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Abstract—We explore a novel data representation scheme for
multilevel flash memory cells, in which a set of � cells stores infor-
mation in the permutation induced by the different charge levels
of the individual cells. The only allowed charge-placement mech-
anism is a “push-to-the-top” operation, which takes a single cell
of the set and makes it the top-charged cell. The resulting scheme
eliminates the need for discrete cell levels, as well as overshoot er-
rors, when programming cells.

We present unrestricted Gray codes spanning all possible �-cell
states and using only “push-to-the-top” operations, and also
construct balanced Gray codes. One important application of
the Gray codes is the realization of logic multilevel cells, which
is useful in conventional storage solutions. We also investigate
rewriting schemes for random data modification. We present both
an optimal scheme for the worst case rewrite performance and an
approximation scheme for the average-case rewrite performance.

Index Terms—Asymmetric channel, flash memory, Gray codes,
permutations, rank modulation.

I. INTRODUCTION

F LASH memory is a nonvolatile memory both electrically
programmable and electrically erasable. Its reliability,

high storage density, and relatively low cost have made it a
dominant nonvolatile memory technology and a prominent
candidate to replace the well-established magnetic recording
technology in the near future.

The most conspicuous property of flash storage is its inherent
asymmetry between cell programming (charge placement) and
cell erasing (charge removal). While adding charge to a single
cell is a fast and simple operation, removing charge from a
single cell is very difficult. In fact, today, most (if not all) flash
memory technologies do not allow a single cell to be erased but
rather only a large block of cells. Thus, a single-cell erase op-
eration requires the cumbersome process of copying an entire
block to a temporary location, erasing it, and then programming
all the cells in the block.
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To keep up with the ever-growing demand for denser storage,
the multilevel flash cell concept is used to increase the number
of stored bits in a cell [8]. Instead of the usual single-bit flash
memories, where each cell is in one of two states (erased/pro-
grammed), each multilevel flash cell stores one of levels and
can be regarded as a symbol over a discrete alphabet of size .
This is done by designing an appropriate set of threshold levels
which are used to quantize the charge level readings to symbols
from the discrete alphabet.

Fast and accurate programming schemes for multilevel flash
memories are a topic of significant research and design efforts
[2], [14], [31]. All these and other works share the attempt to
iteratively program a cell to an exact prescribed charge level
in a minimal number of programming cycles. As mentioned
above, flash memory technology does not support charge re-
moval from individual cells. As a result, the programming cycle
sequence is designed to cautiously approach the target charge
level from below so as to avoid undesired global erases in case of
overshoots. Consequently, these attempts still require many pro-
gramming cycles, and they work only up to a moderate number
of levels per cell.

In addition to the need for accurate programming, the move to
multilevel flash cells also aggravates reliability. The same relia-
bility aspects that have been successfully handled in single-level
flash memories may become more pronounced and translate into
higher error rates in stored data. One such relevant example is
errors that originate from low memory endurance [5], by which
a drift of threshold levels in aging devices may cause program-
ming and read errors.

We therefore propose the rank-modulation scheme, whose
aim is to eliminate both the problem of overshooting while pro-
gramming cells, and the problem of memory endurance in aging
devices. In this scheme, an ordered set of cells stores the in-
formation in the permutation induced by the charge levels of the
cells. In this way, no discrete levels are needed (i.e., no need for
threshold levels) and only a basic charge-comparing operation
(which is easy to implement) is required to read the permutation.
If we further assume that the only programming operation al-
lowed is raising the charge level of one of the cells above the cur-
rent highest one (push-to-the-top), then the overshoot problem
is no longer relevant. Additionally, the technology may allow in
the near future the decrease of all the charge levels in a block of
cells by a constant amount smaller than the lowest charge level
(block deflation), which would maintain their relative values,
and thus leave the information unchanged. This can eliminate
a designated erase step, by deflating the entire block whenever
the memory is not in use.

Once a new data representation is defined, several tools are
required to make it useful. In this paper, we present Gray codes
that bring to bear the full representational power of rank mod-
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ulation, and data rewriting schemes. The Gray code [13] is an
ordered list of distinct length binary vectors such that every
two adjacent words (in the list) differ by exactly one bit flip.
They have since been generalized in countless ways and may
now be defined as an ordered set of distinct states for which
every state is followed by a state such that ,
where is a transition function from a predetermined set

defining the Gray code. In the original code, is the set of
all possible single bit flips. Usually, the set consists of transi-
tions that are minimal with respect to some cost function, thus
creating a traversal of the state space that is minimal in total
cost. For a comprehensive survey of combinatorial Gray codes,
the reader is referred to [33].

One application of the Gray codes is the realization of logic
multilevel cells with rank modulation. The traversal of states
by the Gray code is mapped to the increase of the cell level in
a classic multilevel flash cell. In this way, rank modulation can
be naturally combined with current multilevel storage solutions.
Some of the Gray code constructions we describe also induce a
simple algorithm for generating the list of permutations. Effi-
cient generation of permutations has been the subject of much
research as described in the general survey [33], and the more
specific [34] (and references therein). In [34], the transitions we
use in this paper are called “nested cycling,” and the algorithms
cited there produce lists that are not Gray codes since some of
the permutations repeat, which makes the algorithms inefficient.

We also investigate efficient rewriting schemes for rank mod-
ulation. Since it is costly to erase and reprogram cells, we try
to maximize the number of times data can be rewritten between
two erase operations [4], [21], [22]. For rank modulation, the
key is to minimize the highest charge level of cells. We present
two rewriting schemes that are, respectively, optimized for the
worst case and the average-case performance.

Rank modulation is a new storage scheme and differs from
existing data storage techniques. There has been some recent
work on coding for flash memories. Examples include floating
codes [22], [23], which jointly record and rewrite multiple vari-
ables, and buffer codes [4], [37], that keep a log of the recent
modifications of data. Both floating codes and buffer codes use
the flash cells in a conventional way, namely, the fixed discrete
cell levels. Floating codes are an extension of the write-once
memory (WOM) codes [6], [10], [11], [17], [32], [36], which are
codes for effective rewriting of a single variable stored in cells
that have irreversible state transitions. The study in this area also
includes defective memories [16], [18], where defects (such as
“stuck-at faults”) randomly happen to memory cells and how to
store the maximum amount of information is considered. In all
the above codes, unlike rank modulation, the states of different
cells do not relate to each other. Also related is the work on per-
mutation codes [3], [35], used for data transmission or signal
quantization.

The paper is organized as follows: Section II describes a Gray
code that is cyclic and complete (i.e., it spans the entire sym-
metric group of permutations); Section III introduces a Gray
code that is cyclic, complete and balanced, optimizing the tran-
sition step and also making it suitable for block deflation; Sec-
tion IV shows a rewriting scheme that is optimal for the worst
case rewrite cost; Section V presents a code optimized for the

average rewrite cost with small approximation ratios; Section VI
concludes this paper.

II. DEFINITIONS AND BASIC CONSTRUCTION

Let be a state space, and let be a set of transition func-
tions, where every is a function . A Gray
code is an ordered list of distinct elements from

such that for every , for some
. If for some , then the code is cyclic. If

the code spans the entire space we call it complete.
Let denote the set of integers . An ordered

set of flash memory cells named , each containing
a distinct charge level, induces a permutation of by writing
the cell names in descending charge level , i.e.,
the cell has the highest charge level while has the lowest.
The state space for the rank modulation scheme is therefore the
set of all permutations over , denoted by .

As described in the previous section, the basic minimal-cost
operation on a given state is a “push-to-the-top” operation by
which a single cell has its charge level increased so as to be
the highest of the set. Thus, for our basic construction, the set

of minimal-cost transitions between states consists of
functions pushing the th element of the permutation,

, to the front

Throughout this work, our state space will be the set of
permutations over , and our set of transition functions will be
the set of “push-to-the-top” functions. We call such a code a
length- rank modulation Gray code ( -RMGC).

Example 1: An example of a 3-RMGC is the following:

where the permutations are the columns being read from left to
right. The sequence of operations creating this cyclic code is:

, , , , , . This sequence will obviously create a Gray
code regardless of the choice of the first column.

One important application of the Gray codes is the realiza-
tion of logic multilevel cells. The traversal of states by the Gray
code is mapped to the increase of the cell level in a classic mul-
tilevel flash cell. As an -RMGC has states, it can simulate
a cell of up to discrete levels. Current data storage schemes
(e.g., floating codes [22]) can therefore use the Gray codes as
logic cells, as illustrated in Fig. 1, and get the benefits of rank
modulation.

We will now show a basic recursive construction for
-RMGCs. The resulting codes are cyclic and complete, in the

sense that they span the entire state space. Our recursion basis
is the simple 2-RMGC: , .

Now let us assume we have a cyclic and complete
-RMGC, which we call , defined by the sequence

of transitions and where , i.e.,
a “push-to-the-top” operation on the second element in the
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Fig. 1. Two multilevel flash-memory cells with six levels, currently storing the
value “�.” (a) The first is realized using a single multilevel cell with absolute
thresholds. The possible transitions between states are shown to its right. (b)
The second is realized by combining three flash cells with no thresholds and
by using a rank-modulation scheme. The possible transitions between states are
given by the 3-RMGC of Example 1.

permutation.1 We further assume that the transition appears
at least twice. We will now show how to construct , a cyclic
and complete -RMGC with the same property.

We set the first permutation of the code to be ,
and then use the transitions to get a list
of permutations which we call the first block of the
construction. By our assumption, the permutations in this list
are all distinct, and they all share the property that their last
element is (since all the transitions use just the first
elements). Furthermore, since , we know that the
last permutation generated so far is .

We now use to create the first permutation of the second
block of the construction, and then use
again to create the entire second block. We repeat this
process times, i.e., use the sequence of transitions

a total of times to construct
blocks, each containing permutations.

The following two simple lemmas extend the intuition given
above.

1This last requirement merely restricts us to have � used somewhere since
we can always rotate the set of transitions to make � be the last one used.

Lemma 2: The second element in the first permutation in
every block is . The first element in the last permutation in
every block is also .

Proof: During the construction process, in each block we
use the transitions in order. If we were to
use the transition next, we would return to the
first permutation of the block since are the
transitions of a cyclic -RMGC. Since the element is
second in the initial permutation of the block, it follows that it
is the first element in the last permutation of the block. By the
construction, we now use , thus making the element second
in the first permutation of the second block. By repeating the
above arguments for each block we prove the lemma.

Lemma 3: In any block, the last element of all the permuta-
tions is constant. The sequence of last elements in the blocks
constructed is . The element is never a last
element.

Proof: The first claim is easily proved by noting that the
transitions creating a block, , only operate
on the first positions of the permutations. Also, by the
same logic used in the proof of the previous lemma, if the first
permutation of a block is , then the last
permutation in a block is , and thus the
first permutation of the next block is .

It follows that if we examine the sequence containing just the
first permutation in each block, the element remains fixed,
and the rest just rotate by one position each time. By the previous
lemma, the fixed element is , and therefore, the sequence of last
elements is as claimed.

Combining the two lemmas above, the blocks con-
structed so far form a cyclic (but not complete) -RMGC,
that we call , which may be schematically described as as
shown at the bottom of the page (where each box represents
a single block, and denotes the sequence of transitions

).
It is now obvious that is not complete because it is missing

exactly the permutations containing as their last el-
ement. We build a block containing these permutations in
the following way: we start by rotating the list of transitions

such that its last transition is .2 For con-
venience, we denote the rotated sequence by ,
where . Assume the first permutation in the
block is . We set the following permuta-

2The transition � must be present somewhere in the sequence or else the
last element would remain constant, thus contradicting the assumption that the
sequence generates a cyclic and complete ��� ��-RMGC.

...
...

...
...

...
...
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tions of the block to be the ones formed by the sequence
of transitions . Thus, the last permutation in

is .
In , we look for a transition of the following form:

. We contend that
such a transition must surely exist: does not contain permu-
tations in which is last, while it does contain permutations in
which is next to last, and some where is the first element.
Since is cyclic, there must be at least one transition
pushing an element from a next-to-last position to the first
position. At this transition we split and insert as follows:

...
...

...
...

where it is easy to see all transitions are valid. Thus, we have
created and to complete the recursion we have to make sure

appears at least twice, but that is obvious since the sequence
contains at least one occurrence of , and is

replicated times, . We therefore reach the following
conclusion.

Theorem 4: For every integer there exists a cyclic and
complete -RMGC.

Example 5: We construct a 4-RMGC by recursively using
the 3-RMGC shown in Example 1, to illustrate the construction
process. The sequence of transitions for the 3-RMGC in Ex-
ample 1 is , , , , , . As described in the construction,
in order to use this code as a basis for the 4-RMGC construction,
we need to have as the last transition. We therefore rotate the
sequence of transitions to be , , , , , . The resulting
first three blocks, denoted , are

To create the missing fourth block, , the construction requires
a transition sequence ending with , so we use the original
sequence , , , , , shown in Example 1. To decide
the starting permutation of the block, we search
for a transition of the form in

. Several such transitions exist, and we arbitrarily choose
seen in the fifth and sixth columns of

. The resulting missing block, , is

Inserting between the fifth and sixth columns of results
in the following 4-RMGC given at the bottom of the page.

III. BALANCED -RMGCS

While the construction for -RMGCs given in the previous
section is mathematically pleasing, it suffers from a practical
drawback: while the top-charged cells are changed (having
their charge level increased while going through the permuta-
tions of a single block), the bottom cell remains untouched and
a large gap in charge levels develops between the least charged
and most charged cells. When eventually, the least charged cell
gets “pushed-to-the-top,” in order to acquire the target charge
level, the charging of the cell may take a long time or involve
large jumps in charge level (which are prone to cause write-dis-
turbs in neighboring cells). The balanced -RMGC described in
this section solves this problem.

A. Definition and Construction

In the current models of flash memory, it is sometimes the
case that due to precision constraints in the charge placement
mechanism, the actual possible charge levels are discrete. The
rank-modulation scheme is not governed by such constraints,
since it only needs to order cell levels unambiguously by means
of comparisons, rather than compare the cell levels against pre-
defined threshold values. However, in order to describe the fol-
lowing results, we will assume abstract discrete levels, that can
be understood as counting the number of push-to-the-top op-
erations executed up to the current state. In other words, each
push-to-the-top increases the maximum charge level by one.

Thus, we define the function , where
is the charge level of the th cell after the th programming
cycle. It follows that if we use transition in the th pro-
gramming cycle and the th cell is, at the time, th from the
top, then , and for ,

. In an optimal setting with no overshoots,
.

The jump in the th round is defined as , as-
suming the th cell was the affected one. It is desirable, when
programming cells, to make the jumps as small as possible.
We define the jump cost of an -RMGC as the maximum jump
during the transitions dictated by the code. We say an -RMGC
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is nondegenerate if it raises each of its cells at least once. A non-
degenerate -RMGC is said to be optimal if its jump cost is not
larger than any other nondegenerate -RMGC.

Lemma 6: For any optimal nondegenerate -RMGC, ,
the jump cost is at least .

Proof: In an optimal -RMGC, , we must raise the
lowest cell to the top charge level at least times. Such a jump
must be at least of magnitude . We cannot, however, do these

jumps consecutively, or else we return to the first permutation
after just steps. It follows that there must be at least one other
transition , , and so the first to be used after it jumps
by at least a magnitude of .

We call an -RMGC with a jump cost of a balanced
-RMGC. We now show a construction that turns any
-RMGC (balanced or not) into a balanced -RMGC. The orig-

inal -RMGC is not required to be cyclic or complete, but
if it is cyclic (complete) the resulting -RMGC will turn out to
be also cyclic (complete). The intuitive idea is to base the con-
struction on cyclic shifts that push the bottom to the top, and
use them as often as possible. This is desirable because does
not introduce gaps between the charge levels, so it does not ag-
gravate the jump cost of the cycle. Moreover, partitions the set
of permutations into orbits of length . Theorem 7 gives
a construction where these orbits are traversed consecutively,
based on the order given by the supporting -RMGC.

Theorem 7: Given a cyclic and complete -RMGC,
, defined by the transitions , then the fol-

lowing transitions define an -RMGC, denoted by , that is
cyclic, complete and balanced:

otherwise

for all .

Proof: Let us define the abstract transition , ,
that pushes to the bottom the th element from the bottom:

Because is cyclic and complete, using
starting with a permutation of produces a complete cycle
through all the permutations of , and using them starting
with a permutation of creates a cycle through all the

permutations of with the respective first element fixed,
because they operate only on the last elements.

Because of the first element being fixed, those permu-

tations of produced by , also have the prop-
erty of being cyclically distinct. Thus, they are representatives
of the distinct orbits of the permutations of under
the operation , since represents a simple cyclic shift when
operated on a permutation of .

Taking a permutation of , then using the transition
once, , followed by times using , is

equivalent to using

Every transition of the form , , moves us to a
different orbit of , while the consecutive executions of
generate all the elements of the orbit. It follows that the resulting
permutations are distinct. Schematically, the construction of
based on is

The code is balanced, because in every block of tran-
sitions starting with a , we have: the
transition has a jump of ; the following
transitions have a jump of , and the rest a jump of . In
addition, because is cyclic and complete, it follows that

is also cyclic and complete.

Theorem 8: For any , there exists a cyclic, complete,
and balanced -RMGC.

Proof: We can use Theorem 7 to recursively construct all
the supporting -RMGCs, , with the basis
of the recursion being the complete cyclic 2-RMGC: ,

.

A similar construction, but using a more involved second-
order recursion, was later suggested by Etzion [9].

Example 9: Fig. 2 shows the transitions of a recursive, bal-
anced -RMGC for . The permutations are represented in
an matrix, where each row is an orbit generated
by . The transitions between rows occur when is the
top element. Note how these permutations (the exit points of the
orbits), after dropping the at the top and turning them upside
down, form a 3-RMGC:

This code is equivalent to the code from Example 1, up to a
rotation of the transition sequence and the choice of first per-
mutation. Fig. 3 shows the charge levels of the cells for each
programming cycle, for the resulting balanced 4-RMGC.

B. Successor Function

The balanced -RMGC can be used to implement a logic
cell with levels. This can also be understood as a counter
that increments its value by one unit at a time. The function

takes as input the current permu-
tation, and determines the transition to the next permutation
in the balanced recursive -RMGC. If , the next transition
is always (line 2). Otherwise, if the top element is not , then
the current permutation is not at the exit point of its orbit, there-
fore the next transition is (line 5). However, if is the top
element, then the transition is defined by the supporting cycle.
The function is called recursively, on the reflected permutation
of (line 7).

An important practical aspect is the average number of steps
required to decide which transition generates the next permu-
tation from the current one. A step is defined as a single query
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Fig. 2. Balanced 4-RMGC.

Fig. 3. Charge level growth for the balanced 4-RMGC.

of the form “what is the th highest charged cell?” namely the
comparison in line 4.

The function is asymptotically optimal with re-
spect to this measure:

Theorem 10: In the function , the asymptotic av-
erage number of steps to create the successor of a given permu-
tation is one.

Proof: A fraction of of the transitions are , and these
occur whenever the cell is not the highest charged one, and
they are determined in just one step. Of the cases where is
highest charged, by recursion, a fraction of the transitions
are determined by just one more step, and so on. At the basis
of the recursion, permutations over two elements require zero
steps. Equivalently, the query “is equal to ” is performed
for every permutation, therefore times; the query “is equal
to ” is performed only for permutations, therefore

times, and so on. Thus, the total number of queries is
. Since , the asymptotic av-

erage number of steps to generate the next permutation is as
stated.

C. Ranking Permutations

In order to complete the design of the logic cell, we need to
define the correspondence between a permutation and its rank
in the balanced -RMGC. This problem is similar to that of
ranking permutations in lexicographic order. We will first re-
view the factoradic numbering system, and then present a new
numbering system that we call b-factoradic, induced by the bal-
anced -RMGC construction.

1) Review of the Factoradic Numbering System: The fac-
toradic is a mixed radix numbering system. The earliest ref-
erence appears in [26]. Lehmer [27] describes algorithms that
make the correspondence between permutations and factoradic.

Any integer number can be repre-
sented in the factoradic system by the digits ,
where for , and the weight of

is (with the convention that ). The digit is always
, and is sometimes omitted

Any permutation has a unique factoradic repre-
sentation that gives its position in the lexicographic ordering.
The digits are in this case the number of elements smaller
than that are to the right of . They are therefore in-
version counts, and the factoradic representation is an inversion
table (or vector) [15].

There is a large literature devoted to the study of ranking
permutations from a complexity perspective. Translating be-
tween factoradic and decimal representation can be done in
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arithmetic operations. The bottleneck is how to trans-
late efficiently between permutations and factoradic. A naive
approach similar to the simple algorithms described in [27]
requires . This can be improved to by using
merge–sort counting, or a binary search tree, or modular arith-
metic, all techniques described in [25]. This can be further
improved to [30], by using the special
data structure of Dietz [7]. In [30] linear time complexity is also
achieved by departing from lexicographic ordering. A linear
time complexity is finally achieved in [28], by using the fact
that the word size has to be in order to represent
numbers up to , and by hiding rich data structures in integers
of this size.

2) B-Factoradic—A New Numbering System: We will now
describe how to index permutations of the balanced recur-
sive -RMGC with numbers from , such that
consecutive permutations in the cycle have consecutive ranks
modulo . The permutation that gets index is a special
permutation that starts a new orbit generated by , and also
starts a new orbit in any of the recursive supporting -RMGCs,

.
The rank of a permutation is determined by its position in

the orbit of , and by the rank of the orbit, as given by the
rank of the supporting permutation of . The position
of a permutation inside an orbit of is given by the position
of . If the current permutation is and
for , then the position in the current orbit of

is (because the orbit starts with in posi-
tion ). The index of the current orbit is given by the rank
of the supporting permutation of , namely, the rank of

(notice that the permu-
tation of is reflected). Therefore, if , then

(1)

The above formula can be used recursively to determine
the rank of the permutations from the supporting balanced

-RMGCs, for . It now becomes clear
what permutation should take rank . The highest element
in every supporting RMGC should be in the second position,
therefore, , , , , and so
on, and . Therefore,
gets the rank . See Example 9 for the construction of the
recursive and balanced 4-RMGC where the permutation

has rank . Equation (1) induces a new numbering
system that we call b-factoradic (backwards factoradic). A
number can be represented by the digits

, where and the
weight of is . In this case is always and
can be omitted. It is easy to verify that this is a valid numbering
system, therefore, any has a unique
b-factoradic representation such that

The weights of the b-factoradic are sometimes called
“falling factorials,” and can be represented succinctly by the
Pochhammer symbol.

Example 11: Let and be the
current permutation. We can find its b-factoradic representation

as follows. We start from the least significant digit
, which is given by the position of minus modulo , so

(here we keep the elements of the permutation
indexed from to ). We now recurse on the residual permuta-
tion of five elements, (notice the reflected
reading of this permutation, from towards the left). Now is
given by the position of ; . The residual
permutation is , therefore,

. For the next step, and .
Finally, and . As always

. The b-factoradic representation is therefore
, where the subscript indicates the position of

the digit. Going from a b-factoradic representation to a permu-
tation of the balanced -RMGC can follow a similar reversed
procedure.

The procedure of Example 11 can be formalized algorithmi-
cally, however, its time complexity is , similar to the naive
algorithms specific to translations between permutations in lex-
icographic order and factoradic. We can in principle use all the
available results for factoradic, described previously, to achieve
time complexity of or lower. However, we are not
going to repeat all those methods here, but rather describe a
linear time procedure that takes a permutation and its factoradic
as input and outputs the b-factoradic. We can thus leverage di-
rectly all the results available for factoradic, and use them to
determine the current symbol of a logic cell.

The procedure - - exploits the
fact that the inversion counts are already given by the factoradic
representation, and they can be used to compute directly the
digits of the b-factoradic. A b-factoradic digit is a count of
the elements smaller than that lie between and

when the permutation is viewed as a cycle. The direction
of the count alternates for even and odd values of . The inverse
of the input permutation can be computed in time (line
1). The position of every element of the permutation can then
be computed in constant time (lines 2 and 5). The test in line
6 decides if we count towards the right or left starting from the
position that holds element , until we reach position
that holds element . By working out the cases when
and we obtain the formulas in lines 7 and 9. Since this
computation takes a constant number of arithmetic operations,
the entire algorithm takes time.

Unranking, namely, going from a number in
to a permutation in balanced order is likely to never be necessary
in practice, since the logic cell is designed to be a counter. How-
ever, for completeness, we describe the simplest proce-
dure , that takes a b-factoradic as input and produces
the corresponding permutation. The procedure uses variable
to simulate the cyclic counting of elements smaller than the cur-
rent one. The direction of the counting alternates, based on the
test in line 4.
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IV. REWRITING WITH RANK-MODULATION CODES

In Gray codes, the states transit along a well-designed path.
What if we want to use the rank-modulation scheme to store
data, and allow the data to be modified in arbitrary ways? Con-
sider an information symbol that is stored using cells.
In general, might be smaller than , so we might end up
having permutations that are not used. On the other hand, we
can map several distinct permutations to the same symbol in
order to reduce the rewrite cost. We let denote the set
of states (i.e., the set of permutations) that are used to represent
information symbols. We define two functions, an interpreta-
tion function, , and an update function, .

Definition 12: The interpretation function
maps every state to a value in . Given an “old
state” and a “new information symbol” , the
update function produces a state
such that .

When we use cells to store an information symbol, the
permutation induced by the charge levels of the cells repre-
sents the information through the interpretation function. We
can start the process by programming some arbitrary initial per-
mutation in the flash cells. Whenever we want to change the
stored information symbol, the permutation is changed using
the “push-to-the-top” operations based on the update function.
We can keep changing the stored information as long as we
do not reach the maximal charge level possible in any of the

cells. Therefore, the number of “push-to-the-top” operations in
each rewrite operation determines not only the rewriting delay
but also how much closer the highest cell-charge level is to the
system limit (and therefore how much closer the cell block is
to the next costly erase operation). Thus, the objective of the
coding scheme is to minimize the number of “push-to-the-top”
operations.

Definition 13: Given two states , the cost of
changing into , denoted , is defined as the min-
imum number of “push-to-the-top” operations needed to change

into .

For example, ,
. We define two important measures: the worst case

rewrite cost and the average rewrite cost.

Definition 14: The worst case rewrite cost is defined as
. Assume input symbols are

independent and identically distributed (i.i.d.) random vari-
ables having value with probability . Given a fixed

, the average rewrite cost given is defined as
. If we further assume some

stationary probability distribution over the states , where we
denote the probability of state as , then the average rewrite
cost of the code is defined as . (Note that for all

, .)

In this section, we present a code that minimizes the worst
case rewrite cost. In Section IV-A, we focus on codes with good
average rewrite cost.

A. Lower Bound

We start by presenting a lower bound on the worst case rewrite
cost. Define the transition graph as a directed graph
with , that is, with vertices representing the permu-
tations in . For any , there is a directed edge from
to iff . is a regular digraph, because every
vertex has incoming edges and outgoing edges. The
diameter of is .

Given a vertex and an integer ,
define the ball centered at with radius as

, and define the sphere centered at
with radius as . Clearly

By a simple relabeling argument, both and are
independent of , and so will be denoted by and re-
spectively.

Lemma 15: For any

.

Proof: Fix a permutation . Let be the set of per-
mutations having the following property: for each permutation

, the elements appearing in its last positions appear
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in the same relative order in . For example, if , ,
, and , the last three elements

of —namely, —have the same relative order in . It is
easy to see that given , when the elements occupying the first

positions in are chosen, the last positions become
fixed. There are choices for occupying
the first positions of , hence, . We will
show that a vertex is in if and only if .

Suppose . It follows that can be obtained from
with at most “push-to-the-top” operations. Those elements

pushed to the top appear in the first positions of , so the
last positions of contain elements which have the same
relative order in , thus, .

Now suppose . For , let denote the element in
the th position of . One can transform into by sequentially
pushing to the top. Hence, .

We conclude that . Since
, the second claim follows.

The following lemma presents a lower bound on the worst
case rewrite cost.

Lemma 16: Fix integers and , and define to be

the smallest integer such that . For any code

and any state , there exists such that
, i.e., the worst case rewrite cost of any code

is at least .
Proof: By the definition of , . Hence,

we can choose . Clearly, by
our choice .

B. Optimal Code

We now present a code construction. It will be shown that the
code has optimal worst case performance. First, let us define the
following notation.

Definition 17: A prefix sequence
is a sequence of distinct symbols from . The prefix
set is defined as all the permutations in which
start with the sequence .

We are now in a position to construct the code.

Construction 18: Arbitrarily choose distinct prefix se-
quences, , each of length . Let us define

and map the states of to , i.e., for
each and , set .

Finally, to construct the update function , given and
some , we do the following: let
be the first elements which appear in all the permu-
tations in . Apply push-to-the-top on the elements

in to get a permutation
for which, clearly, . Set .

Theorem 19: The code in Construction 18 is optimal in terms
of minimizing the worst case rewrite cost.

Proof: First, the number of length prefix sequences is
. By definition, the number of prefix sequences

of length is at least , which allows the first of the con-
struction. To complete the proof, it is obvious from the descrip-
tion of that the worst case rewrite cost of the construction is
at most . By Lemma 16 this is also the best we can hope
for.

Example 20: Let , . Since , it fol-
lows that . We partition the states into

sets, which induce the mapping

The cost of any rewrite operation is at most .

V. OPTIMIZING AVERAGE REWRITE COST

In this section, we study codes that minimize the average
rewrite cost. We first present a prefix-free code that is optimal
in terms of its own design objective. Then, we show that this
prefix-free code minimizes the average rewrite cost with an ap-
proximation ratio if , and when , the ap-
proximation ratio is further reduced to .

A. Prefix-Free Code

The prefix-free code we propose consists of prefix sets
(induced by prefix sequences )

which we will map to the input symbols: for every and
, we set . Unlike in the previous section, the

prefix sequences are no longer necessarily of the same length.
We do, however, require that no prefix sequence be the prefix
of another.

A prefix-free code can be represented by a tree. First, let us
define a full permutation tree as follows. The vertices in
are placed in layers, where the root is in layer and the
leaves are in layer . Edges only exist between adjacent layers.
For , a vertex in layer has children. The
edges are labeled in such a way that every leaf corresponds to a
permutation from which may be constructed from the labels
on the edges from the root to the leaf. An example is given in
Fig. 4(a). A prefix-free code corresponds to a subtree of
(see Fig. 4(b) for an example). Every leaf is mapped to a prefix
sequence which equals the string of labels as read on the path
from the root to the leaf.

For , let denote the prefix sequence representing ,
and let denote its length. For example, the prefix sequences
in Fig. 4(b) have minimum length and maximum length . The
average codeword length is defined as

Here, the probabilities are as defined before, that is, infor-
mation symbols are i.i.d. random variables having value

with probability . We can see that with the prefix-free
code, for every rewrite operation (namely, regardless of the old
permutation before the rewriting), the expected rewrite cost is
upper-bounded by . Our objective is to design a
prefix-free code that minimizes its average codeword length.
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Fig. 4. Prefix-free rank-modulation code for � � � and � � �. (a) The full permutation tree � . (b) A prefix-free code represented by a subtree � of � . The leaves
represent the prefix sequences, which are displayed beside the leaves.

Example 21: Let and , and let the prefix-free
code be as shown in Fig. 4(b). We can map the information
symbols to the prefix sequences as follows:

Then, the mapping from the permutations to the information
symbols is

Assume that the current state of the cells is
, representing the information symbol . If we want to

rewrite the information symbol as , we can shift cells 3, 4 to the
top to change the state to . This rewrite
cost is , which does not exceed . In general, given any
current state, considering all the possible rewrites, the expected
rewrite cost is always less than , the average code-
word length.

The optimal prefix-free code cannot be constructed with a
greedy algorithm like the Huffman code [19], because the in-
ternal nodes in different layers of the full permutation tree
have different degrees, making the distribution of the vertex de-
grees in the code tree initially unknown. The Huffman code is
a well-known variable-length prefix-free code, and many vari-
ations of it have been studied. In [20], the Huffman code con-
struction was generalized, assuming that the vertex-degree dis-
tribution in the code tree is given. In [1], prefix-free codes for
infinite alphabets and nonlinear costs were presented. When the

letters of the encoding alphabet have unequal lengths, only ex-
ponential-time algorithms are known, and it is not known yet
whether this problem is NP-hard [12]. To construct prefix-free
codes for our problem, which minimize the average codeword
length, we present a dynamic-programming algorithm of time
complexity . Note that without loss of generality, we can
assume the length of any prefix sequence to be at most .

The algorithm computes a set of functions ,
for , , and

. We interpret the meaning
of as follows. We take a subtree of that con-
tains the root. The subtree has exactly leaves in the layers

. It also has at most vertices in the layer .
We let the leaves represent the letters from the alphabet
with the lowest probabilities : the further the leaf is from the
root, the lower the corresponding probability is. Those leaves
also form prefix sequences, and we call their weighted av-
erage length (where the probabilities are weights) the value
of the subtree. The minimum value of such a subtree (among
all such subtrees) is defined to be . In other words,

is the minimum average prefix-sequence length
when we assign a subset of prefix sequences to a subtree of
(in the way described above). Clearly, the minimum average
codeword length of a prefix-free code equals .

Without loss of generality, let us assume that
. It can be seen that the following recursions hold.

• When and

• When and

• When

• When and
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Fig. 5. Three cases for computing ��� �� in Example 22. The solid-line edges are in the subtree. The dotted-line edges are the remaining edges in the
full-permutation tree � . The leaves in the subtree are shown as black vertices. (a) No leaf in layer 2. (b) One leaf in layer 2. (c) Two leaves in layer 2.

The last recursion holds because a subtree with leaves in
layers and at most vertices in layer can
have leaves in layer .

The algorithm first computes , then
, and so on, until it finally computes ,

by using the above recursions. Given these values, it is straight-
forward to determine in the optimal code, how many prefix
sequences are in each layer, and therefore determine the optimal
code itself. It is easy to see that the algorithm returns an optimal
code in time .

Example 22: Let and , and let us assume that
. As an example, let us consider how to

compute .

By definition, corresponds to a subtree of with
a total of four leaves in layer 2 and layer 3, and with at most
three vertices in layer 2. Thus, there are four cases to consider:
either there are zero, one, two, or three leaves in layer 2. The
corresponding subtrees in the first three cases are as shown in
Fig. 5(a)–(c), respectively. The fourth case is actually impos-
sible, because it leaves no place for the fourth leaf to exist in the
subtree.

If layer 2 has leaves , then layer 3 has leaves
and there can be at most vertices in layer 3 of the sub-
tree. To assign to the four leaves and minimize the
weighted average distance of the leaves to the root (which is de-
fined as ), among the four cases mentioned above, we
choose the case that minimizes that weighted average distance.
Therefore

Now assume that after computing all the ’s, we
find that

That means that in the optimal code tree, there are two leaves in
layer 1. If we further assume that

we can determine that there are five leaves in layer 2, and the
optimal code tree will be as shown in Fig. 4(b).

We can use the prefix-free code for rewriting in the following
way: to change the information symbol to , push at most

cells to the top so that the top-ranked cells are the same
as the codeword .

B. Performance Analysis

We now analyze the average rewrite cost of the prefix-free
code. We obviously have . When , the code design
becomes trivial—each permutation is assigned a distinct input
symbol. In this subsection, we prove that the prefix-free code
has good approximation ratios under mild conditions: when

, the average rewrite cost of a prefix-free code (that was
built to minimize its average codeword length) is at most three
times the average rewrite cost of an optimal code (i.e., a code
that minimizes the average rewrite cost), and when ,
the approximation ratio is further reduced to .

Loosely speaking, our strategy for proving this approxima-
tion ratio involves an initial simple bound on the rewrite cost of
any code when considering a rewrite operation starting with a
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stored symbol . We then proceed to define a prefix-free
code which locally optimizes (up to the approximation ratio)
rewrite operations starting with stored symbol . Finally, we in-
troduce the globally optimal prefix-free code of the previous
section, which optimizes the average rewrite cost, and show that
it is still within the correct approximation ratio.

We start by bounding from below the average rewrite cost
of any code, depending on the currently stored information
symbol. Suppose we are using some code with an interpreta-
tion function and an update function . Furthermore, let
us assume the currently stored information symbol is
in some state , i.e., . We want to consider
rewrite operations which are meant to store the value
instead of , for all . Without loss of generality, assume
that the probabilities of information symbols are monotonically
decreasing

Let us denote by the closest
permutations to ordered by increasing distance, i.e.,

and denote for every . We note
that are independent of the choice of , and fur-
thermore, that while .

The average rewrite cost of a stored symbol using a
code is the weighted sum

This sum is minimized when are assigned
the closest permutations to with higher probability in-
formation symbols mapped to closer permutations. For conve-
nience, let us define the functions

.

Thus, the average rewrite cost of a stored symbol , under
any code, is lower-bounded by

We continue by considering a specific intermediary prefix-
free code that we denote by . Let it be induced by the prefix
sequences . We require the following two proper-
ties:

P.1 For every , , we require .

P.2 .

We also note that is not necessarily a prefix-free code with
minimal average codeword length.

Finally, let be a prefix-free code that minimizes its average
codeword length. Let be induced by the prefix sequences

, and let be any state such that .
Denote by the average rewrite cost of a rewrite operation
under starting from state .

By the definition of and we have

Since it follows that

Since the same argument works for every , we can
say that

(2)

It is evident that the success of this proof strategy hinges on
the existence of for every , which we now turn to
consider.

The following lemma is an application of the well-known
Kraft–McMillan inequality [29].

Lemma 23: Let be nonnegative integers.
There exists a set of prefix sequences with exactly prefix
sequences of length , for (i.e., there are
leaves in layer of the code tree ), if and only if

Let us define the following sequence of integers:

,

,
.

We first contend that they are all nonnegative. We only need to
check and indeed

It is also clear that

In fact, in the following analysis, represent a
partition of the alphabet letters.

Lemma 24: When , there exists a set of prefix se-
quences that contains exactly prefix sequences of length ,
for .

Proof: Let us denote

(3)
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When

respectively. Thus, for all . We now
show that when , monotonically decreases in .
Substituting into (3) we get

After some tedious rearrangement, for any integer

Hence, monotonically decreases for all which im-
mediately gives us for all . By Lemma 23, the
proof is complete.

We are now in a position to show the existence of ,
, for . By Lemma 24, let be a list

of prefix sequences, where exactly of the sequences are of
length . Without loss of generality, assume

Remember we also assume

We now define to be the prefix-free code induced by the
prefix sequences

that is, for all

, .

Note that for all , the prefix sequence represents the
information symbol , which is associated with the probability

in rewriting.

Lemma 25: The properties P.1 and P.2 hold for , .
Proof: Property P.2 holds by definition, since

whose length is set to . To prove property P.1 holds,
we first note that when , for all there are
exactly indices for which . On the other hand,
when , among the prefix sequences we have

of them of length when , and the rest of
them are of length . Intuitively speaking, we can map the

indices for which to distinct prefix sequences of
length , the indices for which to distinct prefix
sequences of length , and so on.

Since the prefix sequences are arranged in ascending length
order

it follows that for every ,

Hence, property P.1 holds.

We can now state the main theorem.

Theorem 26: Fix some and let be a prefix-free
code over which minimizes its average codeword length.
For any rewrite operation with initial stored information symbol

i.e., the average cost of rewriting under is at most three times
the lower bound.

Proof: Define and consider the input alphabet
with input symbols being i.i.d. random variables where

symbol appears with probability . We set

.

Let be a prefix-free code over which minimizes its av-
erage codeword length.

A crucial observation is the following: , the lower bound
on the average rewrite cost of symbol , does depend on the
probability distribution of the input symbols. Let us therefore
distinguish between over , and over . However,
by definition, and by our choice of probability distribution over

for every . Since is a more restricted version of , it
obviously follows that

for every . By applying inequality (2), and since by
Lemma 25, the code exists over , we get that

for all .

Corollary 27: When , the average rewrite cost of
a prefix-free code minimizing its average codeword length is at
most three times that of an optimal code.

Proof: Since the approximation ratio of holds for every
rewrite operation (regardless of the initial state and its interpre-
tation), it also holds for any average case.

With a similar analysis, we can prove the following result:
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Theorem 28: Fix some , , and let be a
prefix-free code over which minimizes its average codeword
length. For any rewrite operation with initial stored information
symbol

i.e., the average cost of rewriting under is at most twice the
lower bound.

Proof: See the Appendix.

Corollary 29: When , , the average rewrite
cost of a prefix-free code minimizing its average codeword
length is at most twice that of an optimal code.

VI. CONCLUSION

In this paper, we present a new data storage scheme, rank
modulation, for flash memories. We show several Gray code
constructions for rank modulation, as well as data rewriting
schemes. One important application of the Gray codes is the
realization of logic multilevel cells. For data rewriting, an op-
timal code for the worst case performance is presented. It is also
shown that to optimize the average rewrite cost, a prefix-free
code can be constructed in polynomial time that approximates
an optimal solution well under mild conditions. There are many
open problems concerning rank modulation, such as the con-
struction of error-correcting rank-modulation codes and codes
for rewriting that are robust to uncertainties in the information
symbol’s probability distribution. Some of these problems have
been addressed in some recent work [24].

APPENDIX

In this appendix, we prove Theorem 28. The general approach
is similar to the proof of Theorem 26, so we only specify some
details that are relatively important here.

We define the following sequence of numbers:

,

,
.

As before, we contend that they are all nonnegative. We only
need to check and indeed, for

We now prove the equivalent of Lemma 24.

Lemma 30: When , , there exists a set of
prefix sequences that contains exactly prefix sequences of
length , for .

Proof: Let us denote

(4)

When

respectively. Thus, for all . We now
show that when , monotonically decreases in .
Substituting into (4) we get

After some tedious rearrangement, for any integer

Hence, monotonically decreases for all which
immediately gives us for all . By Lemma 23,
the proof is complete.

The remaining lemmas comprising the rest of the proof pro-
cedure are similar to those of Section V-B.
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