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1. Introduction

Let A be an m × n matrix over a field K. By means of elementary row and column 
operations, namely:

(1) add a multiple of a row (respectively, column) to another row (respectively, column), 
or

(2) multiply a row or column by a unit (nonzero element) of K,
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we can transform A into a matrix that vanishes off the main diagonal (so A is a diagonal 
matrix if m = n) and whose main diagonal consists of k 1’s followed by m − k 0’s. 
Moreover, k is uniquely determined by A since k = rank(A).

What happens if we replace K by another ring R (which we always assume to be 
commutative with identity 1)? We allow the same row and column operations as before. 
Condition (2) above is ambiguous since a unit of R is not the same as a nonzero element. 
We want the former interpretation, i.e., we can multiply a row or column by a unit only. 
Equivalently, we transform A into a matrix of the form PAQ, where P is an m × m

matrix and Q is an n ×n matrix, both invertible over R. In other words, detP and detQ
are units in R. Now the situation becomes much more complicated.

We say that PAQ is a diagonal form of A if it vanishes off the main diagonal. (Do 
not confuse the diagonal form of a square matrix with the matrix D obtained by di-
agonalizing A. Here D = XAX−1 for some invertible matrix X, and the diagonal 
entries are the eigenvalues of A.) If A has a diagonal form B whose main diagonal 
is (α1, . . . , αr, 0, . . . , 0), where αi divides αi+1 in R for 1 ≤ i ≤ r − 1, then we call B a 
Smith normal form (SNF) of A. If A is a nonsingular square matrix, then taking deter-
minants of both sides of the equation PAQ = B shows that detA = uα1 · · ·αn for some 
unit u ∈ R. Hence an SNF of A yields a factorization of detA. Since there is a huge 
literature on determinants of combinatorially interesting matrices (e.g., [25,26]), finding 
an SNF of such matrices could be a fruitful endeavor.

In the next section we review the basic properties of SNF, including questions of 
existence and uniqueness, and some algebraic aspects. In Section 3 we discuss connections 
between SNF and the abelian sandpile or chip-firing process on a graph. The distribution 
of the SNF of a random integer matrix is the topic of Section 4. The remaining sections 
deal with some examples and open problems related to the SNF of combinatorially 
defined matrices.

We will state most of our results with no proof or just the hint of a proof. It would 
take a much longer paper to summarize all the work that has been done on computing 
SNF for special matrices. We therefore will sample some of this work based on our own 
interests and research. We will include a number of open problems which we hope will 
stir up some further interest in this topic.

2. Basic properties

In this section we summarize without proof the basic properties of SNF. We will use 
the following notation. If A is an m × n matrix over a ring R, and B is the matrix with 
(α1, . . . , αm) on the main diagonal and 0’s elsewhere then we write A snf→ (α1, . . . , αm)
to indicate that B is an SNF of A.

2.1. Existence and uniqueness

For connections with combinatorics we are primarily interested in the ring Z or in 
polynomial rings over a field or over Z. However, it is still interesting to ask over what 
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rings R does a matrix always have an SNF, and how unique is the SNF when it exists. 
For this purpose, define an elementary divisor ring R to be a ring over which every 
matrix has an SNF. Also define a Bézout ring to be a commutative ring for which every 
finitely generated ideal is principal. Note that a Noetherian Bézout ring is (by definition) 
a principal ideal ring, i.e., a ring (not necessarily an integral domain) for which every 
ideal is principal. An important example of a principal ideal ring that is not a domain is 
Z/kZ (when k is not prime). Two examples of non-Noetherian Bézout domains are the 
ring of entire functions and the ring of all algebraic integers.

Theorem 2.1. Let R be a commutative ring with identity.

(1) If every rectangular matrix over R has an SNF, then R is a Bézout ring. In fact, if 
I is an ideal with a minimum size generating set a1, . . . , ak, then the 1 × 2 matrix 
[a1, a2] does not have an SNF. See [24, p. 465].

(2) Every diagonal matrix over R has an SNF if and only if R is a Bézout ring [28, 
(3.1)].

(3) A Bézout domain R is an elementary divisor domain if and only if it satisfies:

For all a, b, c ∈ R with (a, b, c) =R, there exists p, q ∈ R such that (pa, pb + qc) =R.

See [24, §5.2], [19, §6.3].
(4) Every principal ideal ring is an elementary divisor ring. This is the classical existence 

result (at least for principal ideal domains), going back to Smith [39] for the integers.
(5) Suppose that R is an associate ring, that is, if two elements a and b generate the 

same principal ideal there is a unit u such that ua = b. (Every integral domain is an 
associate ring.) If a matrix A has an SNF PAQ over R, then PAQ is unique (up to 
multiplication of each diagonal entry by a unit). This result is immediate from [30, 
§IV.5, Thm. 5.1].

It is open whether every Bézout domain is an elementary divisor domain. For a recent 
paper on this question, see Lorenzini [31].

Let us give a simple example where SNF does not exist.

Example 2.2. Let R = Z[x], the polynomial ring in one variable over Z, and let A =[
2 0
0 x

]
. Clearly A has a diagonal form (over R) since it is already a diagonal matrix. 

Suppose that A has an SNF B = PAQ. The only possible SNF (up to units ±1) is 
diag(1, 2x), since detB = ±2x. Setting x = 2 in B = PAQ yields the SNF diag(1, 4)
over Z, but setting x = 2 in A yields the SNF diag(2, 2).

Let us remark that there is a large literature on the computation of SNF over a 
PID (or sometimes more general rings) which we will not discuss. We are unaware of 
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any literature on deciding whether a given matrix over a more general ring, such as 
Q[x1, . . . , xn] or Z[x1, . . . , xn], has an SNF.

2.2. Algebraic interpretation

Smith normal form, or more generally diagonal form, has a simple algebraic inter-
pretation. Suppose that the m × n matrix A over the ring R has a diagonal form with 
diagonal entries α1, . . . , αm. The rows v1, . . . , vm of A may be regarded as elements of 
the free R-module Rn.

Theorem 2.3. We have

Rn/(v1, . . . , vm) ∼= (R/α1R) ⊕ · · · ⊕ (R/αmR).

Proof. It is easily seen that the allowed row and column operations do not change the 
isomorphism class of the quotient of Rn by the rows of the matrix. Since the conclusion 
is tautological for diagonal matrices, the proof follows. �

The quotient module Rn/(v1, . . . , vm) is called the cokernel (or sometimes the Kaste-
leyn cokernel) of the matrix A, denoted coker(A).

Recall the basic result from algebra that a finitely-generated module M over a PID 
R is a (finite) direct sum of cyclic modules R/αiR. Moreover, we can choose the αi’s 
so that αi|αi+1 (where α|0 for all α ∈ R). In this case the αi’s are unique up to mul-
tiplication by units. In the case R = Z, this result is the “fundamental theorem for 
finitely-generated abelian groups.” For a general PID R, this result is equivalent to the 
PID case of Theorem 2.1(4).

2.3. A formula for SNF

Recall that a minor of a matrix A is the determinant of some square submatrix.

Theorem 2.4. Let R be a unique factorization domain (e.g., a PID), so that any two 
elements have a greatest common divisor (gcd). Suppose that the m × n matrix M over 
R satisfies M snf→ (α1, . . . , αm). Then for 1 ≤ k ≤ m we have that α1α2 · · ·αk is equal to 
the gcd of all k× k minors of A, with the convention that if all k× k minors are 0, then 
their gcd is 0.

Sketch of proof. The assertion is easy to check if M is already in Smith normal form, 
so we have to show that the allowed row and column operations preserve the gcd of the 
k×k minors. For k = 1 this is easy. For k > 1 we can apply the k = 1 case to the matrix 
∧kM , the kth exterior power of M . For details, see [33, Prop. 8.1].
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3. The critical group of a graph

Let G be a finite graph on the vertex set V . We allow multiple edges but not loops 
(edges from a vertex to itself). (We could allow loops, but they turn out to be irrelevant.) 
Write μ(u, v) for the number of edges between vertices u and v, and deg v for the degree 
(number of incident edges) of vertex v. The Laplacian matrix L = L(G) is the matrix 
with rows and columns indexed by the elements of V (in some order), with

Luv =
{

−μ(u, v), if u �= v

deg(v), if u = v.

The matrix L(G) is always singular since its rows sum to 0. Let L0 = L0(G) be L with 
the last row and column removed. (We can just as well remove any row and column.) The 
well-known Matrix-Tree Theorem (e.g., [40, Thm. 5.6.8]) asserts that detL0 = κ(G), the 
number of spanning trees of G. Equivalently, if #V = n and L has eigenvalues θ1, . . . , θn, 
where θn = 0, then κ(G) = θ1 · · · θn−1/n. We are regarding L and L0 as matrices over 
Z, so they both have an SNF. It is easy to see that L0

snf→ (α1, . . . , αn−1) if and only if 
L

snf→ (α1, . . . , αn−1, 0).
Let G be connected. The group coker(L0) has an interesting interpretation in terms 

of chip-firing, which we explain below. For this reason there has been a lot of work on 
finding the SNF of Laplacian matrices L(G).

A configuration is a finite collection σ of indistinguishable chips distributed among 
the vertices of the graph G. Equivalently, we may regard σ as a function σ : V → N =
{0, 1, 2, . . . }. Suppose that for some vertex v we have σ(v) ≥ deg(v). The toppling or 
firing τ of vertex v is the configuration obtained by sending a chip from v along each 
incident edge to the vertex at the other end of the edge. Thus

τ(u) =
{

σ(v) − deg(v), u = v

σ(u) + μ(u, v), u �= v.

Now choose a vertex w of G to be a sink, and ignore chips falling into the sink. 
(We never topple the sink.) This dynamical system is called the abelian sandpile model. 
A stable configuration is one for which no vertex can topple, i.e., σ(v) < deg(v) for all 
vertices v �= w. It is easy to see that after finitely many topples a stable configuration will 
be reached, which is independent of the order of topples. (This independence of order 
accounts for the word “abelian” in “abelian sandpile.”)

Let M denote the set of all stable configurations. Define a binary operation ⊕ on 
M by vertex-wise addition followed by stabilization. An ideal of M is a subset J ⊆ M

satisfying σ ⊕ J ⊆ J for all σ ∈ M . The sandpile group or critical group K(G) is the 
minimal ideal of M , i.e., the intersection of all ideals. (Following the survey [29] of 
Levine and Propp, the reader is encouraged to prove that the minimal ideal of any finite 
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commutative monoid is a group.) The group K(G) is independent of the choice of sink 
up to isomorphism.

An equivalent but somewhat less abstract definition of K(G) is the following. A con-
figuration u is called recurrent if, for all configurations v, there is a configuration y such 
that v⊕ y = u. A configuration that is both stable and recurrent is called critical. Given 
critical configurations C1 and C2, define C1 +C2 to be the unique critical configuration 
reachable from the vertex-wise sum of C1 and C2. This operation turns the set of critical 
configurations into an abelian group isomorphic to the critical group K(G).

The basic result on K(G) [4,14] is the following.

Theorem 3.1. We have K(G) ∼= coker(L0(G)). Equivalently, if L0(G) snf→ (α1, . . . , αn−1), 
then

K(G) ∼= Z/α1Z⊕ · · · ⊕ Z/αn−1Z.

Note that by the Matrix-Tree Theorem we have #K(G) = detL0(G) = κ(G). Thus 
the critical group K(G) gives a canonical factorization of κ(G). When κ(G) has a “nice” 
factorization, it is especially interesting to determine K(G). The simplest case is G = Kn, 
the complete graph on n vertices. We have κ(Kn) = nn−2, a classic result going back 
to Sylvester and Borchardt. There is a simple trick for computing K(Kn) based on 

Theorem 2.4. Let L0(Kn) snf→ (α1, . . . , αn−1). Since L0(Kn) has an entry equal to −1, 
it follows from Theorem 2.4 that α1 = 1. Now the 2 × 2 submatrices (up to row and 
column permutations) of L0(Kn) are given by

[
n− 1 −1
−1 n− 1

]
,

[
n− 1 −1
−1 −1

]
,

[
−1 −1
−1 −1

]
,

with determinants n(n − 2), −n, and 0. Hence α2 = n by Theorem 2.4. Since 
∏

αi =
±nn−2 and αi|αi+1, we get K(G) ∼= (Z/nZ)n−2.

Note. A similar trick works for the matrix M =
[(2(i+j)

i+j

)]n−1

i,j=0
, once it is known that 

detM = 2n−1 (e.g., [17, Thm. 9]). Every entry of M is even except for M00, so 2|α2, 
yielding M snf→ (1, 2, 2, . . . , 2). The matrix

[(3(i+j)
i+j

)]n−1

i,j=0
is much more complicated. For 

instance, when n = 8 the diagonal elements of the SNF are

1, 3, 3, 3, 3, 6, 2 · 3 · 29 · 31, 2 · 32 · 11 · 29 · 31 · 37 · 41.

It seems that if dn denotes the number of diagonal entries of the SNF that are equal 
to 3, then dn is close to 2

3n. The least n for which |dn − �2
3n�| > 1 is n = 224. For the 

determinant of M , see [21, (10)]. If M =
[(

a(i+j)
i+j

)]n−1

i,j=0
for a ≥ 4, then detM does not 

seem “nice” (it doesn’t factor into small factors).
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The critical groups of many classes of graphs have been computed. As a couple of nice 
examples, we mention threshold graphs (work of B. Jacobson [23]) and Paley graphs 
(D.B. Chandler, P. Sin, and Q. Xiang [8]). Critical groups have been generalized in 
various ways. In particular, A.M. Duval, C.J. Klivans, and J.L. Martin [16] consider the 
critical group of a simplicial complex.

4. Random matrices

There is a huge literature on the distribution of eigenvalues and eigenvectors of a 
random matrix. Much less has been done on the distribution of the SNF of a random 
matrix. We will restrict our attention to the situation where k ≥ 0 and M is an m × n

integer matrix with independent entries uniformly distributed in the interval [−k, k], in 
the limit as k → ∞. We write P (m,n)

k (E) for the probability of some event under this 
model (for fixed k). To illustrate that the distribution of SNF in such a model might be 

interesting, suppose that M snf→ (α1, . . . , αm). Let j ≥ 1. The probability P (m,n)
k (α1 = j)

that α1 = j is equal to the probability that mn integers between −k and k have gcd 
equal to j. It is then a well-known, elementary result that when mn > 1,

lim
k→∞

P
(m,n)
k (α1 = j) = 1

jmnζ(mn) , (4.1)

where ζ denotes the Riemann zeta function. This suggests looking, for instance, at such 
numbers as

lim
k→∞

P
(m,n)
k (α1 = 1, α2 = 2, α3 = 12).

In fact, it turns out that if m < n and we specify the values α1, . . . , αm (subject of 
course to α1|α2| · · · |αm−1), then the probability as k → ∞ exists and is strictly between 
0 and 1. For m = n the same is true for specifying α1, . . . , αn−1. However, for any j ≥ 1, 
we have limk→∞ P

(n,n)
k (αn = j) = 0.

The first significant result of this nature is due to Ekedahl [18, §3], namely, let

σ(n) = lim
k→∞

P
(n,n)
k (αn−1 = 1).

Note that this number is just the probability (as k → ∞) that the cokernel of the n × n

matrix M is cyclic (has one generator). Then

σ(n) =

∏
p

(
1 + 1

p2 + 1
p3 + · · · + 1

pn

)
ζ(2)ζ(3) · · · , (4.2)

where p ranges over all primes. It is not hard to deduce that
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lim
n→∞

σ(n) = 1
ζ(6)
∏

j≥4 ζ(j)
(4.3)

= 0.84693590173 · · · .

At first sight it seems surprising that this latter probability is not 1. It is the probability 
(as k → ∞, n → ∞) that the n2 (n −1) × (n −1) minors of M are relatively prime. Thus 
the (n − 1) × (n − 1) minors do not behave at all like n2 independent random integers.

Further work on the SNF of random integer matrices appears in [48] and the references 
cited there. These papers are concerned with powers of a fixed prime p dividing the αi’s. 
Equivalently, they are working (at least implicitly) over the p-adic integers Zp. The first 
paper to treat systematically SNF over Z is by Wang and Stanley [46]. One would expect 
that the behavior of the prime power divisors to be independent for different primes as 
k → ∞. This is indeed the case, though it takes some work to prove. In particular, for 
any positive integers h ≤ m ≤ n and a1|a2| · · · |ah Wang and Stanley determine

lim
k→∞

P
(m,n)
k (α1 = a1, . . . , αh = ah).

A typical result is the following:

lim
k→∞

P
(n,n)
k (α1 = 2, α2 = 6) = 2−n2

⎛
⎝1 −

n(n−1)∑
i=(n−1)2

2−i +
n2−1∑

i=n(n−1)+1

2−i

⎞
⎠

· 3
2 · 3−(n−1)2(1 − 3(n−1)2)(1 − 3−n)2

·
∏
p>3

⎛
⎝1 −

n(n−1)∑
i=(n−1)2

p−i +
n2−1∑

i=n(n−1)+1

p−i

⎞
⎠ .

A further result in [46] is an extension of Ekedahl’s formula (4.2). The authors obtain 
explicit formulas for

ρj(n) := lim
k→∞

P
(n,n)
k (αn−j = 1),

i.e., the probability (as k → ∞) that the cokernel of M has at most j generators. Thus 
(4.2) is the case j = 1. Write ρj = limn→∞ ρj(n). Numerically we have

ρ1 = 0.846935901735

ρ2 = 0.994626883543

ρ3 = 0.999953295075

ρ4 = 0.999999903035

ρ5 = 0.999999999951.
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The convergence ρn → 1 looks very rapid. In fact [46, (4.38)],

ρn = 1 − c 2−(n+1)2(1 − 2−n + O(4−n)),

where

c = 1
(1 − 1

2)(1 − 1
4 )(1 − 1

8 ) · · ·
= 3.46275 · · · .

A major current topic related to eigenvalues and eigenvectors of random matrices 
is universality (e.g., [44]). A certain distribution of eigenvalues (say) occurs for a large 
class of probability distributions on the matrices, not just for a special distribution like 
the GUE model on the space of n × n Hermitian matrices. Universality of SNF over 
the rings Zp of p-adic integers and over Z/nZ was considered by Kenneth Maples [32]. 
On the other hand, Clancy, Leake, and Payne [11] make some conjectures for the SNF 
distribution of the Laplacian matrix of an Erdős–Rényi random graph that differs from 
the distribution obtained in [46]. (It is clear, for instance, that α1 = 1 for Laplacian 
matrices, in contradistinction to equation (4.1), but conceivably equation (4.3) could 
carry over.) Considerable progress on these conjectures was made by Wood [47].

5. Symmetric functions

5.1. An up–down linear transformation

Many interesting matrices arise in the theory of symmetric functions. We will adhere 
to notation and terminology on this subject from [40, Chap. 7]. For our first example, 
let Λn

Q denote the Q-vector space of homogeneous symmetric functions of degree n in 
the variables x = (x1, x2, . . . ) with rational coefficients. One basis for Λn

Q consists of the 
Schur functions sλ for λ � n. Define a linear transformation ψn : Λn

Q → Λn
Q by

ψn(f) = ∂

∂p1
p1f.

Here p1 = s1 =
∑

xi, the first power sum symmetric function. The notation ∂
∂p1

indicates 
that we differentiate with respect to p1 after writing the argument as a polynomial in the 
pk’s, where pk =

∑
xk
i . It is a standard result [40, Thm. 7.15.7, Cor. 7.15.9, Exer. 7.35]

that for λ � n,

p1sλ =
∑

μ�n+1
μ⊃λ

sμ

∂

∂p1
sλ = sλ/1 =

∑
μ�n−1

sμ.
μ⊂λ
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Note that the power sum pλ, λ � n, is an eigenvector for ψn with eigenvalue m1(λ) + 1, 
where m1(λ) is the number of 1’s in λ. Hence

detψn =
∏
λ�n

(m1(λ) + 1).

The factorization of detψn suggests looking at the SNF of ψn with respect to the basis 
{sλ}. We denote this matrix by [ψn]. Since the matrix transforming the sλ’s to the 
pμ’s is not invertible over Z, we cannot simply convert the diagonal matrix with entries 
m1(λ) + 1 to SNF. As a special case of a more general conjecture Miller and Reiner [33]
conjectured the SNF of [ψn], which was then proved by Cai and Stanley [6]. Subsequently 
Nie [35] and Shah [37] made some further progress on the conjecture of Miller and Reiner. 
We state two equivalent forms of the result of Cai and Stanley.

Theorem 5.1. Let [ψn] snf→ (α1, . . . , αp(n)), where p(n) denotes the number of partitions 
of n.

(a) The αi’s are as follows:
• (n + 1)(n − 1)!, with multiplicity 1
• (n − k)!, with multiplicity p(k + 1) − 2p(k) + p(k − 1), 3 ≤ k ≤ n − 2
• 1, with multiplicity p(n) − p(n − 1) + p(n − 2).

(b) Let M1(n) be the multiset of all numbers m1(λ) + 1, for λ � n. Then αp(n) is the 
product of the distinct elements of M1(n); αp(n)−1 is the product of the remaining
distinct elements of M1(n), etc.

In fact, the following stronger result than Theorem 5.1 is actually proved.

Theorem 5.2. Let t be an indeterminate. Then the matrix [ψn+tI] has an SNF over Z[t].

To see that Theorem 5.2 implies Theorem 5.1, use the fact that [ψn] is a symmetric 
matrix (and therefore semisimple), and for each eigenvalue λ of ψn consider the rank of 
the matrices obtained by substituting t = −λ in [ψn + tI] and its SNF over Z[t]. For 
details and further aspects, see [33, §8.2].

The proof of Theorem 5.2 begins by working with the basis {hλ} of complete symmet-
ric functions rather than with the Schur functions, which we can do since the transition 
matrix between these bases is an integer unimodular matrix. The proof then consists 
basically of describing the row and column operations to achieve SNF.

The paper [6] contains a conjectured generalization of Theorem 5.2 to the operator 
ψn,k := k ∂

∂pk
pk : Λn

Q → Λn
Q for any k ≥ 1. Namely, the matrix [ψn,k + tI] with respect 

to the basis {sλ} has an SNF over Z[t]. This implies that if [ψn,k] 
snf→ (α1, . . . , αp(n))

and Mk(n) denotes the multiset of all numbers k(mk(λ) + 1), for λ � n, then αp(n) is 
the product of the distinct elements of Mk(n); αp(n)−1 is the product of the remaining 
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distinct elements of Mk(n), etc. This conjecture was proved in 2015 by Zipei Nie (private 
communication).

There is a natural generalization of the SNF of ψn,k, namely, we can look at operators 
like (
∏

λi) ∂�

∂pλ
pλ. Here λ is a partition of n with � parts and

∂�

∂pλ
= ∂�

∂pm1
1 ∂pm2

2 · · · ,

where λ has mi parts equal to i. Even more generally, if λ, μ � n where λ has � parts, 
then we could consider (

∏
λi) ∂�

∂pλ
pμ. No conjecture is known for the SNF (with respect 

to an integral basis), even when λ = μ.

5.2. A specialized Jacobi–Trudi matrix

A fundamental identity in the theory of symmetric functions is the Jacobi–Trudi 
identity. Namely, if λ is a partition with at most t parts, then the Jacobi–Trudi matrix
JTλ is defined by

JTλ = [hλi+j−i]ti,j=1 ,

where hi denotes the complete symmetric function of degree i (with h0 = 1 and h−i = 0
for i ≥ 1). The Jacobi–Trudi identity [40, §7.16] asserts that det JTλ = sλ, the Schur 
function indexed by λ.

For a symmetric function f , let ϕnf denote the specialization f(1n), that is, set 
x1 = · · · = xn = 1 and all other xi = 0 in f . It is easy to see [40, Prop. 7.8.3] that

ϕnhi =
(
n + i− 1

i

)
, (5.1)

a polynomial in n of degree i. Identify λ with its (Young) diagram, so the squares of λ
are indexed by pairs (i, j), 1 ≤ i ≤ �(λ), 1 ≤ j ≤ λi. The content c(u) of the square 
u = (i, j) is defined to be c(u) = j − i. A standard result [40, Cor. 7.21.4] in the theory 
of symmetric functions states that

ϕnsλ = 1
Hλ

∏
u∈λ

(n + c(u)), (5.2)

where Hλ is a positive integer whose value is irrelevant here (since it is a unit in Q[n]). 
Since this polynomial factors a lot (in fact, into linear factors) over Q[n], we are motivated 
to consider the SNF of the matrix

ϕnJTλ =
[(

n + λi + j − i− 1
λ + j − i

)]t
.

i i,j=1
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Fig. 1. The contents of the partition (7, 5, 5, 2).

Let Dk denote the kth diagonal hook of λ, i.e., all squares (i, j) ∈ λ such that either 
i = k and j ≥ k, or j = k and i ≥ k. Note that λ is a disjoint union of its diagonal 
hooks. If r = rank(λ) := max{i : λi ≥ i}, then note also that Dk = ∅ for k > r. The 
following result was proved in [43].

Theorem 5.3. Let ϕnJTλ
snf→ (α1, α2, . . . , αt), where t ≥ �(λ). Then we can take

αi =
∏

u∈Dt−i+1

(n + c(u)).

An equivalent statement to Theorem 5.3 is that the αi’s are squarefree (as polynomials 
in n), since αt is the largest squarefree factor of ϕnsλ, αt−1 is the largest squarefree factor 
of (ϕnsλ)/αt, etc.

Example 5.4. Let λ = (7, 5, 5, 2). Fig. 1 shows the diagram of λ with the content of each 
square. Let t = �(λ) = 4. We see that

α4 = (n− 3)(n− 2) · · · (n + 6)

α3 = (n− 2)(n− 1)n(n + 1)(n + 2)(n + 3)

α2 = n(n + 1)(n + 2)

α1 = 1.

The problem of computing the SNF of a suitably specialized Jacobi–Trudi matrix was 
raised by Kuperberg [27]. His Theorem 14 has some overlap with our Theorem 5.3. Propp 
[36, Problem 5] mentions a two-part question of Kuperberg. The first part is equivalent 
to our Theorem 5.3 for rectangular shapes. (The second part asks for an interpretation 
in terms of tilings, which we do not consider.)

Theorem 5.3 is proved not by the more usual method of row and column operations. 
Rather, the gcd of the k × k minors is computed explicitly so that Theorem 2.4 can 
be applied. Let Mk be the bottom-left k × k submatrix of JTλ. Then Mk is itself the 
Jacobi–Trudi matrix of a certain partition μk, so ϕnMk can be explicitly evaluated. One 
then shows using the Littlewood–Richardson rule that every k × k minor of ϕnJTλ is 
divisible by ϕnMk. Hence ϕnMk is the gcd of the k × k minors of ϕnJTλ, after which 
the proof is a routine computation.
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There is a natural q-analogue of the specialization f(x) → f(1n), namely, f(x) →
f(1, q, q2, . . . , qn−1). Thus we can ask for a q-analogue of Theorem 5.3. This can be done 
using the same proof technique, but some care must be taken in order to get a q-analogue 
that reduces directly to Theorem 5.3 by setting q = 1. When this is done we get the 
following result [43, Thm. 3.2].

Theorem 5.5. For k ≥ 1 let

f(k) = n(n + (1))(n + (2)) · · · (n + (k − 1))
(1)(2) · · · (k)

,

where (j) = (1 − qj)/(1 − q) for any j ∈ Z. Set f(0) = 1 and f(k) = 0 for k < 0. Define

JTλ(q) = [f(λi − i + j)]ti,j=1 ,

where �(λ) ≤ t. Let JTλ(q) snf→ (γ1, γ2, . . . , γt) over the ring Q(q)[n]. Then we can take

γi =
∏

u∈Dt−i+1

(n + c(u)).

6. A multivariate example

In this section we give an example where the SNF exists over a multivariate polynomial 
ring over Z. Let λ be a partition, identified with its Young diagram regarded as a set of 
squares; we fix λ for all that follows. Adjoin to λ a border strip extending from the end 
of the first row to the end of the first column of λ, yielding an extended partition λ∗. 
Let (r, s) denote the square in the rth row and sth column of λ∗. If (r, s) ∈ λ∗, then let 
λ(r, s) be the partition whose diagram consists of all squares (u, v) of λ satisfying u ≥ r

and v ≥ s. Thus λ(1, 1) = λ, while λ(r, s) = ∅ (the empty partition) if (r, s) ∈ λ∗ \ λ. 
Associate with the square (i, j) of λ an indeterminate xij . Now for each square (r, s)
of λ∗, associate a polynomial Prs in the variables xij , defined as follows:

Prs =
∑

μ⊆λ(r,s)

∏
(i,j)∈λ(r,s)\μ

xij , (6.1)

where μ runs over all partitions contained in λ(r, s). In particular, if (r, s) ∈ λ∗ \ λ then 
Prs = 1. Thus for (r, s) ∈ λ, Prs may be regarded as a generating function for the squares 
of all skew diagrams λ(r, s) \ μ. For instance, if λ = (3, 2) and we set x11 = a, x12 = b, 
x13 = c, x21 = d, and x22 = e, then Fig. 2 shows the extended diagram λ∗ with the 
polynomial Prs placed in the square (r, s).

Write

Ars =
∏

xij .

(i,j)∈λ(r,s)
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Fig. 2. The polynomials Prs for λ = (3, 2).

Note that Ars is simply the leading term of Prs. Thus for λ = (3, 2) as in Fig. 2 we have 
A11 = abcde, A12 = bce, A13 = c, A21 = de, and A22 = e.

For each square (i, j) ∈ λ∗ there will be a unique subset of the squares of λ∗ forming 
an m ×m square S(i, j) for some m ≥ 1, such that the upper left-hand corner of S(i, j)
is (i, j), and the lower right-hand corner of S(i, j) lies in λ∗ \λ. In fact, if ρij denotes the 
rank of λ(i, j) (the number of squares on the main diagonal, or equivalently, the largest 
k for which λ(i, j)k ≥ k), then m = ρij + 1. Let M(i, j) denote the matrix obtained by 
inserting in each square (r, s) of S(i, j) the polynomial Prs. For instance, for the partition 
λ = (3, 2) of Fig. 2, the matrix M(1, 1) is given by

M(1, 1) =

⎡
⎢⎣ P11 bce + ce + c + e + 1 c + 1
de + e + 1 e + 1 1

1 1 1

⎤
⎥⎦ ,

where P11 = abcde + bcde + bce + cde + ce + de + c + e + 1. Note that for this example 
we have

detM(1, 1) = A11A22A33 = abcde · e · 1 = abcde2.

The main result on the matrices M(i, j) is the following. For convenience we state it 
only for M(1, 1), but it applies to any M(i, j) by replacing λ with λ(i, j).

Theorem 6.1. Let ρ = rank(λ). The matrix M(1, 1) has an SNF over Z[xij ], given ex-
plicitly by

M(1, 1) snf→ (A11, A22, . . . , Aρ+1,ρ+1).

Hence detM(1, 1) = A11A22 · · ·Aρρ (since Aρ+1,ρ+1 = 1).
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Theorem 6.1 is proved by finding row and column operations converting M(1, 1) to 
SNF. In [3] this is done in two ways: an explicit description of the row and column 
operations, and a proof by induction that such operations exist without stating them 
explicitly.

Another way to describe the SNF of M(1, 1) is to replace its nondiagonal entries with 
0 and a diagonal entry with its leading term (unique monomial of highest degree). Is 
there some conceptual reason why the SNF has this simple description?

If we set each xij = 1 in M(1, 1) then we get detM(1, 1) = 1. This formula is 
equivalent to result of Carlitz, Roselle, and Scoville [7] which answers a question posed by 
Berlekamp [1,2]. If we set each xij = q in M(1, 1) and take λ = (m −1, m −2, . . . , 1), then 
the entries of M(1, 1) are certain q-Catalan numbers, and detM(1, 1) was determined 
by Cigler [9,10]. This determinant (and some related ones) was a primary motivation for 
[3]. Miller and Stanton [34] have generalized the q-Catalan result to Hankel matrices of 
moments of orthogonal polynomials and some other similar matrices.

Di Francesco [15] shows that the polynomials Prs satisfy the “octahedron recurrence” 
and are related to cluster algebras, integrable systems, dimer models, and other topics.

7. The Varchenko matrix

Let A be a finite arrangement (set) of affine hyperplanes in Rn. The complement 
Rn −

⋃
H∈A H consists of a disjoint union of finitely many open regions. Let R(A)

denote the set of all regions. For each hyperplane H ∈ A associate an indeterminate aH . 
If R, R′ ∈ R(A) then let sep(R, R′) denote the set of H ∈ A separating R from R′, that 
is, R and R′ lie on different sides of H. Now define a matrix V (A) as follows. The rows 
and columns are indexed by R(A) (in some order). The (R, R′)-entry is given by

VRR′ =
∏

H∈sep(R,R′)

aH .

If x is any nonempty intersection of a set of hyperplanes in A, then define ax =
∏

H⊇x aH . 
Varchenko [45] showed that

detV (A) =
∏
x

(1 − a2
x)n(x)p(x), (7.1)

for certain nonnegative integers n(x), p(x) which we will not define here.
Note. We include the intersection x over the empty set of hyperplanes, which is the 

ambient space Rn. This gives an irrelevant factor of 1 in the determinant above, but it 
also accounts for an essential diagonal entry of 1 in Theorem 7.1 below.

Since detV (A) has such a nice factorization, it is natural to ask about its diagonal 
form or SNF. Since we are working over the polynomial ring Z[aH : H ∈ A] or Q[aH :
H ∈ A], there is no reason for a diagonal form to exist. Gao and Zhang [20] found 
the condition for this property to hold. We say that A is semigeneric or in semigeneral 
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Fig. 3. An arrangement of three lines.

form if for any k hyperplanes H1, . . . , Hk ∈ A with intersection x =
⋂k

i=1 Hi, either 
codim(x) = k or x = ∅. (Note that x is an affine subspace of Rn so has a well-defined 
codimension.) In particular, x = ∅ if k > n.

Theorem 7.1. The matrix V (A) has a diagonal form if and only if A is semigeneric. In 
this case, the diagonal entries of A are given by 

∏
H⊇x(1 − a2

H), where x is a nonempty 
intersection of the hyperplanes in some subset of A.

Gao and Zhang actually prove their result for pseudosphere arrangements, which are 
a generalization of hyperplane arrangements. Pseudosphere arrangements correspond to 
oriented matroids.

Example 7.2. Let A be the arrangement of three lines in R2 shown in Fig. 3, with the 
hyperplane variables a, b, c as in the figure. This arrangement is semigeneric. The diagonal 
entries of the diagonal form of V (A) are

1, 1 − a2, 1 − b2, 1 − c2, (1 − a2)(1 − c2), (1 − b2)(1 − c2).

Now define the q-Varchenko matrix Vq(A) of A to be the result of substituting aH = q

for all H ∈ A. Equivalently, Vq(A)RR′ = q#sep(R,R′). The SNF of Vq(A) exists over the 
PID Q[q], and it seems to be a very interesting and little studied problem to determine 
this SNF. Some special cases were determined by Cai and Mu [5]. A generalization related 
to distance matrices of graphs was considered by Shiu [38]. Note that by equation (7.1)
the diagonal entries of the SNF of Vq(A) will be products of cyclotomic polynomials 
Φd(q).

The main paper to date on the SNF of Vq(A) is by Denham and Hanlon [12]. In 
particular, let

χA(t) =
n∑

i=0
(−1)icitn−i

be the characteristic polynomial of A, as defined for instance in [41, §1.3], [42, §3.11.2]. 
Denham and Hanlon show the following in their Theorem 3.1.
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Theorem 7.3. Let Nd,i be the number of diagonal entries of the SNF of Vq(A) that are 
exactly divisible by Φd(q)i. Then N1,i = ci.

It is easy to see that N1,i = N2,i. Thus the next step would be to determine N3,i and 
N4,i.

An especially interesting hyperplane arrangement is the braid arrangement Bn in Rn, 
with hyperplanes xi = xj for 1 ≤ i < j ≤ n. The determinant of Vq(Bn), originally due 
to Zagier [50], is given by

detVq(Bn) =
n∏

j=2

(
1 − qj(j−1)

)(n
j

)
(j−2)! (n−j+1)!

.

An equivalent description of Vq(Bn) is the following. Let Sn denote the symmetric group 
of all permutations of 1, 2, . . . , n, and let inv(w) denote the number of inversions of 
w ∈ Sn, i.e., inv(w) = #{(i, j) : 1 ≤ i < j ≤ n, w(i) > w(j)}. Define Γn(q) =∑

w∈Sn
qinv(w)w, an element of the group algebra Q[q]Sn. The element Γn(q) acts on 

Q[q]Sn by left multiplication, and Vq(Bn) is the matrix of this linear transformation 
(with a suitable indexing of rows and columns) with respect to the basis Sn. The SNF 
of Vq(Bn) (over the PID Q[q]) is not known. Denham and Hanlon [12, §5] compute it for 
n ≤ 6.

Some simple representation theory allows us to refine the SNF of Vq(Bn). The complex 
irreducible representations ϕλ of Sn are indexed by partitions λ � n. Let fλ = dimϕλ. 
The action of Sn on QSn by right multiplication commutes with the action of Γn(q). 
It follows (since every irreducible representation of Sn can be defined over Z) that by a 
unimodular change of basis we can write

Vq(Bn) =
⊕
λ�n

fλVλ,

for some integral matrices Vλ of size fλ× fλ. Thus computing detVλ and the SNF of Vλ

is a refinement of computing detVq(Bn) and the SNF of Vq(Bn). (Computing the SNF 
of each Vλ would give a diagonal form of Vq(Bn), from which it is easy to determine 
the SNF.) The problem of computing detVλ was solved by Hanlon and Stanley [22, 
Conj. 3.7]. Of course the SNF of Vλ remains open since the same is true for Vq(Bn). 
Denham and Hanlon have computed the SNF of Vλ for λ � n ≤ 6 and published the 
results for n ≤ 4 in [12, §5]. For instance, for the partitions λ � 4 we have the following 
diagonal elements of the SNF of Vλ:

(4) : Φ2
2Φ3Φ4

(3, 1) : Φ1Φ2, Φ2
1Φ2

2Φ3, Φ3
1Φ3

2Φ2
3

(2, 2) : Φ2
1Φ2

2, Φ2
1Φ2

2Φ12

(2, 1, 1) : Φ1Φ2, Φ2
1Φ2

2Φ6, Φ3
1Φ3

2Φ2
6

(1, 1, 1, 1) : Φ Φ Φ Φ ,
1 2 4 6
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where Φd denotes the cyclotomic polynomial whose zeros are the primitive dth roots of 
unity. For a nice survey of this topic see Denham and Hanlon [13].

The discussion above of Γn suggests that it might be interesting to consider the SNF 
of other elements of RSn for suitable rings R (or possibly RG for other finite groups G). 
One intriguing example is the Jucys–Murphy element (though it first appears in the 
work of Alfred Young [49, §19]) Xk ∈ QSn, 1 ≤ k ≤ n. It is defined by X1 = 0 and

Xk = (1, k) + (2, k) + · · · + (k − 1, k), 2 ≤ k ≤ n,

where (i, k) denotes the transposition interchanging i and k. Just as for Γn(q), we can 
choose an integral basis for QSn (that is, a Z-basis for ZSn) so that the action of Xk on 
QSn with respect to this basis has a matrix of the form 

⊕
λ�n f

λWλ,k. The eigenvalues 
of Wλ,k are known to be the contents of the positions occupied by k in all standard 
Young tableaux of shape λ. For instance, when λ = (5, 1) the standard Young tableaux 
are

1 2 3 4 5 1 2 3 4 6 1 2 3 5 6 1 2 4 5 6 1 3 4 5 6
6 5 4 3 2

.

The positions occupied by 5 are (1, 5), (2, 1), (1, 4), (1, 4), (1, 4). Hence the eigenvalues 
of W(5,1),5 are 5 −1 = 4, 1 −2 = −1, and 4 −1 = 3 (three times). Darij Grinberg (private 
communication) computed the SNF of the matrices Wλ,k for λ � n ≤ 7. On the basis of 
this data we make the following conjecture.

Conjecture 7.4. Let λ � n, 1 ≤ k ≤ n, and Wλ,k
snf→ (α1, . . . , αfλ). Fix 1 ≤ r ≤ fλ. Let 

Sr be the set of positions (i, j) that k occupies in at least r of the SYT’s of shape λ. Then 
αfλ−r+1 = ± 

∏
(i,j)∈Sr

(j − i).

Note in particular that every SNF diagonal entry is (conjecturally) a product of some 
of the eigenvalues of Wλ,k.

For example, when λ = (5, 1) and k = 5 we have f (5,1) = 5 and S1 = {(1, 5), (2, 1),
(1, 4)}, S2 = S3 = {(1, 4)}, S4 = S5 = ∅. Hence W(5,1),5

snf→ (1, 1, 3, 3, 12).
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