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Two Constructions of Permutation Arrays

Fang-Wei Fu and Torleiv Kløve, Fellow, IEEE

Abstract—In this correspondence, two new constructions of permutation
arrays are given. A number of examples to illustrate the constructions are
also provided.

Index Terms—Bounds, code constructions, permutation arrays.

I. INTRODUCTION

LetSn denote the set of alln! permutations ofZn=f0; 1; . . . ; n�1g.
An (n; d) permutation array (PA) is a subset of Sn with the property
that the Hamming distance between any two distinct permutations in
the array is at least d. An (n; d) PA of size � is called an (n; �; d) PA.

PAs were somewhat studied in the 1970s, some important papers
from that period are [2], [5], and [8]. A recent application by Vinck
[14] of PAs to a coding/modulation scheme for communication over
power lines has created renewed interest in PAs, see [3], [4], [6], [7],
[10], [12], [15]–[17].

In this correspondence, we give a couple of new general construc-
tions of PAs. Let P (n; d) be the maximal size of an (n; d) PA. The
constructions give improved lower bounds on P (n; d) in some cases.

We say that a PA � is balanced if for each position, each element of
Zn appears the same number of times in that position of the permuta-
tions of �. In [6], we presented a construction of PAs using balanced
PAs as building blocks. Under suitable conditions, the PAs constructed
in this correspondence are balanced.

II. THE MAIN RESULTS

We use Zq to denote the set f0; 1; . . . ; q � 1g of integers, not the
ring of integers modulo q. However, on a number of occasions, we do
modular addition. For k, l 2 Zq , k �q l denotes the unique integer in
Zq congruent to k + l modulo q.
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Ordinary codes will be building blocks in our construction. A code
C of length n over Zq is a subset of Zn

q . The minimum and maximum
Hamming distances between distinct codewords of C are denoted by
dmin(C) and dmax(C), respectively. A code of size M and minimum
distance at least d is called an (n;M; d; q) code, and a code of size
M , minimum distance at least d1 and maximum distance at most d2 is
called an (n;M; d1; d2; q) code.

The maximal size M for which an (n;M; d; q) code exists
is denoted by Aq(n; d) and the maximal size M for which an
(n;M; d1; d2; q) code exists is denoted by Aq(n; d1; d2). Clearly,
Aq(n; d; n) = Aq(n; d). Tables of bounds on Aq(n; d) are found in
[1, pp. 463–498] for q = 2 and in [1, pp. 295–461] for general q (for
linear codes). Bounds on A3(n; d) are given in [13].

We say that C is balanced if for each position, each element of Zq

appears the same number of times in that position of the codewords of
C . In particular, a linear code over a finite field is balanced if there is
no position where all the codewords are zero.

Codes are often defined over a finite field or a finite ring of size q,
say. By renaming of the elements, we get a corresponding code overZq

(algebraic properties may not be carried over, but this is not important
in our context). In our examples, we therefore assume that the codes
considered (e.g., Hamming codes) have elements in Zq .

Definition 1: For ccc = [ci]0�i<n 2 Zn
q , ��� = [�i]0�i<n 2 Sn, and

k 2 Zq , let �(ccc; ���; k) = [�l]0�l<qn where

�jn+i = (ci �q j)�qn k �qn �iq

for 0 � i < n and 0 � j < q.

Example 1: Let ccc = 101 and ��� = 120. For q = 2 we get

�(ccc; ���; 0) = 341250 and �(ccc; ���; 1) = 452301:

For q = 3 we get
k 0 1 2

�(ccc; ���; k) 461572380 572683401 683704512
:

Remark: If (ci �q j) + k < q or �i < n � 1, then

(ci �q j)�qn k �qn �iq = (ci �q j) + k + �iq:

If (ci �q j) + k > q and �i = n � 1, then

(ci �q j)�qn k �qn �iq = (ci �q j) + k � q:

Lemma 1: We have �(ccc; ���; k) 2 Sqn.
Proof: Since �(ccc; ���; k) has qn elements and they are all in Zqn

by definition, it remains to show that they are distinct. Hence, assume
that

(ci �q j)�qn k �qn �iq = ci �q j
0 �qn k �qn �i q:

Then

(ci �q j) + �iq = ci �q j
0 + �i q

and so

�i = �i (1)

and

ci �q j = ci �q j
0

: (2)

Since ��� is a permutation, (1) implies that i = i0. Combined with (2)
this implies that j = j0. QED

Theorem 1: Let C be an (n;M; d; q) code and � be an (n; �; d)
PA where n � 2. Let

d
� = minfqd; qn� (q � 1)dmax(C)g � minfqd; ng: (3)
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Then

i) �(C;�)
def
= f�(ccc; ���; 0) j ccc 2 C; � 2 �g is a (qn;M�; qd) PA;

ii) ��(C;�)
def
= f�(ccc; ���; k) j ccc 2 C; � 2 �; k 2 Zqg is a

(qn;M�q; d�) PA.

Moreover, if C and � are balanced, then �(C;�) and ��(C;�) are
both balanced.

Proof: Let �(ccc; ���; k) and �(ccc0; ���0; k0) be permutations. We will
show that if ccc 6= ccc0,��� 6= ���0, or k 6= k0, then�(ccc; ���; k) 6= �(ccc0; ���0; k0).
This implies the statements about the sizes of the PAs in i) and ii). Fur-
ther, we will find lower bounds on dH(�(ccc; ���; k);�(ccc0; ���0; k0)) when
�(ccc; ���; k) 6= �(ccc0; ���0; k0) to prove the lower bounds on the minimum
distances of the PAs in i) and ii).

We start by studying when pairs of corresponding elements in the
two permutations are equal. Hence, suppose

(ci �q j)�qn k �qn �iq = c0i �q j �qn k
0 �qn �

0

iq: (4)

First consider the case k = k0. Then (4) implies (ci �q j) + �iq =
(c0i�q j)+�0

iq and so �i = �0

i and ci = c0i (independent of j). Hence,

dH(�(ccc; ���; k);�(ccc
0; ���0; k)) = qjfi j ci 6= c0i or �i 6= �0

igj:

This shows that

if ccc 6= ccc0 or ��� 6= ���0; then �(ccc; ���; k) 6= �(ccc0; ���0; k):

Further, if ccc 6= ccc0, then

jfi j ci 6= c0i or �i 6= �0

igj � jfi j ci 6= c0igj � d

and similarly if ��� 6= ���0. Hence,

dH(�(ccc; ���; k);�(ccc
0; ���0; k)) � qd: (5)

In particular, this proves i).
To complete the proof, consider k 6= k0. Taking (4) modulo q we get

ci �q k = c0i �q k
0

and so ci 6= c0i. Assume, without loss of generality, that ci < c0i. Let

j� = q � 1� c0i:

Then 0 � j� � q � 2. Let

s(j) = f(ci �q j) + k + �iqg � f(c0i �q j) + k0 + �0iqg:

Since

ci �q j
� = q � 1� (c0i � ci); c0i �q j

� = q � 1

ci �q (j
� + 1) = q � (c0i � ci); c0i �q (j

� + 1) = 0

we see that s(j� + 1)� s(j�) = q. Hence,

s(j�) 6� s(j� + 1) (mod qn)

that is, (4) is satisfied for at most one of j = j� and j = j� + 1.
In particular, this shows that

if k 6= k0; then �(ccc; ���; k) 6= �(ccc0; ���0; k):

From this analysis, we see that when k 6= k0, then (4) can be satisfied
only if ci 6= c0i, which is the case for at most dmax(C) values of i, and
for each of these i for at most q � 1 values of j; in total, for at most
(q � 1)dmax(C) elements. Hence,

dH(�(ccc; ���; k);�(ccc
0; ���0; k0)) � qn� (q � 1)dmax(C) � n: (6)

Combining (5) and (6), we get (3).
Suppose C and � are balanced. Consider a fixed position jq + i

of the codewords of �(C;�). Then the element in this position in
�(ccc; ���; 0) is (ci �q j) + �iq. When ccc runs through the code C , then
ci and hence (ci �q j) runs through Zq M=q times. Similarly, �i runs
through Zn �=n times (independently). Hence, (ci �q j) + �iq runs
through Zqn M�=(qn) times, that is, �(C;�) is balanced. Similarly,
��(C;�) is balanced. QED

From Theorem 1, we immediately get the following corollary.

Corollary 1: For all n, q, d, and d0 we have

i) P (qn; qd) � Aq(n; d)P (n; d);
ii) if qd � qn � (q � 1)d0,

then P (qn; qd) � qAq(n; d; d
0)P (n; d);

iii) in particular, if qd � n,
then P (qn; qd) � qAq(n; d)P (n; d);

iv) if qd > qn � (q � 1)d0,
then P (qn; qn� (q � 1)d0) � qAq(n; d; d

0)P (n; d).
Since qd � n implies q(qd) � qn, we can use Corollary 1 part iii)

repeatedly to get the following result.

Corollary 2: If qd � n, then

P (qsn; qsd) � qsP (n; d)

s�1

i=0

Aq(q
in; qid) (7)

for all s � 0.

III. EXAMPLES

Example 2: LetC = f000; 101; 011;110g, the binary even-weight
code, and let � = S3. C is a (3; 4; 2) code and � is a (3; 6; 2) PA.

By Theorem 1 part i), �(C;�) is a (6; 24; 4) PA. The permutations
in �(C;�) are the following:

024135; 042153; 204315; 240351; 402513; 420531;

125034; 143052; 305214; 341250; 503412; 521430;

035124; 053142; 215304; 251340; 413502; 431520;

134025; 152043; 314205; 350241; 512403; 530421:

It is easy to check that the distances between these permutations all
are 4 or 6, that is, this PA is bidistant. Bidistant permutation arrays were
studied in [11]. It is an open question if 24 is the maximal size of a PA
of length 6 and distances 4 and 6.

Since dmax(C) = 2, 2n � dmax(C) = 4. By Theorem 1 part ii),
��(C;�) is a (6; 48; 4) PA. The permutations in ��(C;�) n�(C;�)
are the following:

135240; 153204; 315420; 351402; 513024; 531042;

230145; 254103; 410325; 452301; 014523; 032541;

140235; 104253; 320415; 302451; 524013; 542031;

245130; 203154; 425310; 401352; 023514; 041532:

Since both C and � are balanced, �(C;�) and ��(C;�) are both
balanced.

Example 3: Example 2 can be generalized. Let q � 2, n � 2,
� = Sn, and let C be the q-ary (n; qn�1; 2; q) code consisting of all
(c0; c1; . . . ; cn�1) 2 Znq such that

n�1

i=0

ci � 0 (mod q):

By Theorem 1, �(C;�) is a (qn; qn�1n!; 2q) PA, and ��(C;�) is a
(qn; qnn!; 2q) PA for n � 2q. In particular

P (nq; 2q) � qnn! for n � 2q:

Both �(C;�) and ��(C;�) are balanced.

Example 4: Let q be a prime power and n = (qm�1)=(q�1). Let
C be the (n; qn�m; 3; q) Hamming code. It is known that P (n; 3) =
n!=2 (see [8, Theorem 1]) and an (n; n!=2; 3) PA is the alternating
group, let this be �. By Theorem 1, �(C;�) is a (qn; qn�mn!=2; 3q)
PA, and ��(C;�) is a (qn; qn�m+1n!=2; 3q) PA for n � 3q. In par-
ticular

P (nq; 3q) � qn�m+1n!=2; for n =
qm � 1

q � 1
� 3q:

Both �(C;�) and ��(C;�) are balanced.
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Example 5: As a simple example of Corollary 1 part i), we consider
n = 12 and d = 5. Chu et al. [3] showed that P (12; 5) � 3 � 243760.
Since A3(12; 5) � 26 (see, e.g., [13]), we get

P (36; 15) � 37 � 243760:

Further, Greferath and Schmidt [9] showed thatA3(36; 15) � 312, and
hence we also get

P (108; 45) � 319 � 243760:

We now consider some special cases of Corollary 2.

Example 6: If p is a prime and j � 1, then there exists a gener-

alized first-order Reed–Muller pj ; p
( )

; pj�1; p code (see [1,
p. 1300]). In particular, for i� 0 we have

Ap(p
i+2; pi+1) � p : (8)

Hence, letting q = p, n = p2, d = p, and s = m� 2 in (7), we get

P (pm; pm�1) � p
m�2+

P (p2; p): (9)

Example 7: In general, we do not know the value ofP (p2; p). How-
ever, P (4; 2) = 24 and S4 is a (4; 24; 2) PA. Hence, for m � 2, (9)
gives

P (2m; 2m�1) � 24

m+1

i=4

2i = 3 � 2 : (10)

Moreover, since both the first-order Reed–Muller code and S4 are bal-
anced, all the (2m; 3 �2 ; 2m�1) PAs obtained are balanced.

To illustrate the construction of these PAs, let Cj be the
(2j ; 2j+1; 2j�1) first-order Reed–Muller code and �m be the
(2m; 2m�1) PA constructed. Then

�2 =S4

�3 =��(C2;�2) = ��(C2; S4)

�4 =��(C3;�3) = �� (C3;�
�(C2; S4))

�5 =��(C4;�4) = �� (C4;�
�(C3;�

�(C2; S4)))

etc.
Wadayama and Vinck (see [17, Corollary 1]) presented a multilevel

construction for permutation arrays. Using the first-order Reed–Muller
codes in the multilevel construction, they obtained a (2m; 2m�1) PA of
size

12

m+1

i=4

(2i � 2):

For m = 3, 4, and 5, this gives (8; 168;4); (16;5040; 8); and
(32; 312480;16) PAs, respectively. We note that (10) gives substantial
improvements over these results for all m. For example, for m = 3,
4, and 5 we get (8; 384; 4), (16; 12288;8), and (32; 786432;16) PAs,
respectively. We note that Chu et al. [3] recently found a (8; 2688;4)
PA by computer search.

Example 8: As noted in Example 4, P (n; 3) = n!=2 for all n, and
so

P (9; 3) = 9!=2 = 2240 � 34:

Hence, (9) gives

P (3m; 3m�1) � 2240 � 3(m�1)(m +4m+12)=6: (11)

Again, all the PAs obtained are balanced. The bound (11) is nice
because it is explicit. However, since the proof of (9) was based on the
bound (8) which usually can be improved when p > 2, the bound (11)
can also be improved. For example, using the bounds on A3(3

j ; 3j�1)
implied by the best known linear codes (see the tables in [1, pp.
371–418]) we get the following bounds:

m 2 3 4 5 6

P (3m; 3m�1)=2240� 34 311 325 349 3106
:
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