
European Journal of Combinatorics 31 (2010) 482–490

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Permutation codes
Peter J. Cameron
School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK

a r t i c l e i n f o

Article history:
Available online 7 November 2009

It is a pleasure to dedicate this paper to
Michel Deza, who was a pioneer in the
investigation of permutations from this
point of view.

a b s t r a c t

There are many analogies between subsets and permutations
of a set, and in particular between sets of subsets and sets of
permutations. The theories share many features, but there are also
big differences. This paper is a survey of old and new results about
sets (and groups) of permutations, concentrating on the analogies
and on the relations to coding theory. Several open problems are
described.
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There are many analogies between sets of subsets of {1, . . . , n} and sets of permutations of
{1, . . . , n}.
In both cases, the objects can be represented by lists of length n (with entries {0, 1} for subsets or

{1, . . . , n} for permutations, where a permutation is represented in passive form).
In each case, there is a metric structure (Hamming distance) for the lists (where d(x, y) is the

number of positions where x and y differ) and an algebraic structure (addition mod 2 or symmetric
difference for subsets, composition for permutations).

1. Algebraic substructures

The algebraic substructures are particularly interesting. For subsets, these are the linear codes over
F2; for permutations, they are the permutation groups. If we are looking for extremal results, they are
likely to be much stronger for these than for arbitrary families.
Here is a comparison of the two situations, showing corresponding concepts and parameters of a

linear code C and a permutation group G.
One of the most important parameters is the cardinality of C or G. The cardinality of a linear code

is a power of 2 and is at most 2n; any such power is possible. The order of a permutation group is a
divisor of n!, but not all divisors occur.

1.1. Bases

A linear code C is a subspace of F2n, and so has a dimension k. We have |C | = 2k.
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In a permutation group G, a base is a sequence i1, . . . , ib of points whose pointwise stabiliser is
the identity. Bases are important in computational group theory since an element of G is uniquely
determined by its effect on a base. The connection between base size and order is not as close as for
codes:

Proposition 1.1. If b is the minimum size of a base for G, then

2b ≤ |G| ≤ nb.

Proof. Let Gj denote the subgroup of G stabilising the first j points in a base. Then |Gi−1 : Gi| is the size
of the orbit of Gi−1 which contains Gi, and so 2 ≤ |Gi−1 : Gi| ≤ n. Moreover, G0 = G and Gb = {1}. �

A base for G is said to be minimal if no proper subset is a base, that is, if no point is fixed by the
stabiliser of the others. A base is irredundant if no point is fixed by the stabiliser of its predecessors.
Clearly a base of minimum size is minimal, and a minimal base is irredundant. The argument of the
preceding paragraph shows that the inequality 2b ≤ |G| ≤ nb holds if b is the size of any irredundant
base.
The bases of a linear code satisfy the matroid basis axioms; the bases of a permutation group do

not, in general. Indeed, theminimal (or irredundant) bases need not all have the same cardinality. The
inequality above shows that, if b is the minimal base size, then any irredundant base has size at most
b log2 n.
There is a simple algorithm to choose an irredundant base: choose points in order, none fixed by

the stabiliser of its predecessors, as long as possible. Then we can find a minimal base by deleting
points from an irredundant base as long as possible. However, it is NP-hard to find the minimum base
size [4].
Blaha [4] devised the greedy algorithm for choosing an irredundant base: choose each point in an

orbit of maximum size of its predecessors. He showed:

Theorem 1.2. If a permutation group of degree n has minimum base size b, then the greedy algorithm
finds a base of size at most b log log n.

Cameron and Fon-Der-Flaass [13] showed:

Theorem 1.3. The following conditions on a permutation group are equivalent:
• the irredundant bases all have the same size;
• the irredundant bases are preserved by re-ordering;
• the irredundant bases satisfy the matroid basis axioms.

They called a permutation group satisfying this property an IBIS group (for Irredundant Bases of
Invariant Size).

Problem. Which matroids can arise in this way from IBIS groups?

The matroids which arise from linear codes are precisely those which are representable over F2. If
M is such a matroid, and 2M denotes the matroid obtained fromM by replacing each element by two
parallel elements, then 2M is associated with an IBIS group. For if C is the linear code corresponding
toM , the group G(C) of permutations of {1, . . . , n} × F2 given by

G(C) = {(i, x) 7→ (i, x+ ci) : c = (c1, . . . , cn) ∈ C}

is the required IBIS group. (This construction of IBIS groups from codes generalises to linear codes over
any finite field.)
There are many other interesting examples, including affine spaces. The Mathieu group M24 is an

IBIS group, and gives rise to an interesting rank 7 matroid which has not had much attention.
In greater generality, we could ask the following question:

Problem. What are the combinatorial properties of the irredundant bases (orminimal bases, or bases
ofminimumcardinality, or bases chosen by the greedy algorithm) for an arbitrary permutation group?
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1.2. Minimum weight and minimum degree

For both subsets and permutations, the minimum distance of the code or group (the minimum
distance between distinct elements) is equal to the minimum weight (the minimum distance from
zero or identity to another element). In the group case, the weight of G is nminus the number of fixed
points of G.
The minimum weight d of a code determines its error-correction capability; it can correct up to

b(d− 1)/2c errors.
The minimumweight of a permutation group is usually called itsminimum degree. This parameter

has been studied since the time of Jordan.
In the final section of the paper we will look more closely at practical aspects.

1.3. Covering radius

A parameterwhich is in some sense dual tominimumdistance is the covering radius, themaximum
(over all words or permutations x) of the minimum distance from x to the code or group. This is also
related to error correction: if more errors occur than the covering radius, then nearest-neighbour
decoding will certainly be wrong!
Much is known about this parameter for codes, but comparatively little for permutation groups. Its

study was recently begin by Cameron andWanless [16]. Here are two open problems from this paper,
one specific and one more general.
Let G = AGL(1, q) be the one-dimensional affine group over Fq:

G = {x 7→ ax+ b : a, b ∈ Fq, a 6= 0}.

What is the covering radius of G? It is known [16] that:

Proposition 1.4. The covering radius of AGL(1, q) is{q− 2 if q is even;
q− 3 if q is odd and not congruent to 1mod 6;
either q− 3 or q− 4 in the remaining case.

Problem. Remove the remaining ambiguity.

This problem has a geometric interpretation. The covering radius is q− s if and only if there is a set
Q of q points in the affine plane over Fq which meets every horizontal or vertical line in one point and
any other line in at most s points, and s is the least such number. To see this, take two distinguished
parallel classes (‘horizontal’ and ‘vertical’ lines) in the affine plane. Then the points of the plane are
coordinatised by Fq × Fq, and the remaining lines of the plane are the graphs of the permutations in
G. A set of points is the graph of a permutation if and only if it meets each horizontal and vertical line
in exactly one point.
The second problem arises from the following result from [16]:

Proposition 1.5. If the permutation group G of degree n is t-transitive, then its covering radius is at most
n− t.

In [16] there is a partial characterisation of the groups meeting this bound (for t > 1).

Problem. Complete this characterisation.

The paper [16] also contains results on covering radius of sets of permutations, which have many
combinatorial connections, for example to questions of Ryser and Brualdi on Latin squares. The
connection with transversals of Latin squares arises from the following simple observation:

Proposition 1.6. Let X be the set of rows of a Latin square of order n. Then the covering radius of X is
n− 1 if L possesses a transversal, and n− 2 otherwise.
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1.4. Strength and degree of transitivity

Another parameter of a code is its strength (as an ‘orthogonal array’), the largest number t such
that, in any t coordinate positions, all possible t-tuples occur equally often as codewords.
Delsarte [18] observed that the strength of a linear code is one less than the minimum weight of

the dual code.
Analogously we have the degree of transitivity of a permutation group, the largest t for which the

group acts transitively on t-tuples of distinct points. This is another parameter whose study goes back
to the nineteenth century.
Two differences between strength and degree of transitivity: first, there is no ‘dual’ permutation

group, so Delsarte’s result is not available; second, using the Classification of Finite Simple Groups, the
degree of transitivity cannot be greater than 5 (apart from the symmetric and alternating groups).

1.5. Weight and support enumerators

The weight enumerator of a code is the generating function
∑
aixi for the number ai of words of

given weight i. The analogous polynomial for a permutation group is the support enumerator. Often
it is more natural to count fixed points instead, giving the fixed point enumerator, of the above form
where ai is the number of group elements fixing exactly i points.
These polynomials, suitably normalised, are the probability generating functions for the weight, or

number of fixed points, of a randomly chosen element of the code or permutation group. The weight
enumerator has a huge literature; the support enumerator has been less investigated (see [3]).
Nigel Boston and others [7] showed:

Proposition 1.7. Let PG(x) be the fixed point enumerator of G, normalised by dividing by |G|, and let FG(x)
be the exponential generating function for the number of orbits of G on i-tuples of distinct points. Then

FG(x) = PG(x+ 1).

Note that, if G is the symmetric group Sn, then FG(x) is the exponential series, truncated to degree n.
So PG(0) = FG(−1) is the proportion of permutations which are derangements; the Proposition gives
a formula for this and shows the classical result that it is close to e−1.

1.6. Other polynomials

According to a theorem of Greene [20], the weight enumerator of a code C is a specialisation of the
two-variable Tutte polynomial of the matroid whose bases are the bases for the code.
Analogously, the fixed point enumerator of a permutation group is a specialisation of the n-variable

cycle index Z(G) of the group. This is the polynomial in variables s1, . . . , sn in which the coefficient of
a monomial sc11 s

c2
2 · · · is the number of elements of G having c1 cycles of length 1, c2 cycles of length 2,

and so on, normalised by dividing by |G|. Clearly, putting all si equal to 1 for i > 1 gives the normalised
fixed point enumerator.
It is tempting to think that these two multivariate polynomials have a common generalisation, at

least in some cases. There are some pointers in this direction. See [10], for example.

1.7. Association schemes

Another tool from algebraic combinatorics has been used in coding theory (and to a lesser extent
for permutations) to find bounds, namely association schemes. This is not the place for an extensive
discussion, but I give a brief sketch to indicate some differences between subsets and permutations.
An association scheme on a set X is a partition of the set X2 into r symmetric binary relations

R1, . . . , Rr , one of which is the relation of equality, so that the relation matrices span an algebra over
R. Thesematrices are symmetric and commute, so they are simultaneously diagonalisable; let P be the
matrix whose i, j entry is the jth eigenvalue of the ith relation matrix. Then let Q be the inverse of P .
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The inner distribution of a subset A of X is the r-tuple whose ith component is |Ri ∩ A2|/|A| (the
average number of points of A in the ith relation to a given point). Delsarte showed that, if a set A has
inner distribution d = (d1, . . . , dr), then dQ> ≥ 0 (that is, all entries of dQ> are non-negative); this
is the so-called linear programming bound.
Delsarte [17] pointed out the importance of association schemes for coding theory. For the

Hamming scheme H(n, 2), the set X is the set of all n-tuples over the alphabet {0, 1}; the pair (x, y)
belongs to the ith relation if the Hamming distance between x and y is i, for i = 0, . . . , n. The P-
matrix of this scheme can be written down explicitly in terms of Krautchouk polynomials. We have
Q = (1/2n)P>. If d is the inner distribution of a linear code C , then the (non-negative) entries of dQ>
(that is, of dP) have an interpretation: after normalisation, they give the inner distribution of the dual
code C⊥. (This is a statement of theMacWilliams identities.)
For permutation groups, the relevant association scheme is the conjugacy class scheme of the

symmetric group. Recall that a conjugacy class of Sn consists of all elementswith given cycle structure.
Now we take X = Sn, and let C1, . . . , Cm be the conjugacy classes, where m = p(n) (the number of
partitions of n). For i = 1, . . . ,m, the pair (g, h) belongs to relation Ri if gh−1 ∈ Ci.
The character table of a group G is the matrix whose columns are indexed by the conjugacy classes

and whose rows are indexed by the irreducible complex representations of the group; the entry
corresponding to a representation Pi and class Cj is the character of Pi on an element of Cj (that is,
Tr(Pi(g)), for g ∈ Cj). Now the P-matrix of the association scheme is obtained by multiplying each
column by the size of the conjugacy class indexing it and dividing each row by the degree of the
representation indexing it, and then taking the transpose.
Patrick Solé pointed out to me that the cycle index polynomial of a permutation group is (apart

from a normalising factor) precisely the inner distribution of the group as a subset of the conjugacy
class scheme of Sn.
So there is a linear programming bound for sets of permutations. This can be effective in small

cases. Tarnanen [25] has given a number of examples of its use for n ≤ 10. But there are several
reasons why this is more complicated than the coding theory case. First, the number of classes of
the association scheme is p(n), which is very much larger than n (though still small compared to n!).
Second, the association scheme is not ‘self-dual’, that is, Q 6= (1/|X |)P>. Third, the character table of
Sn can be worked out for particular values of n but no general formula is known. Finally, since we do
not have duality in this situation, there is no interpretation of the vector dQ> in terms of anything
resembling a MacWilliams transform.

1.8. Permutation geometries

There is a natural partial order on the subsets of {1, . . . , n}: they form the Boolean lattice. Is there
anything similar for permutations?
There are two approaches here. One is the Bruhat order. This depends on an ordering of the set

{1, . . . , n}. It can be extended to arbitrary Coxeter groups (see [21]) and integer matrices (see [8]).
A completely different answer, and one which is purely combinatorial (and does not depend on

ordering the underlying set) was introduced by Deza (see [11]). We enlarge the set of permutations
to the set of subpermutations or partial permutations, the bijections between subsets of {1, . . . , n}. The
set of subpermutations has two natural structures:

• a partial order, given by inclusion (regarding a subpermutation f as the set {(i, if ) : i ∈ dom(f )} of
ordered pairs);
• a composition, given by

f ◦ g = {(i, j) : (∃k)((i, k) ∈ fand(k, j) ∈ g)}.

The partial order is a meet-semilattice but not a lattice: two subpermutations f , g may not have a
join since there may be a point i such that if and ig are both defined but are unequal. The operation
gives the set of subpermutations the structure of an inverse semigroup (the so-called symmetric inverse
semigroup on {1, . . . , n}).
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By analogy with the notion of matroid or ‘combinatorial geometry’, Deza (see [11]) defined a
permutation geometry. If G is a permutation group which permutes its irredundant bases transitively
(a base-transitive group), then G is an IBIS group; the restrictions of the elements of G to the flats
of the corresponding matroid form a permutation geometry. These structures are the analogues for
permutation geometries of the perfect matroid designs (see [12]).
Note that the base-transitive groups have been determined byMaund [24], using the Classification

of Finite Simple Groups. This result has been used in several places. Zil’ber [26] gave a proof of the
determination for base size at least 7 which was heavily geometric but did not use the Classification,
for an application in model theory; there is also an application in universal algebra [15].

2. Extremal permutation theory

This theory, much of it due to Michel Deza and his co-authors, takes results of extremal set theory
and finds analogues for permutations.
For a simple example, the distances between distinct permutations lie in the set {2, 3, . . . , n}. If A

is a subset of this set, we let FA(n) be the maximum cardinality of a set of permutations such that all
distances lie in the set A.We denote by F ◦A (n) themaximum cardinality of a subgroup of the symmetric
group all of whose distances lie in A (equivalently, all of whose weights lie in A).
Themetric space admits a transitive group of isometries: both left and right translation by arbitrary

permutations are isometries.
The following elementary result relates the values of FA(n) for various sets n.

Proposition 2.1. Let G be a transitive permutation group on a set X. Suppose that A and B are subsets of
X which satisfy |Ag ∩ B| ≤ m for all g ∈ G. Then

|A| · |B| ≤ |X | ·m.

Proof. Count in two ways the pairs (a, g), with a ∈ A, g ∈ G, and ag ∈ B. On the one hand there are
|A| · |B| choices of (a, b) with a ∈ A and b ∈ B, and |G|/|X | choices of g ∈ G with ag = b (by the
Orbit-Stabiliser Theorem). On the other, there are |G| elements of G, and at most m choices of a ∈ A
with ag ∈ B. �

Corollary 2.2. If A and B are subsets of {2, . . . , n}, then

FA(n) · FB(n) ≤ n! · FA∩B(n).

In particular, if also A ∩ B = ∅ then FA(n)FB(n) ≤ n!; and equality implies that any sets X1 and X2 with
distances in A and B respectively which attain the bound satisfy |X1 ∩ X2| = 1.

2.1. General results

For an arbitrary set A, the following holds. This shows clearly that we can expect stronger results
for groups than for arbitrary sets! The first part of this result is from [9].

Theorem 2.3. Suppose that A is a subset of {2, . . . , n} with |a| = s.

(a) FA(n) ≤ c1(s)n2s for some c1(s). In the other direction, for suitable sets A, we have FA(n) ≥ c0(s)n2s
for c0(s) 6= 0.

(b) F ◦A (n) divides
∏
a∈A a. In particular, F

◦

A (n) ≤ n
s.

It would be interesting to reduce the gap between c0(s) and c1(s) in part (a). The ratio of
the currently-best bounds is exponential in s. Note too that the sets A in part (b) are arithmetic
progressions; does a stronger upper bound hold if A is nothing like an arithmetic progression?
The result of (b) is an old theorem of Blichfeldt [6], rediscovered by Kiyota [23]. He called a

permutation group sharp if it attains the bound. Various special types of sharp group have been
determined by Kiyota and others (for example, [22]).



488 P.J. Cameron / European Journal of Combinatorics 31 (2010) 482–490

Problem. Classify the sharp permutation groups.
The association scheme method mentioned earlier is potentially relevant to the problem of

determining FA(n): see Tarnanen [25] for some examples of its application.

2.2. The coding problem

Let F≥d(n) denote themaximum number of permutations which are pairwise at distance at least d.
An analogue of the Singleton bound from coding theory holds:

F≥n−t+1(n) ≤ n(n− 1) · · · (n− t + 1).
Equality holds if and only if there is a sharply t-transitive set of permutations (any t-tuple of distinct
points can be carried to any other by a unique permutation in the set).
The existence of sharply t-transitive sets of permutations for t = 1, 2, 3 is equivalent to that of

certain geometric objects: Latin squares, affine planes, inversive planes respectively. So they always
exist, and in great profusion, for t = 1; but for t = 2 it is a very hard problem!
Better results are known for groups. A sharply 1-transitive group is just an arbitrary group acting

in its regular representation. For t > 1, all sharply t-transitive groups were determined (by Jordan for
t ≥ 4 and by Zassenhaus for t = 2 and for t = 3).

2.3. Analogue of Erdős–Ko–Rado

Let F≤d(n) denote themaximumnumber of permutations which are pairwise at distance at most d,
i.e. any two agreeing in at least n − d points. The following conjecture for the value of this function
is due to Deza and Frankl [19], and would be an exact analogue for permutations of the famous
Erdős–Ko–Rado theorem for subsets.

Problem. Show that there exists n0 = n0(t) such that, if n ≥ n0, then F≤n−t(n) ≤ (n − t)!. Show
further that any set which attains this bound is a coset of the stabiliser of t points in the symmetric
group.
This is true for t = 1 [19,14]. The bound comes immediately from Corollary 2.2 and the fact that

F{n}(n) = n. Moreover, the Corollary also shows that a set attaining the bound contains one row
of every Latin square. The structure theorem for such sets uses the fact that Latin squares exist in
profusion.
This method will not easily generalise, as Deza and Frankl observed.
For t = 2, we know that F≤n−2(n) = (n−2)! if there exists a projective plane of order n. Of course,

the only known orders of projective planes are prime powers; in other words, we only know that
F≤n−2(n) = (n− 2)! if n is a prime power. New methods are needed!
This problem concerns the value of F≤s(n)when s is close to n. At the other end of the range, when

s is small, the exact value is known.
If s is even, then the ball of radius s/2 about any permutation has all distances at most s, and has

cardinality

|Bs/2(g)| =
s/2∑
i=0

(n
i

)
d(i) ∼ c(s)ns/2

for some c(s), where d(i) is the number of derangements of an i-set. There is a similar construction
for s odd.
Deza and Frankl showed the existence of n1 = n1(s) such that, if n ≥ n1, then these sets have

maximum size, and are the only sets which do so.

Problem. What happens in the middle of the range, where both s and n− s are large?

3. Permutation groups as codes

To conclude I would like to discuss some recent work by Robert Bailey on another topic introduced
by Michel Deza and others [5], concerning the possibility of using a permutation group as an error-
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correcting code.Whether or not this is ever used in practice, it raises some interesting questions about
permutation groups.
Let G be a permutation group of degree n which has minimal degree m. We have seen that G can

correct up to e errors, where e = b(m− 1)/2c.
Suppose that we use G as a code over the alphabet {1, . . . , n}. Let (i1, . . . , ib) be a base. An element

of G is uniquely determined by its values on i1, . . . , ib. So, if we knew that the entries in the received
word in these positions were correct, then we could calculate the transmitted word uniquely using
techniques of computational group theory.
Of course, we do not know this, so we need more than one base. A setB of bases for G is said to be

an uncovering by bases (or UBB) if, for every set E of points of cardinality e = b(m − 1)/2c, there is a
base B ∈ B such that E ∩ B = ∅.
Thus, if we have an uncovering by bases, thenwe can decode: check bases in turn until we find one

yielding a transmitted word distant at most e from the received word.
A UBB resembles a covering design, with two differences. First, we uncover rather than cover; so

we have to take the complements of the blocks of a covering design. Second, we insist that all these
uncovering sets should be bases.
An easy argument (given later) shows that, for any permutation group G, there is a UBB for G. Two

features which wouldmake the decoding algorithmmore efficient are: a small UBB; and a UBBwhose
bases belong to a single G-orbit.

Problem. Let G be a permutation group of degree n. Show that there is a UBB for G such that
• its size is bounded by a low-degree polynomial in n;
• it is contained in a single orbit of G on bases.

Bailey conjectures that such a UBB always exists. The second part is his ‘single-orbit conjecture’.
Both parts have been proved for a variety of permutation groups, by a variety of group-theoretic and
combinatorial techniques; see [1,2].
Usually, error patternswith a small number of errors aremost likely. Sowe can improve the average

run-time of the decoding algorithm if we can find a UBBB = Be containing a chain of subsets

B1 ⊆ B2 ⊆ · · · ⊆ Be

such that
• Bi is a UBB for sets of size i;
• |Bi| is (close to) optimal for such a design.

Problem. Do UBBs with this property exist?

This is an interesting question even with no reference to bases (i.e. for general covering designs).
The single-orbit conjecture can be quantified, to define a new parameter of a permutation group

G. Define κ(G) to be the largest number k for which the following holds:

There is a base B for G such that, for every k-set A, there exists g ∈ Gwith A ∩ Bg = ∅.

In other words, κ(G) is the largest cardinality of sets which can be ‘uncovered’ by bases from a single
orbit.
Without the single-orbit requirement, the value of this parameter would be known:

Proposition 3.1. Let G be a permutation group.
(a) The largest number k for which, given a k-set, there is a base for G disjoint from it, is one less than the
minimum degree µ(G) of G.

(b) We have κ(G) ≤ µ(G)− 1; equality holds if G permutes its minimal bases transitively.

Proof. The first part is immediate from the fact that, given a set A, there is a base for G disjoint from A
if and only if there is no non-identity element ofGwhose support is contained in A. The second follows
from this. �

With this notation, the single-orbit conjecture is the assertion that κ(G) ≥ b(µ(G)− 1)/2c.



490 P.J. Cameron / European Journal of Combinatorics 31 (2010) 482–490

Note added in proof

An affirmative answer to the first problem in Section 2.3 has been announced recently by David
Ellis, Ehud Friedgut, and Haran Pilpel.
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