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a b s t r a c t

For a finite group G, a positive integer λ, and subsets X, Y of G, write λG = XY if the
products xy (x ∈ X, y ∈ Y ), cover G precisely λ times. Such a subset Y is called a code
with respect to X , and when λ = 1 it is a perfect code in the Cayley graph Cay (G, X). In
this paper we present various families of examples of such codes, with X closed under
conjugation and Y a subgroup, in symmetric groups, and also in special linear groups
SL2(q). We also propose conjectures about the existence of some much wider families.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

According to [2], a perfect code in a finite graph Γ is a set C of vertices such that every vertex of Γ is at distance at most
1 from a unique vertex in C . This generalizes the classical notion of a perfect t-error correcting code over an alphabet A
of size q, which can be defined as a perfect code in the graph H(n, q, t) defined as follows: the vertex set is An, and two
vertices are joined if and only if their Hamming distance is at most t (i.e. they differ in at most t positions). Together with
the observation that H(n, q, t) is a Cayley graph of the group (Z/qZ)n, this leads naturally to the study of perfect codes in
Cayley graphs [2].

If G is a finite group with a subset X not containing the identity, we define the Cayley graph Cay(G, X) to have vertex
set G, with an edge from g to h if and only if gh−1

∈ X . A subset Y of G is a perfect code in this graph if and only if every
element of G can be written uniquely as a product xy with x ∈ X , y ∈ Y . More generally, following [4], for a positive
integer λ and subsets X, Y of G we write

λG = XY

to mean that for every element g ∈ G, there are precisely λ pairs (x, y) ∈ X × Y such that g = xy. We say that X and
Y divide G. Such a subset Y is called a code with respect to X (it is of course a perfect code in the case where λ = 1).
Such codes have attracted quite a bit of attention (see for example [1,2]), particularly in the case where the subset X is
closed under conjugation. Some representation theory is developed in [1,4] to study this case, but there is something of
a lack of examples in the literature. In this paper we present some families of examples of codes in symmetric and linear
groups in which X is closed under conjugation and Y is a subgroup. These codes are not perfect, and indeed have rather
large values of λ, but they exhibit some attractive features, and we make some conjectures about the existence of many
further families.
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Our first result concerns the symmetric groups Sn. For 1 ≤ k ≤
1
2n, let Yk denote the subgroup Sk×Sn−k of Sn, where the

factor Sk permutes the subset {1, . . . , k} and the factor Sn−k permutes the subset {k+1, . . . , n}. We address the question:
for which conjugacy classes X of Sn is it the case that

λSn = XYk

for some λ? We answer this for k ≤ 3:

Theorem 1. Let k ≤ 3 and n > 2k. Suppose X = xSn is a conjugacy class in Sn.

(i) For k = 1 we have λSn = XY1 if and only if x has exactly one fixed point.
(ii) For k = 2 we have λSn = XY2 if and only if the cycle-type of x has exactly one fixed point and exactly one 2-cycle.
(iii) For k = 3 we have λSn = XY3 if and only if the cycle-type of x has exactly one fixed point, exactly one 2-cycle, and no

3-cycles.

In each case λ = |xYk |, the size of the Yk-conjugacy class of x (where x is taken to lie in Yk).

Note that the equation λSn = XYk tells us that every left coset of Yk contains precisely λ members of X (see
Lemma 2.1(i)).

We have not been able to solve the problem for general k, but we propose a conjecture for the general case in Section 2
(see Conjecture 2.3).

Our other family of examples is for the special linear groups SL2(q). For q even, [4, Theorem 6] restricts the conjugation-
closed subsets X that can possibly divide SL2(q). One possibility is that X is a conjugacy class of transvections (that is,

conjugates of
(
1 1
0 1

)
). Our next result shows that this class does indeed divide SL2(q) (for both even and odd q). Denote

by B the Borel subgroup consisting of all upper triangular matrices.

Theorem 2. Let G = SL2(q), let X be a conjugacy class of transvections in G and let B be a Borel subgroup. Then

λG = XB,

where λ = (q − 1)/(2, q − 1).

At the end of Section 3 we conjecture some further examples for SL2(q).

2. Symmetric groups

In this section we prove two preliminary lemmas and then proceed to prove Theorem 1.

Lemma 2.1. Let G be a finite group with a subgroup H.

(i) Let λ ∈ N and X ⊆ G. Then λG = XH if and only if |gH ∩ X | = λ for all g ∈ G.
(ii) Suppose X = xG is a conjugacy class of G with x ∈ H, and λG = XH. Then

(a) xG ∩ H = xH ,
(b) CG(x) = CH (x), and
(c) λ = |xH |.

Proof. (i) Let g ∈ G. There are precisely λ pairs (x, h) ∈ X × H such that xh = g , and these pairs correspond bijectively
with the elements x = gh−1 of gH ∩ X .

(ii) Suppose X = xG with x ∈ H and λG = XH . By (i) with g = 1, we have λ = |H ∩ X |. On the other hand we have

λ =
|H| |X |

|G|
=

|H|

|CG(x)|
≤

|H|

|CH (x)|
= |xH |.

Since |H ∩ X | ≥ |xH |, equality must hold in the above, and all parts of (ii) follow. □

In the proof of Theorem 1 we will use the following elementary result about cosets and conjugacy class sizes.

Lemma 2.2. (i) If x ∈ Sn has cycle-type (dk11 , dk22 , . . . , dktt ), where the di are distinct, then

|xSn | =
n!

k1! · · · kt !d
k1
1 dk22 · · · dktt

.

(ii) Let Yk = Sk × Sn−k be the stabilizer in Sn of {1, . . . .k}. Then for g ∈ Sn the left coset

gYk = {y ∈ Sn | y : {1, . . . , k} −→ {g(1), . . . , g(k)}}.
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Proof of Theorem 1. (i) Suppose k = 1, so that Y1 = Sn−1 < Sn. Assume that x ∈ Sn satisfies λSn = XY1, where X = xSn ,
and let l be the number of fixed points of x. By Lemma 2.1(i) we have λ = |X ∩ Y1|, so l ≥ 1 and we may take x ∈ Y1.
Also CY1 (x) = CSn (x) by Lemma 2.1(ii), which implies that l = 1.

Conversely, assume that x ∈ Y1 has a unique fixed point (namely, the point 1), and let X = xSn . Then x has cycle-type
(dk11 , dk22 , . . . , dkss , 1), where the di are distinct and di ≥ 2 for each i. By Lemma 2.1(i), to prove that λSn = XY1 it suffices
to show that |gY1 ∩ X | = λ for all g ∈ Sn, where λ = |xY1 |. This is certainly the case if g ∈ Y1, so suppose that g(1) ̸= 1;
without loss of generality we can take g(1) = 2. Then elements of gY1 ∩ X have (1, 2, . . . ) as a di-cycle for some i, and
upon fixing an i there are (n − 2) · · · (n − di + 1) such cycles. It remains to count the number of elements of cycle-type
(dk11 , . . . , dki−1

i , . . . , dkss , 1) in Sn−di which is given by Lemma 2.2. Multiplying these contributions together and summing
over i, we see that

|gY1 ∩ X | =

s∑
i=1

(n − 2) · · · (n − di + 1)
(n − di)!kidi

k1! · · · ks!d
k1
1 · · · dkss 1

=
(n − 1)!

k1! · · · ks!d
k1
1 · · · dkss

= |xY1 |,

as required.
(ii) Suppose k = 2, so that Y2 = S2 × Sn−2 < Sn. Assume that x ∈ Sn satisfies λSn = XY2, where X = xSn , and let the

cycle-type of x be (dk11 , dk22 , . . . , dkss , 2l, 1m) with di ≥ 3 for all i. We need to show that (l,m) = (1, 1). As above we can
take x ∈ Y2. By Lemma 2.1(ii) we have xSn ∩ Y2 = xY2 and CSn (x) = CY2 (x). These facts force (l,m) to be one of (1, 1), (1, 0)
and (0, 2). We need to exclude the latter two possibilities.

Suppose that (l,m) = (0, 2). We count elements of xSn in the coset gY2, where {g(1), g(2)} = {1, 3}. Such elements
either send 1 ↦→ 1, 2 ↦→ 3 or 2 ↦→ 1 ↦→ 3. The following table displays the number of elements in xSn mapping 1 and 2
as specified:

1 ↦→ 1, 2 ↦→ 3 2 ↦→ 1 ↦→ 3
(2 3 · · ·) a di − cycle (2 1 3 · · ·) a di − cycle

(n−3)!kidi
k1!···ks!d

k1
1 ···dkss

(n−3)!kidi
2k1!···ks!d

k1
1 ···dkss

Hence we see that

|gY2 ∩ xSn | =
3
2

∑s
1(n − 3)!kidi

k1! · · · ks!d
k1
1 · · · dkss

=
3
2
|xY2 |,

which contradicts Lemma 2.1(ii)(c).
Now suppose that (l,m) = (1, 0). Again we count elements of xSn in the coset gY2, where {g(1), g(2)} = {1, 3}. This

time, such elements must send 2 ↦→ 1 ↦→ 3, and we count as above to see that |gY2 ∩ xSn | =
1
2 |x

Y2 |, again contradicting
Lemma 2.1(ii)(c). This completes the proof of the left to right implication in Theorem 1(ii).

For the converse, let x ∈ Y2 have cycle-type (dk11 , dk22 , . . . , dkss , 2, 1), where di ≥ 3 for each i, and let X = xSn . We need
to show that |gY2 ∩ X | = |xY2 | for all g ∈ Sn. There are three types of cosets gY2 which will be considered separately.

Case 1. Let {g(1), g(2)} = {1, 2}. Here g ∈ Y2 and |gY2 ∩ X | = |Y2 ∩ X | = |xY2 |, as required.
Case 2. Let {g(1), g(2)} = {1, 3}, so either 1 ↦→ 1 and 2 ↦→ 3 or 2 ↦→ 1 ↦→ 3. In each case we consider in which cycles

these elements could lie and count the number of such elements in X using Lemma 2.2. The details are displayed below.

1 ↦→ 1, 2 ↦→ 3 2 ↦→ 1 ↦→ 3
(2 3) a 2-cycle (2 3 · · ·) a di-cycle (2 1 3 · · ·) a di-cycle

(n−3)!

k1!···ks!d
k1
1 ···dkss

(n−3)!kidi
k1!···ks!d

k1
1 ···dkss

(n−3)!kidi
2k1!···ks!d

k1
1 ···dkss

Summing over the relevant indices we obtain,

|gY2 ∩ X | =
(n − 3)!

k1! · · · ks!d
k1
1 · · · dkss

+ 2
(n − 3)!

∑s
i=1 kidi

2k1! · · · ks!d
k1
1 · · · dkss

=
(n − 2)!

k1! · · · ks!d
k1
1 · · · dkss

= |xY2 |.

Case 3. Finally, let {g(1), g(2)} = {3, 4}. The two mappings {1, 2} → {g(1), g(2)} give rise to identical arguments so
assume that 1 ↦→ 3 and 2 ↦→ 4. Four possibilities occur according to which cycles contain 1, 3 and 2, 4; the results are
contained in the table below.

A 2-cycle and a The same di-cycle Different di-cycles A di-cycle and a
di-cycle dj-cycle, i ̸= j
2(n−4)!kidi

k1!···ks!d
k1
1 ···dkss

(n−4)!kidi(di−3)

2k1!···ks!d
k1
1 ···dkss

(n−4)!ki(ki−1)d2i
2k1!···ks!d

k1
1 ···dkss

(n−4)!kidikjdj

2k1!···ks!d
k1
1 ···dkss
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Summing over the relevant indices, and scaling by 2 to account for the mapping 1 ↦→ 4 and 2 ↦→ 3, we get the following
desired expression

|gY2 ∩ X | = 2

{
2(n − 4)!

∑s
i=1 kidi

k1! · · · ks!d
k1
1 · · · dkss

+
(n − 4)!

∑s
i=1 kidi(di − 3)

2k1! · · · ks!d
k1
1 · · · dkss

+
(n − 4)!

∑s
i=1 ki(ki − 1)d2i

2k1! · · · ks!d
k1
1 · · · dkss

+
(n − 4)!

∑
i̸=j kidikjdj

2k1! · · · ks!d
k1
1 · · · dkss

}
=

(n − 2)!

k1! · · · ks!d
k1
1 · · · dkss

.

This completes the proof of part (ii) of Theorem 1.
(iii) The proof of this follows exactly the same strategy as (ii). We leave the details to the reader.

This completes the proof of Theorem 1. □

We conclude this section with a conjecture for the general case of factorizations λSn = XYk, where Yk = Sk × Sn−k and
X = xSn . Let x have cycle-type (dk11 , . . . , dktt ). Lemma 2.1 tells us that if λSn = XYk then we must have CSn (x) = CYk (x) and
also xSn ∩ Yk = xYk . This means that there is a unique subset I ⊆ {1, . . . , t} such that

∑
i∈I nidi = k for some 1 ≤ ni ≤ ki.

We have amassed some computational data for various small values of n and k, and based on this, we conjecture that this
subset I must be precisely the subset arising from the 2-adic expansion of k, as follows.

Conjecture 2.3. Let n > 2k and let j be such that 2j
≤ k < 2j+1. Suppose X = xSn is a conjugacy class in Sn. Then λSn = XYk

if and only if the cycle-type of x has exactly one cycle of length 2i for 0 ≤ i ≤ j and all other cycles have length at least k + 1.

3. Special linear groups SL2(q)

In this section we prove Theorem 2 and then conjecture some further families of factorizations for SL2(q).
Let G = SL2(q), and let B be the Borel subgroup consisting of upper triangular matrices in G. Then B = StabG(⟨v⟩) where

v = (1, 0)T . Hence we can describe the left cosets of B as follows.

Lemma 3.1. If x =

(
a b
c d

)
∈ SL2(q), then

xB =

{(
λa u
λc v

)
∈ SL2(q) | λ ∈ F×

q

}
.

Proof of Theorem 2. An arbitrary conjugate of
(
1 1
0 1

)
looks like

(
1 − αβ α2

−β2 1 + αβ

)
for α, β ∈ Fq not both zero. For

fixed a, c ∈ Fq not both zero, we shall count how many such matrices are of the form
(

λa u
λc v

)
where λ ∈ F×

q . We shall

show that this number is always (q − 1)/(2, q − 1), so that Lemmas 3.1 and 2.1(i) imply the conclusion of Theorem 2.
Case I. Suppose that c = 0. So, β = 0 and α ̸= 0 ⇒ v = 1 and λ = a−1. Conjugates of this form are therefore

determined by u = α2. When q is even there are q − 1 such choices for u and when q is odd there are (q − 1)/2.
Case II. Suppose that c ̸= 0. So, λ = −β2/c ̸= 0 for which there are q − 1 or (q − 1)/2 choices, dependent on q being

even or odd. Now for each square root β of β2, the equation λa = 1−αβ determines α and hence both u and v too. Note
that both square roots of β2 give the same values for u and v, concluding the proof. □

When q is even, the work of Terada in [4] shows that

X := {x ∈ SL2(q) : xq+1
= 1, x ̸= 1}

is another candidate for a union of conjugacy classes dividing SL2(q). If this were to have a code given by a subgroup Y
(i.e. if λG = XY ), then [4, Theorem 6] together with the classification of finite subgroups of SL2(q) (see [3, Theorem 6.25]),
shows that Y would have to be either Cq+1 or D2(q+1).

Immediately it can be seen that Y = Cq+1 does not work, since |X ∩ Cq+1| = q, whereas λ would have to be q/2 for such
a code. Hence the only possibility is Y = D2(q+1). In this case, computations in GAP verify that we do have a factorization
qSL2(q) = XY for even q ≤ 256. Computation also suggests a similar factorization of PGL2(q) for odd q. Hence we propose
(noting that for even q we have SL2(q) = PGL2(q)):

Conjecture 3.2. Let G = PGL2(q), and define

X = {x ∈ G : xq+1
= 1, x2 ̸= 1}.

Then λG = XD2(q+1), where λ = q if q is even, and λ = q − 1 if q is odd.
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