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Abstract

Let G be a permutation group on an n-element set Ω . We study the binary code C(G,Ω) defined as the
dual code of the code spanned by the sets of fixed points of involutions of G. We show that any G-invariant
self-orthogonal code of length n is contained in C(G,Ω). Many self-orthogonal codes related to sporadic
simple groups, including the extended Golay code, are obtained as C(G,Ω). Some new self-dual codes
invariant under sporadic almost simple groups are constructed.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Permutation group; Sporadic simple group; Self-orthogonal code and self-dual code

1. Introduction

In [3], we constructed a binary self-dual [100,50,10] code C10 whose automorphism group
is isomorphic to J2 : 2, which is the extension of the Hall–Janko group J2 by its outer automor-
phism. It was also proved that the code C10 is spanned by the codewords of weight 14, which are
the sets of fixed points of the outer involutions. On the other hand, the extended Golay code G24
is spanned by the codewords of weight 8, called the octads, which are the sets of fixed points
of 2A-involutions of its automorphism group, which is isomorphic to the Mathieu group M24;
recall that this group has precisely two classes of involutions labeled 2A and 2B (see [4]).
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Motivated by such observations, in this paper, we consider the sets of fixed points of involu-
tions of a permutation group. Let G be a permutation group on an n-element set Ω . We define
the binary code C(G,Ω) (or simply C(G,n)) as the dual code of the code spanned by the sets of
fixed points of involutions of G. Here C(G,Ω) is contained in the power set P(Ω) of Ω , which
is regarded as an n-dimensional vector space over a field of two elements by defining the sum as
the symmetric difference. We consider a subspace (i.e. a code of length n) C of P(Ω). Our main
theorem (given in Section 2) is as follows:

Theorem A. Let C be a G-invariant binary self-orthogonal code of length n. Then C ⊂
C(G,Ω).

Our idea is simple and the main theorem can be easily proved, yet many known self-
orthogonal codes related to sporadic simple groups are obtained as C(G,Ω). For example, the
above codes C10 and G24 are obtained as C(J2 : 2,100) and C(M24,24), respectively. More
known examples are listed in Section 2. Moreover, the equality C10 = C(J2 : 2,100) (respec-
tively G24 = C(M24,24)) means that this code is the unique J2 : 2-(respectively M24-)invariant
self-dual code of length 100 (respectively 24). In this way, Theorem A is used to characterize or
classify some self-orthogonal (or self-dual) codes with a fixed automorphism group. In Section 3,
we give a list of the codes C(G,Ω) for sporadic almost simple groups G of degree � 1000 sat-
isfying the condition NG(I (H)) = H for the stabilizer H of a point, where I (H) denotes the
set of involutions of H . A group G is said to be almost simple if G0 � G ⊆ Aut(G0) for some
non-abelian simple group G0. Consequently, we find all self-dual codes of lengths � 1000 in-
variant under such sporadic almost simple groups satisfying the above condition, including some
new self-dual codes. We note that this condition is equivalent to the condition that the mini-
mum weight of C(G,Ω) is greater than 2 (Lemma 2.15). Many known codes are related to
some graphs or designs. Typical examples are C10 and G24 again. In Section 4, we show that
C(M22,176) is related to a new 2-(176,16,9) design with automorphism group M22.

Almost all calculations in this paper are done by computer, especially using MAGMA [1]. This
system has several databases of groups, and we use some of them to define a group G and its
subgroup H . Then we determine the permutation representation of G on G/H by calculating
the coset table. We further calculate the sets of fixed points of involutions, and then the code
C(G,G/H) is defined by MAGMA. Many properties of codes, e.g. the dimensions, the minimum
weights, and the automorphism groups, are obtained by using built-in functions of MAGMA.
We can also construct combinatorial configurations, e.g. 2-designs defined by codewords, in
MAGMA, and their properties, e.g. the automorphism groups are calculated. Any G-invariant
code can be viewed as a G-submodule over F2. For a given G, it is not easy to determine all
G-submodules in general. But MAGMA can construct these for modest degrees n. We sometimes
use the classification of G-submodules by MAGMA, in order to classify self-dual codes invariant
under G. In many cases, we report the results of explicit computations without further comment.

We use the following notation and terminology. The symbols for almost simple groups are
due to [4].

For an n-element set Ω , the power set P(Ω)—the family of all subsets of Ω—is regarded
as an n-dimensional vector space with the inner product (X,Y ) ≡ |X ∩ Y | (mod 2) for X,Y ∈
P(Ω). The weight of X is defined to be the integer |X|. A subspace C of P(Ω) with dimension
k and minimum weight d is called an [n, k, d] code. The integer n is called the length of C,
and a member of C is called a codeword. The automorphism group Aut(C) of the code C is the
set of permutations of Ω which preserve C. Two codes are equivalent if one can be obtained
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from the other by a permutation of Ω . The dual code C⊥ of C is the set of all X ∈ P(Ω)

satisfying (X,Y ) = 0 for all Y ∈ C. A code C is said to be self-orthogonal if C ⊂ C⊥, and
self-dual if C = C⊥. A doubly even (respectively even) code is a code whose codewords have
weight divisible by 4 (respectively 2). A doubly even code is always self-orthogonal, and a self-
orthogonal code is always even. A self-orthogonal code is said to be singly even if it is not
doubly even. It is known that a doubly even self-dual code of length n exists if and only if n is
divisible by 8. Two self-dual codes C and C′ are called neighbors if their intersection C ∩ C′ is
of codimension 1. For a singly even self-dual code C, the doubly even subcode C0 is defined as
a subcode of codimension 1 consisting of the codewords of C having weight ≡ 0 (mod 4).

A t-(v, k, λ) design D is a set X of v points together with a collection of k-subsets of X (called
blocks) such that every t-subset of X is contained in exactly λ blocks. The block intersection
numbers of D are the cardinalities of the intersections of any two distinct blocks. A t-(v, k, λ)

design D is called self-orthogonal if the block intersection numbers have the same parity as the
block size k [13] and a 2-(v, k, λ) design D is called symmetric if all block intersection numbers
are λ.

2. Main theorem and examples

Let G be a permutation group on an n-element set Ω . We define the binary code C(G,Ω) by

C(G,Ω) = 〈
Fix(σ )

∣∣ σ ∈ I (G)
〉⊥

where I (G) denotes the set of involutions of G and Fix(σ ) is the set of fixed points by σ .
When G acts transitively on Ω and the permutation representation of degree n of G is uniquely
determined up to equivalence, we write simply C(G,n) = C(G,Ω).

Theorem A. Let C be a G-invariant binary self-orthogonal code of length n. Then C ⊂
C(G,Ω).

Proof. Suppose that ∅ �= X ∈ C and σ ∈ I (G). Then 〈σ 〉 acts on the set X ∩ σ(X). Since C is
self-orthogonal, |X ∩ σ(X)| is even. We see that Fix(σ )∩X ⊂ X ∩ σ(X). Set Y = (X ∩ σ(X)) \
(Fix(σ ) ∩ X). Then Y is the disjoint union of the sets {a,σ (a)} for a ∈ Y . Thus |Y | is even.
Hence |Fix(σ ) ∩ X| is even. Therefore X ∈ 〈Fix(σ ) | σ ∈ I (G)〉⊥. �

The following lemmas are useful to study C(G,Ω).

Lemma 2.1. Let K act on Ω and G be a normal subgroup of K . Then C(G,Ω) is K-invariant.

Proof. Take x ∈ K and σ ∈ I (G). For i ∈ Fix(σ ), we have (xσx−1)(x(i)) = xσ(i) = x(i).
Hence Fix(xσx−1) = x(Fix(σ )). Since G � K , we have C(G,Ω)⊥ = 〈Fix(σ ) | σ ∈ I (G)〉 is
K-invariant. Thus the result follows. �
Lemma 2.2. Let K act on Ω and G be a normal subgroup of K . If C(G,Ω) is self-orthogonal,
then C(G,Ω) = C(K,Ω).

Proof. Since G ⊆ K , we have C(K,Ω) ⊆ C(G,Ω). On the other hand, since C(G,Ω) is
K-invariant by Lemma 2.1 and C(G,Ω) is self-orthogonal, we have C(G,Ω) ⊆ C(K,Ω) by
Theorem A. �
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Lemma 2.3. Suppose G = Aut(C(G,Ω)). If C1,C2 are distinct subcodes of C(G,Ω) satisfying
G = Aut(C1) = Aut(C2), then these are inequivalent.

Proof. Suppose that there exists some permutation π on Ω such that π(C1) = C2. Then we
have πGπ−1 = Aut(π(C1)) = Aut(C2) = G. Hence π preserves 〈Fix(σ ) | σ ∈ I (G)〉, and thus
π ∈ Aut(C(G,Ω)) (= Aut(C1)). This means that C1 = π(C1) = C2, a contradiction. �
Lemma 2.4. Let D be a self-orthogonal t-(n, k,λ) design with even k. Suppose that D is invari-
ant under a permutation group G on the point set Ω . Then the code generated by the rows of its
block-point incidence matrix of D is contained in C(G,Ω).

Proof. Follows from the fact that the code is a G-invariant self-orthogonal code. �
There are several known self-orthogonal codes with sporadic almost simple groups as the

automorphism groups. We illustrate the relation between these codes and C(G,Ω).

Example 2.5. Let G = M24 and n = 24. It is well known that the set of fixed points of 2A-
involutions of G forms the Witt system (5-(24,8,1) design) W24, and 2B-involutions are fixed
point free. Since W24 generates G24, we have C(G,24)⊥ = G24. Since G24 is a self-dual code,
we have C(G,24) = G24. The code G24 is also obtained as C(M12 : 2,24).

Example 2.6. Let G = J2 : 2 and n = 100. By Theorem A, we have C10 ⊂ C(G,100) since C10
is a self-dual code. Since C10 is generated by the set of fixed points of 2C-involutions of G, we
have C10 ⊆ C(G,100)⊥. Taking the dual code, we have C(G,100) = C10. In particular, C is the
unique G-invariant self-dual code of length n.

Example 2.7. The third Conway group Co3 has a 2-transitive action on a set Ω of 276 points.
In [5], a doubly even [276,23,100] code invariant under Co3 is constructed. By comparing their
dimensions, this code is equivalent to C(Co3,276). It is mentioned in [5] that the set of the
codewords of a fixed weight in the code C(Co3,276) is a single Co3-orbit and forms a 2-design.
By Lemma 2.4, there are no other self-orthogonal 2-(276,2k,λ) designs invariant under Co3.

The stabilizer of a point of Ω is McL : 2, the extension of the McLaughlin group by its outer
automorphism, whose action on 275 points is of rank 3. It is shown in [5] that the code generated
by the adjacency matrix of the rank 3 graph is a doubly even [275,22,100] code (see also [10]).
By comparing their dimensions, this code is equivalent to C(McL,275) = C(McL : 2,275).

Example 2.8. The Higman–Sims group HS has a 2-transitive action on a set Ω of 176 points.
In [2], a self-orthogonal [176,22,50] code with automorphism group HS is constructed. By
comparing their dimensions, we have that this code is equivalent to C(HS,176). Moreover, in [2],
it is shown that the codewords of weight 50 in the code form a symmetric 2-(176,50,14) design
which is isomorphic to the design D176 discovered by G. Higman [6], and the code is generated
by the incidence matrix of the design. The automorphism group of the code is determined by the
fact Aut(D176) ∼= HS in [6].

Here we note that Higman’s design is defined by using only the notion of M22 [6]. Indeed, the
set Ω of 176 points can be described by using the Witt system W24. That is, Ω can be identified
as the set of blocks X of W24 satisfying a ∈ X and b /∈ X for some fixed distinct points a, b
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of W24. The group M22 acts transitively on Ω , and acts on C(HS,176). By comparing their
dimensions, we have C(M22,176) = C(HS,176). Hence Aut(C(M22,176)) ∼= HS.

Example 2.9. The Higman–Sims graph is a rank 3 graph of 100 vertices whose automorphism
group is HS : 2, the extension of the Higman–Sims group by its outer automorphism. By [14],
the code generated by the adjacency matrix of the graph is a self-orthogonal [100,22,22] code
with automorphism group HS : 2. By comparing their dimensions, the code C(HS : 2,100) is
equivalent to this code.

The code C(HS,100) is a [100,23,22] code and C(HS,100)∩C(HS,100)⊥ is a doubly even
[100,21,32] code. By Theorem 2.1 in [9], there are three self-orthogonal [100,22] subcodes
containing C(HS,100) ∩ C(HS,100)⊥. Two of them are [100,22,32] codes and the other is a
[100,22,22] code. The former two codes are equivalent to C100 in [14], whose automorphism
group is HS, and the latter one is equivalent to C(HS : 2,100).

The following example is an infinite series of codes obtained as C(G,Ω).

Example 2.10. Let G = AGL(n,2) be the affine transformation group of the vector space of
dimension n over a field of two elements. Then G acts transitively on the set of 2n vectors of this
space. The set of fixed points of an involution in G is an affine subspace of dimension n − k for
some k with 1 � k � [n/2]. Hence the code spanned by the set of fixed points of the involutions
is equivalent to the Reed–Muller code R([n/2], n) (see [8] for the definition of Reed–Muller
codes). Hence the code C(G,2n) is equivalent to the Reed–Muller code R(n − [n/2] − 1, n).

Lemma 2.11. If there exists a G-invariant self-dual code D (⊂ P(Ω)), then C(G,Ω)⊥ ⊂ D ⊂
C(G,Ω). In particular, the code 〈Fix(σ ) | σ ∈ I (G)〉 is self-orthogonal.

Proof. By Theorem A, D ⊂ C(G,Ω). Then C(G,Ω)⊥ ⊂ D⊥ = D ⊂ C(G,Ω). �
Lemma 2.11 is used in the next section in order to construct or classify all self-dual codes

invariant under a fixed group. As an example, self-dual codes of length 132 with automorphism
groups M11 are constructed from C(M11,132) (see Section 3). However, there does not always
exist a self-dual code even if C(G,Ω)⊥ ⊂ C(G,Ω) (see the next example).

Example 2.12. Let G = S4(3) and H = 31+2+ : 2A4. The code C = C(G,G/H) is a [40,25,4]
code and C⊥ is a doubly even [40,15,8] code. We have by MAGMA that there are only four
G-invariant subcodes between C⊥ and C with dimensions 15, 16, 24 and 25. Hence there is no
G-invariant self-dual code between C⊥ and C.

If all the involutions in G act fixed point freely on Ω , then C(G,Ω) is the whole space P(Ω).
In this case, our theorem gives only a trivial result as follows.

Example 2.13. If q ≡ 3 (mod 4), then we have C(L2(q),Ω) = P(Ω) since a point stabilizer is
of odd order. It is known that there exists a self-dual code of length q + 1 invariant under L2(q)

if q ≡ −1 (mod 8), which is of course contained in P(Ω) = C(L2(q),Ω).
For q �≡ 3 (mod 4), we have C(L2(q),Ω) = {0} if q ≡ 0 (mod 2) and we have C(L2(q),Ω)

is a [q + 1,1, q + 1] code if q ≡ 1 (mod 4).
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Here we consider the imprimitive case. For the remainder of this section, we assume that the
action of G on Ω is transitive for simplicity. So we may assume Ω = G/H for some subgroup
H of G.

Lemma 2.14. Let σ ∈ I (G). If σ(aH) = aH for some a ∈ NG(I (H)), then σ(bH) = bH for all
b ∈ NG(I (H)).

Proof. If σ(aH) = aH , then a−1σa ∈ I (H), and thus σ ∈ I (H). For each b ∈ NG(I (H)), we
have b−1σb ∈ H , and thus σ(bH) = bb−1σ(bH) = bH . �
Lemma 2.15. For a ∈ G \ H , the following conditions are equivalent:

(1) a ∈ NG(I (H));
(2) {H,aH } ∈ C(G,G/H).

In particular, NG(I (H)) �= H if and only if the minimum weight of C(G,G/H) is equal to 2.

Proof. Let a ∈ NG(I (H)) \ H and σ ∈ I (G). By Lemma 2.14, if aH ∈ Fix(σ ) then
NG(I (H))/H ⊂ Fix(σ ). Hence |{H,aH } ∩ Fix(σ )| = 0 or 2, that is, {H,aH } ∈ C(G,G/H).

Conversely suppose {H,aH } ∈ C(G,G/H). Let s ∈ I (H). Then sH = H and s also fixes
aH by the assumption. Hence saH = aH and a−1sa ∈ I (H). �

Suppose that NG(I (H)) �= H . Set N = NG(I (H)), r = |G : N |, m = |N : H |, i.e., n = mr ,
and Ω ′ = G/N . Let G/N = {g1N, . . . , grN}, and set

Xi = gi(N/H) = {giaH | a ∈ N} (i = 1, . . . , r).

Then Ω = G/H = X1 ∪ · · · ∪ Xr , and |Xi | = m for each i. For σ ∈ I (G), set

F1(σ ) = {
giN

∣∣ Xi ⊂ Fix(σ )
}
,

F2(σ ) = {
giN

∣∣ σ(Xi) = Xi

}
.

By definition, C(G,Ω ′) = 〈F2(σ ) | σ ∈ I (G)〉⊥ (⊂ P(Ω ′)). Set

C′ = 〈
F1(σ )

∣∣ σ ∈ I (G)
〉⊥(⊂ P(Ω ′)

)
.

Proposition 2.16. Under the above notations,

C(G,G/H) = {
W ⊂ Ω

∣∣ {
giN

∣∣ |W ∩ Xi | = odd
} ∈ C′}.

The group Aut(C(G,G/H)) is isomorphic to the wreath product Sm � Aut(C′).

Proof. Let W ⊂ Ω . Set E(W) = {giN | |W ∩ Xi | = odd}. Then W ∈ C(G,G/H) if and only if
|W ∩ Fix(σ )| is even for each σ ∈ I (G). This is equivalent to the condition that |E(W) ∩ F1(σ )|
is even, that is, E(W) ∈ C′, as required. Since |τ(W) ∩ Xi | = |W ∩ Xi | for any permutation τ

on Xi , the symmetric group on Xi is contained in Aut(C(G,G/H)).
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Let ρ ∈ Aut(C(G,G/H)). We denote by ρ̄ the permutation on Ω ′ induced by ρ. Then the
image of the map ρ �→ ρ̄ is Aut(C′), and further the kernel of this map is the direct product of
the symmetric groups on Xi . Hence we have Aut(C(G,G/H)) ∼= Sm � Aut(C′). �
Proposition 2.17. Under the same notations as Proposition 2.16, the following statements hold:

(1) if m is even, then C(G,G/H)⊥ is self-orthogonal;
(2) if m is odd, then C(G,G/H)⊥ is self-orthogonal if and only if C′⊥ is self-orthogonal;
(3) if NG(I (H)) \ H contains no involutions (note that this assumption holds if m is odd), then

C′ = C(G,Ω ′).

Proof. (1), (2) By Lemma 2.14, the set Fix(σ ) (σ ∈ I (G)) is a union of some Xi ’s. Since the
condition Xi ⊂ Fix(σ ) is equivalent to giN ∈ F1(σ ), we have

∣∣Fix(σ ) ∩ Fix(τ )
∣∣ = m × ∣∣F1(σ ) ∩ F1(τ )

∣∣

for σ, τ ∈ I (H). Hence the assertions (1), (2) are easily verified.
(3) Clearly F1(σ ) ⊂ F2(σ ). Let giN ∈ F2(σ ). Then we have σ(gi(N/H)) = gi(N/H), that

is, g−1
i σgi ∈ N . By the assumption, g−1

i σgi ∈ H and thus giH ∈ Fix(σ ). This means that Xi ⊂
Fix(σ ) and giN ∈ F1(σ ). Hence we have F1(σ ) = F2(σ ), that is, C′ = C(G,Ω ′). �
3. Sporadic simple groups of degree ��� 1000

In this section, we consider the codes C = C(G,Ω) (Ω = G/H ) when G is a sporadic almost
simple group, such that NG(I (H)) = H and |G/H | � 1000, where H denotes a subgroup of G.
Consequently, we find all self-dual codes of lengths � 1000 invariant under such sporadic al-
most simple groups satisfying the above condition. In particular, new self-dual codes of lengths
330,132,132,220,352 invariant under M22 : 2,M11,M12 : 2,M12,HS : 2 are constructed, re-
spectively.

3.1. Results

The parameters of C and C ∩ C⊥ and the automorphism groups Aut(C) of C are listed in
Table 1. When C is self-dual, self-orthogonal or doubly even, we indicate this in the third column.
In the last column, we list the subgroups H when there are two codes of the same length for a
given G. There are pairs of identical codes constructed from different groups. Some of them
are explained by Lemma 2.2, and are denoted by † in the last column. The other identities are
denoted by �. Due to computer time limitations, we do not calculate the minimum weights and
the automorphism groups for some codes. However, the automorphism groups are (theoretically)
determined for some cases as we describe below.

If G is primitive on Ω , then Aut(C(G,Ω)) is also primitive since G ⊂ Aut(C(G,Ω)). The
primitive groups of degree < 2500 are classified in [11,12] and MAGMA has a database of these
groups. From the classification, we can determine Aut(C(G,Ω)) for some cases, which are
denoted by � in the last column. We give some typical cases in the following examples. Similar
arguments determine the automorphism groups for other primitive cases.

Example 3.1. Let G = M22 and |Ω| = 231. Set C = C(G,Ω). By Lemma 2.1, we have that C is
M22 : 2-invariant. By the classification of all primitive groups of degree 231, Aut(C) = M22 : 2,
A22, S22, A231 or S231. By MAGMA, we have C(A22,231) = C(S22,231) is a self-orthogonal
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Table 1
Sporadic groups of degree � 1000

G C C ∩ C⊥ Aut(C) Remarks

M11 [11,0] – –
[12,1,12] doubly even S12 �1
[55,0] – –
[66,21,16] [66,1,66] M11
[132,67,6] [132,65,12] M11 	 (Example 3.5)
[165,56,18] [165,54,20] M11
[330,176,6] [330,154,8] 	

[396,252,6] [396,90]
[495,341,6] [495,109,36]
[660,506,4] [660,144]

M12 [12,1,12] doubly even S12 �1
[66,11,20] self-orthogonal S12
[144,89,12] [144,55,20] M12 : 2 	, primitive (L2(11))
[144,69,12] [144,65,16] M12 : 2 imprimitive (L2(11))
[220,111,18] [220,109,20] M12 	 (Example 3.7), �
[396,143] [396,109] M12 : 2 �
[495,197] [495,143] M12 : 2 �, 42 : D12
[495,232] [495,118] M12 : 2 �2, �, M8.S4 ∼= 21+4+ .S3
[660,353] [660,297]
[792,539,6] [792,243]
[880,661,4] [880,209] M12 : 2 � (Example 3.3)

M12 : 2 [24,12,8] doubly even self-dual M24 �3
[132,67,12] [132,65,12] M12 : 2 	 (Example 3.6)
[144,57,12] [144,55,20] M12 : 2 G′ is primitive
[144,68,12] [144,66,16] M12 : 2 G′ is imprimitive
[396,111] [396,109] M12 : 2 �
[440,286] [440,154] 	

[495,232] [495,118] M12 : 2 �2, �, (21+4+ .S3).2
[495,155] [495,153] M12 : 2 �, (42 : D12).2
[880,476] [880,362] M12 : 2 �

M22 [22,11,6] self-dual M22 : 2 †1
[77,21,16] self-orthogonal M22 : 2 †2
[176,22,50] self-orthogonal HS �4
[231,87] [231,45,48] M22 : 2 � (Example 3.1)
[330,176] [330,154] M22 : 2 	, �
[462,273,6] [462,91,30] 24 : A5 �⊂ L3(4)

[462,308,6] [462,154] M22 : 2 	, 24 : A5 ⊂ L3(4)

[616,418,6] [616,164] M22 : 2 �
[672,473] [672,199] M22 : 2 	, � (Example 3.2)
[770,473] [770,199]

M22 : 2 [22,11,6] self-dual M22 : 2 †1
[77,21,16] self-orthogonal M22 : 2 †2
[231,76,30] [231,56,32] M22 : 2 �
[330,165,10] self-dual M22 : 2 �
[352,198] [352,154,16] 	

[462,298,6] [462,164,24] M22 : 2 	, 24 : S5 ⊂ L3(4) : 22
[462,122,6] [462,102,24] 24 : S5 �⊂ L3(4) : 22
[616,231] [616,211] M22 : 2 �
[672,322] [672,210] M22 : 2 �
[770,287,10] [770,245]

(continued on next page)
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Table 1 (continued)

G C C ∩ C⊥ Aut(C) Remarks

M23 [23,11,8] doubly even M23
[253,77,28] [253,55,56] M23 L3(4) : 22
[253,66,32] doubly even M23 24 : A7
[506,67,56] self-orthogonal M23 �

M24 [24,12,8] doubly even self-dual M24 �3
[276,78,36] doubly even M24 �
[759,264] [759,242] M24 �

J1 [266,1,266] self-orthogonal S266

J2 [100,63,8] [100,37,16] J2 : 2 	

[280,92,28] self-orthogonal J2 : 2 †3, �
[315,118] [315,36,80] J2 : 2 �
[525,140] doubly even J2 : 2 †4, �
[840,329] [840,231] J2 : 2 �

J2 : 2 [100,50,10] self-dual J2 : 2
[280,92,28] self-orthogonal J2 : 2 †3, �
[315,77,42] self-orthogonal J2 : 2 �
[525,140] doubly even J2 : 2 †4, �
[840,280] doubly even J2 : 2 �

HS [100,23,22] [100,21,32] HS : 2
[176,22,50] self-orthogonal HS �4

HS : 2 [100,22,22] self-orthogonal HS : 2
[352,177,16] [352,175,16] 	 (Example 3.8)

McL [275,22,100] doubly even McL : 2 †5

McL : 2 [275,22,100] doubly even McL : 2 †5

Co3 [276,23,100] doubly even Co3

[231,21,40] code. Since C ∩ C⊥ is self-orthogonal, we have C ∩ C⊥ ⊂ C(Aut(C ∩ C⊥),Ω)

by Theorem A. Since C ∩ C⊥ is a [231,45,48] code, we have Aut(C ∩ C⊥) = M22 : 2. Since
Aut(C) ⊆ Aut(C ∩ C⊥), we have Aut(C) = M22 : 2.

Example 3.2. Consider the case that G = M22 and |Ω| = 672. By Lemma 2.1, we have
C(M22,672) is M22 : 2-invariant. The primitive groups of degree 672 are M22, M22 : 2, U6(2),
U6(2) : 2, U6(2) : 3, U6(2) : S3, A672 and S672. Take a subgroup M22 of U6(2). Then we have
verified by MAGMA that C(M22,672) is not U6(2)-invariant. Thus we have Aut(C(M22,672)) =
M22 : 2.

Example 3.3. Consider the case that G = M12 and |Ω| = 880. We note that M12 is not primi-
tive on 880 points. We have C(M12,880) is M12 : 2-invariant by Lemma 2.1. Since M12 : 2 is
primitive on 880 points, we have Aut(C(M12,880)) = M12 : 2 by the classification of primitive
groups.

3.2. Self-dual codes

Table 1 contains three known self-dual codes with parameters [24,12,8] for G = M12 : 2,
M24, [22,11,6] for G = M22, M22 : 2, [100,50,10] for G = J2 : 2, together with the following
(new) self-dual code.
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Proposition 3.4. The code C(M22 : 2,330) is a self-dual [330,165,10] code whose automor-
phism group is M22 : 2.

By Lemma 2.11, there are possibilities of the existence of new G-invariant self-dual codes in
the following cases (denoted by 	 in Table 1):

G = M11, [132,67], [330,176],
G = M12, [144,89], [220,111],
G = M12 : 2, [132,67], [440,286],
G = M22, [330,176], [462,308], [672,473],
G = M22 : 2, [352,198], [462,298],
G = J2, [100,63],
G = HS : 2, [352,177].

In Examples 3.5–3.8, we consider the four cases where C⊥(⊂ C) is doubly even, and
dim(C/C⊥) = 2. There exist exactly three self-dual subcodes of C. Let D be one of them. We
have Aut(D) ⊂ Aut(C⊥) = Aut(C), since Aut(D) preserves its doubly even subcode C⊥ of D.

Example 3.5. Suppose that G = M11 and |Ω| = 132. C = C(G,Ω) is a [132,67,6] code.
Two self-dual codes C132,1,C132,2 have minimum weight 12 and the other C132,3 has minimum
weight 6. The group G acts on the set of the three self-dual codes. Since G contains no subgroup
of index � 3, the code C132,i is G-invariant, that is, G ⊂ Aut(C132,i ) for each i = 1,2,3. Since
Aut(C132,i ) ⊂ Aut(C) = G, we have G = Aut(C132,i ) for each i = 1,2,3. By Lemma 2.3, these
are inequivalent to each other.

Example 3.6. Suppose that G = M12 : 2 and |Ω| = 132. C = C(G,Ω) is a [132,67,12] code.
The three self-dual codes C132,4,C132,5,C132,6 have minimum weight 12. We note that the equal-
ity G = Aut(C) is verified by MAGMA. By Lemma 2.3, these are inequivalent to each other.

Example 3.7. Suppose that G = M12 and |Ω| = 220. C = C(G,Ω) is a [220,111,18] code.
The three self-dual codes have minimum weights 18,20,20. Let D be one of them. We deter-
mine the automorphism group Aut(D). By [12], a primitive permutation group of degree 220 is
one of M12, A12, S12, A220, S220. Since C(A12,220) = C(S12,220) is a [220,55,28] code, the
groups A12, S12 (and also A220, S220) do not act on D. Hence we have Aut(D) = M12. Similarly
we have Aut(C) = M12. By Lemma 2.3, these are inequivalent to each other.

Example 3.8. Suppose that G = HS : 2 and |Ω| = 352. C = C(G,Ω) is a [352,177] code. The
three self-dual codes have minimum weight 16. Since the length is divisible by eight, two self-
dual codes are doubly even and the other is singly even (see [9, Theorems 2.1 and 2.2]). We do
not calculate the automorphism groups of the codes, and do not determine the (in)equivalence of
the two doubly even codes.

To find all G-invariant self-dual codes for the other cases, we determine all G-submodules
of C(G,n). The code C(J2,100) is a [100,63,8] code and C(J2,100)⊥ is a doubly even
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Table 2
Numbers of self-dual codes invariant under G

G (n,#)

M11 (330,3)

M12 (144,0)

M12 : 2 (440,35)

M22 (330,1), (462,83), (672,0)

M22 : 2 (352,10), (462,55)

[100,37,16] code. The adjacency matrix of the Hall-Janko graph of 100 vertices generates a
doubly even [100,36,16] code CA [7] (see also [3]). The code C(J2,100)⊥ is generated by CA

and the all-ones vector. We constructed three self-dual codes C10, C16, C′
16 invariant under J2

in [3]. By Theorem A, they are contained in C(J2,100). We verify by MAGMA that C(J2,100)

has exactly 7 J2-invariant submodules (subcodes) containing C(J2,100)⊥, three of which are
self-dual. Hence we have the following:

Theorem 3.9. Let C be a self-dual code of length 100 invariant under J2. Then C is equivalent
to one of the codes C10, C16 and C′

16 given in [3].

Similarly, by determining all G-submodules, the numbers # of distinct self-dual codes of
length n invariant under G are determined for the remaining groups G. We do not determine
the (in)equivalence of the codes. The results are listed in Table 2. From the table, we have the
following result.

Proposition 3.10. There is no self-dual code of lengths 144 and 672 invariant under M12
and M22, respectively. The unique self-dual code of length 330 under invariant M22 is the
[330,165,10] code C(M22 : 2,330) given in Proposition 3.4.

4. HS- and M22-invariant 2-designs

We first consider M22 as a permutation group of degree 176. By Example 2.8, the automor-
phism group of the code 〈Fix(u) | u ∈ I (M22)〉 is also isomorphic to HS. This gives another
construction of HS from M22 via the code. We remark that HS does not act on the set of gen-
erators {Fix(u) | u ∈ I (M22)}. It is interesting that the configuration (Ω, {Fix(u) | u ∈ I (M22)})
forms a 2-design with automorphism group M22.

Proposition 4.1. The incidence structure (Ω, {Fix(u) | u ∈ I (M22)}) is a 2-(176,16,9) design
with automorphism group M22.

Proof. Set G = M22. Since I (G) forms a single conjugacy class, |Fix(u)| does not depend on
the choice of u. Let X,Y ∈ Ω with X �= Y . Then the stabilizer GX of X is isomorphic to A7.
Since |I (A7)| = 105 and |I (G)| = 1155, we have |Fix(u)| = (176 × 105)/1155 = 16. Moreover
the stabilizer GX,Y of X,Y is isomorphic to S4 or 32 : 4 according to |X ∩ Y | = 4 or 2 as blocks
of W24. Hence |I (GX,Y )| is always equal to 9. This means that the incidence structure is a
2-(176,16,9) design. The automorphism group is calculated by MAGMA. �
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We secondly consider HS : 2 as a permutation group of degree 100 whose action is of rank 3
(see Example 2.9). It is known [14] that the codewords of weight 36 in the self-orthogonal
[100,22,22] code C(HS : 2,100) form a self-orthogonal 2-(100,36,525) design D100,1. We
have verified by MAGMA that the codewords of weight 40 in C(HS : 2,100) form a self-
orthogonal 2-(100,40,14560) design D100,2 and the codewords of the other weights � 50 do
not form a 2-design. By MAGMA, the automorphism groups of the designs are HS : 2.

In addition, we have verified by MAGMA that any union of HS-orbits of codewords of each
weight in [100,22,32] code and the [100,22,22] code obtained in Example 2.9 does not form a
2-design. By Lemma 2.4, we have the following:

Proposition 4.2. The designs D100,1,D100,2 and their complementary designs are self-orthogo-
nal 2-designs whose automorphism groups are HS : 2. There are no other self-orthogonal
2-(100,2k,λ) designs invariant under HS.
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