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Abstract—Permutation codes have recently garnered substan-
tial research interest due to their potential in various applications,
including cloud storage systems, genome resequencing, and flash
memories. In this paper, we study the theoretical bounds and
constructions of permutation codes in the generalized Cayley
metric. The generalized Cayley metric captures the number
of generalized transposition errors in a permutation, and sub-
sumes previously studied error types, including transpositions
and translocations, without imposing restrictions on the lengths
and positions of the translocated segments. Based on the so-
called breakpoint analysis method proposed by Chee and Vu,
we first present a coding framework that leads to order-optimal
constructions, thus improving upon the existing constructions
that are not order-optimal. We then use this framework to
also develop an order-optimal coding scheme that is additionally
explicit and systematic.

Index Terms—Permutation codes, systematic permutation
codes, generalized Cayley distance, block permutation distance,
order-optimality.

I. INTRODUCTION

G
ENERALIZED transposition errors are encountered in

various applications, including cloud storage systems,

genome resequencing, and flash memories. Cloud storage

applications such as Dropbox, OneDrive, iTunes, Google

play, etc., are becoming increasingly popular, since they help

manage and synchronize data stored across different devices

[2]. When items to be synchronized across are ordered, e.g.,

in a play list, changes on one device can be viewed as

transpositions in the permutation on the other device. In

DNA resequencing, released genomes consist of collections

of unassembled contigs (a contig is an ordered list of genes

in the corresponding genome [3]), whose organizations evolve

over time by undergoing rearrangement operations. Gene order

in a chromosome is subject to rearrangements including re-

versals, transpositions, translocations, block-interchanges, etc.

[3], [4]. Generalized transpositions are also encountered in
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flash memories that utilize rank modulation, a representation

in which cells store relative ranks of their charge levels as a

permutation. Charge leakage across cells can then be viewed

as a sequence of transpositions in the stored permutation.

Errors encountered in the applications described above can

be appropriately modeled by the generalized Cayley metric

for permutation codes, introduced by Chee and Vu, that

captures the number of generalized transpositions between two

permutations [5].

Permutation codes in the Kendall-τ metric and the Ulam

metric, along with codes in the Levenshtein metric have

been recently actively studied, in [6]–[8], [9]–[11], and [12],

[13], respectively. Generalized transposition errors subsume

transpositions and translocations that the Kendall-τ metric

and Ulam metric capture, and in particular no restrictions

are imposed on the positions and lengths of the translocated

segments as in these two metrics. Codes in the generalized

Cayley metric were first studied in [5] using the breakpoint

analysis, wherein a coding scheme is constructed based on

permutation codes, previously introduced in [10], in the Ulam

metric. Let N be the length of the codewords, and t be

the maximum number of errors in the generalized Cayley

metric. While the coding scheme proposed in [5] is explicitly

constructive and implementable, the interleaving technique

used inevitably incurs a noticeable redundancy of Θ(N),
without even considering the number of errors that the code is

able to correct. As we show later, the best possible redundancy

of a length-N code that corrects t generalized transposition

errors is Θ(t logN). When t is o( N
logN ), the gap between

the redundancy of the existing codes based on interleaving

and the optimal redundancy increases with N , thus motivating

the need to introduce other techniques that are not based on

interleaving. We say a length-N code that corrects t general-

ized transposition errors is order-optimal if the redundancy is

Θ(t logN).
In order to obtain codes in the generalized Cayley metric

that are order-optimal, we present a coding method that is

not based on interleaving. The main idea of our coding

scheme is to map each permutation of {1, 2, · · · , N} to a

unique characteristic set in the Galois field Fq , where q is

a prime number such that N2 − N < q < 2N2 − 2N
and N is the codelength. We prove that the knowledge of

the boundaries of the unaltered segments is sufficient for

recovering the permutation from its modified version, obtained

through generalized transpositions. We exploit the fact that the

symmetric difference of the characteristic sets of two distinct

permutations corresponds to these boundaries. Given that the
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number of such boundaries is linearly upper bounded by the

number of generalized transpositions, it is sufficient to find

permutations with corresponding characteristic sets on Fq that

have large enough set differences to ensure the desired error

correction property. Our proposed method provides a sufficient

condition for ensuring the lower bound on the cardinalities of

these set differences, which in turn ensures a large enough

minimum distance of the resulting code, while the code is

order-optimal. Using this approach, we further develop a

systematic scheme that is also order-optimal.

The rest of this paper is organized as follows. In Section II,

we introduce the basic notation and properties for the general-

ized Cayley metric and the so-called block permutation metric,

which is introduced for metric embedding. In Section III,

we define the notion of error-correcting codes in these two

metrics and derive useful upper and lower bounds on their

optimal rates. We prove the optimal rate to be 1−Θ
(

t
N

)

, and

use these results to guide the construction of order-optimal

codes. In Section IV, we present a method for constructing

permutation codes in the generalized Cayley metric. We assign

to each permutation of length N a syndrome with elements

chosen from a Galois field Fq , where q is a prime number

such that N2 − N < q < 2(N2 − N). We prove that the

permutations with the same syndrome constitute a codebook,

and we prove that the largest one is order-optimal. Based on

this method, we then develop a construction for order-optimal

systematic permutation codes in the generalized Cayley metric

in Section V. In Section VI, we prove that the rates of

our proposed codes are higher than those of existing codes

based on interleaving, namely, our coding scheme is more

rate efficient when N is sufficiently large and t = o
(

N
logN

)

.

Lastly, we conclude and summarize our main contributions in

Section VII.

II. MEASURE OF DISTANCE

A. Notation

In this paper, we denote by [N ] the set {1, 2, · · · , N}. We

let SN represent the set of all permutations on [N ], where

each permutation σ : [N ] → [N ] is a bijection between

[N ] and itself. The symbol ◦ denotes the composition of

functions. Specifically, σ ◦ π denotes the composition of

two permutations σ, π ∈ SN , i.e., (σ ◦ π) (i) = σ (π (i)),
∀ i ∈ [N ]. We assign a vector (σ(1), σ(2), · · · , σ(N)) to each

permutation1 σ ∈ SN . Under this notation, we call e = (1,
2, · · · , N) the identity permutation. Additionally, σ−1 is the

inverse permutation of σ. The subsequence of σ from position

i to j, i ≤ j, is written as σ [i; j] , (σ(i), σ(i+ 1), · · · , σ(j)).
The symbol ∆ refers to the symmetric difference of two sets.

Let GCD(·) and LCM(·) be the greatest common divisor

and the least common multiple, respectively. The symbol ≡
denotes ‘congruent modulo’.

B. Generalized Cayley Distance

A generalized transposition φ (i1, j1, i2, j2) ∈ SN , where

i1 ≤ j1 < i2 ≤ j2 ∈ [N ], refers to a permutation that is

1We note that this is different from the cycle notation typically used in
algebra.

obtained from swapping two segments, e [i1, j1] and e [i2, j2],
of the identity permutation [5],

φ (i1, j1, i2, j2) , (1, · · · , i1 − 1, i2, · · · , j2,
j1 + 1, · · · , i2 − 1, i1, · · · , j1, j2 + 1, · · · , N) .

(1)

Denote the set of all permutations that represent one gen-

eralized transposition on any permutation of length N by

TN . For a given π ∈ SN and φ (i1, j1, i2, j2) ∈ TN , the

permutation obtained from swapping the segments π [i1; j1]
and π [i2; j2] is exactly π ◦ φ, i.e., the permutation,

(π(1), · · · , π(i1 − 1), π(i2), · · · , π(j2), π(j1 + 1),

· · · , π(i2 − 1), π(i1), · · · , π(j1), π(j2 + 1), · · · , π(N)) .
(2)

Example 1. Let π = (3, 5, 6, 7, 9, 8, 1, 2, 10, 4) ∈ S10. Let

the underlines mark the subsequences that are swapped by

φ(2, 5, 7, 8) =
(

1, 7, 8, 6, 2, 3, 4, 5, 9, 10
)

. Then, for π =
(

3, 5, 6, 7, 9, 8, 1, 2, 10, 4
)

, we have:

π ◦ (φ(2, 5, 7, 8)) =
(

3, 1, 2, 8, 5, 6, 7, 9, 10, 4
)

.

Definition 1. (Generalized Cayley Distance, cf. [5]) The

generalized Cayley distance dG(π1, π2) is defined as the

minimum number of generalized transpositions that are needed

to obtain the permutation π2 from π1, i.e.,

dG(π1, π2) , min
d

{∃ φ1, φ2, · · · , φd ∈ TN , s.t.,

π2 = π1 ◦ φ1 ◦ φ2 · · · ◦ φd}.
(3)

Remark 1. (cf. [5]). For all π1, π2, π3 ∈ SN , the generalized

Cayley distance dG satisfies the following properties:

1) (Symmetry) dG(π2, π1) = dG(π1, π2).
2) (Left-invariance) dG(π3 ◦ π1, π3 ◦ π2) = dG(π1, π2).
3) (Triangle Inequality) dG(π1, π3) ≤ dG(π1, π2) + dG(π2,

π3).

Notice that the generalized Cayley distance dG between

two permutations is hard to compute, which makes it difficult

to construct codes in the generalized Cayley metric. The

common method to address the difficulty of specifying the

distances between permutations is metric embedding, where

one finds another metric that is computable and is of the

same order of magnitude as the original metric. We therefore

seek to construct codes under the new metric, the so-called

block permutation distance to be introduced next, and use this

construction to specify codes under dG.

C. Block Permutation Distance

We say a permutation π ∈ SN is minimal2 if and only if

no consecutive elements in π are also consecutive elements in

the identity permutation e, i.e.,

∀ 1 ≤ i < N, π(i+ 1) 6= π(i) + 1. (4)

The set of all minimal permutations of length N is denoted

by DN . Next, we define the block permutation distance as

follows.

2We note that this is different from the usual notion of minimal permutation
specified in group theory.
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Definition 2. The block permutation distance dB (π1, π2)
between two permutations π1, π2 ∈ SN is equal to d if

π1 = (ψ1, ψ2, · · · , ψd+1) ,

π2 =
(

ψσ(1), ψσ(2), · · · , ψσ(d+1)

)

,
(5)

where σ ∈ Dd+1, ψk = π1 [ik−1 + 1 : ik] for some 0 = i0 <
i1 · · · < id < id+1 = N , and 1 ≤ k ≤ d+ 1.

Note that the block permutation distance between permuta-

tions π1 and π2 is d if and only if (d + 1) is the minimum

number of blocks the permutation π1 needs to be divided

into in order to obtain π2 through a block-level permutation.

Here by block-level permutation we refer to partitioning the

original permutation π1 into multiple blocks and permuting

these blocks.

Example 2. Let π1 = (3, 5, 6, 7, 9, 8, 1, 2, 10, 4), π2 =
(3, 1, 2, 8, 5, 6, 7, 9, 10, 4). Define ψi, 1 ≤ i ≤ 4, and σ as

follows,

ψ1 = (3), ψ2 = (5, 6, 7, 9), ψ3 = (8), ψ4 = (1, 2),

ψ5 = (10, 4), σ = (1, 4, 3, 2, 5).

Then,

π1 = (ψ1, ψ2, ψ3, ψ4, ψ5) ,

π2 =
(

ψσ(1), ψσ(2), ψσ(3), ψσ(4), ψσ(5)

)

,
(6)

and thus, dB(π1, π2) = 4, since σ is minimal. This example

is in accordance with Definition 2.

Lemma 1. The block permutation distance dB also satisfies

the properties of symmetry and left-invariance, which are

defined in Remark 1.

Proof: We suppose π1, π2 ∈ SN such that dB(π1,
π2) = d. Then, there exist σ ∈ Sd+1, and ψ1, ψ2,
· · · , ψd+1 such that π1 = (ψ1, ψ2, · · · , ψd+1) and π2 =
(

ψσ(1), ψσ(2), · · · , ψσ(d+1)

)

.

To prove the symmetry property, we define ψ′
i = ψσ(i) for

1 ≤ i ≤ d+ 1, and σ′ = σ−1. Then, σ′ ∈ Dd+1, and

π2 =
(

ψ′
1, ψ

′
2, · · · , ψ′

d+1

)

,

π1 =
(

ψ′
σ′(1), ψ

′
σ′(2), · · · , ψ′

σ′(d+1)

)

,

thus, dB(π2, π1) = d = dB(π1, π2).
To prove the left-invariance property, suppose the length

of ψi is li and let ψi = (ψi(1), ψi(2), · · · , ψi(li)) for all

1 ≤ i ≤ d + 1. For a given π3 ∈ SN , we define ψ̃i =
(π3 (ψi(1)) , π3 (ψi(2)) , · · · , π3 (ψi(li))), for 1 ≤ i ≤ d + 1.

Then,

π3 ◦ π1 =
(

ψ̃1, ψ̃2, · · · , ψ̃d+1

)

,

π3 ◦ π2 =
(

ψ̃σ(1), ψ̃σ(2), · · · , ψ̃σ(d+1)

)

.

Therefore, dB(π3 ◦ π1, π3 ◦ π2) = d = dB(π1, π2).
Note that Definition 2 is an implicit representation of dB .

Next, we seek to characterize dB explicitly.

Definition 3. The characteristic set A(π) for any π ∈ SN is

defined as the set of all consecutive pairs in π, i.e.,

A(π) , {(π(i), π(i+ 1)) |1 ≤ i < N}. (7)

Recall that e refers to the identity permutation.

Definition 4. The block permutation weight wB (π) is defined

as the number of consecutive pairs in π that do not belong to

A(e) (wB is exactly the number of so-called breakpoints in

[5]), i.e.,

wB (π) , |A(π) \A(e)|. (8)

Lemma 2 and Remark 2 state explicit representations of the

block permutation distance dB by the characteristic set and

the block permutation weight, respectively, and will be used

later in the paper to establish our main result.

Lemma 2. For all π1, π2 ∈ SN ,

dB(π1, π2) = |A(π2) \A(π1)| = |A(π1) \A(π2)|. (9)

Proof: The proof is in Appendix A.

Remark 2. From Lemma 2 and Definition 4, it is obvious that

wB (π) = dB(e, π) = dB(π, e). (10)

For all π1, π2 ∈ SN , it follows immediately from the left-

invariance property of dB and (8) that

dB (π1, π2) = wB

(

π−1
1

◦ π2
)

. (11)

In Example 3, we show how to compute the block permu-

tation distance of two permutations from their characteristic

sets, as it is indicated in Lemma 2.

Example 3. For π1, π2 specified in Example 2,

A(π1) = {(3, 5), (5, 6), (6, 7), (7, 9), (9, 8),
(8, 1), (1, 2), (2, 10), (10, 4)},

A(π2) = {(3, 1), (1, 2), (2, 8), (8, 5), (5, 6),
(6, 7), (7, 9), (9, 10), (10, 4)}.

Therefore,

|A(π1) \A(π2)| =|{(3, 5), (9, 8), (8, 1), (2, 10)}|
=4 = dB(π1, π2).

This example is in accordance with Lemma 2.

D. Metric Embedding

The generalized Cayley distance is difficult to compute,

whereas the block permutation distance can be computed

efficiently. Therefore, it is easier to check whether two dis-

tinct candidate codewords in a codebook meet the minimum

requirement on the block permutation distance, than it is to

check whether they meet the minimum requirement on the

generalized Cayley distance. In light of this observation, in

the next section, we apply metric embedding to transform the

problem of code design in dG into that in dB , which is easier

to deal with, using the following results.

Lemma 3. For all π1, π2 ∈ SN , the following inequality holds,

wB (π1 ◦ π2) ≤ wB (π1) + wB (π2) . (12)

Proof: The proof is in Appendix B.
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Remark 3. It follows immediately from equation (11) and

Lemma 3 that the block permutation distance satisfies the

triangle inequality, i.e., ∀ π1, π2, π3 ∈ SN ,

dB(π1, π3) ≤ dB(π1, π2) + dB(π2, π3). (13)

From Lemma 3 and the definitions of the generalized Cayley

metric and the block permutation metric, we observe the

following relation between dB and dG. This result is used

later in Section IV.

Lemma 4. For all π1, π2 ∈ SN , the following inequality holds,

dG (π1, π2) ≤ dB (π1, π2) ≤ 4dG (π1, π2) . (14)

Proof:

To prove the upper bound, we consider two arbitrary per-

mutations π1, π2 ∈ SN , and let k = dG(π1, π2). We know

from definitions of a generalized transposition and the block

permutation weight that for any generalized transposition

φ ∈ TN (recall that TN is defined at the beginning of

Section II-B as the set of all permutations that represent a

generalized transposition in permutations of length N ), the

following inequality holds,

wB (φ) ≤ 4. (15)

From the definition of the generalized Cayley metric and

dG(π1, π2) = k, it follows that for some φ1, φ2, · · · , φk ∈ TN ,

π2 = π1 ◦ φ1 ◦ φ2 · · · ◦ φk.
Then, from Lemma 3 and (15),

dB (π1, π2) =wB

(

π−1
1

◦ π2
)

=wB (φ1 ◦ φ2 ◦ · · · ◦ φk)

≤
k
∑

i=1

wB (φi)

≤4k = 4dG (π1, π2) .

The upper bound is proved.

The lower bound is trivially attained when π1 = π2. When

π1 and π2 are distinct, it follows that dB(π1, π2) = d for

some positive integer d. Then, according to the definition

of the block permutation distance, there exists a minimal

permutation σ (minimal permutation is defined in Section II-C

as a permutation where no consecutive elements in σ are

also consecutive elements in the identity permutation) and a

partition {ψi}d+1
i=1 of π1 such that, π1 = (ψ1, ψ2, · · · , ψd+1),

and π2 =
(

ψσ(1), ψσ(2), · · · , ψσ(d+1)

)

.

Next, suppose l0 is the smallest index l such that σ(l) 6= l,
1 ≤ l ≤ d + 1 (the assumption that π1 6= π2 ensures the

existence of l0). Let k0 = σ−1(l0), then k0 > l0. Let φ1 repre-

sent the generalized transposition that swaps the subsequences
(

ψσ(l0), ψσ(l0+1), · · · , ψσ(k0−1)

)

and ψσ(k0) = ψl0 in π2. Let

π
(1)
2 = π2 ◦ φ1 and σ(1) = (1, 2, · · · , l0, σ(l0), σ(l0 + 1), · · · ,
σ(k0 − 1), σ(k0 + 1), · · · , σ(d+ 1)). Then,

π
(1)
2 =

(

ψσ(1)(1), ψσ(1)(2), · · · , ψσ(1)(d+1)

)

.

If π
(1)
2 = π1, then π1 = π2 ◦ φ1. Otherwise let l1 be the

smallest index l such that σ(1)(l) 6= l, 1 ≤ l ≤ d + 1, then

l1 > l0 holds true.

Following this procedure, one can find a series of general-

ized transpositions φ1, φ2, · · · , φm, 1 ≤ m ≤ d, sequentially,

such that π2 ◦ φ1 ◦ φ2 ◦ · · · ◦ φm = π1. Suppose φ1, φ2,

· · · , φi are found for some i, 1 ≤ i ≤ d. Let π
(i)
2 = π2 ◦

φ1 ◦ φ2 ◦ · · · ◦ φi =
(

ψσ(i)(1), ψσ(i)(2), · · · , ψσ(i)(d+1)

)

. If

π
(i)
2 = π1, then π1 = π2 ◦ φ1 ◦ φ2 ◦ · · · ◦ φi, and we

have established the desired composition. Otherwise, we let

li be the smallest index such that σ(i)(li) 6= li. Suppose

ki =
(

σ(i)
)−1

(li), and it follows that ki > li. Denote

the generalized transposition that swaps the subsequences
(

ψσ(i)(li), ψσ(i)(2), · · · , ψσ(i)(ki−1)

)

and ψσ(i)(ki) = ψli in π
(i)
2

by φi+1. Let π
(i+1)
2 = π

(i)
2

◦ φi+1, and σ(i+1) = (1, 2,
· · · , li, σ(i)(li), σ

(i)(li +1), · · · , σ(i)(ki − 1), σ(i)(ki +1), · · · ,
σ(i)(d+ 1)). Then,

π
(i+1)
2 =

(

ψσ(i+1)(1), ψσ(i+1)(2), · · · , ψσ(i+1)(d+1)

)

.

Finally, one finds the smallest integer m such that π
(m)
2 =

π1. In this procedure, l0, · · · , lm−1 are obtained sequentially,

where 1 < l0 < l1 < · · · < lm−1. We also know that lm−1 ≤
d, otherwise if lm−1 = d + 1, then σ(m−1)(i) = i holds true

for all 1 ≤ i ≤ d, and σ(m−1)(d+1) 6= d+1, which leads to

a contradiction. Therefore, d ≥ lm−1 > · · · > l0 ≥ 1, which

implies that m ≤ d. Note that π1 = π2 ◦ φ1 ◦ · · · ◦ φm, from

which dG(π1, π2) ≤ m ≤ d = dB(π1, π2) follows. The lower

bound is proved.

III. THEORETICAL BOUNDS ON THE CODE RATE

A subset CG (N, t) of SN is called a t-generalized Cayley

code if it can correct t generalized transposition errors. Any t-
generalized Cayley code has the minimum generalized Cayley

distance dG,min ≥ 2t+1. Similarly, a subset CB (N, t) of SN
is called a t-block permutation code if its minimum block

permutation distance dB,min ≥ 2t + 1. For any permutation

code C ⊂ SN , denote the rate of C by R(C). Then, the

following equation holds true,

R(C) = log|C (N, t)|
logN !

. (16)

In the remainder of this paper, the logarithm base is always 2
unless it is explicitly specified with a different base.

Let CG,opt (N, t) and CB,opt (N, t) be t-generalized Cay-

ley codes and t-block permutation codes with the optimal

rates, denoted by RG,opt(N, t) and RB,opt(N, t), respectively.

We next derive the lower bounds and the upper bounds of

RG,opt (N, t) and RB,opt (N, t).
For each π ∈ SN , we define the generalized Cayley

ball BG(N, t, π) of radius t centered at π to be the set

of all permutations in SN that have a generalized Cayley

distance from π not exceeding t. We know from the left-

invariance property of dG that the cardinality of BG(N, t, π) is

independent of π; we denote |BG(N, t, π)| as bG(N, t). The

block permutation ball BB(N, t, π) and the corresponding

ball-size bB(N, t) are similarly defined.

We derive the lower and upper bounds of bB(N, t) and

bG(N, t) in the following two lemmas, respectively. We build

on these results and Lemma 7 to compute the bounds of the
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rates of optimal codes in dG and dB , proving that the optimal

redundancy is Θ( t
N ) in both of the two metrics.

Lemma 5. For all N ∈ N
∗, t ≤ N −

√
N − 1, bB(N, t) is

bounded by the following inequality:

t
∏

k=1

(N − k) ≤ bB(N, t) ≤
t
∏

k=0

(N − k). (17)

Proof: The proof is in Appendix C.

Lemma 6. For all N ∈ N
∗, t ≤ min{N −

√
N − 1, N−1

4 },

bG(N, t) is bounded as follows:

t
∏

k=1

(N − k) ≤ bG(N, t) ≤
4t
∏

k=0

(N − k). (18)

Proof: The proof is in Appendix D.

As the metrics dB and dG both satisfy the triangle inequal-

ity, the cardinalities of the optimal codes CB,opt(N, t) and

CG,opt(N, t) are bounded as follows,

N !

bB(N, 2t)
≤ |CB,opt (N, t)| ≤

N !

bB(N, t)
,

N !

bG(N, 2t)
≤ |CG,opt (N, t)| ≤

N !

bG(N, t)
.

(19)

According to [14, (1)-(2)], for all N ∈ N
∗,

N ! =
√
2πNN+1/2e−N · erN , (20)

where
1

12N + 1
< rN <

1

12N
. (21)

From (20) and (21), Lemma 7 follows.

Lemma 7. For all N ∈ N
∗, it follows that

(N +
1

2
) logN−(log e)N <

N
∑

n=1

log n

< (N +
1

2
) logN − (log e)N + 2.

We now state the main result of this section.

Theorem 1. For any t,N ∈ N
∗, t ≤ min{N−

√
N−1, N−1

4 }
and N ≥ 9, the optimal rates RB,opt (N, t) , RG,opt (N, t)
satisfy the following inequalities,

1− c · 2t+ 1

N
≤RB,opt (N, t) ≤ 1− t

N
,

1− c · 8t+ 1

N
≤RG,opt (N, t) ≤ 1− t

N
,

(22)

where c = 1 + 2 log e
logN .

Proof: From (16) and (19), it follows that

1− log bB(N, 2t)

logN !
≤ RB,opt(N, t) ≤ 1− log bB(N, t)

logN !
,

1− log bG(N, 2t)

logN !
≤ RG,opt(N, t) ≤ 1− log bG(N, t)

logN !
.

(23)

By applying Lemma 5 and Lemma 7 to (23), when

min{N −
√
N − 1, N−1

4 } ≥ t ≥ 1 and N ≥ 9, it follows

that

RB,opt(N, t) ≥ 1−
log

[

2t
∏

k=0

(N − k)

]

logN !

> 1− (2t+ 1) logN

(N + 1
2 ) logN − (log e)N

> 1− (2t+ 1) logN

N(logN − log e)

> 1− 2t+ 1

N

(

1 +
2 log e

logN

)

,

(24)

and

RB,opt(N, t)

≤1−
log

[

t
∏

k=1

(N − k)

]

logN !

=1−
1
2

t
∑

k=1

(log(N − k) + log(N − t− 1 + k))

logN !

≤1−
t
2 log ((N − 1)(N − t))

(N + 1
2 ) logN − (log e)N + 2

≤1−
t
2 log

(

(N − 1)(N − N−1
4 )
)

(N + 1
2 ) logN − (log e)N + 2

≤1−
t
2 log

(

N2

2

)

(N + 1
2 ) logN − (log e)N + 2

≤1− t(logN − 1
2 )

N logN − 1
2N

=1− t

N
.

(25)

Similarly, by applying Lemma 6 and Lemma 7 to (23), when

min{N −
√
N − 1, N−1

4 } ≥ t ≥ 1 and N ≥ 9, it follows that

RG,opt(N, t) ≥ 1−
log

[

min{8t,N−1}
∏

k=0

(N − k)

]

logN !

> 1− (8t+ 1) logN

(N + 1
2 ) logN − (log e)N

> 1− (8t+ 1) logN

N logN − (log e)N

> 1− 8t+ 1

N

(

1 +
2 log e

logN

)

,

(26)

and

RG,opt(N, t) ≤ 1−
log

[

t
∏

k=1

(N − k)

]

logN !

≤ 1− t

N
.

(27)

The theorem is proved.

Inequalities (24)-(27) indicate that R = 1−Θ
(

t
N

)

is the rate

of the t-generalized Cayley codes and the t-block permutation

codes that are order-optimal.



6

IV. NON-SYSTEMATIC PERMUTATION CODES IN THE

GENERALIZED CAYLEY METRIC

We studied the optimal rates of t-generalized Cayley Codes

and t-block permutation codes in the previous section. We now

seek constructions of order-optimal codes in these metrics.

We know from Lemma 4 that any 4t-block permutation code

is also a t-generalized Cayley code. In the sequel, we thus

focus on the construction of order-optimal t-block permutation

codes, which is sufficient for obtaining order-optimal general-

ized Cayley codes.

In Section IV-A, we present a construction of order-optimal

t-block permutation codes (Theorem 2). We then develop a

decoding scheme for the proposed codes in Section IV-B.

A. Encoding Scheme

Denote the set of all ordered pairs of non-identical elements

from [N ] by P ; then |P | = N2 − N . Suppose q is a prime

number such that q ≥ |P |. From Bertrand’s postulate [15], one

can always find a prime number q such that |P | ≤ q ≤ 2|P |.
Let υ : P → Fq be an arbitrary injection from P to Fq ,

where Fq is a Galois field of order q. Let P(Fq) represent the

set of all the subsets of Fq with cardinality N − 1. We define

an injection ν : SN → P(Fq) as follows:

ν(π) , {υ(p)|p ∈ A(π)}. (28)

Then, ν is invertible, namely, one is able to compute π based

on ν(π).
We then define a class of functions α(q,d) : SN → F

2d−1
q ,

as follows:

α(q,d)(π) , (α1, α2, · · · , α2d−1) , (29)

where


































α1 ≡ ∑

b∈ν(π)

b mod q,

α2 ≡ ∑

b∈ν(π)

b2 mod q,

...

α2d−1 ≡ ∑

b∈ν(π)

b2d−1 mod q.

(30)

The following Algorithm 1 describes the main steps of the

proposed encoding scheme, the correctness of which can be

verified by Lemma 8 and Theorem 2.

The following Lemma 8 states that the cardinality of the

symmetric difference of ν(π1), ν(π2) for any two distinct

permutation π1, π2 ∈ SN is greater than 2d if their syndromes

α(q,d)(π1) and α(q,d)(π2) are identical. Therefore, their block

permutation distance is greater than d based on Lemma 2. This

lemma will be repeatedly used in the rest of the paper for the

constructions of order-optimal permutation codes in the block

permutation distance.

Lemma 8. For all π1, π2 ∈ SN such that π1 6= π2, if

α(q,d)(π1) = α(q,d)(π2), then,

|ν(π1)∆ν(π2)| > 2d. (31)

Proof: The proof is in Appendix E.

Algorithm 1 Encoding Scheme

Input:

Minimum block permutation distance: 2t+ 1;

Codelength: N ;

Alphabet size: q, where q is a prime number such that

N2 −N ≤ q < 2(N2 −N);
Output:

Codebook C of a t-block permutation code;

1: For each π ∈ SN , compute A(π), ν(π), and its syndrome

α(q,2t)(π) (α(q,2t)(π) ∈ F
4t−1
q ), sequentially, where A(π),

ν(π), α(q,d) are defined in Definition 3, (28), (29) and

(30), respectively;

2: For each α ∈ F
4t−1
q , denote the set consisting of all

permutations with the syndrome α by Cα(N, t);
3: Find α such that Cα(N, t) is of the maximum cardinality;

4: return C = Cα(N, t).

Note that the function α(q,2t) induces a map from SN

to F
4t−1
q and divides SN into q4t−1 subsets based on their

syndromes α = (α1, α2, · · · , α4t−1). We next prove that each

such subset is a t-block permutation code, which is stated as

the following theorem.

Theorem 2. For all α ∈ F
4t−1
q , suppose:

Cα(N, t) = {π|π ∈ SN , α
(q,2t)(π) = α}, (32)

where α(q,2t) is defined in (29) and (30). Then ∀ π1, π2 ∈
Cα(N, t), π1 6= π2, the following inequality holds,

dB(π1, π2) ≥ 2t+ 1. (33)

Proof: Let d = 2t in Lemma 8 and Lemma 2. Then,

dB(π1, π2) =
1

2
|A(π1)∆A(π2)|

=
1

2
|ν(π1)∆ν(π2)|

>
1

2
(2 · 2t) = 2t,

(34)

where ∆ refers to the symmetric difference of sets.

Example 4. Suppose N = 10, t = 2, q = 97 > 102 − 10.

Define υ(i, j) for all i 6= j ∈ [10] as follows:

υ(i, j) = 10(i− 1) + j − 1.

Let π1 = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1), and π2 = (9, 6, 5, 8, 2,
4, 7, 3, 10, 1). Suppose α = (83, 28, 80, 77, 40, 3, 88). Then,

α(q,2t)(π1) = α(q,2t)(π2) = α.

Observe that dB(π1, π2) = 8 > 4 = 2t. This example is in

accordance with Theorem 2.

Theorem 2 implies that {Cα(N, t) : α ∈ F
4t−1
q } is a

partition of SN , where each component Cα(N, t) is a t-block

permutation code indexed by α. Suppose Cαmax
(N, t) is the

one with the maximal cardinality, whose syndrome is αmax.

It follows from the Pigeonhole Principle that:

|Cαmax
(N, t)| ≥ N !

|F4t−1
q | =

N !

q4t−1
. (35)
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Denote the rate of Cαmax
(N, t) by R(C1). Given that N2 −

N = |P | ≤ q < 2|P | = 2N2 − 2N < 2N2, it follows from

Lemma 7 that for N > e2 (note that here e refers to the base

of the natural logarithm),

R(C1) ≥ 1− 4t log q

logN !
> 1− 8t logN + 4t

logN !

> 1− 8t(logN + 1
2 )

(N + 1
2 ) logN − (log e)N

> 1− 8t

N

(

logN + 1
2

logN − log e

)

= 1− 8t

N

[

1 +
1
2 + log e

logN

(

1 +
log e

logN − log e

)]

> 1− 8t

N

(

1 +
2 log e+ 1

logN

)

.

(36)

Then, Cαmax
(N, t) is an order-optimal t-block permutation

code.

B. Decoding Scheme

In Section IV-A, we map each permutation π ∈ SN to a

unique set ν(π) ∈ P(Fq) as defined in equation (28), where

N2 − N ≤ q ≤ 2N2 − 2N and P(Fq) represents the set

consisting of all subsets of Fq with cardinality N−1. Suppose

the transmitter sends π ∈ SN and the receiver receives π′,

where dG(π, π
′) ≤ t. In the decoding scheme, our objective

is to compute ν(π) from the a priori α and the received

permutation π′. The strategy is, for each set B ∈ P(Fq), map

B to a polynomial f(X;B) defined as follows:

f(X;B) ,
∏

b∈B

(X + b) . (37)

We call f(X;B) the characteristic function of set B.

All the polynomials as well as the polynomial operations

are defined on Fq . Let aBi , 0 ≤ i ≤ N − 1, represent the

coefficients of XN−1−i in f(X;B). Then, aB0 = 1.

Given the a priori agreement on the codebook, i.e., the

choice of α, and the received permutation π′, the value of the

first 4t coefficients of f(X;B), f(X;B′) can be computed,

where B = ν(π) and B′ = ν(π′), as we shall shortly show. We

then use these coefficients to derive ν(π). This coding strategy

bears resemblance to that proposed in [16], the key difference

being that the coefficients of the polynomials we discussed

are partially known, thus making our decoding scheme more

complicated, whereas those in [16] are fully known.

Note that aBi , 1 ≤ i ≤ N − 1, in (38) is the i-th elementary

symmetric polynomial of the elements in B. Also note that

the i-th component αi, 1 ≤ i ≤ 4t − 1, of the value α =
α(q,2t)(π) is exactly the i-th power sum of the elements in

B = ν(π). We know from Newton’s identities [17] that there

exists a bijection between the (4t − 1) power sums and the

first (4t − 1) elementary symmetric polynomials of elements

in B, as described below:











































aB0 = 1,

aB1 = α1,

aB2 = 2−1(aB1 α1 − α2),

aB3 = 3−1(aB2 α1 − aB1 α2 + α3),
...

aB4t−1 = (4t− 1)−1(aB4t−2α1 − aB4t−3α2 + · · ·+ α4t−1).
(38)

Denote aBi , aB
′

i by ai, a
′
i, 0 ≤ i ≤ N − 1, respectively,

for simplicity. Let r(B) = (a1, a2, · · · , a4t−1), r(B
′) = (a′1,

a′2, · · · , a′4t−1). The receiver uses the a priori α to compute

r(B) and to derive r(B′) from B′, where B = ν(π) and

B′ = ν(π′). Note that π can be computed from B = ν(π)
since ν is an injection from SN to P(Fq). Thus the objective

is to compute B from r(B), r(B′), and B′.

Suppose D1 = B \ B′, D2 = B′ \ B, D3 = B ∩ B′. Let

f1 = f(X;B) and f2 = f(X;B′). Then,

g1(X) =
f1

GCD(f1, f2)
=
∏

b∈D1

(X + b),

g2(X) =
f2

GCD(f1, f2)
=
∏

b∈D2

(X + b),

g3(X) = GCD(f1, f2) =
∏

b∈D3

(X + b).

(39)

Notice that g1, g2, g3 uniquely determine f1, f2, so they are

sufficient for computing π. We next seek to compute g1, g2,
g3 from r(B) and f2 = g2 · g3, from which f1 = g1 · g3 can

be determined. Let (h1, h2) = (Xt−kg2, X
t−kg1), where k =

deg g1 = deg g2 = |D1| = |D2| ≤ t. Then (h1, h2) satisfy

h1 · f1 = h2 · f2. We will also prove later in Theorem 3 that

g1, g2, g3 can be computed from an arbitrary nonzero solution

(h1, h2) of h1 · f1 = h2 · f2. Therefore, any nonzero solution

to h1 · f1 = h2 · f2 is sufficient for computing π. Also notice

that the first 4t coefficients of h1 · f1 and h2 · f2 uniquely

determine r(B) and r(B′), respectively, by (38), if h1, h2 are

known. In order to compute g1, g2, g3, it is sufficient to find

h1 and h2, both of degree t, such that the first 4t coefficients

of h1 · f1 and that of h2 · f2 are equal, i.e., the following

inequality holds,

deg(h1 · f1 − h2 · f2) < N − 3t. (40)

For each c ∈ F
2t
q , suppose

c =
(

c1, · · · , ct,−c′1, · · · ,−c′t
)T
, (41)

and define the polynomials h1(c), h2(c) of degree t as follows,

h1(c) , Xt + c1X
t−1 + c2X

t−2 + · · ·+ ct,

h2(c) , Xt + c′1X
t−1 + c′2X

t−2 + · · ·+ c′t.
(42)
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Define

A =






















1 0 · · · 0 1 0 · · · 0

a1 1
. . .

... a′1 1
. . .

...
...

...
. . . 0

...
...

. . . 0
at−1 at−2 · · · 1 a′t−1 a′t−2 · · · 1

...
...

. . .
...

...
...

. . .
...

a4t−2 a4t−3 · · · a3t−1 a′4t−2 a′4t−3 · · · a′3t−1























,

(43)

and

b =
(

a′1, · · · , a′4t−1

)T −
(

a1, · · · , a4t−1

)T
. (44)

The following Algorithm 2 describes the decoding algorithm

of the code constructed in Section IV-A. The correctness of

this algorithm is proved by Lemma 9 and Theorem 3.

Algorithm 2 Decoding Algorithm

Input:

Syndrome: α;

Received sequence: π′;

Output:

Estimated codeword: π̂;

1: Compute the coefficients {a′i}4t−1
i=1 of f2 and B′ from π′;

2: Compute the coefficients of {ai}4t−1
i=1 of f1 from α by

Newton’s identities;

3: Compute A and b using (43) and (44);

4: Find a nonzero solution c to Ac = b, c =
(

c1, · · · , c2t
)T

;

5: Compute h1 = Xt + c1X
t−1 + c2X

t−2 + · · ·+ ct, h2 =
Xt − ct+1X

t−1 − ct+2X
t−2 − · · · − c2t;

6: Compute h = gcd(h1, h2), v1 = h2

h , v2 = h1

h ;

7: Let the set of negative roots of v1 and v2 be V1 and V2,

respectively;

8: Compute π̂ = ν−1 (V1 ∪ (B′ \ V2)), where ν is defined

in (28);

9: return π̂.

Lemma 9 presents an equivalent linear equation to find

a solution that satisfies (40), and Theorem 3 shows how to

compute π from this intermediate value.

Lemma 9. Suppose A ∈ F
(4t−1)×(2t)
q , b ∈ F

4t−1
q are defined

in (43) and (44), respectively. Consider the following equation

defined on Fq:

Ac = b. (45)

For any vector c ∈ F
2t
q , c is a nonzero solution to (45) if

and only if (h1(c), h2(c)) is a nonzero solution to (40).

Proof: The proof is in Appendix F.

Theorem 3. Let c be an arbitrary nonzero solution to (45),

and h1 = h1(c), h2 = h2(c). Denote h, v1, v2 by the following

equations,

h = GCD(h1, h2), v1 =
h2
h
, v2 =

h1
h
. (46)

Suppose V1, V2 are the sets of the additive inverses of roots

of v1, v2, respectively. Then π can be computed from the

following equation:

π = ν−1 (V1 ∪ (B′ \ V2)) .
Recall B′ = ν(π′), where ν is defined in (28).

Proof: Note that B = ν(π) and ν is an injection, so we

only need to prove that B = V1 ∪ (B′ \ V2). From (39), it

follows that

h1 · f1 − h2 · f2 = (h1 · g1 − h2 · g2) · g3,
where deg g3 = |B ∩B′| ≥ N − 1− t. From Lemma 9, (40)

holds true, which means that deg(h1 · g1 − h2 · g2) · g3 =
deg(h1 · f1 − h2 · f2) < N − 3t. If h1 · f1 6= h2 · f2, then

N − t− 1 < N − 3t and thus t = 0, h1 = h2 = 0. Therefore

for any nonzero pair of h1 and h2,

h1 · f1 = h2 · f2.
We know from (46) that

v2 · f1 = v1 · f2,
where GCD(v1, v2) = 1. Let v2|f2 and v1|f1. Then,

f1
v1

=
f2
v2

= f.

Suppose V3 is the set of the additive inverses of roots of

f . Then V1 ∪ V3 = B, V2 ∪ V3 = B′, thus B = V1 ∪ V3 =
V1 ∪ (B′ \ V2).

Note that V1, V2 computed in Theorem 3 are exactly iden-

tical to D1, D2 described before (39), respectively.

Example 5. Suppose the sender transmits the permutation

π1 = (2, 4, 7, 3, 5, 1, 8, 6, 9, 10) ∈ Cα(10, 2), where α = (16,
0, 86, 44, 61, 9, 49), and the receiver recives π′ = (8, 6, 9, 10,
5, 1, 2, 4, 7, 3) ∈ S10. In the encoding scheme, q = 97 > 102−
10, and for all i, j ∈ [10], i 6= j,

υ(i, j) = 10(i− 1) + j − 1.

The receiver applies Newton’s identities [17] to compute

r(B) = (16, 31, 0, 42, 54, 94, 59) from α, and then derives

r(B′) = (80, 64, 83, 10, 72, 22, 26) from B′ = ν(π′) = {75,
58, 89, 94, 40, 1, 13, 36, 62}. Then

A =









1 16 31 0 42 54 94
0 1 16 31 0 42 54
1 80 64 83 10 72 22
0 1 80 64 83 10 72









T

,

b =
(

64 33 83 65 18 25 64
)T
.

(47)

Notice that c =
(

95, 94, 66, 26
)

is a solution to Ac =
b. Therefore h1 = X2 + 95X + 94 = (X + 1)(X + 94),
h2 = X2 + 31X + 71 = (X + 24)(X + 7). The receiver then

knows that V1 = {24, 7}, V2 = {1, 94}. Therefore ν(π) =
B = V1 ∪ (B′ \ V2) = {13, 36, 62, 24, 40, 7, 75, 58, 89}. It

follows that A(π) = {(2, 4), (4, 7), (7, 3), (3, 5), (5, 1), (1, 8),
(8, 6), (6, 9), (9, 10)}. From the definition of the characteristic

set in Definition 4, the receiver is able to decode π from A(π)
as π̂ = (2, 4, 7, 3, 5, 1, 8, 6, 9, 10).
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V. SYSTEMATIC PERMUTATION CODES IN THE

GENERALIZED CAYLEY METRIC

In this section, we discuss systematic permutation codes.

Specifically, in Section V-A, we present an explicit coding

scheme for systematic permutation codes in the generalized

Cayley metric, and in Section V-B, we provide the decoding

scheme for this construction. We refine our construction to

ensure order-optimality, which we then discuss in Section V-C.

A. Encoding Scheme

Let messages be permutations in SN . In systematic permu-

tation codes, the codewords are permutations of length N+M .

We derive each codeword σ ∈ SN+M from a message π ∈ SN

by sequentially inserting components N+1, N+2, · · · , N+M
into π, in the positions specified by a sequence S = (s1, s2,
· · · , sM ), where S is determined by the syndrome α(q,2t)(π)
defined in (29) and (30). Our key result is established in

Theorem 4, where we present the construction of systematic

permutation codes. We start the discussion by presenting a

collection of definitions and lemmas to support our main

result.

Definition 5. For any permutation π ∈ SN and the integer

i ∈ N, where 1 ≤ s ≤ N , let E(π, s) be a permutation in

SN+1 derived by inserting the element N+1 after the element

s in π, i.e.,

E(π, s) , (π(1), · · · , π(k), N + 1, π(k + 1), · · · , π(N)) ,

where k = π−1(s). We call E(π, s) the extension of π on the

extension point s.
Consider a sequence S = (s1, s2, · · · , sM ), where sm ∈ [N ]

for all 1 ≤ m ≤ M . The extension E(π, S) of π on the

extension sequence S is a permutation in SN+M derived from

inserting the elements N + 1, · · · , N +M sequentially after

the elements s1, · · · , sM in π, i.e.,

E(π, S) , E(E(· · ·E(E(π, s1), s2) · · · , sM−1), sM ).

Note that in Definition 5, the elements s1, · · · , sM in the

extension sequence S are not necessarily distinct. If different

symbols are sequentially inserted after the same element, then

they are all placed right after this element in descending order,

as shown in Example 6.

Example 6. Suppose π = (1, 4, 5, 7, 6, 2, 3), I = (4, 1, 2, 2),
then

E(π, I) = (1, 9, 4, 8, 5, 7, 6, 2, 11, 10, 3) .

Based on the definition of the extensions, Algorithm 3

describes the major steps of our encoding scheme. The cor-

rectness of this scheme is proved later by Lemma 10 and

Theorem 4.

Definition 6 presents the notion of the jump points of the

extensions of two permutations. Then Lemma 10 states that

the block permutation distance between two extensions is

strictly larger than that of their original permutations if and

only if the extension point of one of them is a jump point.

Based on this result, we further introduce the notion of jump

Algorithm 3 Encoding Scheme

Input:

Information sequence: π ∈ SN ;

Number of additional symbols: K;

Minimum block permutation distance: 2t+ 1;

Output:

Codeword: σ (σ ∈ SN+K);

1: Compute the syndrome α = α(q,2t)(π) of π, which is

defined in (29);

2: Compute the extension sequence S = ϕ(α), where ϕ is

a function such that the image of ϕ is a t-auxiliary set of

length K in the range [N ], as defined in Definition 9;

3: Compute σ = E(π, S), according to Definition 5;

4: return σ.

index and jump set in Definition 7. As shown in Remark 4,

the block permutation distance of two permutations in SN is

lower bounded by the sum of that of their extensions and the

cardinality of the jump set.

Definition 6. Let π1, π2 ∈ SN , s1, s2 ∈ [N ]. We note that for

any k ∈ [N ], πi(k) refers to the k-th element of πi, i ∈ {1, 2}.

Suppose E(π1, s1), E(π2, s2) are two arbitrary extensions of

π1 and π2, respectively, where π1, π2 ∈ SN , π1(k1) = s1 and

π2(k2) = s2. Then s1 is called a jump point of E(π1, s1)
with respect to E(π2, s2), if s1 6= s2 and at least one of the

following conditions is satisfied:

1) k1 = N or k2 = N ;

2) k1, k2 < N , and π1(k1 + 1) 6= π2(k2 + 1).

Lemma 10. Let π1, π2 ∈ SN , s1, s2 ∈ [N ]. For any two

extensions E(π1, s1) and E(π2, s2), if s1 is a jump point of

E(π1, s1) with respect to E(π2, s2), then

dB(E(π1, s1), E(π2, s2)) > dB(π1, π2), (48)

else

dB(E(π1, s1), E(π2, s2)) = dB(π1, π2). (49)

Proof: The proof is in Appendix G.

In the following Example 7, we provide examples of jump

points that satisfy the two conditions indicated in Definition 6.

We also provide an example of an extension point that is not

a jump point.

Example 7. Suppose π = (1, 5, 7, 2, 3, 6, 4), π′ = (2, 3, 1, 5,
7, 6, 4), s1 = 4, s′1 = 5, s2 = 5, s′2 = 6, s3 = 3, s′3 = 7.

Then,

σ1 = E(π, s1) = (1, 5, 7, 2, 3, 6, 4, 8) ,

σ′
1 = E(π′, s′1) = (2, 3, 1, 5, 8, 7, 6, 4) ,

σ2 = E(π, s2) = (1, 5, 8, 7, 2, 3, 6, 4) ,

σ′
2 = E(π′, s′2) = (2, 3, 1, 5, 7, 6, 8, 4) ,

σ3 = E(π, s3) = (1, 5, 7, 2, 3, 8, 6, 4) ,

σ′
3 = E(π′, s′3) = (2, 3, 1, 5, 7, 8, 6, 4) .

Given that dB(π, π
′) = 2, we observe that

dB(σ1, σ
′
1) = 4 > dB(π, π

′), and s1 is a jump point;

dB(σ2, σ
′
2) = 5 > dB(π, π

′), and s2 is a jump point;

dB(σ3, σ
′
3) = 2 = dB(π, π

′), and s3 is not a jump point.
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Notice that s1 is a jump point that satisfies the first condition

in Definition 6, and s2 is a jump point that satisfies the second

condition. This example is consistent with Lemma 10.

We know from Lemma 10 that the block permutation

distance between the resulting codewords cannot be smaller

than that of their original messages. Recall that Theorem 2

indicates that permutations with the same syndrome result in

codewords having the block permutation distance of at least

2t + 1. Therefore, it suffices to show that the permutations

with different syndromes are mapped to codewords that are

sufficiently far apart under the block permutation distance;

Lemma 11 establishes a property that ensures that this con-

dition is satisfied. We then use this result in Theorem 4 to

present the construction of systematic permutation codes.

Definition 7. Let π1, π2 ∈ SN , s1, s2 ∈ [N ]. Suppose E(π1,
S1) and E(π2, S2) are extensions of π1 and π2 on extension

sequences S1 and S2, respectively, where π1, π2 ∈ SN , S1 =
(s1,1, s1,2, · · · , s1,M ) and S2 = (s2,1, s2,2, · · · , s2,M ). Then,

for any m ∈ [M ], m is called a jump index of E(π1, S1) and

E(π2, S2) if s1,m is a jump point of E(E(π1, J1,m−1), s1,m)
with respect to E(E(π2, J2,m−1), s2,m), where J1,m−1 =
(s1,1, s1,2, · · · , s1,m−1), J2,m−1 = (s2,1, s2,2, · · · , s2,m−1).
Define the jump set F (π1, π2, S1, S2) as the set of all jump

indices of E(π1, S1) and E(π2, S2).

Remark 4. Let π1, π2 ∈ SN , s1, s2 ∈ [N ]. For any extensions

E(π1, S1), E(π2, S2) of π1, π2 on extension sequences S1, S2,

respectively, it is obvious from Definition 7 and Lemma 10 that

dB(E(π1, S1), E(π2, S2)) ≥ dB(π1, π2)+|F (π1, π2, S1, S2)|.
(50)

Here F (π1, π2, S1, S2) is the jump set defined in Definition 7.

In the following Example 8, we provide an example of how

to identify the jump indices and compute the jump set. This

example satisfies inequality (50).

Example 8. Continuing with the values of π, π′ specified in

Example 7, let S = (4, 6, 7) and S′ = (5, 6, 5). Then,

σ0 = π = (1, 5, 7, 2, 3, 6, 4) ,

σ′
0 = π′ = (2, 3, 1, 5, 7, 6, 4) ,

σ1 = E(σ0, s1) = (1, 5, 7, 2, 3, 6, 4, 8) ,

σ′
1 = E(σ′

0, s
′
1) = (2, 3, 1, 5, 8, 7, 6, 4) ,

σ2 = E(σ1, s2) = (1, 5, 7, 2, 3, 6, 9, 4, 8) ,

σ′
2 = E(σ′

1, s
′
2) = (2, 3, 1, 5, 8, 7, 6, 9, 4) ,

σ3 = E(σ2, s3) = (1, 5, 7, 10, 2, 3, 6, 9, 4, 8) ,

σ′
3 = E(σ′

2, s
′
3) = (2, 3, 1, 5, 10, 8, 7, 6, 9, 4) .

It follows immediately that

dB(σ0, σ
′
0) = 2,

dB(σ1, σ
′
1) = 4 > dB(σ0, σ

′
0), and 1 is a jump index;

dB(σ2, σ
′
2) = 4 = dB(σ1, σ

′
1), and 2 is not a jump index;

dB(σ3, σ
′
3) = 5 > dB(σ2, σ

′
2), and 3 is a jump index.

According to Definition 7, F (π, π′, S, S′) = {1, 3}. More-

over, dB(σ3, σ
′
3) = 5 > 4 = dB(π, π

′) + |F (π, π′, S, S′)|,
which is in accordance with equation (50).

Next we prove in Lemma 11 that the right hand side of

equation (50) can be lower bounded by the cardinality of

the so-called Hamming set. The Hamming set of S1 with

respect to S2 is defined in the following Definition 8. Based

on this result, we present a construction of systematic t-block

permutation codes in Theorem 4 with the help of a so-called

t-auxiliary set that is defined in Definition 9.

Definition 8. For any sequences v1, v2 of integers with

length M , where v1 = (v1,1, v1,2, · · · , v1,M ) and v2 =
(v2,1, v2,2, · · · , v2,M ), define the Hamming set of v1 with

respect to v2 as follows,

H(v1,v2) , {v1,m|v1,m 6= v2,m,m ∈ [M ]}. (51)

We note that dH refers to the Hamming distance throughout

this paper.

Remark 5. It is obvious that dH(v1,v2) ≥ |H(v1,v2)|.
Additionally, for any three sequences v1,v2,v3 of integers,

the following triangle inequality holds true:

|H(v1,v3)| ≤ |H(v1,v2)|+ |H(v2,v3)|. (52)

Lemma 11. Let π1, π2 ∈ SN , s1, s2 ∈ [N ]. For any extensions

E(π1, S1), E(π2, S2) of π1, π2 on extension sequences S1, S2,

respectively, it follows that

dB(E(π1, S1), E(π2, S2)) ≥ |H(S1, S2)|. (53)

Proof: The proof is in Appendix H.

Example 9. Continuing on with the numerical values of π,
π′, S, S′ as in Example 8, we conclude that, H(S, S′) = {4,
7}, m(4) = 1, m(7) = 3. Then it follows that dB(σ, σ

′) =
5 > 2 = |H(S, S′)|, which is in accordance with the above

Lemma 11.

Definition 9. Consider a set A(N,K, t) ⊂ [N ]
K

. We call

A(N,K, t) a t-auxiliary set of length K in range [N ] if for

any c1, c2 ∈ A(N,K, t), c1 6= c2, |H(c1, c2)| ≥ 2t+1 holds.

Theorem 4. For any t-auxiliary set A(N,K, t) with cardi-

nality that is no less than q4t−1, suppose ϕ : α(q,2t)(SN ) →
A(N,K, t) is an arbitrary injection, where q is a prime

number such that N2−N < q < 2(N2−N) and the syndrome

α(q,2t) is defined in (29) and (30). Then, the set Csys
B (N,K,

t) = {E(π, ϕ ◦ α(q,2t)(π))|π ∈ SN} is a systematic t-block

permutation code.

Proof: It is clear by the choice of E(π, S) that Csys
B (N,

K, t) is systematic. For any two messages π1, π2 ∈ SN ,

denote their corresponding codewords by σ1 = E(π1, ϕ ◦

α(q,2t)(π1)) and σ2 = E(π2, ϕ ◦ α(q,2t)(π2)), respectively.

Suppose α1 = α(q,2t)(π1), α2 = α(q,2t)(π2), S1 = ϕ(α1)
and S2 = ϕ(α2). Then σ1 = E(π1, S1), σ2 = E(π2, S2).
Consider the following two cases:

1) α1 = α2. According to Theorem 2, dB(π1, π2) > 2t
in this case. Then Lemma 10 implies that dB(σ1, σ2) ≥
dB(π1, π2) ≥ 2t+ 1.

2) α1 6= α2. In this case, S1, S2 ∈ A(N,K, t) and S1 6= S2.

Then from Definition 9, |H(S1, S2)| ≥ 2t+1. Therefore,

from Lemma 11, dB(σ1, σ2) ≥ |H(S1, S2)| ≥ 2t+ 1.
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From the above discussion, dB(σ1, σ2) ≥ 2t + 1 is aways

true, which means that Csys
B (N,K, t) is indeed a systematic

t-block permutation code.

B. Decoding Scheme

Based on the construction and the notation in Theo-

rem 4, suppose the sender sends a codeword σ = E(π,
ϕ ◦ α(q,2t)(π)) through a noisy channel and the receiver

receives a noisy version σ′, where dB(σ, σ
′) ≤ t.

In this section, we prove in the forthcoming Lemma 12

that the extension sequence S of the codeword E(π, S) is

decodable given that dB(σ, σ
′) ≤ t, from which the syndrome,

defined in (29) and (30), of the transmitted information π can

be derived.

For convenience, we introduce the following definition of

the truncation and use it throughout this subsection.

Definition 10. For any permutation σ ∈ SN+1 and an integer

u ∈ [N + 1], denote T (σ, u) to be the sequence derived by

removing the element u from σ, i.e.,

T (σ, u) , (σ(1), σ(2), · · · , σ(k − 1), σ(k + 1), · · · , σ(N)) ,
(54)

where k = σ−1(u).
Then, for any permutation σ ∈ SN+M and a set U ⊂

[N +M ], denote the truncation T (σ, U) of σ on set U to

be the sequence derived by removing the elements contained

in U = {u1, u2, · · · , u|U |} from σ, i.e.,

T (σ, U) , T (T (· · ·T (T (σ, u1), u2) · · · , u|U |−1), u|U |).
(55)

Note that in Definition 10, the ordering of u1, · · · , u|U |

has no impact on the value of T (σ, U). The following is an

example of the truncation of a permutation.

Example 10. Suppose σ = (1, 4, 5, 2, 3, 9, 8, 6, 7), U = {4, 5,
9}, then

T (σ, U) = (1, 2, 3, 8, 6, 7) .

The following Algorithm 4 describes the decoding algorithm

of the code constructed in Theorem 4. The correctness of this

algorithm is proved by Lemma 12.

Our decoding scheme has two major steps. Recall that

α(q,2t) is defined in (29) and (30) as the syndrome of π. The

first step is to derive the syndrome α̂ = α(q,2t)(π) of π = T (σ,
{N +1, · · · , N +K}), from the received permutation σ′. The

second step is to apply Algorithm 2 to the pair of inputs, the

syndrome α̂ and the subsequence π′ = T (σ′, {N + 1, · · · ,
N +K}), and compute π.

Note that it is sufficient to compute the sequence S in order

to derive the syndrome α̂. Lemma 12 proves the sufficiency of

obtaining the sequence S from S′, where S is the extension

sequence of π in σ, by showing that the cardinality of the

Hamming set H(S, S′) does not exceed t, provided that dB(σ,
σ′) ≤ t. Therefore, from (52) and Definition 9, we are able to

obtain an estimate Ŝ of S from S′ since each t-auxiliary set

A(N,K, t) has the property that the cardinalities of Hamming

Algorithm 4 Decoding Algorithm

Input:

Received sequence: σ′;

Number of additional symbols: K;

Minimum block permutation distance: 2t+ 1;

Output:

Estimated information sequence: π̂;

1: Compute π′ = T (σ′, {N + 1, · · · , N +K}), according to

Definition 10;

2: Find S′ such that σ′ = E(π′, S′), where E(π, S) is

defined in Definition 5;

3: Find Ŝ ∈ Img(ϕ) such that H(Ŝ, S′) ≤ t, where H is

defined in Definition 8, and ϕ is specified in Theorem 4;

4: Compute α̂ = ϕ−1(Ŝ);
5: Let α̂, π′ be the inputs of Algorithm 2 and obtain π̂;

6: return π̂.

sets constructed from its pairwise distinct elements are at least

2t+ 1. The syndrome α̂ is then uniquely derived from Ŝ.

Lemma 12. Consider an arbitrary σ ∈ C = {E(π, ϕ ◦

α(q,2t)(π))|π ∈ SN}, for C defined in Theorem 4 (then

σ ∈ SN+K). Suppose there is a σ′ such that dB(σ, σ
′) ≤ t.

Let S = ϕ ◦ α(q,2t)(π) and π′ = T (σ′, [N + 1 : N +K]).
Suppose σ′ is the extension of π′ on the extension sequence

S′, i.e., σ′ = E(π′, S′). Then,

H(S, S′) ≤ t. (56)

Proof: Suppose S = (s1, s2, · · · , sK), S′ =
(s′1, s

′
2, · · · , s′K). Then, according to Theorem 4, S ∈ A(N,

K, t). Let M = {m|sm 6= s′m, 1 ≤ m ≤ K}. For

all m ∈ M, it follows from Definition 6 that there exist

subsequences of σ, σ′: pm = (sm, nk(m), nk(m)−1, · · · , n1,
N + m) and p′

m = (s′m, n
′
k′(m), n

′
k′(m)−1, · · · , n′1, N + m),

where k(m), k′(m) ∈ [K], n1, n2, · · · , nk(m), n
′
1, n

′
2, · · · ,

n′k(m)′ ∈ [N + 1 : N +K]. Note that sm 6= s′m, which means

that (sm, nk(m), nk(m)−1, · · · , n1) 6= (s′m, n
′
k′(m), n

′
k′(m)−1,

· · · , n′1). Let

i(m) = min
1≤i≤min{k(m),k′(m)}

ni 6=n′

i

i.

Then ni(m) 6= n′
i(m) and ni(m)−1 = n′i(m)−1, where we let

n0 = n′0 = N +m if i(m) = 1.

Recall the notion of characteristic sets in Definition 3. We

know that (ni(m), ni(m)−1) ∈ A(σ) and (n′
i(m), n

′
i(m)−1) ∈

A(σ′). These two conditions along with the fact that ni(m) 6=
n′i(m) and ni(m)−1 = n′i(m)−1 imply that (ni(m), ni(m)−1) ∈
(A(σ) \A(σ′)) for all m ∈ M. Notice that for all sm ∈ {sm :
m ∈ M} = H(S, S′), the associated subsequences pm start

with different sm and they do not overlap, which indicates that

the pairs (ni(m), ni(m)−1) are distinct. Then |A(σ)\A(σ′)| ≥
|H(S, S′)|, which is equivalent to H(S, S′) ≤ dB(σ, σ

′) ≤ t.

From Lemma 12, the receiver first computes π′ = T (σ′,
{N + 1, · · · , N +K}) and derives the extension sequence S′

such that σ′ = E(π′, S′). Then, the receiver decodes Ŝ = ϕ ◦

α(q,2t)(π) ∈ A(N,K, t) from S′ such that |H(S′, Ŝ)| ≤ t
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and derives α̂ from Ŝ. From Lemma 10, dB(π, π
′) ≤ dB(σ,

σ′) ≤ t follows. Then, the receiver can apply Algorithm 2

to compute π̂ from π′ and α̂ reliably. The decoding scheme

for the systematic t-block permutation code C constructed in

Theorem 4 is then complete.

C. Order-optimal Systematic t-Block Permutation Codes

Theorem 4 presents the construction of systematic t-block

permutation codes with K redundant symbols based on a t-
auxiliary set A(N,K, t). When N is sufficiently large and K
is relatively small compared to N , the code rate is 1−Θ(KN ),
which is not necessarily order-optimal. In this section, based

on the upcoming Lemma 13 and Theorem 5, we provide an

explicit construction of a t-auxiliary set of length K = 56t in

Theorem 6, from which we are able to explicitly construct an

order-optimal permutation code by Theorem 4.

Lemma 13. For all k,N ∈ N
∗, k > 3, N > k2, consider an

arbitrary subset Y ⊂ [k], where |Y | = M < k, Y = {i1, i2,
· · · , iM}, then

LCM(N + i1, N + i2, · · · , N + iM ) > NM− k
2 . (57)

Proof: The proof is in Appendix I.

Theorem 5. For all N, k, d ∈ N
∗, N > k2, k > 3, define a

function β(q,d,k) : F
d
q → [N + 1] × [N + 2] × · · · × [N + k]

as follows:

β(q,d,k)(x) =
(

β
(q,d,k)
1 (x), β

(q,d,k)
2 (x), · · · , β(q,d,k)

k (x)
)

,(γ(x) mod (N + 1), γ(x) mod (N + 2),

· · · , γ(x) mod (N + k)),
(58)

where x = (x1, x2, · · · , xd) ∈ F
d
q , γ(x) ,

d
∑

i=1

xiq
i−1. Then ∀

x1,x2 ∈ F
d
q , x1 6= x2,

dH(β(q,d,k)(x1), β
(q,d,k)(x2)) >

k

2
− d(2 + logN 2). (59)

Proof: For arbitrary x1,x2 ∈ F
d
q , x1 6= x2, let

β(q,d,k)(x1) = (β1,1, β1,2, · · · , β1,k), β(q,d,k)(x2) = (β2,1,
β2,2, · · · , β2,k). Let Z = {i : β1,i = β2,i, 1 ≤ i ≤ d}, then

dH(β(q,d,k)(x1), β
(q,d,k)(x2)) = k − |Z| = k − M , where

M = |Z|.
Suppose Z = {i1, i2, · · · , iM}. Let γ1 = γ(x1), γ2 =

γ(x2). According to the definition of β(q,d,k) in (58),



















γ1 ≡ γ2 mod (N + i1)
γ1 ≡ γ2 mod (N + i2)

...

γ1 ≡ γ2 mod (N + iM ).

Then,

γ1 ≡ γ2 mod LCM(N + i1, N + i2, · · · , N + iM ) .

Given that x1,x2 ∈ F
d
q , x1 6= x2, then γ1 6= γ2. From

Lemma 13, it follows that

|γ1 − γ2| ≥ LCM(N + i1, N + i2, · · · , N + iM ) > NM− k
2 .

(60)

Moreover, the condition x1,x2 ∈ F
d
q , x1 6= x2 implies that

0 ≤ γ1, γ2 < qd and γ1 6= γ2. Therefore,

|γ1 − γ2| < qd. (61)

According to (60) and (61), NM− k
2 < |γ1 − γ2| < qd <

(2N2)d is true, which means that M − k
2 < d(2 + logN 2).

Therefore M < k
2 + d(2 + logN 2), and then

dH(β1,β2) = k −M > k − (
k

2
+ d(2 + logN 2))

=
k

2
− d(2 + logN 2).

The theorem is proved.

Example 11. Let k = 7, N = 50, d = 1, q = 2503, x1 =
(280), x2 = (1008), then γ1 = 280, γ2 = 1008, and

β1 =(280 mod 51, 280 mod 52, · · · , 280 mod 57)

=(25, 20, 15, 10, 5, 0, 52),

β2 =(1008 mod 51, 1008 mod 52, · · · , 1008 mod 57)

=(39, 20, 1, 36, 18, 0, 39).

Then dH(β1,β2) = 5 > k
2 − d(2 + logN 2), which is in

accordance with Theorem 5.

Based on Theorem 5, we provide an explicit construction

of a t-auxiliary set A(N, 56t, t) in the following Theorem 6.

Theorem 6. For all N, k, t ∈ N
∗, k ≥ 28t, k < ⌊

√
N − 1

2⌋.

Suppose F
4t−1
q = {x1,x2, · · · ,xq4t−1}, where q is a prime

number such that N2 − N < q < 2N2 − 2N . For any

s ∈
[

q4t−1
]

, suppose xs = (x1, x2, · · · , x4t−1), let cs =
(c1, c2, · · · , c2k), β(q,4t−1,k)(xs) = (β1, β2, · · · , βk) for all

1 ≤ i ≤ k, where cs is defined as follows:

{

c2i = (i− 1)⌊N
k ⌋+ 1 +

(

βi mod ⌊N
k ⌋
)

,

c2i−1 = (i− 1)⌊N
k ⌋+ 1 +

⌊

βi

⌊N
k
⌋

⌋

.
(62)

Then A(N, 2k, t) = {cs : s ∈
[

q4t−1
]

} is a t-auxiliary set

with cardinality q4t−1.

Proof: Without loss of generality, we prove the statement

for x1,x2 ∈ F
4t−1
q , x1 6= x2, let β1 = β(q,4t−1,k)(x1), β2 =

β(q,4t−1,k)(x2). Then, according to Theorem 5,

dH(β1,β2) >
k

2
− (4t− 1)(2 + logN 2)

>
k

2
− (12t− 3) >

28t

2
− 12t = 2t.

In equation (62), let mi = (i − 1)⌊N
k ⌋ + 1. Notice that

(c2i−1 −mi)⌊N
k ⌋ + (c2i −mi) = βi, for 1 ≤ i ≤ k. Given

βi ≤ N + k for all 1 ≤ i ≤ k, and k < ⌊
√
N − 1

2⌋, it follows

that
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⌊N

k

⌋2

>

(

N

k
− 1

)2

≥
(

N√
N − 3

2

− 1

)2

>

(√
N +

3

2
− 1

)2

=

(√
N +

1

2

)2

> N +
√
N > N + k ≥ βi.

Therefore, (c2i−1 −mi, c2i −mi) is exactly the ⌊N
k ⌋-ary rep-

resentation of βi, for all 1 ≤ i ≤ k.

Suppose β1 = (β1,1, β1,2, · · · , β1,k) and β2 = (β2,1, β2,2,
· · · , β2,k). Let Y = {i : β1,i 6= β2,i, 1 ≤ i ≤ k}, then

|Y | = dH(β1,β2). Notice that for all i ∈ Y , β1,i 6= β2,i, then

either c1,2i−1−mi 6= c2,2i−1−mi or c1,2i−mi 6= c2,2i−mi,

which means that

|H(c1, c2) ∩ {c1,2i−1, c1,2i}| ≥ 1, i ∈ Y. (63)

Notice that (i − 1)⌊N
k ⌋ < c1,2i−1, c1,2i ≤ i⌊N

k ⌋, and

therefore,

{c1,2i−1, c1,2i} ∩ {c1,2i′−1, c1,2i′} = ∅, ∀ 1 ≤ i < i′ ≤ k.
(64)

From (63) and (64),

|H(c1, c2)| =
k
∑

i=1

|H(c1, c2) ∩ {c1,2i−1, c1,2i}|

≥
∑

i∈Y

|H(c1, c2) ∩ {c1,2i−1, c1,2i}|

≥
∑

i∈Y

1 = |Y | = dH(β1,β2) > 2t.

From Definition 9, A(N, k, t) is indeed a t-auxiliary set.

Remark 6. Suppose we use k = 28t in Theorem 6 to construct

a t-auxiliary set A(N, 56t, t). Then the code Csys
B (N, 56t, t)

constructed using Theorem 4 based on this A(N, 56t, t) is an

order-optimal systematic t-block permutation code.

VI. COMPARISON OF CARDINALITY OF THE CODEBOOKS

In Section IV, we constructed a t-generalized Cayley code

CG(N, t) = Cα(N, 4t). Let the cardinality of CG(N, t) be

AG(N, t). In [5], a t-generalized Cayley code with cardinality

AρgC(N, t) was constructed. We next compare in Lemma 14

the logarithms of the cardinalities of these two codes, which

reflects the redundancy in terms of bits. We show that the

proposed scheme requires a smaller number of redundant bits

than its counterpart presented in [5] for sufficiently large N
and t = o( N

logN ).

Lemma 14. log|AG(N, t)| > log|AρgC(N, t)| when t <
N

(16 logN+8) for sufficiently large N .

Proof:

We know from [12, Appendix A] that:

log|AρgC(N, t)| ≤ N logN − (2 + log e)N +O
(

(logN)2
)

.
(65)

Also,

log|AG(N, t)|
> logN !− (16t(2 logN + 1))

>

(

N +
1

2

)

logN − (log e)N − 16t(2 logN + 1).

(66)

Then,

log|AG(N, t)| − log|AρgC(N, t)|

>

(

N +
1

2

)

logN − (log e)N − 16t(2 logN + 1)

−
(

N logN − (2 + log e)N +O
(

(logN)2
))

=
1

2
logN + 2N − 16t(2 logN + 1) +O

(

(logN)2
)

(67)

for sufficiently large N and t < N
(16 logN+8) .

From the above discussion, our proposed code in Section IV

indeed has a higher rate than the interleaving-based code for

sufficiently large N and t = o
(

N
logN

)

.

Based on Remark 6 in Section V, we presented a con-

struction of systematic t-generalized Cayley code C′
G(N, t) =

Csys
B (N, 56·4t, 4t) = Csys

B (N, 224t, 4t) with cardinality A′
G(N,

t).
In the next Lemma 15, we compare the logarithm of A′

G(N,
t) with that of AρgC(N, t).

Lemma 15. A′
G(N, t) > AρgC(N, t) when t <

min{ N
112 logN ,

1
112⌊

√
N − 1

2⌋} for sufficiently large N .

Proof: We know from Lemma 7 that:

log|A′
G(N, t)| > (N +

1

2
) logN − (log e)N − 224t logN.

(68)

Then it follows from (68) and (65) that

log|A′
G(N, t)| − log|AρgC(N, t)|

>

(

N +
1

2

)

logN − (log e)N − 224t logN

−
(

N logN − (2 + log e)N +O
(

(logN)2
))

=
1

2
logN + 2N − 224t logN +O

(

(logN)2
)

.

(69)

for sufficiently large N and t < min{ N
112 logN ,

1
112⌊

√
N− 1

2⌋}.

From the above discussion, our proposed systematic code

indeed has a higher rate than the interleaving-based code, for

sufficiently large N and t = o
(

N
logN

)

, in the generalized

Cayley distance.

VII. CONCLUSION

The generalized Cayley metric is a distance measure that

generalizes the Kendall-tau metric and the Ulam metric. In-

terleaving was previously shown to be convenient in construc-

tions of permutation codes in the generalized Cayley metric.

However, interleaving incurs a noticeable rate penalty such that

the constructed permutation codes cannot be order-optimal. In

this paper, we presented a framework for constructing order-

optimal permutation codes that does not require interleaving.
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Based on this framework, we then presented an explicit

construction of systematic permutation codes from so-called

extensions of permutations. We further provided a systematic

construction that is order-optimal. Lastly, we proved that our

proposed codes are more rate efficient than the existing coding

schemes based on interleaving for sufficiently large N and

t = o
(

N
logN

)

.

APPENDIX A

PROOF OF LEMMA 2

Lemma 2. For all π1, π2 ∈ SN ,

dB(π1, π2) = |A(π2) \A(π1)| = |A(π1) \A(π2)|.
Proof: According to the symmetry property of the block

permutation distance, it is sufficient to prove dB(π1, π2) =
|A(π1) \A(π2)|.

Suppose π1, π2 ∈ SN such that dB(π1, π2) = d. Then,

there exists σ ∈ Sd+1, ψ1, ψ2, · · · , ψd+1, such that π1 =
(ψ1, ψ2, · · · , ψd+1) and π2 =

(

ψσ(1), ψσ(2), · · · , ψσ(d+1)

)

.

Suppose ψk = π1 [ik−1 + 1 : ik] for 1 ≤ k ≤ d + 1,

where 0 = i0 < i1 · · · < id < id+1 = N . Then (π1(i),
π1(i+ 1)) ∈ (A(π1) \ A(π2)) if and only if i ∈ {i1, · · · , id}.

Therefore, |A(π1) \A(π2)| = |{i1, · · · , id}| = d.

APPENDIX B

PROOF OF LEMMA 3

Lemma 3. For all π1, π2 ∈ SN , the following inequality holds,

wB (π1 ◦ π2) ≤ wB (π1) + wB (π2) .

Proof:

For π ∈ SN , define B(π) as follows,

B(π) , {i|π(i+ 1) 6= π(i) + 1, 1 ≤ i < N}.
Then, for all i ∈ B(π), (π(i), π(i+ 1)) /∈ A(e). Therefore,

B(π) = {i|(π(i), π(i+ 1)) ∈ (A(π) \A(e)) , 1 ≤ i < N},
which indicates that

|B(π)| = |A(π) \A(e)| = wB(π). (70)

Let B1 = B(π1), B2 = B(π2), B3 = B(π1 ◦ π2). Then ∀
i ∈ B3,

π1 (π2(i+ 1)) 6= π1 (π2(i)) + 1.

Therefore, i must satisfy at least one of the conditions below:

{π2(i+ 1) 6= π2(i) + 1}, or
{π2(i) = k and π1(k + 1) 6= π1(k) + 1}. (71)

Equation (71) means that either i ∈ B2 or π2(i) ∈ B1 is

true for all i ∈ B3. Then the function f : (B3 \B2) → B1

specified by f(i) , π2(i) is an injection, which implies that

|B3| = |B3 \B2|+ |B3 ∩B2| ≤ |B1|+ |B2|. (72)

Apply (70) to (72), we obtain the following inequality:

wB (π1 ◦ π2) ≤ wB (π1) + wB (π2) .

APPENDIX C

PROOF OF LEMMA 5

Lemma 5. For all N ∈ N
∗, t ≤ N −

√
N − 1, bB(N, t) is

bounded by the following inequality:

t
∏

k=1

(N − k) ≤ bB(N, t) ≤
t
∏

k=0

(N − k).

Proof: Denote the number of permutations of length N
with block permutation weight m by F (m), then bB(N, t) =

t
∑

m=0
F (m).

We know that F (0) = 1, and from [18, equation (3)], for

all 1 ≤ m ≤ t,

F (m) =

(

N − 1

m

)

m!
m
∑

k=0

(−1)m−k (k + 1)

(m− k)!
. (73)

Let ak = (k+1)
(m−k)! , 0 ≤ k ≤ m, 1 ≤ m ≤ t. Then, m+ 1 =

am > am−1 = m > am−2 > · · · > a0 > 0. Therefore, the

following inequalities hold true,

a2k − a2k−1 + · · ·+ a0 = a0 +

k
∑

i=1

(a2i − a2i−1) > 0,

a2k−1 − a2k−2 + · · · − a0 =

k
∑

i=1

(a2i−1 − a2i−2) > 0.

For 1 ≤ m ≤ t, define Am as follows,

Am =

m
∑

k=0

(−1)m−k (k + 1)

(m− k)!
.

Then, A1 = 1 and for 2 ≤ m ≤ t,

Am = m+ 1− (am−1 − am−2 + · · ·+ (−1)m−1a0) < m+ 1,

Am = m+ 1−m+ (am−2 − am−3 + · · ·+ (−1)ma0) > 1.
(74)

According to (73) and (74), for all 1 ≤ m ≤ t,

(

N − 1

m

)

m! ≤ F (m) <

(

N − 1

m

)

(m+ 1)!.

To derive the upper bound of the ballsize bB(N, t), we first

find an upper bound of F (m), 1 ≤ m ≤ t, as follows,

F (m) ≤
(

N − 1

m

)

(m+ 1)! = (m+ 1) ·
m
∏

k=1

(N − k).

For t ≤ N −
√
N − 1, it follows that i ≤ N −

√
N − 1 for all

1 ≤ i ≤ t. Therefore, for all 1 ≤ i ≤ t,

(N − i− 1)2 ≥ (N − (N −
√
N))2 = N > i+ 1.
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Then,

bB(N, t) =

t
∑

i=0

F (i)

≤1 +

t
∑

i=1

(i+ 1) ·
i
∏

k=1

(N − k)

=1 +

t
∑

i=1

(N − (N − i− 1)) ·
i
∏

k=1

(N − k)

=1 +

t
∑

i=1

(

i
∏

k=0

(N − k)−
i+1
∏

k=1

(N − k)

)

=
t
∏

k=0

(N − k)−
t
∑

i=2

(

i+1
∏

k=1

(N − k)−
i−1
∏

k=0

(N − k)

)

− (N − 1)(N − 2) + 1

=
t
∏

k=0

(N − k)−
t
∑

i=2

(

i−1
∏

k=1

(N − k)

)

((N − i)(N − i− 1)−N)− ((N − 1)(N − 2)− 1)

=
t
∏

k=0

(N − k)−
t
∑

i=2

(

i−1
∏

k=1

(N − k)

)

(

(N − i− 1)2 − i− 1
)

− ((N − 1)(N − 2)− 1)

≤
t
∏

k=0

(N − k).

Similarly, for the lower bound, the following inequality

holds true.

bB(N, t) =

t
∑

i=0

F (i) ≥ 1 +

t
∑

i=1

i
∏

k=1

(N − k) >

t
∏

k=1

(N − k).

The lemma is proved.

APPENDIX D

PROOF OF LEMMA 6

Lemma 6. For all N ∈ N
∗, t ≤ min{N −

√
N − 1, N−1

4 },

bG(N, t) is bounded as follows:

t
∏

k=1

(N − k) ≤ bG(N, t) ≤
4t
∏

k=0

(N − k).

Proof: The upper bound is obtained from replacing t by

4t in (17) and utilizing (14). Note that π ∈ BG(N, t, e) implies

that dG(π, e) ≤ t. Then from (14), dB(π, e) ≤ 4dG(π, e) ≤ 4t
holds true, which means that π ∈ BB(N, 4t, e). Therefore,

BG(N, t, e) ⊆ BB(N, 4t, e), which implies that bG(N, t) ≤
bB(N, 4t). From (17) we will get the upper bound.

Similarly, (14) also implies that BB(N, t, e) ⊆ BG(N, t, e),
which means that bB(N, t) ≤ bG(N, t). From (17) the lower

bound follows immediately. The lemma is proved.

APPENDIX E

PROOF OF LEMMA 8

Lemma 8. For all π1, π2 ∈ SN such that π1 6= π2, if

α(q,d)(π1) = α(q,d)(π2), then,

|ν(π1)∆ν(π2)| > 2d.

Proof: Let B1 = ν(π1), B2 = ν(π2). We prove the

statement by contradiction. If the lemma is not true, i.e.,

|B1∆B2| ≤ 2d, then k = |D1| = |D2| ≤ d, where D1 =
B1 \ B2, D2 = B2 \ B1. Suppose D1 = {x1, x2, · · · , xk},

D2 = {xk+1, xk+2, · · · , x2k}. Then, α(q,d)(π1) = α(q,d)(π2)
is equivalent to the following equations.



















x1 + · · ·+ xk = xk+1 + · · ·+ x2k,
x21 + · · ·+ x2k = x2k+1 + · · ·+ x22k,

...

x2d−1
1 + · · ·+ x2d−1

k = x2d−1
k+1 + · · ·+ x2d−1

2k .

(75)

From (75), it follows that















1 1 · · · 1
x1 x2 · · · x2k
x21 x22 · · · x22k
...

...
. . .

...

x2d−1
1 x2d−1

2 · · · x2d−1
2k















y = 0,

where y = (y1, y2, · · · , y2k)T , and

yi =

{

1, 1 ≤ i ≤ k,

−1, k < i ≤ 2k.

Given that 2k ≤ 2d, the above equation implies that















1 1 · · · 1
x1 x2 · · · x2k
x21 x22 · · · x22k
...

...
. . .

...

x2k−1
1 x2k−1

2 · · · x2k−1
2k















y = 0. (76)

Denote the Vandermonde matrix in equation (76) by U.

Then y is in the nullspace of U. Therefore, U is singular,

which implies that the determinant of U is equal to 0 in Fq ,

i.e.,

0 = detU =
∏

1≤i<j≤2k

(xi − xj) . (77)

As q is a divisor of 0, q should also be a divisor of the right

hand side of equation (77), which implies that ∃ i 6= j ∈ [2k]
such that q|(xi−xj). Then xi = xj on Fq , and we must have

xi ∈ D1, xj ∈ D2 or xi ∈ D2, xj ∈ D1, which implies that

xi, xj ∈ D1 ∩D2, a contradiction.

APPENDIX F

PROOF OF LEMMA 9

Lemma 9. Suppose A ∈ F
(4t−1)×(2t)
q , b ∈ F

4t−1
q are defined

in (43) and (44), respectively. Consider the following equation

defined on Fq:

Ac = b.

For any vector c ∈ F
2t
q , c is a nonzero solution to (45) if

and only if (h1(c), h2(c)) is a nonzero solution to (40).

Proof: Suppose

f1 = XN−1 + a1X
N−2 + · · ·+ a4t−1X

N−4t + g1,

f2 = XN−1 + a′1X
N−2 + · · ·+ a′4t−1X

N−4t + g2.
(78)
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Additionally, suppose

h1 · f1 = XN+t−1 + sN+t−2X
N+t−2 + · · ·+ s0,

h2 · f2 = XN+t−1 + s′N+t−2X
N+t−2 + · · ·+ s′0.

Then, from (78) and (42), it follows that















































sN+t−2 = a1 + c1,

sN+t−3 = a2 + c1a1 + c2,
...

sN−1 = at + c1at−1 + · · ·+ ct,
...

sN−3t = a4t−1 + c1a4t−2 + c2a4t−3 + · · ·+ cta3t−1.

Similarly, we also have















































s′N+t−2 = a′1 + c′1,

s′N+t−3 = a′2 + c′1a
′
1 + c′2,

...

s′N−1 = a′t + c′1a
′
t−1 + · · ·+ c′t,

...

s′N−3t = a′4t−1 + c′1a
′
4t−2 + c′2a

′
4t−3 + · · ·+ c′ta

′
3t−1.

Then (40) is true iff si = s′i for all N − 3t ≤ i ≤ N + t− 2,

which is equivalent to the following equation:





















1
a1 1
...

...
. . .

at−1 at−2 · · · 1
...

...
. . .

...

a4t−2 a4t−3 · · · a3t−1































c1
c2
...

ct











+











a1
a2
...

a4t−1











=





















1
a′1 1
...

...
. . .

a′t−1 a′t−2 · · · 1
...

...
. . .

...

a′4t−2 a′4t−3 · · · a′3t−1































c′1
c′2
...

c′t











+











a′1
a′2
...

a′4t−1











.

(79)

We note that (79) is equivalent to (45).

APPENDIX G

PROOF OF LEMMA 10

Lemma 10. Let π1, π2 ∈ SN , s1, s2 ∈ [N ]. For any two

extensions E(π1, s1) and E(π2, s2), if s1 is a jump point of

E(π1, s1) with respect to E(π2, s2), then

dB(E(π1, s1), E(π2, s2)) > dB(π1, π2),

else

dB(E(π1, s1), E(π2, s2)) = dB(π1, π2).

Proof: Let σ1 = E(π1, s1) and σ2 = E(π2, s2). Recall

the notion of characteristic sets in Definition 3. Suppose

A(π1), A(π2), A(σ1), A(σ2) are the characteristic sets of π1,

π2, σ1, σ2, respectively. According to Lemma 2,

dB(π1, π2) = |A(π1) \A(π2)|,
dB(σ1, σ2) = |A(σ1) \A(σ2)|.

(80)

Let k1 = π−1
1 (s1), k2 = π−1

2 (s2), then π1(k1) = s1 and

π2(k2) = s2. If 1 ≤ k1, k2 < N , let π1(k1 + 1) = j1 and

π2(k2 + 1) = j2.

Suppose first s1 is a jump point, then consider the following

cases.

1) s1 6= s2 and either k1 = N or k2 = N .

a) k1 = k2 = N . In this case, A(σ1) = A(π1) ∪ {(s1,
N + 1)}, A(σ2) = A(π2) ∪ {(s2, N + 1)}. Therefore,

A(σ1) \ A(σ2) = (A(π1) \A(π2)) ∪ {(s1, N + 1)}.

From (80), dB(σ1, σ2) = dB(π1, π2) + 1 follows.

b) k1 = N 6= k2. In this case, A(σ1) = A(π1) ∪ {(s1,
N + 1)}, A(σ2) = (A(π2) \ {(s2, j2)}) ∪ {(s2,
N + 1), (N + 1, j2)}. Therefore, A(σ1) \ A(σ2) =
(A(π1) \ (A(π2) \ {(s2, j2)})) ∪ {(s1, N + 1)},

which means ((A(π1) \A(π2)) ∪ {(s1, N + 1)}) ⊆
(A(σ1) \A(σ2)). From (80), it follows that dB(σ1,
σ2) ≥ dB(π1, π2) + 1.

c) k2 = N 6= k1. Following the same logic in the

previous case, dB(σ1, σ2) ≥ dB(π1, π2)+1 holds true.

2) s1 6= s2, k1, k2 6= N . Since s1 is a jump point, j1 6= j2.

a) In this case, A(σ1) = (A(π1) \ {(s1, j1)}) ∪ {(s1,
N + 1), (N + 1, j1)}, A(σ2) = (A(π2) \ {(s2, j2)}) ∪
{(s2, N + 1), (N + 1, j2)}. Therefore, the equation

(((A(π1) \A(p2)) \ {s1, j1}) ∪ {(s1, N + 1), (N + 1,
j1)}) ⊆ (A(σ1) \A(σ2)) follows. From (80), dB(σ1,
σ2) ≥ dB(π1, π2) + 1.

If s1 is not a jump point, then consider the following cases.

1) s1 = s2 and either k1 = N or k2 = N .

a) k1 = k2 = N . In this case, A(σ1) = A(π1) ∪ {(s1,
N + 1)}, A(σ2) = A(π2) ∪ {(s1, N + 1)}. Therefore,

A(σ1) \ A(σ2) = A(π1) \ A(π2). From (80), dB(σ1,
σ2) = dB(π1, π2) follows.

b) k1 = N 6= k2. In this case, A(σ1) = A(π1) ∪ {(s1,
N+1)}, A(σ2) = (A(π2) \ {(s1, j2)})∪{(s1, N+1),
(N + 1, j2)}. Therefore, A(σ1) \ A(σ2) = A(π1) \
(A(π2) \ {(s1, j2)}) = A(π1) \ A(π2). From (80), it

follows that dB(σ1, σ2) = dB(π1, π2).
c) k2 = N 6= k1. Follow the same logic in the previous

case, dB(σ1, σ2) = dB(π1, π2) holds true.

2) k1, k2 6= N . Since s1 is not a jump point, either s1 = s2
or j1 = j2 must be satisfied.

a) s1 = s2 and j1 = j2. In this case, A(σ1) =
(A(π1) \ {(s1, j1)}) ∪ {(s1, N + 1), (N + 1, j1)},

A(σ2) = (A(π2) \ {(s1, j1)}) ∪ {(s1, N + 1), (N + 1,
j1)}. Therefore, A(σ1)\A(σ2) = A(π1)\A(π2). From

(80), dB(σ1, σ2) = dB(π1, π2) follows.

b) s1 = s2 and j1 6= j2. In this case,

A(σ1) = (A(π1) \ {(s1, j1)}) ∪ {(s1, N + 1),
(N + 1, j1)}, A(σ2) = (A(π2) \ {(s1, j2)}) ∪ {(s1,
N + 1), (N + 1, j2)}. Therefore, A(σ1) \ A(σ2) =
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((A(π1) \A(π2)) \ {(s1, j1)}) ∪ {(N + 1, j1)}. From

(80), it follows that dB(σ1, σ2) = dB(π1, π2).
c) s1 6= s2 and j1 = j2. Follow the same logic as

indicated in the previous case, dB(σ1, σ2) = dB(π1,
π2) holds true.

The lemma is proved.

APPENDIX H

PROOF OF LEMMA 11

Lemma 11. Let π1, π2 ∈ SN , s1, s2 ∈ [N ]. For any extensions

E(π1, S1), E(π2, S2) of π1, π2 on extension sequences S1, S2,

respectively, it follows that

dB(E(π1, S1), E(π2, S2)) ≥ |H(S1, S2)|.

Proof: For all i ∈ H(S1, S2), let

m(i) = min{m : s1,m = i, s2,m 6= i}. (81)

Suppose J1,m(i)−1 = (s1,1, s1,2, · · · , s1,m(i)−1),

J2,m(i)−1 = (s2,1, s2,2, · · · , s2,m(i)−1). Let σ
m(i)−1
1 = E(π1,

J1,m(i)−1) and σ
m(i)−1
2 = E(π2, J2,m(i)−1). Recall the

definition of the jump set F (π1, π2, S1, S2) in Definition 7.

Consider the following two cases:

1) If m(i) ∈ F (π1, π2, S1, S2), then s1,m(i) = i is a jump

point of E(σ
m(i)−1
1 , s1,m(i)) with respect to E(σ

m(i)−1
2 ,

s2,m(i)).
2) If m(i) /∈ F (π1, π2, I1, I2), then i is not a jump point of

E(σ
m(i)−1
1 , s1,m(i)) with respect to E(σ

m(i)−1
2 , s2,m(i)).

Let k′1 = (σ
m(i)−1
1 )−1(s1,m(i)), k1 = π−1

1 (s1,m(i)),

k′2 = (σ
m(i)−1
2 )−1(s2,m(i)), k2 = π−1

2 (s2,m(i)), then

σ
m(i)−1
1 (k′1) = π1(k1) = s1,m(i) and σ

m(i)−1
2 (k′2) =

π2(k2) = s2,m(i). Given that s1,m(i) is not a jump point

and s1,m(i) 6= s2,m(i), it follows from Definition 6 that k1,

k2 6= N+m(i)−1 and σ
m(i)−1
1 (k′1+1) = σ

m(i)−1
2 (k′2+1)

must be true. Let j = σ
m(i)−1
1 (k′1+1) = σ

m(i)−1
2 (k′2+1).

From (81), π1(k1 + 1) = π2(k2 + 1) = j ∈ [N ] holds,

otherwise N < j < N + m(i) is inserted after i in π1
and is not inserted after i in π2, a contradiction. Then

(i, j) ∈ A(π1), (s2,m(i), j) ∈ A(π2) and s2,m(i) 6= i.
Therefore (i, j) ∈ (A(π1) \A(π2)).

Suppose J = {i|m(i) /∈ F (π1, π2, S1, S2), i ∈ H(S1, S2)},

then from the above discussion:

|F (π1, π2, S1, S2)| ≥ |H(S1, S2) \ J |,
dB(π1, π2) = |A(π1) \A(π2)| ≥ |J |.

And from Lemma 10, it follows that

dB(E(π1, S1), E(π2, S2)) ≥dB(π1, π2) + |F (π1, π2, S1, S2)|
≥|H(S1, S2) \ J |+ |J |
≥|H(S1, S2)|.

The lemma is proved.

APPENDIX I

PROOF OF LEMMA 13

Lemma 13. For all k,N ∈ N
∗, k > 3, N > k2, consider an

arbitrary subset Y ⊂ [k], where |Y | = M < k, Y = {i1, i2,
· · · , iM}, then

LCM(N + i1, N + i2, · · · , N + iM ) > NM− k
2 .

Proof: For all r, n ∈ N
∗, it follows from [19, equation

(13)] that

gr(n) = GCD(r!, (n+ r)gr−1(n)), (82)

where for all r ∈ N, n ∈ N
∗,

gr(n) =
n(n+ 1) · · · (n+ r)

LCM(n, n+ 1, · · · , n+ r)
. (83)

From (82) and (83), the following statement holds true,

gr(n)|r!, ∀r, n ∈ N
∗, (84)

which implies that

n(n+ 1) · · · (n+ r)

LCM(n, n+ 1, · · · , n+ r)
≤ r!. (85)

Let n = N +1, r = k− 1 in (85). Then, for all N, k ∈ N
∗,

LCM(N + 1, N + 2, · · · , N + k)

≥ (N + 1)(N + 2) · · · (N + k)

(k − 1)!
.

(86)

Let [k] \ Y = {j1, j2, · · · , jk−M}. Notice that

LCM(N + 1, N + 2, · · · , N + k)

=LCM(LCM(N + i1, N + i2, · · · , N + iM ) ,

LCM(N + j1, N + j2, · · · , N + jk−M ))

≤
[

k−M
∏

s=1

(N + js)

]

LCM(N + i1, N + i2, · · · , N + iM ) .

(87)

From equation (86) and (87),

LCM(N + i1, N + i2, · · · , N + iM )

≥LCM(N + 1, N + 2, · · · , N + k)
k−M
∏

s=1
(N + js)

≥ (N + 1)(N + 2) · · · (N + k)

(k − 1)!
k−M
∏

s=1
(N + js)

=

M
∏

s=1
(N + is)

(k − 1)!
>
NM

k!
.

From Lemma 7, for all k > 3 and N > k2,

NM

k!
>

NM

2(k+
1
2 ) log k−k+2

>
NM2k−2

kk+1
≥ NM

kk
> NM− k

2 .

The lemma is proved.
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