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Snake-in-the-Box Codes for Rank Modulation
Under Kendall’s τ -Metric

Yiwei Zhang and Gennian Ge

Abstract— For a Gray code in the scheme of rank modulation
for flash memories, the codewords are permutations, and two
consecutive codewords are obtained using a push-to-the-top oper-
ation. We consider the snake-in-the-box code under Kendall’s
τ -metric, which is a Gray code capable of detecting one
Kendall’s τ -error. We answer two open problems posed by
Horovitz and Etzion. First, we prove the validity of a construction
given by them, resulting in a snake of size M2n+1 =
((2n + 1)!/2) − 2n + 1. Second, we come up with a different
construction aiming at a larger snake of size M2n+1 =
((2n + 1)!/2) − 2n + 3. The construction is applied successfully
to S7.

Index Terms— Flash memory, rank modulation, permutations,
Gray codes, snake-in-the-box codes.

I. INTRODUCTION

FLASH MEMORY is a non-volatile storage medium both
electrically programmable and erasable. It is currently

widely used due to its reliability, high storage density and
relatively low cost. It incorporates a set of cells maintained
at a set of levels of charge to encode information. The chief
disadvantage of flash memories is their inherent asymmetry
between cell programming (injecting cells with charge) and
cell erasing (removing charge from cells). While raising the
charge level of a cell is an easy operation, reducing the
charge level from a single cell is very difficult. In the current
technology, the process of a charge reducing operation requires
completely erasing a whole large block to which the cell
belongs and then reprogramming, which will limit the lifetime
of a flash memory. Therefore, over-programming (increasing
charge level on a cell above the desired amount) is a severe
problem. For this reason, during a programming cycle in real
application, charge is injected over several iterations, gradually
approaching the designated level. This process will be time-
consuming. Moreover, flash memories meet common errors
due to charge leakage and reading disturbance.
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In order to overcome these problems, the novel framework
of rank modulation is introduced in [7]. Instead of encoding
information with the absolute values of charge levels,
data is represented by the relative rankings of the charge
levels on a group of cells. That is, if we have n cells and
c1, c2, . . . , cn ∈ R represent the charge levels, then this group
of cells is said to encode the permutation σ ∈ Sn such
that cσ(1) > cσ(2) > . . . > cσ(n). In this framework, we
save us the trouble to deal with errors which only slightly
affect the absolute values of charge levels but do not affect
the relative rankings. However, sometimes the errors in the
charge levels may be large enough to cause some disturbance
in the relative rankings. To detect and/or correct such errors
we need an appropriate distance measure. Several metrics
on permutations are used for this purpose such as Kendall’s
τ -metric [2], [8], [11] and l∞-metric [10], [13]. In this paper
we will only focus on Kendall’s τ -metric.

The Kendall’s τ -distance [9] between two permutations
π1 and π2 in Sn is the minimum number of adjacent transpo-
sitions required to obtain π2 from π1, where an adjacent trans-
position is an exchange of two distinct adjacent elements. For
example, the Kendall’s τ -distance between π1 = [1, 2, 3, 4]
and π2 = [2, 3, 1, 4] is two, since we may do the adja-
cent transpositions [1, 2, 3, 4] → [2, 1, 3, 4] → [2, 3, 1, 4].
Distance one between two permutations indicates an exchange
of two cells, which are adjacent in the permutation, due to
a small change in their charge levels which switches their
relative ranking. It is further suggested firstly in [7], and later
in [4] and [14], that the only programming operation allowed
is raising the charge level of a cell above all the other cells,
which is called a “push-to-the-top” operation. In this manner,
over-programming is no longer an issue.

Gray codes using the “push-to-the-top” operations under
Kendall’s τ -metric will be the main objective of this rank
modulation scheme. The Gray code is first introduced in [5]
and an excellent survey on Gray codes is given in [12]. If we
do not consider any distance restriction among codewords,
then Jiang et al. [7] present Gray codes traversing the entire set
of permutations. The usage of Gray codes for rank modulation
is also discussed in [3], [4], and [8]. Gray codes for rank
modulation which detect a single error under a given metric are
known as the snake-in-the-box codes. Snake-in-the-box codes
are usually discussed in the context of binary codes in the
Hamming scheme (see [1] and references therein).

It is of our desire to construct snake-in-the-box codes
as large as possible. Yehezkeally and Schwartz [15] give
an inductive construction of a snake-in-the-box code under
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Kendall’s τ -metric of size M2n+1 = (2n + 1)(2n − 1)M2n−1
in S2n+1, using a code of size M2n−1 in S2n−1. In [15]
they also deal with the problem under the l∞-metric. Later
Horovitz and Etzion [6] improve the inductive construction to
M2n+1 = ((2n + 1)2n − 1)M2n−1, where the initial code is of
size 57 in S5. They also propose a direct construction aiming

at a snake of size (2n+1)!
2 −2n+1 and it is applied successfully

to S7 and S9 via computer search. They conjecture that this
framework can work for all odd integers and leave it as an
open problem. They also ask if there is a better construction.
In this paper, we give a rigorous proof for their framework.
Then we also come up with a new construction aiming at a
larger snake of size M2n+1 = (2n+1)!

2 −2n+3, which is applied
successfully to S7. Thus, we answer the two open problems
posed by Horovitz and Etzion.

The rest of the paper is organized as follows. In Section II
we define the basic concepts of snake-in-the-box codes in
the rank modulation scheme. In Section III we restate the
construction by Horovitz and Etzion. In Section IV we give a
proof verifying the validity of their construction. In Section V
we propose our new construction and give a larger snake-in-
the-box code in S7 and we conjecture that it can be applied to
S2n+1 for any n ≥ 3. We conclude the paper in Section VI.

II. PRELIMINARIES

In this section we follow [6] and [15] to give some defini-
tions and notations for the snake-in-the-box codes in the rank
modulation scheme.

Let [n] denote {1, 2, . . . , n}. Let π = [a1, a2, . . . , an]
be a permutation over [n] such that for each i ∈ [n] we
have that π(i) = ai . This form is known as the vector
notation for permutations. Another useful notation to describe
a permutation is its cyclic notation, where a permutation
is expressed as a product of disjoint cycles corresponding
to its orbits. For example, the vector notation [3, 4, 5, 2, 1]
is equivalent to the cyclic notation (1, 3, 5)(2, 4). Note that
usually commas are not used in a cyclic notation, here we
add commas in case of possible confusions in the remaining
passage. All the permutations form the group Sn known as the
symmetric group on [n] with |Sn| = n!. For σ, π ∈ Sn , their
composition, denoted by σπ , is the permutation for which
σπ(i) = σ(π(i)) for all i ∈ [n].

Given a set S and a subset of transformations T ⊂ { f | f :
S → S}, a Gray code over S of size M , using transfor-
mations from T , is a sequence C = (c0, c1, . . . , cM−1) of M
distinct elements from S, called codewords, such that for each
j ∈ [M−1] there exists some t j ∈ T for which c j = t j (c j−1).
The Gray code is called cyclic if we further have some t ∈ T
such that c0 = t (cM−1). Throughout this paper we only focus
on cyclic Gray codes.

In the context of rank modulation for flash memories,
S = Sn and the set of transformations T comprises of
push-to-the-top operations. That is, T = {t2, t3, . . . , tn} where
ti is defined by

ti ([a1, . . . , ai−1, ai , ai+1, . . . , an])
= [ai , a1, . . . , ai−1, ai+1, . . . , an].

and a p-transition will be an abbreviated notation for a
push-to-the-top operation.

A sequence of p-transitions will be called a transitions
sequence. An initial permutation π0 and a transitions sequence
tx1, tx2, . . . , txl , xi ∈ {2, 3, . . . , n}, 1 ≤ i ≤ l together
define a sequence of permutations π0, π1, . . . , πl−1, πl , where
πi = txi (πi−1) for each i, 1 ≤ i ≤ l. This sequence is a cyclic
Gray code if πl = π0 and πi �= π j for 0 ≤ i < j ≤ l − 1.

Given a permutation π = [a1, a2, . . . , an] ∈ Sn , an
adjacent transposition is an exchange of two adjacent elements
ai , ai+1, for some 1 ≤ i ≤ n − 1, resulting in the per-
mutation [a1, . . . , ai−1, ai+1, ai , ai+2, . . . , an]. The Kendall’s
τ -distance between two permutations σ and π , denoted by
dK(σ, π), is the minimum number of adjacent transposi-
tions required to transform one permutation into the other.
A snake-in-the-box code under Kendall’s τ -metric is a Gray
code with further restriction that any two permutations in the
code have their Kendall’s τ -distance at least two. That is, it is
capable of detecting one Kendall’s τ -error. We will call such a
snake-in-the-box code a K-snake. We further denote a K-snake
of size M with permutations from Sn as an (n, M,K)-snake.
A K-snake can be represented by listing either the whole
sequence of codewords, or the transitions sequence along with
the initial permutation.

In [15] it is proved that a Gray code with permutations
from Sn using only p-transitions on odd indices is a K-snake.
By starting with an even permutation and using only
p-transitions on odd indices we get a sequence of even
permutations, i.e., a subset of An , the alternating group of
order n. This observation saves us the need to check whether
a Gray code is in fact a K-snake, at the cost of restricting the
permutations in the K-snake to the set of even permutations.
However, the cost is not a severe problem since that the
following assertions are also proved in [15].

• If C is an (n, M,K)-snake then M ≤ |Sn|
2 ;

• If C is an (n, M,K)-snake which contains a p-transition
on an even index then M ≤ |Sn|

2 − 1
n−1

(	n/2
−1
2

)
.

This motivates not to use p-transitions on even indices. For
the snake-in-the-box codes in S2n , the framework with only
p-transitions on odd indices will only lead to a code of size at
most 1

4n |S2n | (since the last position is always fixed and the
permutations are all even or all odd), which seems rather weak.
However, it is hard to find a larger code with some possible
p-transitions on even indices. To prove or disprove that the
size of the largest snake in S2n is not larger than the size of
the largest snake in S2n−1 is actually also an open problem
posed in [6]. In the sequel we merely use p-transitions on odd
indices, and we will only talk about snake-in-the-box codes in
S2n+1 consisting of even permutations.

III. THE CONSTRUCTION OF HOROVITZ AND ETZION

In this section we restate a direct construction of
Horovitz and Etzion in [6], aiming at a K-snake of size
M2n+1 = (2n+1)!

2 − 2n + 1. They conjecture that the con-
struction is valid for all odd integers 2n + 1 ≥ 5 and verify
the validity for S5, S7 and S9 via computer search.

Firstly, we make a partition on A2n+1 into disjoint classes
according to the last two ordered elements in the permutation.
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Fig. 1. Obtaining T7 from T5.

That is, a class denoted as [x, y] consists of all the even
permutations π = [a1, a2, . . . , a2n+1] ∈ A2n+1 with a2n = x
and a2n+1 = y. There are totally 2n(2n + 1) classes and each
class contains (2n−1)!

2 even permutations. We further divide
each class into (2n−2)!

2 subclasses according to the cyclic order
of the first 2n − 1 elements in the permutations. Denote each
subclass in a class, say [x, y], by [α] − [x, y], where α is the
cyclic order of the first 2n−1 elements. (Note that in the sequel
the letters α, β, γ . . . in a vector notation for a permutation
stand for a string of numbers, possibly just one number or
even empty, and its size and contents can be easily inferred
by contexts.) For example, a class [1,2] in S7 consists of all the
even permutations π = [a1, a2, . . . , a7] ending with a6 = 1
and a7 = 2. And therein a subclass [3, 4, 5, 6, 7]− [1, 2] con-
sists of the permutations [3, 4, 5, 6, 7, 1, 2], [7, 3, 4, 5, 6, 1, 2],
[6, 7, 3, 4, 5, 1, 2], [5, 6, 7, 3, 4, 1, 2] and [4, 5, 6, 7, 3, 1, 2].
Obviously such a subclass constitutes a K-snake with the
transitions sequence consisting of 2n − 1 p-transitions t2n−1.
From now on we refer to this structure as a necklace.

The next procedure is to merge some necklaces into a larger
K-snake. To do this, we have to follow some rules and the rules
are described by the following 3-uniform hypergraph, which
is of vital importance to the construction.

Define the 3-uniform hypergraph H2n+1 = (V2n+1, E2n+1)
as follows. The vertices correspond to all the classes [x, y]
of S2n+1. For any distinct x, y, z ∈ [2n + 1], an edge
named 〈x, y, z〉 connects the vertices [x, y], [y, z] and [z, x].
A nearly spanning tree T2n+1 on this hypergraph is a tree
containing all the vertices except for the vertex [2,1]. For
example, we may choose T5 containing the following nine
edges: 〈1, 2, 3〉, 〈1, 2, 4〉, 〈1, 2, 5〉, 〈1, 5, 3〉, 〈2, 3, 5〉, 〈1, 3, 4〉,
〈2, 4, 3〉, 〈1, 4, 5〉, 〈2, 5, 4〉. T2n+1 can be recursively con-
structed from T2n−1 by adding the following edges: the edges
〈x, x+1, 2n〉 for 2 ≤ x ≤ 2n−2, the edges 〈x, x+1, 2n+1〉 for

2 ≤ x ≤ 2n − 2 and then the edges 〈1, 2, 2n〉, 〈1, 2n, 2n − 1〉,
〈1, 2n + 1, 2n − 1〉, 〈1, 2n, 2n + 1〉, 〈2, 2n + 1, 2n〉. Figure 1
which appears in [6] illustrates how to get T7 from T5. The
rectangles and circles represent the edges and vertices in T5
while the dashed rectangles and double circles represent the
edges and vertices added to obtain T7.

After defining the nearly spanning tree T2n+1, we now state
the rule given by the tree to merge necklaces into a larger
K-snake. Start from any necklace [α] − [1, 2]. We choose the
edges in T2n+1 sequentially. Note that as mentioned in [6],
different sequences of the edges correspond to different merg-
ing procedures and finally lead to different outcomes. Here
the sequence of edges we use is exactly the one introduced
in the recursive construction of T2n+1. When meeting the
edge 〈x, y, z〉, the already constructed K-snake must contain
exactly only one necklace in the union of classes [x, y], [y, z]
and [z, x]. Without loss of generality we assume an [x, y]-
necklace belongs to the K-snake. Now we want to merge a
[y, z]-necklace and a [z, x]-necklace into the K-snake. Split
the already constructed K-snake at the position right after
[β, z, x, y] where β represents the first 2n −2 elements of the
permutation. Such a position surely exists since the existing
[x, y]-necklace is a cyclic structure on the first 2n−1 positions.
We then insert a [y, z]-necklace and a [z, x]-necklace here as
follows. At the splitting point, make a p-transition t2n+1 and
get [y, β, z, x]. Then write the whole [z, x]-necklace which
starts from [y, β, z, x] and ends up with [β, y, z, x]. Another
p-transition t2n+1 gives [x, β, y, z] followed by the whole
[y, z]-necklace ending up with [β, x, y, z]. A final p-transition
t2n+1 will lead us back to [z, β, x, y] which is exactly the
original permutation right after the splitting point. An example
is shown in Figure 2, giving a K-snake of size 57 in S5. The
predefined nearly spanning tree allows us to finally construct a
K-snake, containing exactly one necklace in each class [x, y]
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Fig. 2. Merging necklaces into chains, M5 = 57.

Fig. 3. An M[x]-connection.

except for [2, 1]. From now on we refer to this structure as a
chain. A chain can be constructed as above by choosing any
initial necklace [α] − [1, 2] and we denote this chain with the
same symbol [α] − [1, 2], if there is no danger of confusion.
Sometimes we also name this chain as c[α]. And it is shown in
[6, Corollary 4] that the permutations of all the classes except
for [2, 1] can be partitioned into disjoint chains.

So far we have totally (2n−2)!
2 chains using up all the

permutations from all classes except for the class [2, 1].
The next procedure is to apply these unused necklaces in the
class [2,1] to merge these chains into a larger K-snake. The
following lemma is proved in [6, Lemma 11].

Lemma 1: Let x be an integer such that 3 ≤ x ≤ 2n + 1,
let α be a permutation on [2n + 1]\{x, 1, 2}, and assume that
the permutations [α, 1, x, 2] and [α, 2, 1, x] are contained in
two distinct chains. We can merge these two chains via the
necklace [α, x] − [2, 1].

The merging procedure above is called an M[x]-connection
and we call the necklace [β] − [2, 1] as a linkage where
β represents the cyclic order of [α, x]. The merging procedure
is shown in Figure 3.

In [6] the authors mention without proof that if x ∈ {3, 4, 5}
then the permutations [α, 1, x, 2] and [α, 2, 1, x] are contained
in the same chain, and thus there are no M[3]-connections,
M[4]-connections or M[5]-connections. This is actually due
to the structure of the nearly spanning tree we choose. We now
explain this in detail, together with some other facts concern-
ing M[x]-connections for x > 5.

Theorem 2: There are no M[x]-connections for x = 3, 4, 5.
For any linkage [π] − [2, 1] and x ∈ {2t, 2t + 1}, t ≥ 3,
the M[x] connection via [π] − [2, 1] connects the chains
[(3, x)π]− [1, 2] and [σπ]− [1, 2], where σ is a permutation
on {3, 4, . . . , 2n + 1} and using the cyclic notation we have
σ = (5, 6, . . . , 2t − 1, x).

Proof: The merging rule suggested by the nearly spanning
tree actually indicates that for any edge 〈x, y, z〉 in T2n+1, the
necklaces [β, x] − [y, z], [β, y] − [z, x] and [β, z] − [x, y]
are merged into the same chain. It is then straightforward to
trace back and find the name of the chain to which a certain
necklace or a certain permutation belongs.

For example, let x = 3. We specify the position of
the element “4” and write the permutation [α, 1, 3, 2] as
π1 = [β, 4, γ , 1, 3, 2]. π1 belongs to the same necklace
as π2 = [γ, 1, β, 4, 3, 2]. The edge 〈2, 4, 3〉 indicates this
necklace is in the same chain as the necklace containing
π3 = [γ, 1, β, 3, 2, 4]. π3 belongs to the same necklace
as π4 = [β, 3, γ , 1, 2, 4]. Finally the edge 〈1, 2, 4〉 indi-
cates we have the necklace containing [β, 3, γ , 4, 1, 2] in
this chain. So the permutation [α, 1, 3, 2] is contained in the
chain c[β, 3, γ , 4].

Similarly, write the permutation [α, 2, 1, 3] as
σ1 = [β, 4, γ , 2, 1, 3]. σ1 belongs to the same necklace
as σ2 = [γ, 2, β, 4, 1, 3]. The edge 〈1, 3, 4〉 indicates this
necklace is in the same chain as the necklace containing
σ3 = [γ, 2, β, 3, 4, 1]. σ3 belongs to the same necklace as
σ4 = [β, 3, γ , 2, 4, 1]. Finally the edge 〈1, 2, 4〉 indicates we
have the necklace containing [β, 3, γ , 4, 1, 2] in this chain.
So the permutation [α, 2, 1, 3] is contained in the chain
c[β, 3, γ , 4]. Summing up the above we conclude that the
permutations [α, 1, 3, 2] and [α, 2, 1, 3] are in the same chain.

For x = 4, 5 we have a similar procedure. Both the
permutation [α, 1, 4, 2] = [β, 5, γ , 1, 4, 2] and the permutation
[α, 2, 1, 4] = [β, 5, γ , 2, 1, 4] are in the same chain
c[β, 4, γ , 5]. Both the permutation [α, 1, 5, 2] = [β, 3, γ ,
1, 5, 2] and the permutation [α, 2, 1, 5] = [β, 3, γ , 2, 1, 5]
are in the same chain c[β, 5, γ , 3]. So there are no
M[x]-connections for x = 3, 4, 5.

The remaining statement can be analyzed similarly. For
x ∈ {2t, 2t + 1}, t ≥ 3, and the linkage [π] −
[2, 1] = [α, x] − [2, 1], specify the position of “3”
and write [α, 1, x, 2] as [β, 3, γ , 1, x, 2]. Then we can
find in the same chain the following permutations one
by one: [γ, 1, β, 3, x, 2], [γ, 1, β, x, 2, 3], [β, x, γ , 1, 2, 3],
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[β, x, γ , 3, 1, 2]. Since [π] = [α, x] = [β, 3, γ , x] so we find
the name of the chain to be [(3, x)π] − [1, 2].

Deciding the name of the chain to which the permutation
[α, 2, 1, x] belongs is a little bit tedious and we do it in an
inductive way. Firstly for the base case x ∈ {6, 7}. Specify
the position of “5” and write [α, 2, 1, x] as [β ′, 5, γ ′, 2, 1, x]
and we can find in the same chain the following per-
mutations one by one: [γ ′, 2, β ′, 5, 1, x], [γ ′, 2, β ′, x, 5, 1],
[β ′, x, γ ′, 2, 5, 1], [β ′, x, γ ′, 5, 1, 2]. Since [π] = [α, x] =
[β ′, 5, γ ′, x] so we find the name of the chain to be [(5, x)π]−
[1, 2]. Now suppose we have proved for all integers 5 <
x < 2t , and we look into the case x ∈ {2t, 2t + 1}. Specify
the position of “2t − 1” and “2t − 2”. Write [α, 2, 1, x] as
[β ′, 2t − 1, ω′, 2t − 2, γ ′, 2, 1, x] (also it is possible to be of
the other form where 2t − 1 and 2t − 2 are switched, yet
the remaining proof will be exactly the same) and we can
find in the same chain the following permutations one by one:
[ω′, 2t −2, γ ′, 2, β ′, 2t −1, 1, x], [ω′, 2t −2, γ ′, 2, β ′, x, 2t −
1, 1], [γ ′, 2, β ′, x, ω′, 2t − 2, 2t − 1, 1], [γ ′, 2, β ′, x, ω′,
2t − 1, 1, 2t − 2], [β ′, x, ω′, 2t − 1, γ ′, 2, 1, 2t − 2]. By induc-
tion, the last permutation is in the chain c[(5, 6, . . . , 2t − 3,
2t − 2)[β ′, x, ω′, 2t − 1, γ ′, 2t − 2]], which is equivalent
to c[(5, 6, . . . , 2t − 3, 2t − 2)(2t − 2, 2t − 1, x)π] =
c[(5, 6, . . . , 2t − 1, x)π].

Define a graph G2n+1 = (V2n+1, E2n+1) where the vertices
represent the set of chains. Two chains are connected by
an edge if and only if they can be merged as Lemma 1.
Each edge has a sign M[x] (indicating the merging is an
M[x]-connection) and a label [α, x] − [2, 1] (indicating the
name of the linkage). The problem of merging all chains
into a large snake reduces to finding a spanning tree T2n+1
in G2n+1 such that all edges have distinct labels. We require
distinct labels since we want to use as many [2, 1]-necklaces
as possible (all except one). Once the spanning tree is found
then we are able to merge all the chains and all except one
[2, 1]-necklaces into a K-snake of size M2n+1 = (2n+1)!

2 −
2n + 1. Horovitz and Etzion [6] conjecture that the desired
spanning tree always exists and verify for S7 and S9 via
computer search. We proceed in the next section to give a
construction of the spanning tree and thus complete their
framework. Note that, as also noted in [6], while each edge
in the spanning tree decides a unique way to merge the
two chains and the linkage together, yet the spanning tree
does not necessarily tell any specific order of the whole
merging procedure. One can make an arbitrary order of the
edges and do the merging accordingly. Therefore, given a
spanning tree, the discussion of a detailed procedure to do
the merging is both tedious and unnecessary. The only thing
that matters is the existence of a spanning tree with distinct
labels.

It should also be remarked that the K-snake constructed this
way has an interesting property that its transitions sequence
only consists of p-transitions t2n−1 and t2n+1.

IV. EXISTENCE OF THE SPANNING TREE

WITH DISTINCT LABELS

We first look into the case S7 as an illustrative example.
G7 consists of 12 vertices corresponding to the 12 chains

(the notation of the form Ci, j is explained later):

c1 = [5, 6, 7, 3, 4] − [1, 2] � C2,3, c2 = [6, 7, 5, 3, 4] − [1, 2] � C1,2,

c3 = [7, 5, 6, 3, 4] − [1, 2] � C3,1, c4 = [7, 6, 3, 5, 4] − [1, 2] � C2,1,

c5 = [7, 3, 5, 6, 4] − [1, 2] � C4,1, c6 = [3, 5, 7, 6, 4] − [1, 2] � C4,3,

c7 = [5, 7, 3, 6, 4] − [1, 2] � C4,2, c8 = [3, 6, 5, 7, 4] − [1, 2] � C2,4,

c9 = [5, 3, 6, 7, 4] − [1, 2] � C3,4, c10 = [6, 5, 3, 7, 4] − [1, 2] � C1,4,

c11 = [6, 3, 7, 5, 4] − [1, 2] � C1,3, c12 = [3, 7, 6, 5, 4] − [1, 2] � C3,2.

The 12 linkages ([2, 1]-necklaces) are (the notation of the
form Li, j is explained later):

η1 = [5, 7, 6, 3, 4] − [2, 1] � L3,2, η2 = [6, 5, 7, 3, 4] − [2, 1] � L1,3,

η3 = [7, 6, 5, 3, 4] − [2, 1] � L2,1, η4 = [6, 7, 3, 5, 4] − [2, 1] � L1,2,

η5 = [3, 5, 6, 7, 4] − [2, 1] � L3,4, η6 = [6, 3, 5, 7, 4] − [2, 1] � L1,4,

η7 = [7, 5, 3, 6, 4] − [2, 1] � L4,1, η8 = [7, 3, 6, 5, 4] − [2, 1] � L3,1,

η9 = [3, 6, 7, 5, 4] − [2, 1] � L2,3, η10 = [5, 6, 3, 7, 4] − [2, 1] � L2,4,

η11 = [3, 7, 5, 6, 4] − [2, 1] � L4,2, η12 = [5, 3, 7, 6, 4] − [2, 1] � L4,3.

As Theorem 2 indicates, G7 will only contain edges with
signs M[6] and M[7]. By an M[6]-connection, a linkage
[α] − [2, 1] will connect the chains [(36)α] − [1, 2] and
[(56)α] − [1, 2]. Similarly by an M[7]-connection, a linkage
[α] − [2, 1] will connect the chains [(37)α] − [1, 2] and
[(57)α]− [1, 2]. Note that we present the chains and linkages
above in the exact same order as in [6]. The difference is that
while they present each chain [α]−[1, 2] or linkage [α]−[2, 1]
with α starting from “3”, we instead end with “4” since this
benefits the upcoming analysis.

Now we explain the notations of the form Ci, j and Li, j ,
these are actually alternate names for the chains and linkages
according to the positions of “6” and “7”. Suppose “6” is on
the i -th position and “7” is on the j -th position. Note that
we also have fixed “4” on the fifth position. Then a unique
chain/linkage will be determined since there will be only one
choice to place “3” and “5” to get an even permutation.
Denote this chain/linkage by Ci, j / Li, j respectively for
1 ≤ i, j ≤ 4 and i �= j . Within this paragraph all indices
are taken modulo 4. Then, by an M[6]-connection, a linkage
Li, j will connect the chains Ck, j and Cl, j where k and l are
the two elements in {1, 2, 3, 4}\{i, j}. Similarly, by an
M[7]-connection, a linkage Li, j will connect the chains
Ci,k and Ci,l where k and l are the two elements in
{1, 2, 3, 4}\{i, j}. Figure 4 shows the structure of G7. The next
goal is to find a spanning tree T7 with distinct labels. To do
this we first strengthen to find a Hamiltonian cycle C7 with
distinct labels, and then we delete any edge in the cycle to get
a spanning tree as desired. This technique is key to the analysis
later. The cycle can be chosen as: for any linkage (i, j) with
j ≡ i − 1 (mod 4) we choose the edge corresponding to its
M[6]-connection, which will connect Ci+1,i−1 and Ci+2,i−1.
For the other linkages we choose their M[7]-connections.
That is, the edge corresponding to the M[7]-connection of
a linkage Li,i+1 will connect Ci,i+2 and Ci,i+3 while the edge
corresponding to the M[7]-connection of a linkage Li,i+2 will
connect Ci,i+1 and Ci,i+3 The resulting Hamiltonian cycle is
shown in Figure 4. Deleting any edge in this cycle, we get a
spanning tree indicating the method to merge all the chains and
all but one linkages into a whole K-snake of size M7 = 2515.
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Fig. 4. G7 and C7.

The only five permutations absent are those permutations in
the linkage corresponding to the edge deleted.

After this initial case, the construction of T2n+1 now follows
in an inductive way. The induction is based on the following
observation proved in [6, Lemma 16].

Lemma 3: For each n ≥ 4, G2n+1 consists of (2n − 3)
(2n − 2) disjoint copies of isomorphic graphs to G2n−1,
called components. The edges between the vertices of
two distinct components are signed only with M[2n] and
M[2n + 1].

We look deeply into the structure of G2n+1. Again for every
chain [α]−[1, 2] and every linkage [α]−[2, 1], write α in the
form that “4” is located at the (2n − 1)-th position. Let Ci, j

and Li, j , i, j ∈ {1, 2, . . . , 2n − 2}, i �= j , denote respectively
the set of all chains and linkages with “2n” on the i -th position
and “2n + 1” on the j -th position. As Theorem 2 indicates,
the edge corresponding to a certain linkage in Li, j with the
M[x]-connection, x /∈ {2n, 2n + 1}, is an edge within Ci, j .
Furthermore, for a given pair of i and j , all the chains in Ci, j

plus the edges corresponding to all linkages in Li, j with the
M[x]-connections, x /∈ {2n, 2n + 1}, together form a copy
isomorphic to G2n−1. That is, this is exactly the so-called
component suggested in Lemma 3 above. Now, define a graph
Ĝ2n+1 = (V̂2n+1, Ê2n+1) where the vertices correspond to the
set {Ci, j : 1 ≤ i, j ≤ 2n − 2, i �= j}. For each pair of chains
c1 ∈ Ci, j and c2 ∈ Ci ′, j ′ , where Ci, j and Ci ′, j ′ are different,
such that c1 and c2 are connected in G, draw an edge between
Ci, j and Ci ′, j ′ with the same sign and the same label as the
edge connecting c1 and c2 in G. In this graph there will be
only two signs M[2n] and M[2n + 1].

Theorem 4: There exists a Hamiltonian cycle Ĉ2n+1 in
V̂2n+1, with no two labels coming from a common Li, j .

Proof: Within this proof all indices are taken modulo
2n−2. For each Li, j with j ≡ i−1 (mod 2n−2), we choose a
linkage in Li, j with “3” on the (i −2)-th position and “2n−1”
on the (i − 3)-th position. Then its M[2n]-connection will
connect Ci−2, j and Ci−3, j , i.e. connect Ci−2,i−1 and Ci−3,i−1.
For each Li, j with j ≡ i − 2 (mod 2n − 2), we choose a
linkage in Li, j with “3” on the (i −1)-th position and “2n−1”
on the (i + 1)-th position. Then its M[2n + 1]-connection
will connect Ci,i−1 and Ci,i+1. For the other linkages Li, j ,
we choose a linkage in Li, j with “3” on the ( j + 1)-th
position and “2n − 1” on the ( j + 2)-th position. Then its
M[2n + 1]-connection will connect Ci, j+1 and Ci, j+2. It is

Fig. 5. A cycle in Ĝ9.

straightforward to check that the edges above constitute the
cycle as desired.

As an illustrative example, the cycle in Ĝ9 is given
in Figure 5.

Now the inductive procedure goes as follows. Delete any
edge in the cycle Ĉ2n+1 constructed in Ĝ2n+1 to get its
spanning tree with their labels coming from distinct Li, j .
Then at most one linkage in Li, j has been occupied in Ĉ2n+1.
By induction, Ci, j is locally connected by a Hamiltonian cycle
with distinct labels corresponding to the set of linkages Li, j .
Deleting the edge corresponding to the occupied linkage, we
still have a spanning tree connecting all the chains in Ci, j .
Thus we find a spanning tree with distinct labels for the whole
graph G2n+1.

V. A FURTHER IMPROVEMENT ON

THE SIZE OF A K-SNAKE

In this section we construct a larger K-snake in S7 of
size M7 = 2517, increasing the construction of Horovitz and
Etzion with M7 = 2515 by 2. The following lemma is prepared
for the analysis later.

Lemma 5: For every permutation π ∈ S2n+1, we have
t−1
2n−3t2n−1t−1

2n−3(π) = t−1
2n−1t2n−3t−1

2n−1(π).
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Fig. 6. Constructing a K-snake of size 2517 in S7.

Proof: Let π = [a1, a2, . . . , a2n+1].
t−1
2n−3t2n−1t−1

2n−3(π)

= t−1
2n−3t2n−1[a2, a3, . . . , a2n−3, a1, a2n−2, a2n−1, a2n , a2n+1]

= t−1
2n−3[a2n−1, a2, a3, . . . , a2n−3, a1, a2n−2, a2n , a2n+1]

= [a2, a3, . . . , a2n−3, a2n−1, a1, a2n−2, a2n , a2n+1].
t−1
2n−1t2n−3t−1

2n−1(π)

= t−1
2n−1t2n−3[a2, a3, . . . , a2n−3, a2n−2, a2n−1, a1, a2n , a2n+1]

= t−1
2n−1[a2n−2, a2, a3, . . . , a2n−3, a2n−1, a1, a2n , a2n+1]

= [a2, a3, . . . , a2n−3, a2n−1, a1, a2n−2, a2n , a2n+1].

The basic preparations are exactly the same as the con-
struction of Horovitz and Etzion. We first get the 12 chains
which together use up all the permutations except those in
the class [2, 1]. The unused permutations now are those 12
[2, 1]-necklaces each of size 5. Horovitz and Etzion use them
as linkages to merge the chains and thus the absence of one
of these necklaces is inevitable. How about constructing a
K-snake using only the permutations in the class [2, 1] first?
This is equivalent to constructing a K-snake in S5 and we
already have such a K-snake of size 57 in Figure 2. Now we
take some one-to-one map f : {1, 2, 3, 4, 5} → {3, 4, 5, 6, 7}
and add the tails [2, 1] to turn the K-snake in S5 into a
K-snake in S7. The choice of f should guarantee that the
induced K-snake in S7 consists of even permutations.

The next procedure is to insert the 12 chains into this
K-snake. As Lemma 1 indicates, if the K-snake has two
consecutive permutations [α, x, 2, 1] and [x, α, 2, 1], x ∈
{6, 7}, then we may insert the two chains containing [1, α, x, 2]

and [2, α, 1, x] respectively here. Now if we can find a
matching in G7 whose six edges all correspond to applicable
insertions, then we end up with the K-snake of size 2517 as
desired. While there are many matchings in G7, whether the
six edges in a matching all correspond to applicable insertions
or not needs to be checked, since the transitions sequence
of the K-snake contains lots of p-transitions t3. Ambiguously
speaking, the more p-transitions t5, the better. Fortunately, we
may do some “sewing and mending” to the K-snake, due
to the fact from Lemma 5 that t−1

3 t5t−1
3 (π) = t−1

5 t3t−1
5 (π)

for every π ∈ S7. We may cut off the segment from t3(π)
to t−1

3 t5(π), sew π and t5(π) together, and then insert the
segment at the position between t−1

5 t3(π) and t3t−1
5 t3(π) as

long as t−1
5 t3(π) and t3t−1

5 t3(π) are not within the segment
cut off. This modification brings in more p-transitions t5 into
the transitions sequence of the K-snake without deleting any
existing t5. Now we may insert the 12 chains in pairs as
in Figure 6.

We conjecture that this framework is feasible for all
odd integers. Its validity strongly depends on the structure
of the K-snakes constructed in the framework of Horovitz
and Etzion. We have remarked that a K-snake in S2n−1
constructed by Horovitz and Etzion has the property that
its transitions sequence only consists of t2n−1 and t2n−3.
Starting from such a K-snake with a properly chosen map
f : {1, 2, . . . , 2n − 1} → {3, 4, . . . , 2n + 1} and then
adding the tails [2, 1], we get a K-snake whose transitions
sequence only consists of t2n−1 and t2n−3. Similarly as above,
we may do some “sewing and mending” to the K-snake,
due to the fact from Lemma 5 that t−1

2n−3t2n−1t−1
2n−3(π) =

t−1
2n−1t2n−3t−1

2n−1(π) for every π ∈ S2n+1. We may cut off
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the segment from t2n−3(π) to t−1
2n−3t2n−1(π), sew π and

t2n−1(π) together, and then insert the segment at the posi-
tion between t−1

2n−1t2n−3(π) and t2n−3t−1
2n−1t2n−3(π) as long

as t−1
2n−1t2n−3(π) and t2n−3t−1

2n−1t2n−3(π) are not within the
segment cut off. This modification brings in more p-transitions
t2n−1 into the transitions sequence of the K-snake without
deleting any existing t2n−1. The position between two consec-
utive codewords [α, x, 2, 1] and [x, α, 2, 1] for some x > 5
will work as a choice of inserting the two chains containing
[1, α, x, 2] and [2, α, 1, x] respectively. Besides, G2n+1 has
a lot of matchings so it is very possible to find a matching
whose edges all correspond to applicable insertions. All these
optimistic evidences indicate the validity of this framework.
Yet a strict mathematical proof still requires further analysis.

Summing up the above, we have the following conjecture:
Conjecture 6: There exists a (2n+1, M2n+1,K)-snake with

M2n+1 = (2n+1)!
2 − 2n + 3 for every n ≥ 3.

If we do the same procedure as above from an initial snake
in our construction (or possibly some other snakes with the
same size), rather than a Horovitz-Etzion snake, there might
be a slim chance of doing better! However, the transitions
sequence of our snake does not have many p-transitions t2n+1,
and also lacks applicable “sewing and mending” modifications.
So compared with Conjecture 6, the following conjecture is a
little pessimistic.

Conjecture 7: There exists a (2n+1, M2n+1,K)-snake with
M2n+1 > (2n+1)!

2 − 2n + 3 or even M2n+1 = (2n+1)!
2 − 3 for

every n ≥ 3.
A final remark is that “greed is part of human nature”.

Despite the fact that M5 ≤ 57 is verified via computer search
in [15], the possibility of M2n+1 = (2n+1)!

2 for n ≥ 3, however
impossible, is not yet denied.

VI. CONCLUSIONS AND FUTURE RESEARCH

Snake-in-the-box codes in Sn under Kendall’s τ -metric
are useful in the framework of rank modulation for
flash memories. In this paper we verify the validity and
complete the construction of snake-in-the-box-codes by
Horovits and Etzion, with size M2n+1 = (2n+1)!

2 −2n+1. Based
on their framework, we further give a construction aiming at
a snake-in-the-box-code of size M2n+1 = (2n+1)!

2 − 2n + 3.
We conjecture that our framework is feasible for all odd
integers 2n + 1 ≥ 7 and give an example M7 = 2517. A strict
proof for the general validity of our framework is considered
for future research.

ACKNOWLEDGMENTS

The authors express their gratitude to the two anonymous
referees for their detailed and constructive comments which
are very helpful to the improvement of the technical pre-
sentation of this paper and to Professor Moshe Schwartz,
the associate editor, for his insightful advice and excellent
editorial job.

REFERENCES

[1] H. L. Abbott and M. Katchalski, “On the construction of snake in the
box codes,” Utilitas Math., vol. 40, pp. 97–116, 1991.

[2] A. Barg and A. Mazumdar, “Codes in permutations and error correc-
tion for rank modulation,” IEEE Trans. Inf. Theory, vol. 56, no. 7,
pp. 3158–3165, Jul. 2010.

[3] E. En Gad, M. Langberg, M. Schwartz, and J. Bruck, “Constant-weight
Gray codes for local rank modulation,” IEEE Trans. Inf. Theory, vol. 57,
no. 11, pp. 7431–7442, Nov. 2011.

[4] E. En Gad, M. Langberg, M. Schwartz, and J. Bruck, “Generalized
Gray codes for local rank modulation,” IEEE Trans. Inf. Theory, vol. 59,
no. 10, pp. 6664–6673, Oct. 2013.

[5] F. Gray, “Pulse code communication,” U.S. Patent 2 632 058,
Mar. 17, 1953.

[6] M. Horovitz and T. Etzion, “Constructions of snake-in-the-box codes
for rank modulation,” IEEE Trans. Inf. Theory, vol. 60, no. 11,
pp. 7016–7025, Nov. 2014.

[7] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2659–2673,
Jun. 2009.

[8] A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-constrained
errors in the rank-modulation scheme,” IEEE Trans. Inf. Theory, vol. 56,
no. 5, pp. 2112–2120, May 2010.

[9] M. Kendall and J. D. Gibbons, Rank Correlation Methods. New York,
NY, USA: Oxford Univ. Press, 1990.

[10] T. Kløve, T.-T. Lin, S.-C. Tsai, and W.-G. Tzeng, “Permutation arrays
under the Chebyshev distance,” IEEE Trans. Inf. Theory, vol. 56, no. 6,
pp. 2611–2617, Jun. 2010.

[11] A. Mazumdar, A. Barg, and G. Zémor, “Constructions of rank modula-
tion codes,” in Proc. IEEE Int. Symp. Inf. Theory, St. Petersburg, Russia,
Aug. 2011, pp. 834–838.

[12] C. Savage, “A survey of combinatorial Gray codes,” SIAM Rev., vol. 39,
no. 4, pp. 605–629, Dec. 1997.

[13] I. Tamo and M. Schwartz, “Correcting limited-magnitude errors in the
rank-modulation scheme,” IEEE Trans. Inf. Theory, vol. 56, no. 6,
pp. 2551–2560, Jun. 2010.

[14] Z. Wang and J. Bruck, “Partial rank modulation for flash memories,”
in Proc. IEEE Int. Symp. Inf. Theory, Austin, TX, USA, Jun. 2010,
pp. 864–868.

[15] Y. Yehezkeally and M. Schwartz, “Snake-in-the-box codes for rank
modulation,” IEEE Trans. Inf. Theory, vol. 58, no. 8, pp. 5471–5483,
Aug. 2012.

Yiwei Zhang is currently a Ph.D. student at Zhejiang University, Hangzhou,
Zhejiang, P. R. China. His research interests include combinatorial design
theory, coding theory, extremal combinatorics, and their interactions.

Gennian Ge received the M.S. and Ph.D. degrees in mathematics from Suzhou
University, Suzhou, Jiangsu, P. R. China, in 1993 and 1996, respectively.
After that, he became a member of Suzhou University. He was a postdoctoral
fellow in the Department of Computer Science at Concordia University,
Montreal, QC, Canada, from September 2001 to August 2002, and a visiting
assistant professor in the Department of Computer Science at the University of
Vermont, Burlington, Vermont, USA, from September 2002 to February 2004.
He was a full professor in the Department of Mathematics at Zhejiang Uni-
versity, Hangzhou, Zhejiang, P. R. China, from March 2004 to February 2013.
Currently, he is a full professor in the School of Mathematical Sciences at
Capital Normal University, Beijing, P. R. China. His research interests include
the constructions of combinatorial designs and their applications to codes and
crypts.

Dr. Ge is on the Editorial Board of Journal of Combinatorial Designs,
SCIENCE CHINA Mathematics, Applied Mathematics–A Journal of Chinese
Universities. He received the 2006 Hall Medal from the Institute of Combi-
natorics and its Applications.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


