T
qePk-1 P>9
and

A= 3 (T ar)xmn

rePc Na<r p>q

Forqg € Py+1, we have

= DO =) xPW)=> d°
p<q p<q

and hencéd; = & 1. Forq € Px_1, we have

kd?=kx9(D) =TI HD =) xP@) =) dP
p>q p>q

and henced; = kéc_1. Forr € Px, we have, by Lemma 4,

kd = (" D HO=Y"3 %@ =33 d°

q<r p>q q<r p>q

and henceAz = k&. Consequently,
08k = &k + A1+ Az + Az = &k+1 + (K+ D&k + Kék—1,
the recurrence relation (26) holds and the proof is complete. O
COROLLARY 1. For0 <r,s <n/2, K (0) is a character of and

(Fr (@), Fs(0))n = (Fr, Fo)n =T5rs.
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PrROOF. According to (22), (25) and (11),
(Fr. Fon=(Fr(0), Fs@)n= Y _ Y dPdi(x"P ,0=sd),

peP qePs
=ds ) (dP)? =rlés.
pePr
Since(F (0), K (0))n = ! # 0, thenF, () is nonzero. By (25), the character coefficients of
Fr (0) are nonnegative integers andid#) is a character 0§,. O
COROLLARY 2. Suppose D is a subset (3, 1, ...,n — 2} and the polynomial Fx) =
BoFo(X) + - - - + BkFk(X) (1 < k < n/2) satisfies the following two conditions:
Bo, ..., Bk are nonnegative real numbers agg > 0. (27)
F() <Ofori € D. (28)

Then M_p(n, D) < F(n)/pBo.

PrROOF. By Theorem 7 and Corollary F (0) is nonnegative ang~ (6), xo)n = (F, Fo)n =
Bo > 0. Alsoifa € §, andf(x) € D, thenF(0)(«) = F(0(a)) < 0 by (28). Thusg=(0) isa
D-program ofS, and Theorem 6 yields the boudl_ p(n, D) < F(0(1))/Bo = F(n)/Bo. O

EXAMPLE 6. SinceFp+ F> = (x — 1)(Xx — 2), then
M(n,{1,2)) <(hn—1(n—-2) for n=>4
SinceFg + 3F2 + F3 = (X + 1)(X — 1)(X — 3), then
M, {1,2,3) <(n+1)(n—1)(n—3) for n=>6.
SinceFg + F3 = X(X — 2)(x — 4), then
M(,{0,2,3,4}) <nin—2)(n—4) for n=>6.
Since F9 + 10F; +8F3 +3F4 = (X — D (X — 2)(x — 4)(3x — 1), then
M, {1,2,3,4) <(n—1)(n—2)(n—4H(n—1/3) for n=>6.
Since F¢ + 4F1 + F4 = x(X — D)(x — 4)(x — 5), then
M(,{0,1,4,5}) <n(in—1)(n—4H(n—-5/3 for n=>8.
Since F + 5F1 + 5F4 + 3F5 = X(X — 1)(X — 2)(X — 4)(3x — 19), then
M, {0,1,24,56}) <nin—1LNn—-2)(n—4)(n—-19/3) for n=>10.
Since 1Fg + 3F, + 5F3 + 6F4 = (X — 1)(x — 3)(x — 5)(6x — 1), then
M(n, {1,3,4,5) <(n—1)(n—-3)(n—5(@®6nh—-1)/11 for n=> 8.
SinceFg+ F1 + F3+ F4 = x(x — 1)(x — 3)(x — 5), then
M(n,{0,1,3,4,5) <nin—1H(n—-3)(n—5) for n>8.
Since &g + F1 + 6F3 + 2F4 + F5 = x(Xx — 2)(x — 3)2(x — 5), then
M, {0,2,3,4,5) <n(n—2)(n—23)*(n—5)/6 for n=> 10.
Since 1Fg + 50F; 4+ 65F3 + 45F; + 11F5 = (X — 1)(X — 2)(Xx — 3)(X — 5)(11x + 1), then
M, {1,2,3,45) <(h—D)(n—2)(n—3)(h—-5((n+1/11) for n=> 10

If D is a fixed set of nonnegative integers, th@p D) ~ nlPl asn — co. Examples 1 and
6 give 24 subset® of {0, 1, 2, 3, 4, 5} satisfyingM(n, D) < n'Plasn — cc.
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