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Powerline communication and the
36 officers problem

BY SOPHIE HUCZYNSKA*

School of Mathematics and Statistics, University of St Andrews, St Andrews,
Fife KY16 9SS, UK

In this survey paper, we explore the interactions between mathematics and engineering
inspired by the challenge of transmitting data along powerlines. In particular, we focus
on how combinatorial objects called permutation arrays offer a way of encoding data
which allows the noise problems experienced in powerline communications (PLCs) to be
overcome. The first study of permutation codes was carried out in the 1970s, but the
preference in traditional information theory for codes with small alphabet size meant
that permutation codes were largely ignored until recently. Their rediscovery for use in
PLCs has brought about a resurgence of interest in the construction and properties of
permutation arrays. We survey previous and current work in this area, and discuss
future developments.
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1. Introduction

What is the connection between technology which allows the Internet to be
received through electric power sockets, and a problem posed in the eighteenth
century about arranging soldiers on parade? The answer lies in the application of
combinatorics, a branch of mathematics that studies the counting and
arrangement of collections of objects, to the engineering challenges of
transmitting data along powerlines.

As demonstrated by the party game ‘Chinese Whispers’, the process of sending
a message is not always 100% reliable. This is equally true in the communication
of digitally encoded information, since various forms of interference (technically
referred to as noise) often cause data to be distorted en route. To overcome this
problem, it is necessary to invent a way of representing and transmitting the
data, so that errors in transmission can be identified and, if possible, corrected,
when the (possibly corrupted) message is received. Claude Shannon’s paper
A mathematical theory of communication, written in 1948, effectively founded
the branch of electronic engineering called information theory to meet this
challenge. A key role in this theory is played by error-correcting codes, pioneered
by Richard W. Hamming. Since then, coding theory has developed many links
with the mathematical disciplines of algebra and combinatorics. Techniques and
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Figure 1. A model for PLC, after Sankar (2004).
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results from these disciplines have been successfully applied to solve coding
problems, while the problems have inspired new areas of mathematics. The
interplay between coding theory and parts of mathematics traditionally labelled
‘pure’ has led to some surprising breakthroughs in areas as diverse as sphere
packing and simple groups. We provide an introduction to coding in §2.

Recently, powerline communication (PLC), the technology which allows the
transmission of data over the same lines used to transmit electric power, has been
heralded as the ‘next big thing’ in communications. The potential advantages of
providing data services by exploiting the power grid are clear. The vast
infrastructure already in place for power distribution means that these services
will be available to more users than any other alternative (in particular, helping
to overcome the urban/rural ‘digital divide’), with no disruption upon
installation. Moreover, in-building powerlines could be reused to create local
area networks in homes or offices, and facilities such as automated meter reading
could be offered by utility companies. Since most devices which process data and
access the Internet are normally plugged into electrical sockets, combining the
two networks is an elegant and appealing development (figure 1).

However, despite the enormous potential of PLCs, there is still much work to
be done before the technology is widely adopted. The IEEE Journal on Selected
Areas in Communications recently put out a call for papers to ‘lay the
foundation for a new generation of communication technology for powerline data
transmission’. One of the major technological problems to be overcome is that of
noise. Powerlines have been described as a ‘rough and tumble’ environment for
data compared to traditional data transmission lines such as coaxial cable, and
they are subject to unpredictable sources of interference. Recently, the
combinatorial topic of permutation arrays, last studied in the 1970s, has been
found to offer a solution to the major problem of noise in powerlines, and is
consequently enjoying a mathematical resurgence. Researchers have recently
shown (see Han Vinck 2000; Pavlidou et al. 2003) that a new modulation/coding
scheme, using permutation arrays, can robustly handle all forms of frequency
disturbances and background noise. We discuss this work in §3.

In the rest of the paper, we discuss the history, theory and construction of
permutation arrays, explore their application to error-correcting codes and PLC,
and consider the exciting challenges which PLC presents to both mathematicians
Phil. Trans. R. Soc. A (2006)
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Table 1. Representing letters of the alphabet (A, B, C etc.) as binary strings of length 5.

letter corresponding binary string

A 00000
B 00001
C 00010
D 00011
E 00100
« «
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and engineers. The theory of permutation arrays uses a wide range of
mathematical objects and techniques, from mutually orthogonal latin squares
(MOLS; introduced by Euler (1782) in the 36 officers problem), to polynomials
over finite fields, to sharply transitive groups. We discuss recent generalizations
of permutation arrays, by the author and others, and speculate on future
research directions.
2. An introduction to coding theory

Suppose that we want to send a message from A to B. In any real-life setting,
there is a chance that the message will be corrupted during transmission, so
that the message received at B will not be the same as that which was
sent from A. In order to overcome this problem, it would be helpful to have
a means of communication that makes it possible to recognize whether
or not a received message has been corrupted. Moreover, it would be
extremely helpful to be able to recover the original message from a received,
corrupted message.

By ‘sending messages’, we shall generally mean transmitting data within or
between machines, and we will represent each piece of data by a string of digits of
a fixed length. The set of digits which we use will be called the alphabet, and we
shall denote the length of a string by n. For example, all 26 letters of our normal
alphabet A–Z may be represented using strings of length 5 and symbols {0,1},
since there are 2!2!2!2!2Z32 such strings (we have a choice of putting a 0
or a 1 in each of the five positions). For practical reasons, an alphabet consisting
of two symbols is a popular choice (since it allows a representation as on–off or
high–low). We show in table 1 how the first few letters could be represented in
this way.

The set of strings of length n which we choose to use is called a code; each
string in the code is called a codeword, and a message consists of a sequence of
codewords. Given some data which we wish to send from A to B, we encode it as
a sequence of codewords and transmit this sequence (along a potentially ‘noisy’
channel); the sequence is then received, decoded and finally arrives at its
destination (see figure 2).

Now suppose we transmit such a message, and an error occurs, changing one
symbol to another. For example, using the code in table 1, we might send the
letter A, but the last digit could be corrupted from a 0 to a 1, so that the received
Phil. Trans. R. Soc. A (2006)
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Figure 2. Transmitting data from A to B.
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message looks like B. At the receiving end, we cannot tell that B was not the
original message sent; even if we do know that a digit has been changed, was the
original message A, or D, or some other letter?

In order to be able to recognize and correct errors, it is helpful to choose our
codewords to be sufficiently different from each other, so that we can identify the
original codeword even after it has suffered some corruption. This idea of
‘difference’ is formally expressed in terms of Hamming distance (after Richard
W. Hamming). For any two codewords xZa1a2 . an and yZb1b2 . bn, each
comprising n digits from some alphabet, the distance D(x,y) between them is the
number of positions in which their symbols differ, i.e. the number of k such that
aksbk. Thus, in the code above, D(00000, 00001)Z1 while D(10101, 01110)Z4.
The smallest distance between any two distinct codewords in a code C is
called the minimum distance of the code; for example, the code above has
minimum distance 1.

A code of minimum distance d can detect up to dK1 errors, since at least d
errors must occur to turn one codeword into another. So, if all codewords differ
from each other in at least two positions, then the changing of a single digit is
detectable. The code {001,010,100,111} (alphabet {0,1}, length 3, minimum
distance 2) has this property: if a single digit of any codeword is changed, it
ceases to be a valid codeword. Does this minimum distance of d allow us to
correct dK1 errors? No—in the example, if we received the string 000, we would
know it was not a valid codeword, but not whether it had come from 001 or 010.

We find that a code with minimum distance dZ2eC1 can correct up to e errors.
This is because, for each codeword C, the set SC of strings obtained fromC by up to e
errors has no elements in common with the corresponding set from any other
codeword.Thus,wecanalways correctlydecodean elementofSCasC.However, ifwe
wish toperformerror correction anddetection simultaneously, then care is needed; in
particular, we can no longer detect asmany errors as before. For, if a codeword suffers
more than e errors, it may be sent into the set SC0 for some other codeword C0, and
hence wrongly decoded as C0. Thus, a code with distance dZ2eC1 will correct e
errors, but cannot simultaneously detect more errors. (The situation when dZ2e is
similar.) As an example, consider the code {00010,01001,10100,11111} with
minimum distance 3. It can correct one error. Thus, if 00010 is corrupted by one
digit to 10010, it is identifiable as invalid, and it can be successfully decoded to 00010.
However, if 00010 is corrupted by two digits to 11010, then we can tell that at least
two errors have occurred, but we have no way of determining which of the valid
codewords it originated from.
Phil. Trans. R. Soc. A (2006)
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3. Coding and powerline communication

The idea of using electric powerlines to transmit data creates various challenges
for information theory. In a traditional data transmission setting, encoded
messages are sent along dedicated channels, e.g. copper wire or coaxial cable.
The possible noise problems are well understood, the main problem being white
Gaussian noise (also called background noise), which has the effect of corrupting
individual symbols of codewords independently at random. Traditional
information theory has been developed to deal effectively with this problem.
However, in a line whose primary use is the transmission of electric power, the
types of noise are more varied. The three main types are:

—permanent narrow-band noise, which affects some frequency over a period of
time (e.g. from television sets or computer terminals),

— impulse noise, i.e. noise of short duration which affects many/all timeslots,
and

—white Gaussian/background noise.

In PLC, the first two kinds are the most important.
Usually, engineers aim to send their signal using as small a bandwidth, or range

of frequencies, as possible. One way of dealing with narrow-band noise is to use a
wider-than-usual range of frequencies to transmit the data, in order to avoid bad
parts of the spectrum. By sacrificing small bandwidth, we can increase the
probability that the received data is correct. This frequency spreading can be
performed using frequency modulation (the same technique used in FM radio), in
which a carrier wave has its frequency (number of cycles per second) varied to
represent information. In our setting, rather than varying the frequency of the
carrier wave in direct proportion to changes in some input signal, as with radio,
we make the carrier frequency jump between a set of M discrete values. This
technique is called M-ary frequency shift keying (FSK). To deal effectively with
impulse noise, more research is needed about its statistical behaviour, in
particular impulse duration and inter-arrival times. However, just as frequency
spreading can help overcome narrow-band noise, it is known that using many
timeslots can help deal with impulse noise. Therefore, a scheme for modulation
and coding which offers both frequency and time diversity, such as the following,
should be robust against the two main types of noise affecting PLC.

We begin by modulating the signal as described above to form a family of M
distinct frequencies, which we shall call f1, ., fM. We use a code C with an
alphabet of size M, which we write as {1,., M}. The message to be sent is
encoded as a codeword of C of length n, and the symbols of the codeword are
transmitted in time as the corresponding frequencies. Whereas many traditional
applications favour a small alphabet size, here it is desirable to have a wide
spread of frequencies, so a large alphabet size is preferred. For practical reasons,
a constant power envelope is also desired; this suggests the use of codewords in
which every symbol occurs a fixed number of times in each codeword (a constant
composition code). Combining these requirements naturally leads us to the
consideration of a permutation code, which has alphabet {1, 2,., n} and so
possesses the property that each symbol occurs precisely once in each codeword.
Another way of saying this is that each codeword is a permutation, or
Phil. Trans. R. Soc. A (2006)
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rearrangement, of the symbols {1, 2,., n}. The set of all possible permutations
on n symbols is a well-studied mathematical object, called the symmetric group
and denoted by Sn.

If we form an array by taking, as the rows of the array, the codewords of a
permutation code C of length n and minimum distance d, then the array
possesses the following properties:

— each row contains the symbols {1, 2,., n} in some order, and
—any two rows disagree in at least d columns, i.e. agree in at most nKd

columns.

Such an array is called a permutation array, written as PA(n, d). If the
distance between any two rows is precisely d, we have an equidistant permutation
array. An example of a PA(5,5), i.e. the codewords of a permutation code C with
length and minimum distance both 5, is shown as follows (it is in fact
equidistant):

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

:

The first codeword would be transmitted in timeslots t1,t2,t3,t4,t5 as the
frequencies {f1, f2, f3, f4, f5}.

Once the encoded message is transmitted, the process of demodulation must
occur at the receiving end. The simplest demodulator detects n envelopes and
outputs, as estimate for the transmitted symbol (frequency), the one which
corresponds to the largest envelope. However, this approach is not ideal for
powerline channels; in particular, the broad-band nature of impulse noise can lead
to many large envelopes being detected. A better approach, which corresponds
naturally to the decoding process for permutation codes, is to use threshold
demodulation. For each sub-channel, a threshold is set, and the demodulator
outputs all symbols (frequencies) which correspond to envelopes greater than the
threshold. This means, of course, that we may obtain more than one candidate
symbol for a given position in ourmessage.Decoding is then performed by giving, as
output, the codeword inC, which has themaximumnumber of agreements with the
demodulator output. This scheme allows the correction of up to dK1 incorrect
demodulator outputs, caused by any of the possible sources of noise.

For example, take the code C above, with length 5 and minimum distance 5.
We send the codeword 45123, which is transmitted as {f4, f5, f1, f2, f3}. Suppose
that it suffers narrow-band noise at the sub-channels for frequencies f2, f3 and f4,
leading to demodulator output

fðf2; f3; f4Þ; ðf2; f3; f4; f5Þ; ðf1; f2; f3; f4Þ; ðf2; f3; f4Þ; ðf2; f3; f4Þg:

Hence, the candidate codeword has the following symbols in its five positions:

fð2; 3; 4Þ; ð2; 3; 4; 5Þ; ð1; 2; 3; 4Þ; ð2; 3; 4Þ; ð2; 3; 4Þg:
Phil. Trans. R. Soc. A (2006)
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Comparing this with the five codewords of C, there is agreement in all five
positions with 45123 and in three positions with the other codewords, so it will be
correctly decoded. Now suppose that this transmission also suffers impulse noise
at the fifth timeslot, causing all symbols (frequencies) to appear in the fifth
position. We obtain output

fð2; 3; 4Þ; ð2; 3; 4; 5Þ; ð1; 2; 3; 4Þ; ð2; 3; 4Þ; ð1; 2; 3; 4; 5Þg:
This agrees with the codewords of C in 4,4,3,5 and three positions, respectively,
and so the output is again correctly decoded to the sent codeword.

We next ask: how can we find such permutation codes or, equivalently,
permutation arrays? In particular, how can we find ‘best possible’ codes, with
maximum size for given length and distance?
4. Building permutation arrays

The number of permutations on n points is given by n!(nK1)!(nK2)!/!2!1,
which we write as n! (and say as ‘n factorial’). This number arises because we have n
choices for the entry in the first position, then nK1 choices for the entry in the second
position, and so on, until there is only one possibility for the final position.

If we take a permutation and try to make a new permutation by changing a
single entry, we find that this is impossible; we must change at least two entries.
For example, for nZ5, try this with the permutation 12345. If we change the first
entry from 1 to 3, we get 32345; this is not a permutation, and to convert it into a
new permutation, we must change the original 3 into a 1, to get 32145. Hence,
any two permutations of {1, ., n} which are not identical must disagree in at
least two positions, i.e. have minimum distance 2. Thus, the set Sn of all
permutations of length n is a PA(n, 2).

This code can deal with atmost a single error, so it should be possible to do better;
however, the trade-off is that we will have to reduce the number of codewords.

Recall the code C from §3, with five codewords, each of length 5 and minimum
distance 5. The PA(n, n) is given by

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

:

An array of this type, consisting of n rows and n columns, in which each of n
symbols occurs exactly once in each row and column, is called a latin square of
order n. Such squares were first systematically studied by the mathematician
Leonhard Euler (1707–1783), shown in figure 3, who introduced them in 1783
as ‘une nouvelle espéce de quarrès magiques’, a new kind of magic square.

Since Euler’s time, latin squares have been extensively studied; they play a
key role in the mathematical discipline of combinatorics and have important
applications to the design of experiments in statistics. One useful result known
about latin squares is that if we choose any permutation for the first row, and add
Phil. Trans. R. Soc. A (2006)
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Figure 3. Leonhard Euler (1707–1783).
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new rows one-at-a-time subject only to the condition that they could form the
rows of a latin square, then they do, i.e. we can always complete k such rows (for
k less than n) to a full latin square of order n.

A latin square of order n is a PA(n, n). Clearly, we cannot have more than n
rows in a PA(n, n): for, if we try to make a new row, what symbol would we put
in the first position? Thus, a latin square gives a permutation code which can be
used in the previous scheme to correct up to nK1 errors, although the trade-off is
the fairly small number of codewords (n out of a possible n!).

For permutation arrays PA(n, d) whose minimum distance d lies between 2
and n, the situation is much less clear-cut. In many cases, the maximum
possible size of a PA(n, d) is not known and, even in cases where it is known,
we do not always know how to build a permutation array which attains the
bound. Using a range of different tools, mathematicians and engineers have
been able to construct PA(n, d)s for various values of n and d, and obtain some
estimates for the maximum number of codewords that such codes can have. In
the rest of this section, we discuss a variety of these results, including some
very recent work.
Phil. Trans. R. Soc. A (2006)
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(a ) How big can a permutation code be?

We begin by asking: for a PA(n, d) with d between 2 and n, how many rows
(equivalently, how many codewords) can it have? We shall denote the maximum
possible size of a PA(n, d) by M(n, d). Various bounds are known; one of the
most useful is the following (e.g. Blake et al. 1979):

Mðn; dÞ% n!

ðdK1Þ! :

In particular, this tells us that a PA(n, 2) has maximum size n!, while a PA(n, n)
has maximum size n; we have just seen how to make codes which achieve these
bounds. A permutation code C, or the corresponding PA(n, d), is called sharp if
its size equals this upper bound. Various examples of sharp permutation arrays
are known, many (but not all) arising from permutation groups (see Blake et al.
1979). Here is a sharp PA(4,3) of size 4!/2!Z12,

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

1 3 4 2

2 4 3 1

3 1 2 4

4 2 1 3

1 4 2 3

2 3 1 4

3 2 4 1

4 1 3 2

:

Thinking in a more geometric way, we can obtain further bounds. Given a
sheet of paper and a pair of compasses, we can describe the set of all points at
distance d or less from a point P, in two-dimensional space, by drawing the circle
with centre P and radius d. In a similar way, given a permutation s in Sn, we can
consider all the permutations which have Hamming distance d or less from s. We
call the set of all such permutations the sphere of radius d with centre s, and
denote the size (volume) of this set by Vd. Just as a circle with radius d will have
the same area, regardless of which point P we choose for its centre, the number of
permutations in a sphere of radius d in Sn is independent of our choice of s.

We can now use the ideas of ‘covering’ and ‘packing’ using spheres. For a code
C whose codewords form a PA(n, d) of maximum size, every permutation of Sn
not in C must be within distance dK1 of a member of C. This idea of ‘covering’
the space with spheres of appropriate radius leads to the lower bound,

Mðn; dÞR n!

VdK1

:

Phil. Trans. R. Soc. A (2006)

http://rsta.royalsocietypublishing.org/


S. Huczynska3208

 on July 6, 2017http://rsta.royalsocietypublishing.org/Downloaded from 
Moreover (broadly speaking), spheres of radius (dK1)/2 around the codewords
cannot overlap. Using this idea to ‘pack’ as many spheres as possible into the
space yields the upper bound,

Mðn; dÞ% n!

maxððdK1Þ!;Tðn; dÞÞ ;

where T(n,d) depends on n and d and is essentially V(dK1)/2 with a ‘correction
term’ for even d. More details can be found in Deza & Frankl (1977). The bounds
are the analogues of the Gilbert–Varshamov bound and the Hamming bound,
well known in coding theory. The techniques used to prove these results can also
be used to improve the performance of computer searches for permutation
arrays, as described in the paper of Chu et al. (2004).

In general, if we take a code C and consider the non-overlapping spheres with
radius (dK1)/2 centred on its codewords, as above, we will find that the spheres do
not cover all of Sn. In other words, there will be permutations of Sn which are not
contained in any of these spheres. In the special case when every permutation of Sn
does lie within one of these spheres, the permutation code, and its corresponding
PA(n, d), is said to be perfect. Such codes satisfy the upper ‘packing’ bound with
equality. In the setting of traditional coding theory, there is an analogous concept of
perfect codes, and some famous examples are known. However, the existence of a
(non-trivial) perfect permutation code is still an open question.Based on arithmetic
conditions, it was thought for some time that a good candidatemight be aPA(11,5),
but in fact work of Rothaus & Thompson (1966) shows that there cannot exist a
perfect permutation array with these parameters.

Pursuit of upper bounds for the size of permutation arrays remains a fertile
area for research, using a variety of ingenious methods. For example, Tarnanen
(1999) has applied the technique of linear programming to this problem.

(b ) Building codes using theory

Permutation codes can be obtained in two ways: by using purely theoretical
methods or by searching with a computer (perhaps using some theory to enhance
the search strategy). To give a flavour of the first approach, we focus on three
examples: using groups; polynomials; and latin squares. Other methods, which
could have been explored had space allowed, use balanced incomplete block
designs, transversal packings and distance preserving mappings.

(i) Codes from groups

A group is a set G of objects, together with an operation ‘�’ which allows us to
take two objects x, y from G and combine them to make a new object x �y which
is also in G. To qualify as a group, the set and operation must also satisfy a set of
axioms, which guarantee that they are ‘well behaved’. For example, the set of all
positive, zero and negative numbers {.,K2, K1, 0, 1, 2,.} (the integers), with
the operation of addition, form a group.

As was mentioned earlier, the set of permutations of {1, 2,., n} forms a
group, Sn. When working with permutations in this setting, it is useful to think of
them as mappings from the set {1, 2,., n} to itself. Specifically, we view the
permutation sZa1a2 . an as a mapping which sends i to ai, the symbol in the ith
position. Hence, the permutation 3214 in S4 is the mapping which sends 113,
Phil. Trans. R. Soc. A (2006)
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212, 311 and 414. A set of permutations is said to be k-transitive if, for any
two ordered sets of k symbols from {1, 2,., n}, there is some permutation in the
set which sends one set to the other. If the mapping which does this is always
unique, the set is called sharply k-transitive. We can show that a sharply
k-transitive group is a sharp PA(n, d), with dZnKkC1 (see Blake et al. 1979).
Such groups are well known and understood by mathematicians, so this provides
a useful source of permutation codes.

(ii) Codes from polynomials

Consider a polynomial, which we express as

f ðxÞZ anx
n CanK1x

nK1C/Ca1xCa 0;

with coefficients an. If an is non-zero, then n is called the degree of f. The number
a is said to be a root of f if f (a)Z0. For example, working with the integers, the
polynomial f (x)Zx2K1 has two roots 1 and 1, since f (1)Z12K1Z0 and f (K1)Z
(K1)2K1Z0. A well-known mathematical result tells us that if the coefficients
are taken from a well-behaved set of numbers called a field, then f (x) cannot have
more than n roots in the field. This fact allows us to construct permutation
arrays by using polynomials over so-called finite fields, i.e. fields with a finite
number of elements. Each row corresponds to a different permutation polynomial
of the finite field (a polynomial which, as a function, permutes the elements of the
field), and the limit on the number of roots can be used to guarantee a certain
minimum distance between the rows.

Recall that a prime number pO1 is a number which is divisible only by itself
and 1; the first few primes are 2,3,5,7,11,.. It can be proved that a finite field
with n elements exists precisely if n is a prime power, i.e. nZp!p!/!p for
some prime number p.

Theorem 4.1. Suppose n is a prime power and that there are E permutation
polynomials over the finite field of n elements with degree less than or equal to d.
Then, we can construct a PA(n, nKd) of size E.

More details may be found in Chu et al. (2004).

(iii) Codes from latin squares

We saw earlier how the eighteenth century mathematician Leonhard Euler
introduced latin squares. One problem which particularly interested him was the
so-called ‘36 officers problem’, which he stated as follows:
Phil. T
A very curious problem, which has exercised for some time the ingenuity of many people, has
involved me in the following studies, which seem to open a new field of analysis, in particular
the study of combinations. The question revolves around arranging 36 officers to be drawn
from 6 different ranks and also from 6 different regiments so that they are ranged in a square
so that in each line (both horizontal and vertical) there are 6 officers of different ranks and
different regiments.

(Euler 1782)
This problem can be restated in terms of latin squares as follows. Let the six
ranks be represented by the symbols {1,2,3,4,5,6} and the six regiments by the
symbols {A,B,C,D,E,F}. We want to form two latin squares, one using the
symbols {1,2,3,4,5,6} and the other using {A,B,C,D,E,F}, such that when we
rans. R. Soc. A (2006)
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superimpose them, each possible number–letter pair occur precisely once. Two
latin squares of order n, which give each of the possible n2 ordered pairs when
superimposed, are said to be orthogonal. A set of latin squares of order n is said to
be a set of MOLS if any two squares in the set are orthogonal to each other. For
example, two MOLS of order 4 are

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

and

A B C D

C D A B

D C B A

B A D C

:

When superimposed, they yield each of the 16 possible pairs

ð1;AÞ ð2;BÞ ð3;CÞ ð4;DÞ
ð2;CÞ ð1;DÞ ð4;AÞ ð3;BÞ
ð3;DÞ ð4;CÞ ð1;BÞ ð2;AÞ
ð4;BÞ ð3;AÞ ð2;DÞ ð1;CÞ

:

Euler could not finda pair ofMOLSof order 6, and conjectured that no suchpair can
exist for any n of the form nZ4kC2. This conjecture remained unresolved until
early in the twentieth century, when it was confirmed that no pair of order 6 exist,
but that a pair can be found for every other value of n greater than 2. The largest
possible size for a set ofMOLS of ordern is nK1; a set of this size is a complete set. In
particular, we know how to construct such a set when n is a prime power.

The following result has recently been proved in Colbourn et al. (2004).

Theorem 4.2. If there are m MOLS of order n, then a PA(n, nK1) exists of
order mn. In particular, when n is a prime power, a sharp PA(n, nK1) exists, of
order n(nK1).

Essentially, the orthogonality property of the latin squares is exploited to
obtain the necessary minimum distance in the array.
(c ) Building codes by computer search

For some values of n and d, it is not easy to create a PA(n, d) by the methods
described above. In these cases, we can use a computer to search among the
permutations of Sn for an appropriate set of codewords. Perhaps the simplest way
to build a permutation code by computer is to start with an empty set of
codewords, run through all permutations of Sn, and add a permutation to the set
if it has distance d or more from all permutations already in the set. This is called
the greedy algorithm. Since the number of permutations of length n increases
very quickly as n increases, this method is practical only for n up to 10 or 11 (11!
is close to 40 million). By modifying the algorithm in various ways, and applying
it repeatedly, we can make it work more effectively; however, it remains
essentially a ‘brute force’ approach.

A more sophisticated version of the above is to insist that the permutation
array we are searching for possesses certain structural properties (e.g. possesses a
certain automorphism group). Although, at first sight, imposing an extra
Phil. Trans. R. Soc. A (2006)
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condition may seem counter-productive, it is in fact helpful; the array can then
be specified by a smaller set of representatives, allowing us to reduce the size of
the search space.

Another approach is to use graph theory. In combinatorics, a graph consists of
a set of vertices (points) and edges (lines between points). A clique in a graph is a
set of points with the property that any pair of points in the set is joined by an
edge. We can make a graph whose vertices are all the permutations of length n,
with an edge between two vertices if the Hamming distance between the
corresponding permutations is d or more. Then, finding a PA(n, d) is equivalent
to finding a clique in the graph; search techniques developed for graph theory can
then be used to search for as large a clique as possible.
5. Future developments: where next?

So, what does the future hold for permutation arrays and PLCs? How will
this promising relationship between pure mathematics and electronic
engineering develop?

We foresee more research, especially by mathematicians themselves, on effective
encoding and decoding schemes for permutation codes. For example, recent work by
Bailey (2005) takes permutation codes which are permutation groups and develops a
novel decoding algorithm for them.This decodingprocess uses a so-called uncovering
by bases, which exploits group-theoretic properties of the chosen codes and uses
combinatorial designs. There is a rich mathematical literature pertaining to
permutations, and we envisage other aspects of permutation theory being used to
develop increasingly sophisticated coding applications.

We foresee the development and investigation of related codes and structures.
To be useful in PLC, as described earlier, we want a code in which each symbol
occurs a fixed number of times per codeword (to ensure a constant power
envelope) and which uses a relatively large alphabet size (for frequency
spreading). Such codes are called constant composition codes. Permutation
codes possess an important extra property not possessed by most constant
composition codes: the ‘fixed number of occurrences’ of a symbol in a codeword
is, in fact, the same for each symbol (namely 1). This consistency seems to be a
key reason why so many theoretical constructions can be developed. Hence, a
natural step is to consider the larger class of constant composition codes, for
which the fixed number of occurrences is the same for each symbol, but where we
now allow this number to be greater than 1. Several very recent papers have
started to address this topic, from both a coding theory perspective (Ding & Yin
2005; Chu et al. 2006) and a more combinatorial viewpoint (Huczynska & Mullen
2006). This last paper introduces the concept of a frequency permutation array,
the natural generalization of a permutation array.

At the most general level, the PLC requirements outlined above suggest
undertaking an investigation of constant composition codes with larger-than-usual
alphabet sizes. Until very recently, almost all work on this topic has focused on
alphabets of size 2 or 3 (so-called binary or ternary codes).Motivated by this, several
researchers have recently begun to consider constant composition codes with
arbitrary alphabet size (see, for example, recent work of Luo et al. 2003; Ding & Yin
Phil. Trans. R. Soc. A (2006)
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2005). Compared to the extensive literature already existing for binary and ternary
constant composition codes, this is still an emergingarea,withmuchtobediscovered.

This research also presents a challenge to computer scientists. We touched
briefly on the construction of codes by computer search, describing some
algorithms which have been employed by mathematicians. However, efficient
search constitutes an entire research area in theoretical computer science, and it
is probably that more sophisticated search techniques from this area, such as
backtrack search, will be able to discover close-to-optimal codes for a wide range
of parameters. This would be particularly helpful for constant composition codes,
where the number of symbol occurrences is non-uniform.

Finally, there still remain many engineering challenges which must be
overcome before the promise of PLC can become a reality. We need to obtain a
better understanding of the nature of noise problems which can occur. It is
desirable to undertake research into other modulation/coding methods, to
identify other schemes which are robust against these problems. Beyond the
realms of research, there are agreements to be made, by industry and
government, on issues such as standards.

Yet, although there is still much work to be done before the dream of ‘Internet
through power sockets’ becomes a reality, the pursuit of this dream is already
having a tangible positive impact on the research community. The needs and
demands of PLCs are stimulating new connections between, and new directions
within, pure mathematics and electronic engineering. Novel engineering
approaches are being developed, for which previously untapped seams of
mathematics are being mined, and this new interest is encouraging theoreticians
to explore new aspects of their field, or to revisit and develop old areas. In the
future, we anticipate the two disciplines working evermore closely, towards the
development of sophisticated, application-led encoding/decoding strategies
which overcome the technical problems of PLC implementation. This is an
exciting and timely opportunity for interdisciplinary research. And when, one
day in the future, we are downloading data through power sockets, we might
spare a thought for Euler and the 36 officers.

The author is supported by a Royal Society Dorothy Hodgkin Fellowship. Thanks to John

O’Connor for kindly supplying the picture of Euler and to Gary Mullen for his encouragement.

Thanks to the anonymous referees for their helpful comments.
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