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Upper Bounds on Permutation Codes via Linear Programming

HANNU TARNANEN

An upper bound on permutation codes of lengthn is given. This bound is a solution of a certain
linear programming problem and is based on the well-developed theory of association schemes. Several
examples are presented. For instance, the 255 values of the bound forn ≤ 8 are tabulated. It turns
out that, forn ≤ 8, the Kiyota bound for group codes also holds for unrestricted codes at least in 178
cases. Also an easier (but weaker) polynomial version of the bound is given. It is obtained by showing
that the mappingsFk(θ) (0 ≤ k ≤ n/2), whereFk is the Charlier polynomial of degreek andθ the
natural character of the symmetric groupSn, are mutually orthogonal characters ofSn.
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1. INTRODUCTION

Letn be a positive integer and denote bySn the symmetric group of the setNn = {1,2, . . . ,n}
and by|X| the cardinality of a finite setX. HenceSn is composed of alln! = 1 · 2 · . . . · n
permutations ofNn, that is, of all bijectionsα : Nn → Nn, the productαβ in Sn is the
composite map(αβ)(x) = α(β(x)) and the identity element ofSn is the identity permutation
1 : x 7→ x of Nn. The mapping

θ(α) = |{x ∈ Nn | α(x) = x}|
of Sn, which counts the number of fixed points of a given permutationα in Sn, is called the
natural characterof Sn. Thusθ(1) = n and 0≤ θ(α) ≤ n− 2 for all α in Sn \ {1}, since no
permutation ofNn has exactlyn− 1 fixed points. The condition

δ(α, β) = n− θ(α−1β) = |{x ∈ Nn | α(x) 6= β(x)}| (1)

defines a metric onSn. In fact, if a permutationα ∈ Sn is interpreted as a vectorα =
(α(1), . . . , α(n)), thenδ(α, β) (α, β ∈ Sn) is the Hamming distance between vectorsα and
β, that is, the number of component places in which the vectorsα andβ differ. Nonempty
subsets ofSn are calledpermutation codes of length n. Let D be a subset of the ringZ of
integers. A nonempty subsetC of Sn is said to be aD-codein Sn if θ(α−1β) ∈ D whenever
α andβ are distinct elements ofC. Denote byM(n, D) the maximum cardinality of such a
D-code. ThenM(n,∅) = 1, M(n,Z) = n! and M(n, D) = M(n, D ∩ {0,1, . . . ,n − 2})
since 0≤ θ(α−1β) ≤ n− 2 for all distinct permutationsα andβ of Nn.

In this paper an upper bound onM(n, D) is given. This bound is a solution of a certain
linear programming problem and is based on the well-developed theory of association schemes.
Sections 2 and 3 are preliminary: we introduce association schemes, characters of symmetric
groups and the conjugacy scheme which seems to be a suitable frame for studying permutation
codes. In Section 4 the linear programming bound forM(n, D) is given and several examples,
both numerical and theoretical, are presented. In Section 5 we consider characters ofSn

associated with the Charlier polynomialsFk(x) of degreek in the real variablex. It is shown
that the mappingsFk(θ) (0≤ k ≤ n/2) are mutually orthogonal characters ofSn. This yields
an easier (but weaker) polynomial version of the linear programming bound. Finally, examples
illustrating the method are given.
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2. ASSOCIATION SCHEMES

Let m be a nonnegative integer andR a symmetric association schemewith m classes on
a finite nonempty setX having cardinalityv. HenceR is a collection ofm+ 1 symmetric
relationsR0, . . . , Rm on X forming a partition of the cartesian powerX2, R0 is thediagonal
relation{(x, x) | x ∈ X} of X and, for any triple of integersi, j, k = 0, . . . ,m, the cardinality

pi jk = |{z ∈ X | (x, z) ∈ Ri , (z, y) ∈ Rj }|
is independent of the choice of(x, y) ∈ Rk. The numberspi jk are called theintersection
numbersof the scheme. If(x, y) ∈ Ri , elementsx and y are said to bei-associatesin R.
The positive integerpii 0 is called thevalenceof Ri and is denoted byvi . By definition,vi is
the number of thei -associates of an arbitrary element ofX. Denote byR(X, X) the algebra
of all square matricesS of orderv over the fieldR of real numbers, where the entries are
numbered by the elements ofX2, the(x, y)-entry ofSbeing written asS(x, y). LetB be the
linear subspace ofR(X, X) generated by theadjacency matrices A0, . . . , Am ∈ R(X, X) for
which Ai (x, y) = 1 if (x, y) ∈ Ri andAi (x, y) = 0 if (x, y) /∈ Ri . ThenB is a commutative
(m+ 1)-dimensional subalgebra ofR(X, X) and is composed of symmetric matrices (cf. [9,
p. 653]). This algebra is called theBose–Mesner algebraof the scheme. It has a unique basis
of primitive idempotents J0 = v−1J, J1, . . . , Jm (J is the all-one matrix) which are nonzero
matrices inB satisfyingJi Jj = δi j Ji whereδi j is the Kronecker symbol (see [9, pp. 653 and
654]). Their ranksµi = rankJi are called themultiplicities of the scheme. Given the two
bases{Ai } and{Ji } of B, we have the basis transformations

Ak =
m∑

i=0

pk(i )Ji and Jk = 1

v

m∑
i=0

qk(i )Ai (k = 0, . . . ,m).

Call the real coefficientspk(i ) andqk(i ) the first andsecond eigennumbersof the scheme.
These parameters have the following properties (cf. [9, pp. 654 and 655]):

m∑
i=0

pk(i )qi (r ) =
m∑

i=0

qk(i )pi (r ) = vδkr , (2)

p0(i ) = q0(i ) = 1, pi (0) = vi , qi (0) = µi , (3)

vi qk(i ) = µk pi (k). (4)

Let D be a subset of the index setNm. A nonempty subsetC of X is called aD-clique in
R if any two distinct elements ofC are i -associates for somei in D. Denote byM(D) the
maximum cardinality of aD-clique in R. Then M(∅) = 1, M(Nm) = v and M(D) is an
increasing set function in the sense thatM(D) ≤ M(E) for D ⊆ E ⊆ Nm.

The following theorem is called thelinear programming bound(= LP bound) for cliques in
R (see [3, Section 3.3.2]).

THEOREM 1. Let D be a subset ofNm. Subject to the constraints

a0 = 1,ai ≥ 0 for i ∈ Nm, (5)

ai = 0 for i ∈ Nm \ D, (6)

a0qk(0)+ · · · + amqk(m) ≥ 0 for k ∈ Nm, (7)

the sum a0+ · · · + am has the maximum value ML P(D) and M(D) ≤ ML P(D).
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Instead of the maximization problem of Theorem 1 it is sometimes useful to consider the
dual minimization problem which is given in the next theorem (see [3, Section 3.3.2]).

THEOREM 2 (THE DUAL LP BOUND). Let D be a subset ofNm. If the mapping F(i ) =
β0q0(i )+ · · · + βmqm(i ) of {0, . . . ,m} satisfies the following two conditions

β0, . . . , βm are nonnegative real numbers and β0 > 0, (8)

F(i ) ≤ 0 for i ∈ D, (9)

then ML P(D) ≤ F(0)/β0. Also, ML P(D) = F(0)/β0 for some mapping F(i ) = β0q0(i ) +
· · · + βmqm(i ) of {0, . . . ,m} satisfying conditions(8) and(9).

REMARKS. Evidently, the conditionβ0 > 0 in Theorem 2 can be replaced by the condition
β0 = 1. Thus, according to (3),ML P(D)equals the minimum of the sum 1+β1µ1+· · ·+βmµm

subject to the constraintsβi ≥ 0 (i ∈ Nm) andβ1q1(i )+· · ·+βmqm(i ) ≤ −1 (i ∈ D). Hence
ML P(D) can be found by linear programming if the second eigennumbers of the scheme are
at disposal. Also, if a solutionβ1, . . . , βm of the above minimization problem is obtained
by some numerical algorithm, then the validity of the boundM(D) ≤ 1 + β1µ1 + · · · +
βmµm is easily verified by showing that the numbersβ1, . . . , βm satisfy the constraints of the
problem.

The following result is a slight improvement of a theorem of Delsarte [3, Theorem 3.9].

THEOREM 3. ML P(D)ML P(Nm \ D) ≤ v for D ⊆ Nm.

PROOF. Let ML P(D) = a0+ · · · + am where the numbersai satisfy the conditions (5), (6)
and (7). Consider the mapF(i ) = β0q0(i )+ · · · + βmqm(i ) where

βk = 1

µk

m∑
i=0

ai qk(i ). (10)

By (7) and (3),βk ≥ 0 fork ∈ Nm andβ0 = a0+· · ·+am = ML P(D) > 0. According to (10),
(4) and (2),F(i ) = ai v/vi for i = 0, . . . ,m. By (5), (3) and (6),F(0) = v andF(i ) = 0 for
i ∈ Nm \ D. Hence Theorem 2 yields the boundML P(Nm \ D) ≤ F(0)/β0 = v/ML P(D). 2

3. ON CHARACTERS OF THE SYMMETRIC GROUP

Let χ0, . . . , χm be the distinct irreducible complex characters ofSn numbered such that
χ0 : α 7→ 1 is the unit character. Further, letdk = χk(1) be thedegreeof χk. Hence
d1, . . . ,dm are positive integers,d0 = 1 and

d2
0 + · · · + d2

m = |Sn| = n! (11)

(see [6, Corollary 2.7]). Recall that the values ofχi are all integers (see [7, Theorem 1.2.17]).
It is well-known (see [6, Corollary 2.7] and [7, Lemma 1.2.8]) that the number of distinct
conjugacy classesC(α) = {βαβ−1 | β ∈ Sn} (α ∈ Sn) of Sn equals the numberm+ 1 of
irreducible complex characters ofSn andSn isambivalentin the sense thatC(α−1) = C(α) for
all α ∈ Sn. Let Ci = C(αi ) (i = 0, . . . ,m) be the distinct conjugacy classes ofSn numbered
such thatα0 = 1. HenceC0 = {1}.
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THEOREM 4. The relations

Ri = {(α, β) ∈ S2
n | α−1β ∈ Ci } (i = 0,1, . . . ,m)

form a symmetric association scheme with m classes on Sn (called the conjugacy scheme
of Sn). The valencesvi and second eigennumbers qk(i ) of this scheme arevi = |Ci | and
qk(i ) = dkχk(αi ).

PROOF. SinceSn is ambivalent, the relationsRi are symmetric. The assertion follows from
[3, Example 2.4.2]. 2

Denote by Cf(Sn) the set of all real valued class functions ofSn. Hence a mapϕ : Sn→ R
belongs to Cf(Sn) iff ϕ(αβα−1) = ϕ(β) holds for all elementsα andβ in Sn. Consider the set
Cf(Sn) as a real linear algebra where the operations are defined pointwise and equip Cf(Sn)

with the inner product

〈ϕ,ψ〉n = 1

n!
∑
α∈Sn

ϕ(α)ψ(α).

It is well-known (cf. [6, Theorem 2.8 and Corollary 2.14]) that the charactersχ0, . . . , χm

constitute an orthonormal basis of Cf(Sn). Thus each mappingϕ in Cf(Sn) has a unique basis
representationϕ = β0χ0+ · · · + βmχm where theβi are real numbers and we have

βi = 〈ϕ, χi 〉n (i = 0,1, . . . ,m). (12)

We call these numbersβi thecharacter coefficients ofϕ. In particular,β0 is called theleading
character coefficientof ϕ. A nonzero map in Cf(Sn) is a character ofSn iff all its character
coefficients are nonnegative integers (cf. [6, p. 15]).

Let · be anactionof Sn on a finite nonempty set�. Hence· is a mappingSn × � → �,
(α, x) 7→ αx satisfying the conditions 1x = x andα(βx) = (αβ)x for all α, β ∈ Sn and
x ∈ �. The mapπ(α) = |{x ∈ � | αx = x}| of Sn is a character ofSn (see [6, p. 68]) called
the permutation characterof Sn associated with the action. The action and the associated
permutation character are calledtransitiveif, for all x andy in �, there exists a permutation
α ∈ Sn such thatαx = y. It is well-known (cf. [6, Corollary 5.15]) that〈π, χ0〉n equals
the number of the distinctorbits Snx = {αx | α ∈ Sn} (x ∈ �) of the action. Henceπ is
transitive iff 〈π, χ0〉n = 1. Let r ≤ |�| be a positive integer. A vector(x1, . . . , xr ) is called
anr -permutationof� if its componentsx1, . . . , xr are distinct elements of�. Denote by�(r )

the set of allr -permutations of�. Evidently, the conditionα(x1, . . . , xr ) = (αx1, . . . , αxr )

defines an action ofSn on�(r ) and the associated permutation character is

πr =
r−1∏
k=0

(π − kχ0). (13)

If πr is transitive then the action· and characterπ are calledr -transitive. Thusr -transitive
(r ≥ 2) permutation characters are(r −1)-transitive. Further,π is 2-transitive iffπ = χ0+χi

for somei ≥ 2. (see [6, Corollary 5.17]). For example, thenatural actionαx = α(x) of Sn

onNn is n-transitive and the associated permutation character is the natural characterθ of Sn.
In the casen ≥ 2, we number the charactersχ0, . . . , χm such thatθ = χ0+ χ1.

A vector p = (p1, . . . , pn) of nonnegative integers is called apartition of n if p1 ≥
p2 ≥ · · · ≥ pn and p1 + p2 + · · · + pn = n. Let Pn be the set of all partitions ofn.
A partition (p1, . . . , pr ,0, . . . ,0) ∈ Pn is also denoted by(p1, . . . , pr ). The conjugate
of a partition p = (p1, . . . , pn) ∈ Pn is defined to be the vectorp∗ = (p∗1, . . . , p∗n) of
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nonnegative integersp∗i = |{ j ∈ Nn | pj ≥ i }|. Then p∗ ∈ Pn and (p∗)∗ = p for all
partitionsp of n. For p = (p1, . . . , pn) ∈ Pn, let�p be the set of all vectors(X1, . . . , Xn)

of subsets ofNn satisfying X1 ∪ · · · ∪ Xn = Nn and |Xi | = pi for i = 1, . . . ,n. Then
the conditionα(X1, . . . , Xn) = (α(X1), . . . , α(Xn)) defines a transitive action ofSn on�p.
Denote byπ p the permutation character ofSn associated with this action. By definition,
π p(α) = |{X ∈ �p | αX = X}| for p ∈ Pn andα ∈ Sn. Henceπ(n) is the unit characterχ0
andπ(n−1,1) the natural character ofSn. Denote by sgn thealternating character of Sn defined
by sgn(α) = 1 if α ∈ Sn is even, and sgn(α) = −1 if α ∈ Sn is odd. Since the products
of characters are characters (see [6, Corollary 4.2]), thenτ p(α) = sgn(α)π p(α) (α ∈ Sn) is
a character ofSn for all p ∈ Pn. It is well-known (see [7, Section 2.1]) that the irreducible
charactersχ0, . . . , χm of Sn have a unique numberingχ p (p ∈ Pn), called theFrobenius
numbering, such that〈π p, χ p〉n 6= 0 and〈τ p∗, χ p〉n 6= 0 for p ∈ Pn.

ConsiderSn as the subgroup{α ∈ Sn+1 | α(n+1) = n+1} of Sn+1. Given a class function
ϕ ∈ Cf(Sn), define theinduced functionϕ ↑ of Sn+1 by

(ϕ ↑)(α) = 1

n!
∑

β∈Sn+1

ϕ(βαβ−1) (α ∈ Sn+1),

where we have setϕ(γ ) = 0 for γ /∈ Sn. Thenϕ ↑∈ Cf(Sn+1) and(ϕ ↑)(1) = (n+ 1)ϕ(1)
for all ϕ ∈ Cf(Sn). Evidently, the mapping Cf(Sn) → Cf(Sn+1), ϕ 7→ ϕ ↑ is linear. Also,
if χ is a character ofSn, thenχ ↑ is a character ofSn+1 (see [6, Corollary 5.3]) called the
character of Sn+1 induced byχ . For example,χ0 ↑ is the natural character ofSn+1 (see [6,
Lemma 5.14]). Denote byϕ ↓ the restriction of a class functionϕ ∈ Cf(Sn) to the group
Sn−1 = {α ∈ Sn | α(n) = n}. Thenϕ ↓∈ Cf(Sn−1) for ϕ ∈ Cf(Sn) and the mapping
Cf(Sn)→ Cf(Sn−1), ϕ 7→ ϕ ↓ is an algebra morphism. Evidently,χ ↓ is a character ofSn−1,
if χ is a character ofSn.

Given partitionsp = (p1, . . . , pn) ∈ Pn andq ∈ Pn+1, denotep < q or q > p if the
vectors(p1, . . . , pn,0) andq differ in exactly one component place. Then, by theSchur’s
branching law(see [7, Theorem 2.4.3]), for allp ∈ Pn, we have

χ p ↑ =
∑

q∈Pn+1
q>p

χq and χ p ↓=
∑

q∈Pn−1
q<p

χq. (14)

4. LINEAR PROGRAMMING BOUNDS FOR PERMUTATION CODES

As in Section 3, letχ0, . . . , χm be the distinct irreducible complex characters ofSn and
Ci = C(αi ) (i = 0, . . . ,m) the distinct conjugacy classes ofSn numbered such thatχ0 is the
unit character,α0 = 1 and, forn ≥ 2, θ = χ0+ χ1. Further, letD be a set of integers.

Since the natural characterθ is a class function, then theD-codes inSn are the{i ∈ Nm |
θ(αi ) ∈ D}-cliques in the conjugacy scheme ofSn. Hence Theorems 1 and 4 yield

THEOREM 5 (THE LP BOUND FOR PERMUTATION CODES). Subject to the constraints

a0 = 1,ai ≥ 0 for i ∈ Nm, (15)

ai = 0 for i ∈ Nm such thatθ(αi ) ∈ Nm \ D, (16)

a0χk(α0)+ · · · + amχk(αm) ≥ 0 for k ∈ Nm, (17)

the sum a0+ · · · + am has the maximum value ML P(n, D) and M(n, D) ≤ ML P(n, D).
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A class functionϕ ∈ Cf(Sn) is nonnegativeif 〈ϕ, χi 〉n ≥ 0 for i = 0, . . . ,m. Call a
nonnegative class functionϕ ∈ Cf(Sn) a D-program of Sn if 〈ϕ, χ0〉n > 0 andϕ(αi ) ≤ 0 for
all i ∈ Nm satisfyingθ(αi ) ∈ D.

Identify a real valued mapF of {0,1, . . . ,m} with the class functionϕ ∈ Cf(Sn) defined by
ϕ(α) = F(i ) for α ∈ Ci . Then (12) and Theorems 2 and 4 yield

THEOREM 6 (THE DUAL LP BOUND FOR PERMUTATION CODES). If ϕ is a D-program of
Sn, then

ML P(n, D) ≤ ϕ(1)/〈ϕ, χ0〉n.
Also, ML P(n, D) = ϕ(1)/〈ϕ, χ0〉n for some D-programϕ of Sn.

REMARKS. The maximum valueML P(n, D) can be found by linear programming if the
character table ofSn is at disposal. For example, in [7, pp. 348–355] these tables are given for
n ≤ 10. Denote

Πn(D) =
∏
i∈D′

(n− i ),

whereD′ = D ∩ {0,1, . . . ,n − 2}. Kiyota [8] has shown that if a subgroupG of Sn is a
D-code inSn, then|G| dividesΠn(D) and so|G| ≤ Πn(D). The determination of setsD, for
which

M(n, D) ≤ Πn(D) (18)

holds, is an open problem (see [1, p. 36]). According to Theorem 3,

ML P(n, D)ML P(n, Dc) ≤ n! (19)

whereDc = Z \ D. SinceΠn(D)Πn(Dc) = n! then, by (19), the bound (18) always holds
for M(n, D) or for M(n, Dc).

EXAMPLE 1. Given an integerd with 2≤ d ≤ n, call a nonempty subsetC of Sn ad-code
in Sn if δ(α, β) ≥ d wheneverα andβ are distinct elements ofC. Denote byM(n,d) the
maximum cardinality of ad-code inSn. According to (1),M(n,d) = M(n, {0,1, . . . ,n−d}).

Let r ≤ n be a positive integer. Since, by (13),

θr =
r−1∏
k=0

(θ − kχ0)

is a transitive permutation character ofSn, thenθr is nonnegative and〈θr , χ0〉n = 1. We also
haveθr (α) = 0 for allα ∈ Sn such thatθ(α) ≤ r−1. Henceθn−d+1 is a{0, . . . ,n−d}-program
of Sn and Theorem 6 gives the bound of Blakeet al. [2]:

M(n,d) ≤ d(d + 1) . . .n. (20)

HenceM(n,d) satisfies (18) for all positive integersn andd with 2≤ d ≤ n.

EXAMPLE 2. The simplex algorithm yields that, forn ≤ 6, we haveML P(n, D) = Πn(D)
with the exception of the following 20 cases:
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n D ML P(n, D) Πn(D) ML P(n, Dc) Πn(Dc)

5 013 20 40 6 3
5 023 15 30 8 4
6 013 60 90 12 8
6 014 30 60 24 12
6 023 48 72 15 10
6 124 30 40 24 18
6 134 15 30 48 24
6 0124 120 240 6 3
6 0134 60 180 12 4
6 0234 48 144 15 5

where, as well as in Tables 1 and 2, the setD = {a1,a2, . . . ,ar } is given as a sequence
a1a2 . . .ar . Thus

ML P(n, D)ML P(n, Dc) = n!
for all n ≤ 6 and D ⊆ Z. For n ≤ 8, Tables 1 and 2 show that in the totality of 255
cases the boundM(n, D) ≤ Πn(D) holds at least in 178 cases. Also, forn ≤ 8 andD ⊆
{0,1, . . . ,n − 2}, we haveM(n, D) ≤ Πn(D) if |D| ≥ n/2 and(n, D) is none of the three
pairs(8,0124), (8,0456) and(8,1456).

In Tables 1 and 2 the valuesML P(n, D) were calculated solving the dual LP bound by
Mathematica subroutine LinearProgramming (see [11, p. 819]) which operates with exact
rational numbers. The results were tested by veryfying that the solution vectors were indeed
D-programs. The required character tables were taken from [7, pp. 350 and 351] and, in
addition to the manual checking, the copied data were tested by the orthogonality relations of
the characters.

EXAMPLE 3. Denote byχk−1 andCk−1 the characterχk and conjugacy classCk of Sn in
the tables [7, pp. 349–355]. Seven out of the 15 irreducible characters ofS7 are given in the
following table:

χ1 χ2 χ3 χ4 χ11 χ12 χ13

C0 6 14 15 14 14 14 6
C1 4 6 5 4 − 4 − 6 −4
C2 2 2 − 1 2 2 2 2
C3 0 2 − 3 0 0 − 2 0
C4 3 2 3 − 1 − 1 2 3
C5 1 0 − 1 1 − 1 0 −1
C6 −1 2 − 1 − 1 − 1 2 −1
C7 0 − 1 0 2 2 − 1 0
C8 2 0 1 − 2 2 0 −2
C9 0 0 − 1 0 0 0 0
C10 −1 0 1 1 − 1 0 1
C11 1 − 1 0 − 1 − 1 − 1 1
C12 −1 1 0 − 1 1 − 1 1
C13 0 − 1 0 0 0 1 0
C14 −1 0 1 0 0 0 −1
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TABLE 1.
The integer partM of ML P(7, D) and the values ofΠ = Π7(D).

D M Π D M Π D M Π D M Π

∅ 1 1 23 60 20 123 120 120 0234 93 420
0 7 7 24 15 15 124 108 90 0235 140 280
1 30 6 25 15 10 125 60 60 0245 63 210
2 15 5 34 26 12 134 72 72 0345 168 168
3 12 4 35 12 8 135 72 48 1234 360 360
4 8 3 45 9 6 145 54 36 1235 120 240
5 2 2 012 140 210 234 60 60 1245 108 180

01 42 42 013 205 168 235 60 40 1345 72 144
02 52 35 014 84 126 245 15 30 2345 120 120
03 46 28 015 84 84 345 32 24 01234 2520 2520
04 42 21 023 93 140 0123 543 840 01235 630 1680
05 14 14 024 63 105 0124 420 630 01245 420 1260
12 30 30 025 52 70 0125 172 420 01345 280 1008
13 72 24 034 84 84 0134 280 504 02345 168 840
14 36 18 035 46 56 0135 205 336 12345 720 720
15 48 12 045 42 42 0145 84 252 012345 5040 5040

TABLE 2.
The integer partM of ML P(8, D) and the values ofΠ = Π8(D).

D M Π D M Π D M Π D M Π

∅ 1 1 015 224 168 0123 926 1680 2356 180 180
0 8 8 016 112 112 0124 1489 1344 2456 104 144
1 42 7 023 192 240 0125 584 1008 3456 120 120
2 42 6 024 192 192 0126 403 672 01234 4135 6720
3 15 5 025 226 144 0134 625 1120 01235 2520 5040
4 13 4 026 224 96 0135 373 840 01236 1032 3360
5 8 3 034 160 160 0136 280 560 01245 1792 4032
6 2 2 035 120 120 0145 224 672 01246 1489 2688

01 56 56 036 112 80 0146 270 448 01256 660 2016
02 192 48 045 211 96 0156 287 336 01345 625 3360
03 100 40 046 96 64 0234 192 960 01346 695 2240
04 96 32 056 67 48 0235 330 720 01356 373 1680
05 64 24 123 147 210 0236 264 480 01456 395 1344
06 16 16 124 253 168 0245 432 576 02345 480 2880
12 42 42 125 177 126 0246 384 384 02346 384 1920
13 75 35 126 84 84 0256 226 288 02356 338 1440
14 108 28 134 175 140 0345 480 480 02456 478 1152
15 105 21 135 105 105 0346 226 320 03456 960 960
16 70 14 136 79 70 0356 120 240 12345 2520 2520
23 102 30 145 152 84 0456 261 192 12346 630 1680
24 104 24 146 112 56 1234 543 840 12356 420 1260
25 58 18 156 136 42 1235 420 630 12456 403 1008
26 64 12 234 138 120 1236 188 420 13456 192 840
34 60 20 235 135 90 1245 360 504 23456 720 720
35 15 15 236 180 60 1246 253 336 012345 20160 20160
36 15 10 245 104 72 1256 252 252 012346 5040 13440
45 38 12 246 104 48 1345 180 420 012356 2520 10080
46 13 8 256 64 36 1346 175 280 012456 1792 8064
56 9 6 345 96 60 1356 136 210 013456 960 6720

012 336 336 346 62 40 1456 190 168 023456 960 5760
013 280 280 356 15 30 2345 360 360 123456 5040 5040
014 224 224 456 43 24 2346 180 240 0123456 40320 40320



Upper bounds on permutation codes 109

where the(Ci , χ j )entry gives the valueχ j (αi )ofχ j in the conjugacy classCi andθ = χ0+χ1.
Henceθ has the inverse imagesθ−1(0) = C6∪C10∪C12∪C14, θ−1(1) = C3∪C7∪C9∪C13
andθ−1(2) = C5 ∪ C11.

For ϕ = 6χ0 + 21χ1 + 14χ2 + 18χ3 + χ4 + 7χ11+ 8χ12+ 3χ13, we haveϕ(1) = 840,
ϕ(α3) = −36, ϕ(α9) = −12 andϕ(αi ) = 0 (i = 6,10,12,14,7,13,5,11). Thusϕ is a
{0,1,2}-program ofS7 and M(7,5) ≤ 140. Similarly, solving the dual LP bound by linear
programming, one obtains the following improvements of (20):

n d M(n,d) ≤ d(d + 1) . . .n

7 4 543 840
7 5 140 210
8 4 4135 6720
8 5 926 1680
9 4 32989 60480
9 5 7128 15120
9 6 1962 3024

10 4 302400 604800
10 5 64800 151200
10 6 16941 30240
10 7 4699 5040

Hence the inequalityM(n,d) ≤ nM(n− 1,d) (2≤ d ≤ n− 1) (see [2]) yields the following
bound: forn ≥ 10 andd = 4,5,6,7, we have

M(n,d) ≤ Cd · d(d + 1) . . .n

whereC4 = 1/2, C5 = 3/7 ≤ 0.4286,C6 = 5647/10080≤ 0.5603 andC7 = 4699/5040≤
0.9324.

LEMMA 1. Denote D↑= {d + 1 | d ∈ D}. If ϕ is a D-program of Sn, then the induced
mappingϕ ↑ is a ({0} ∪ D ↑)-program of Sn+1, (ϕ ↑)(1) = (n + 1)ϕ(1) and the leading
character coefficient ofϕ ↑ equals〈ϕ, χ0〉n.

PROOF. We use the Frobenius numbering of the irreducible characters ofSn andSn+1. Since
ϕ is a D-program then

ϕ =
∑
p∈Pn

βpχ
p,

whereβp = 〈ϕ, χ p〉n ≥ 0 andβ(n) = 〈ϕ, χ0〉n > 0. By Schur’s branching law (14),

ϕ ↑=
∑

q∈Pn+1

(∑
p<q

βp

)
χq.

Henceϕ ↑ is nonnegative and the leading character coefficient ofϕ ↑ is∑
p<(n+1)

βp = β(n) = 〈ϕ, χ0〉n > 0.

Let θ ′ be the natural character ofSn+1. Supposeα ∈ Sn+1 \ {1} andθ ′(α) = d + 1 where
d ∈ D. If β ∈ Sn+1 andβαβ−1 ∈ Sn, thenn + 1 is a fixed point ofβαβ−1 and hence
θ(βαβ−1) = θ ′(βαβ−1) − 1 = θ ′(α) − 1 = d ∈ D. Consequently,(ϕ ↑)(α) ≤ 0. On
the other hand, if a permutationα ∈ Sn+1 has no fixed points then(ϕ ↑)(α) = 0, since the
conditionsβ ∈ Sn+1 andβαβ−1 ∈ Sn imply α(β−1(n + 1)) = β−1(n + 1). Thusϕ ↑ is a
({0} ∪ D ↑)-program ofSn+1 and the proof is complete. 2



110 H. Tarnanen

EXAMPLE 4. Use aD-programϕ of Sn satisfying ML P(n, D) = ϕ(1)/〈ϕ, χ0〉n. Then
Lemma 1 yields the inequality

ML P(n+ 1, {0} ∪ D ↑) ≤ (n+ 1)ML P(n, D).

Also, sinceΠn+1({0} ∪ D ↑) = (n+ 1)Πn(D), then

ML P(n+ 1, {0} ∪ D ↑) ≤ Πn+1({0} ∪ D ↑)
providedML P(n, D) ≤ Πn(D). For instance, Table 2 gives 80 subsetsD of the set{0,1, . . . ,7}
for which the inequalityML P(9, D) ≤ Π9(D) holds.

LEMMA 2. Denote D↓= {d − 1 | d ∈ D}. If ϕ is a D-program of Sn, where n≥ 2, then
ϕ ↓ is a (D ↓)-program of Sn−1 and the leading character coefficient ofϕ ↓ equals〈ϕ, θ〉n.

PROOF. Sinceϕ is a D-program then

ϕ =
∑
p∈Pn

βpχ
p,

whereβp = 〈ϕ, χ p〉n ≥ 0 andβ(n) = 〈ϕ, χ0〉n > 0. By (14),

ϕ ↓=
∑

q∈Pn−1

(∑
p>q

βp

)
χq.

Henceϕ ↓ is nonnegative and the leading character coefficient ofϕ ↓ is∑
p>(n−1)

βp = β(n) + β(n−1,1) = 〈ϕ, χ0〉n + 〈ϕ, χ1〉n = 〈ϕ, θ〉n > 0.

Let θ ′ be the natural character ofSn−1. Supposeα ∈ Sn−1 \ {1} andθ ′(α) = d − 1 where
d ∈ D. Sinceα(n) = n, thenθ(α) = θ ′(α) + 1 = d ∈ D and(ϕ ↓)(α) = ϕ(α) ≤ 0. Thus
ϕ ↓ is a(D ↓)-program ofSn−1. 2

LEMMA 3. ML P(n− 1, D) ≤ ML P(n, D ↑) for n ≥ 2.

PROOF. Let ϕ be a(D ↑)-program ofSn such thatML P(n, D ↑) = ϕ(1)/〈ϕ, χ0〉n. By
Lemma 2,ϕ ↓ is a D-program ofSn−1 and its leading character coefficient is〈ϕ, θ〉n =
〈ϕ, χ0〉n + 〈ϕ, χ1〉n ≥ 〈ϕ, χ0〉n. Consequently,

ML P(n− 1, D) ≤ (ϕ ↓)(1)/〈ϕ, θ〉n ≤ ϕ(1)/〈ϕ, χ0〉n = ML P(n, D ↑).
2

EXAMPLE 5. Supposen ≥ 2 andD ⊆ {0,1, . . . ,n− 3}. ThenΠn(D ↑) = Πn−1(D) and
henceML P(n, D ↑) ≥ Πn(D ↑) and ML P(n, (D ↑)c) ≤ Πn((D ↑)c) providedML P(n −
1, D) ≥ Πn−1(D). For instance, Table 2 gives 76 subsetsD of {0,1, . . . ,7} satisfying
ML P(9, D) ≤ Π9(D).

5. CHARACTERS ASSOCIATED WITH CHARLIER POLYNOMIALS

Letwk be the number of elements inSn having exactlyk fixed points (see [4]):

wk = |{α ∈ Sn | θ(α) = k}| = n!
k!

n−k∑
i=0

(−1)i

i ! (k = 0, . . . ,n).
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Note thatwn−1 = 0 and all the other numberswk (k = 0, . . . ,n, k 6= n − 1) are positive.
Equip the algebraR[x] of all real polynomials in the variablex with the symmetric bilinear
form

( f, g)n = 1

n!
n∑

k=0

wk f (k)g(k). (21)

Then (21) defines an inner product on then-dimensional vector spaceRn[x] of all real
polynomials of degreen − 1 or less in the variablex. Associate with each polynomial
f (x) = ar xr+· · ·+a1x+a0 (ai ∈ R) inR[x] the class functionf (θ) = ar θ

r+· · ·+a1θ+a0χ0
in Cf(Sn). Evidently, the mappingR[x] → Cf(Sn), f 7→ f (θ) is an algebra morphism and
f (θ)(α) = f (θ(α)) holds for all f ∈ R[x] andα ∈ Sn. Hence

〈 f (θ), g(θ)〉n = ( f, g)n ( f, g ∈ R[x]). (22)

In particular, the leading character coefficient off (θ) is

〈 f (θ), χ0〉n = ( f,1)n ( f ∈ R[x]).
Our aim is to upper boundM(n, D) by using polynomial functions ofθ associated with the
Charlier polynomials Fk = Fk(x) (k = 0,1,2, . . .) defined by

Fk(x) =
k∑

i=0

(−1)k−i
(

k

i

)
x(i ),

wherex(0) = 1 andx(i ) = x(x − 1) . . . (x − i + 1) for i ≥ 1. Evidently,Fk(x) is a monic
polynomial of degreek,

F0(x) = 1 and F1(x) = x − 1. (23)

We also have the three-term recurrence relation (cf. [5, p. 163])

Fk+1(x) = (x − k− 1)Fk(x)− kFk−1(x) (k = 1,2, . . .). (24)

Hence

F2(x) = x2− 3x + 1,

F3(x) = x3− 6x2+ 8x − 1,

F4(x) = x4− 10x3+ 29x2− 24x + 1,

F5(x) = x5− 15x4+ 75x3− 145x2+ 89x − 1.

LEMMA 4. θϕ = (ϕ ↓) ↑ for ϕ ∈ Cf(Sn).

PROOF. It is well-known (see [10, p. 20]) that(η ↑)ζ = (η(ζ ↓)) ↑ for all charactersη of
Sn−1 andζ of Sn. Sinceθ = χ ↑ whereχ is the unit character ofSn−1 then, for all characters
ζ of Sn, we haveθζ = (χ ↑)ζ = (χ(ζ ↓)) ↑= (ζ ↓) ↑. The assertion follows by the linearity
of the mappings↓ and↑. 2

Given a partitionp = (p1, . . . , pn) of n and an integerr ≥ n, denote bydp the degree
χ p(1) of χ p and by(r, p) the partition(r, p1, . . . , pn) of r + n.

THEOREM 7. For 0≤ k ≤ n/2, we have

Fk(θ) =
∑
p∈Pk

dpχ(n−k,p). (25)
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PROOF. Denote byξk the right-hand side of (25). According to (11),d(0) = d(1) = 1 and
hence, by (23),ξ0 = d(0)χ(n) = χ0 = F0(θ) andξ1 = d(1)χ(n−1,1) = χ1 = θ − χ0 = F1(θ).
By (24), it is sufficient to prove that

ξk+1 = (θ − k− 1)ξk − kξk−1 for 1≤ k ≤ (n− 2)/2. (26)

Suppose 1≤ k ≤ (n− 2)/2 and letp be a partition ofk. By (14) and Lemma 4,

θχ(n−k,p) =
(
χ(n−k−1,p) +

∑
q<p

χ(n−k,q)
)
↑

= χ(n−k,p) +
∑
q>p

χ(n−k−1,q) +
∑
q<p

χ(n−k+1,q) +
∑
q<p

∑
r>q

χ(n−k,r ).

Hence
θξk = ξk + A1+ A2+ A3

where

A1 =
∑
p∈Pk

dp
∑
q>p

χ(n−k−1,q) =
∑

q∈Pk+1

(∑
p<q

dp
)
χ(n−k−1,q),

A2 =
∑

q∈Pk−1

(∑
p>q

dp
)
χ(n−k+1,q)

and

A3 =
∑
r∈Pk

(∑
q<r

∑
p>q

dp
)
χ(n−k,r ).

Forq ∈ Pk+1, we have

dq = (χq ↓)(1) =
∑
p<q

χ p(1) =
∑
p<q

dp

and henceA1 = ξk+1. Forq ∈ Pk−1, we have

kdq = kχq(1) = (χq ↑)(1) =
∑
p>q

χ p(1) =
∑
p>q

dp

and henceA2 = kξk−1. Forr ∈ Pk, we have, by Lemma 4,

kdr = ((χ r ↓) ↑)(1) =
∑
q<r

∑
p>q

χ p(1) =
∑
q<r

∑
p>q

dp

and henceA3 = kξk. Consequently,

θξk = ξk + A1+ A2+ A3 = ξk+1+ (k+ 1)ξk + kξk−1,

the recurrence relation (26) holds and the proof is complete. 2

COROLLARY 1. For 0≤ r, s ≤ n/2, Fr (θ) is a character of Sn and

〈Fr (θ), Fs(θ)〉n = (Fr , Fs)n = r !δrs.
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PROOF. According to (22), (25) and (11),

(Fr , Fs)n = 〈Fr (θ), Fs(θ)〉n =
∑
p∈Pr

∑
q∈Ps

dpdq〈χ(n−r,p), χ(n−s,q)〉n

= δrs

∑
p∈Pr

(dp)2 = r !δrs.

Since〈Fr (θ), Fr (θ)〉n = r ! 6= 0, thenFr (θ) is nonzero. By (25), the character coefficients of
Fr (θ) are nonnegative integers and soFr (θ) is a character ofSn. 2

COROLLARY 2. Suppose D is a subset of{0,1, . . . ,n − 2} and the polynomial F(x) =
β0F0(x)+ · · · + βk Fk(x) (1≤ k ≤ n/2) satisfies the following two conditions:

β0, . . . , βk are nonnegative real numbers andβ0 > 0. (27)

F(i ) ≤ 0 for i ∈ D. (28)

Then ML P(n, D) ≤ F(n)/β0.

PROOF. By Theorem 7 and Corollary 1,F(θ) is nonnegative and〈F(θ), χ0〉n = (F, F0)n =
β0 > 0. Also if α ∈ Sn andθ(α) ∈ D, thenF(θ)(α) = F(θ(α)) ≤ 0 by (28). ThusF(θ) is a
D-program ofSn and Theorem 6 yields the boundML P(n, D) ≤ F(θ(1))/β0 = F(n)/β0. 2

EXAMPLE 6. SinceF0+ F2 = (x − 1)(x − 2), then

M(n, {1,2}) ≤ (n− 1)(n− 2) for n ≥ 4.

SinceF0+ 3F2+ F3 = (x + 1)(x − 1)(x − 3), then

M(n, {1,2,3}) ≤ (n+ 1)(n− 1)(n− 3) for n ≥ 6.

SinceF0+ F3 = x(x − 2)(x − 4), then

M(n, {0,2,3,4}) ≤ n(n− 2)(n− 4) for n ≥ 6.

Since 3F0+ 10F2+ 8F3+ 3F4 = (x − 1)(x − 2)(x − 4)(3x − 1), then

M(n, {1,2,3,4}) ≤ (n− 1)(n− 2)(n− 4)(n− 1/3) for n ≥ 6.

Since 3F0+ 4F1+ F4 = x(x − 1)(x − 4)(x − 5), then

M(n, {0,1,4,5}) ≤ n(n− 1)(n− 4)(n− 5)/3 for n ≥ 8.

Since 3F0+ 5F1+ 5F4+ 3F5 = x(x − 1)(x − 2)(x − 4)(3x − 19), then

M(n, {0,1,2,4,5,6}) ≤ n(n− 1)(n− 2)(n− 4)(n− 19/3) for n ≥ 10.

Since 11F0+ 3F2+ 5F3+ 6F4 = (x − 1)(x − 3)(x − 5)(6x − 1), then

M(n, {1,3,4,5}) ≤ (n− 1)(n− 3)(n− 5)(6n− 1)/11 for n ≥ 8.

SinceF0+ F1+ F3+ F4 = x(x − 1)(x − 3)(x − 5), then

M(n, {0,1,3,4,5}) ≤ n(n− 1)(n− 3)(n− 5) for n ≥ 8.

Since 6F0+ F1+ 6F3+ 2F4+ F5 = x(x − 2)(x − 3)2(x − 5), then

M(n, {0,2,3,4,5}) ≤ n(n− 2)(n− 3)2(n− 5)/6 for n ≥ 10.

Since 11F0+ 50F2+ 65F3+ 45F4+ 11F5 = (x − 1)(x − 2)(x − 3)(x − 5)(11x + 1), then

M(n, {1,2,3,4,5}) ≤ (n− 1)(n− 2)(n− 3)(n− 5)(n+ 1/11) for n ≥ 10.

If D is a fixed set of nonnegative integers, thenΠn(D) ∼ n|D| asn→∞. Examples 1 and
6 give 24 subsetsD of {0,1,2,3,4,5} satisfyingM(n, D) . n|D| asn→∞.
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