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Abstract The symmetric group Sn on n letters is a metric space with respect to the Hamming
distance. The corresponding isometry group is well known to be isomorphic to the wreath
product Sn � S2. A subset of Sn is called a permutation code or a permutation array, and the
largest possible size of a permutation code with minimum Hamming distance d is denoted
by M(n, d). Using exhaustive search by computer on sets of orbits of isometry subgroups U
we are able to determine serveral new lower bounds for M(n, d) for n ≤ 22. The codes are
given by the group U and representatives of the U -orbits.
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1 Introduction

The concept of permutation codes was introduced by Blake [3] in 1974, and the seminal
study was soon followed by several early papers including [8–10]; more recent studies include

Communicated by K. Metsch.

I. Janiszczak (B) · W. Lempken · R. Staszewski
Institute for Experimental Mathematics, University of Duisburg-Essen, 45326 Essen, Germany
e-mail: ingo@iem.uni-due.de

W. Lempken
e-mail: lempken@iem.uni-due.de

R. Staszewski
e-mail: reiner@iem.uni-due.de

P. R. J. Östergård
Department of Communications and Networking, Aalto University School of Electrical Engineering,
P.O. Box 13000, 00076 Aalto, Finland
e-mail: patric.ostergard@aalto.fi

123



I. Janiszczak et al.

[4,6,11,12,18]. It has turned out that permutation codes are not only of mathematical interest,
but they can be used in powerline communications; see, for example, [6,14].

Let Sn denote the symmetric group acting on the set {1, 2, . . . , n} for a fixed natural
number n. It is well known that the Hamming distance dH (σ, τ ) for σ, τ ∈ Sn equals n
minus the number of fixed points of σ−1τ . Any subset C of Sn is called a permutation code
or a permutation array (PA) of length n and of minimum distance

d(C) := min {dH (σ, τ ) | σ, τ ∈ C, σ �= τ }.

For conformity we say that C is an (n, d)-PA. Moreover, M(n, d) denotes the size of the
largest (n, d)-PA for any 1 ≤ d ≤ n.

By [13] it is known that the complete isometry group Iso(n) with respect to the Hamming
distance is isomorphic to the wreath product Sn � S2 and thus can be realized as a subgroup
of the symmetric group S2n in the following way. Let B1 and B2 be the naturally embedded
subgroups isomorphic to Sn acting on the sets {1, 2, . . . , n} and {n+1, n+2, . . . , 2n}, respec-
tively, and set tn := (1, n + 1)(2, n + 2) · · · (n, 2n) ∈ S2n . Then Iso(n) = 〈B1, B2, tn〉 =
(B1 × B2) : 〈tn〉, and the codes C to be investigated are subsets of B1. In this setting the
action of an element x ∈ Iso(n) on B1 will be denoted by b ∗ x for b ∈ B1 and is defined as
follows:

b ∗ x =

⎧
⎪⎨

⎪⎩

x−1 · b if x ∈ B1

b · ϕ(x) if x ∈ B2

b−1 if x = tn,

where ϕ denotes the natural isomorphism from B2 to B1. It is easy to see that ∗ is really an
action of Iso(n) on B1. Moreover, b ∗ U denotes the U - orbit of b ∈ B1 under the action of
U ≤ Iso(n).

The aim of this study is to construct new permutation codes and thereby improve lower
bounds on M(n, d) for small lengths n. The strategy is to construct (n, d)-PAs invariant under
a given subgroup U of Iso(n). In order to achieve this we have to calculate the set

Md
U := {b ∗ U | b ∈ B1, d(b ∗ U ) ≥ d}

and then investigate the possibility of joining elements of Md
U to obtain maximal U -invariant

(n, d)-PAs. For this we employ backtrack searches by computer.
A recent table of bounds for M(n, d) appears in [18]. Some of these bounds have been

found without the use of any subgroups of Iso(n), e.g. M(7, 4) ≥ 349 in [6]. Whenever
subgroups of Iso(n) have been used in the determination of bounds so far, only special types
of subgroups U have been considered. In [18] U is contained either in B1 or in B2 and in [16]
U is of the form {x · xtn | x ∈ U0} for some subgroup U0 of B1. In this paper no restrictions
on the subgroups U are made as long as all necessary computations can be carried out in a
reasonable time.

It is well known that M(n, d) ≤ n!
(d−1)! and that C is an (n, d)-PA of size n!

(d−1)! if and
only if C is a sharply (n − d + 1)-transitive subset of Sn . Since all sharply l-transitive
groups have been classified (cf. [15,20]), one knows that M(11, 8) = 11!

7! , M(12, 8) = 12!
7! ,

M(n, 2) = n!
2 , M(n, 1) = n!, M(n, n) = n, M(n, n − 1) = n(n − 1) for n a prime power,

and M(n, n − 2) = n(n − 1)(n − 2) for n − 1 a prime power. Moreover, M(6, 5) = 18 by
[10,17]. So these cases will not be discussed in the following.
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2 Search strategies

Let U be a subgroup of Iso(n) and let Xd
U = {x1, x2, . . . , xr } be a full set of representatives

of elements in Md
U . A backtrack search on Md

U can be used to find a subset R of {1, 2, . . . , r}
such that d(xi ∗ U ∪ x j ∗ U ) = d({xi } ∪ x j ∗ U ) ≥ d for all i, j ∈ R and

∑
i∈R |xi ∗ U |

is maximal, giving a largest possible U -invariant (n, d)-PA. Unfortunately the number r
becomes very large for small orders of U .

Let N := NIso(n)(U ) be the normalizer of U in Iso(n) and let C be a U -invariant subset
of B1, i.e. C ∗ u = C for all u ∈ U . In particular, C is a union of U -orbits. For x ∈ N we
have

(C ∗ x) ∗ U = C ∗ (x · U ) = C ∗ (U · x) = (C ∗ U ) ∗ x = C ∗ x .

Therefore N acts on the set of all U -invariant subsets of B1 preserving the minimal distances,
i.e. d(C) = d(C ∗ x). Two U -invariant subsets C1, C2 of B1 are called N -equivalent if
C1 = C2 ∗ y for some y ∈ N ; in particular this defines an equivalence relation on Md

U . Now
we will calculate Md

U and partition Md
U into N -equivalence classes.

Let C1 be a U -invariant (n, d)-PA and let O1, O2 ∈ Md
U be elements of a fixed N -

equivalence class such that O1 is a subset of C1. Then there exists an (n, d)-PA C2 such that
O2 is a subset of C2 and C1 and C2 are N -equivalent. Using this we can reduce the computation
time substantially in the following way. Let s be the number of N -equivalence classes on
Md

U , and let Kl := {Ol1, Ol2, . . . , Olrl } be the l-th N -equivalence class for 1 ≤ l ≤ s. For a
fixed l ∈ {1, .., s} we let

Tl := {O ∈ (∪s
k=l Kk)\{Ol1} | d(Ol1 ∪ O) ≥ d}

and order the elements of Tl say Tl := {Ol
1, ..., Ol

ml
}. In order to calculate a largest U -

invariant (n, d)-PA it is sufficient to run a backtrack search on all sets Tl for 1 ≤ l ≤ s. This
is much more efficient than running a backtrack search on Md

U .
For a fixed subgroup U of Iso(n) the described approach works well for all n < 12

provided the chosen subgroup U is not too small. For n ≥ 12 it takes long to calculate all
the U -orbits and for n ≥ 14 we are even not able to store all of them in memory.

So for n ≥ 12 we take a different approach by calculating only the non-regular U -orbits,
i.e. those of size less than the order of U . This implies there must be an element x ∈ U, x �= id
which stabilizes an element of the orbit. For this it is sufficient to assume that x has prime
order. To be more specific, let V(p) denote a set of U -class-representatives of subgroups V
of order p in U , where p is a prime dividing |U |. Furthermore, let V be the union of all such
V(p). For each V ∈ V we then calculate the set

FixB1(V ) := {b ∈ B1 | b ∗ V = {b}}
and the set of orbits {b ∗ U | b ∈ FixB1(V )}.

We claim that these are all non-regular U -orbits. For this suppose that b∗U is a non-regular
orbit, i.e.

StabU (b) := {u ∈ U | b ∗ u = b} > {idU }.
In particular there exists a cyclic subgroup W of StabU (b) of prime order, and hence there
exists V ∈ V, u ∈ U such that W u = V . We have b ∗ W = {b} and thus

(b ∗ u) ∗ V = (b ∗ u) ∗ W u = (b ∗ u) ∗ (u−1W u)

= (b ∗ u) ∗ u−1 ∗ W ∗ u = b ∗ W ∗ u
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= {b ∗ u},

i.e. b ∗ u ∈ FixB1(V ).
Having calculated all non-regular U -orbits with minimum distance at least d , we proceed

as described above in order to find codes of minimum distance d .
All this has been implemented in MAGMA [5].

3 Improvements

In Theorem 1, we list the new lower bounds on M(n, d) obtained in the current study. The
old bounds are from [18], except for the one for n = 14 and d = 13 which is from [19].

Theorem 1 We have the following lower bounds on M(n, d):

(n, d) new bound old bound
(7, 5) 78 77
(9, 4) 18576 18144
(10, 5) 19440 18720
(10, 7) 1484 720
(11, 9) 297 154
(12, 11) 112 60
(13, 8) 38688 27132
(13, 9) 6474 4810
(13, 11) 276 195
(14, 10) 8736 6552
(14, 13) 59 56
(15, 11) 7540 6076
(15, 13) 315 243
(15, 14) 90 56
(16, 13) 1376 1266
(16, 14) 1376 269
(18, 17) 90 70
(20, 19) 120 78
(21, 20) 147 −
(22, 21) 121 −

Proof We present codes attaining the new bounds. Specifically, for a given pair (n, d) we
describe the group U by listing its generators, and the corresponding U -invariant (n, d)-PA
C is given by a set R consisting of representatives for each U -orbit in C . Also the lengths of
the U -orbits are given in the form of a tuple L .
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(n, d) = (7, 5):
|U | = 36,

U = 〈 (1, 8)(2, 9, 7, 14)(3, 10, 4, 11)(5, 12, 6, 13),

(2, 7)(3, 4)(5, 6)(9, 14)(10, 11)(12, 13),

(9, 11, 12)(10, 13, 14),

(2, 4, 5)(3, 6, 7)(9, 12, 11)(10, 14, 13)〉,
R = { (1, 3)(2, 7, 4), (1, 5, 3, 7, 6), id},
L = [ 36, 36, 6 ].

(n, d) = (9, 4):
|U | = 62208,

U = 〈 (1, 5, 2, 7)(4, 9, 8, 6),

(4, 9)(5, 7)(6, 8)(13, 16)(14, 17)(15, 18),

(1, 10)(2, 11, 4, 18, 9, 13)(3, 12, 7, 14, 5, 16)(6, 17)(8, 15)〉,
R = { (1, 3, 2, 5, 7), (1, 7, 8, 2), (1, 2)(5, 9)(6, 7), (5, 7)(6, 9), (1, 2, 3)(4, 6, 5),

(1, 9)(3, 4)(6, 7), (1, 4)(2, 8)(6, 9)},
L = [ 10368, 3888, 1944, 1944, 216, 144, 72 ].

(n, d) = (10, 5) :
|U | = 51840,

U = 〈 (1, 10)(2, 3)(5, 8)(6, 9)(11, 15, 20, 18)(12, 16, 13, 19),

(1, 2, 7, 3)(4, 9, 10, 8)(11, 19, 16, 12)(13, 14, 20, 18),

(11, 16, 19, 18)(12, 15, 14, 20),

(11, 20, 19, 15)(12, 16, 14, 18)〉,
R = { (1, 8, 6, 3)(2, 9, 7), (2, 8, 4, 9, 3)(5, 6), (1, 2, 5, 8)(3, 6, 10)},
L = [ 6480, 6480, 6480 ].
(n, d) = (10, 7) :
|U | = 294,

U = 〈 (12, 17)(13, 16)(14, 15)(18, 19),

(4, 8, 10)(5, 6, 9)(12, 15, 13)(14, 16, 17),

(2, 9, 6, 8, 5, 10, 4)(11, 12, 13, 14, 15, 16, 17),

(11, 12, 13, 14, 15, 16, 17)〉,
R = { (1, 8, 6, 5, 10, 7)(2, 4), (2, 9)(3, 10, 4, 5), (1, 10, 2, 6, 8, 9, 5, 3), (1, 10, 2, 7, 8, 6),

(3, 10, 6, 4)(7, 8), (1, 10, 5, 3, 8, 2, 4, 9), (1, 6, 7, 10, 3, 8)(4, 5), (1, 8, 6, 7, 9, 2, 5),

(1, 8, 4, 3, 9, 10, 7), (1, 10, 4, 3, 8, 6, 7, 9)},
L = [ 294, 294, 294, 98, 98, 98, 98, 98, 98, 14 ].

(n, d) = (11, 9) :
|U | = 2420,

U = 〈 (1, 12)(2, 13)(3, 14)(4, 15)(5, 16)(6, 17)(7, 18)(8, 19)(9, 20)(10, 21)(11, 22),

(1, 10, 5, 9, 8, 11, 2, 7, 3, 4)(12, 20, 21, 17, 22, 13, 16, 15, 19, 14),

(1, 5, 8, 2, 3)(4, 10, 9, 11, 7)(12, 18, 15, 22, 13)(14, 17, 21, 19, 20),

(1, 3, 5, 7, 9, 11, 2, 4, 6, 8, 10)(12, 15, 18, 21, 13, 16, 19, 22, 14, 17, 20),

(12, 19, 15, 22, 18, 14, 21, 17, 13, 20, 16)〉,
R = { (1, 8, 11, 9)(2, 7, 6, 10, 3), (1, 8, 6, 3)(2, 5, 10, 4, 7), id},
L = [ 121, 121, 55 ].
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(n, d) = (12, 11) :
|U | = 216,

U = 〈 (2, 6, 10)(3, 7, 11)(4, 8, 12)(14, 18, 22)(15, 19, 23)(16, 20, 24),

(1, 5)(2, 10)(4, 8)(7, 11)(13, 17)(14, 22)(16, 20)(19, 23),

(2, 3, 4)(6, 7, 8)(10, 11, 12)(14, 15, 16)(18, 19, 20)(22, 23, 24),

(1, 7, 2)(3, 6, 9)(5, 11, 10)(13, 19, 14)(15, 18, 21)(17, 23, 22)〉,
R = { (1, 12, 11)(2, 5, 9, 6, 7, 3, 10, 4, 8), (1, 3)(2, 5, 6, 9)(4, 11, 12, 7)(8, 10),

(1, 7, 2)(3, 6, 9)(4, 8)(5, 11, 10), id},
L = 72, 27, 12, 1.

(n, d) = (13, 8) :
|U | = 24336,

U = 〈 (14, 15, 22, 19, 24, 20, 18, 17, 23, 26, 21, 25),

(14, 18)(15, 17)(19, 26)(20, 25)(21, 24)(22, 23),

(14, 24, 23)(15, 20, 26)(17, 25, 19)(18, 21, 22),

(1, 6, 5, 13)(2, 11, 4, 8)(7, 10, 12, 9)(14, 21, 25, 18)(15, 16, 24, 23)(17, 19, 22, 20),

(1, 5)(2, 4)(6, 13)(7, 12)(8, 11)(9, 10)(14, 17)(15, 16)(18, 26)(19, 25)(20, 24)(21, 23),

(1, 10, 11)(2, 13, 7)(4, 6, 12)(5, 9, 8)(14, 24, 23)(15, 20, 26)(17, 25, 19)(18, 21, 22),

(1, 5, 9, 13, 4, 8, 12, 3, 7, 11, 2, 6, 10)(14, 17, 20, 23, 26, 16, 19, 22, 25, 15, 18, 21, 24),

(14, 24, 21, 18, 15, 25, 22, 19, 16, 26, 23, 20, 17)〉,
R = { (1, 11, 3, 2, 12, 4, 6, 8, 10, 13), (1, 8, 12, 10, 3, 9, 5, 7)(6, 11),

(1, 5, 6, 13, 2, 3, 7, 4, 8, 11), (1, 9, 7, 2, 13, 11, 12, 8, 4, 5, 3),

(1, 8, 7, 9, 5, 13, 10, 3, 4, 2, 6, 11)},
L = 12168, 12168, 12168, 2028, 156.

(n, d) = (13, 9) :
|U | = 4056,

U = 〈 (1, 19, 9, 16, 2, 17, 13, 21, 5, 24, 12, 23)(3, 15, 4, 26, 8, 18, 11, 25, 10, 14, 6, 22)(7, 20),

(1, 11, 2)(3, 4, 7)(5, 10, 12)(6, 13, 8)(14, 16, 22)(15, 19, 18)(17, 25, 23)(20, 21, 24),

(1, 12, 2, 4)(3, 9, 13, 7)(5, 6, 11, 10)(14, 21, 25, 18)(15, 16, 24, 23)(17, 19, 22, 20),

(1, 7)(2, 6)(3, 5)(8, 13)(9, 12)(10, 11)(14, 25)(15, 24)(16, 23)(17, 22)(18, 21)(19, 20),

(1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9)(14, 17, 20, 23, 26, 16, 19, 22, 25, 15, 18, 21, 24),

(14, 20, 26, 19, 25, 18, 24, 17, 23, 16, 22, 15, 21)〉,
R = { (1, 7, 12, 3)(2, 13, 9, 5, 8, 4), (1, 6, 3, 7, 5, 12, 8, 13, 2)(4, 10),

(1, 3, 10, 12, 4, 2, 7, 13, 8), (2, 4, 12, 3, 10, 8, 13, 9)(5, 7),

(1, 8, 5, 10, 13, 7, 6, 4, 3)(9, 12), (1, 7)(2, 3, 13, 9, 5, 6, 4, 10, 8),

(1, 4, 6, 3)(2, 9, 5, 11)(7, 8, 13, 12), id},
L = 2028, 1352, 1352, 1014, 338, 338, 26, 26.

(n, d) = (13, 11) :
|U | = 660,

U = 〈 (1, 11)(2, 3)(4, 6)(5, 7)(8, 13)(9, 12)(14, 24)(15, 16)(17, 19)(18, 20)(21, 26)(22, 25),

(1, 8, 13)(2, 4, 12)(3, 11, 5)(6, 9, 7)(14, 21, 26)(15, 17, 25)(16, 24, 18)(19, 22, 20)〉,
R = { (1, 6, 8, 13, 12)(2, 11, 7, 3, 5)(4, 10, 9), (1, 9, 4, 12, 3)(2, 11, 5, 8, 7)(6, 10),

(1, 7)(2, 11)(3, 12)(4, 5)(6, 8)(9, 13), id},
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L = 132, 132, 11, 1.

(n, d) = (14, 10) :
|U | = 4368,

U = 〈 (1, 8)(2, 9)(3, 10)(4, 11)(5, 12)(6, 13)(7, 14)(15, 17)(16, 26)(18, 25)(19, 21)(20, 24)

(22, 27)(23, 28),

(1, 2, 11, 13, 8, 9, 3, 10, 6, 12, 4, 14, 7)(15, 16)(17, 26)(18, 21)(19, 25)(20, 28)(22, 27)

(23, 24),

(15, 16)(17, 26)(18, 21)(19, 25)(20, 28)(22, 27)(23, 24)〉,
R = { (1, 11, 5, 3)(2, 10, 8, 14)(6, 13), (1, 12, 5, 7, 9, 6, 8, 2, 10)(4, 11),

(1, 6, 9, 7, 5, 12, 10, 11, 8, 4, 3, 13), (2, 8, 3, 5, 10, 6, 9, 4, 13, 11, 14)},
L = 2184, 2184, 2184, 2184.

(n, d) = (14, 13) :
|U | = 42,

U = 〈 (1, 22)(2, 25, 3, 28, 5, 27)(4, 24, 7, 26, 6, 23)(8, 15)(9, 21, 10, 20, 12, 18)

(11, 19, 14, 16, 13, 17),

(2, 5, 3)(4, 6, 7)(9, 12, 10)(11, 13, 14)(16, 19, 17)(18, 20, 21)(23, 26, 24)(25, 27, 28),

(1, 4, 7, 3, 6, 2, 5)(8, 11, 14, 10, 13, 9, 12)(15, 21, 20, 19, 18, 17, 16)

(22, 25, 28, 24, 27, 23, 26)〉,
R = { (2, 7, 12, 8, 10, 9, 5, 13, 4, 6, 14), (1, 10, 3, 7, 12, 6, 13, 8, 9, 2, 11, 14, 5),

(1, 3, 2, 10, 11)(4, 8, 12, 6)(5, 14, 9), (1, 3, 7)(2, 5, 4)(8, 14, 13, 12, 11, 10, 9),

(1, 14, 3, 9, 7, 13)(2, 8, 5, 11, 4, 10)(6, 12), (1, 8)(2, 9, 3, 10, 5, 12)(4, 11, 7, 14, 6, 13)},
L = 21, 21, 7, 6, 3, 1.

(n, d) = (15, 11) :
|U | = 2400,

U = 〈 (1, 8, 14)(2, 6, 13)(3, 9, 12)(4, 7, 11)(5, 10, 15)(16, 30, 23)(17, 29, 21)(18, 28, 24)

(19, 27, 22)(20, 26, 25),

(16, 17, 18, 19, 20)(21, 24, 22, 25, 23)(26, 30, 29, 28, 27),

(1, 18)(2, 19)(3, 20)(4, 16)(5, 17)(6, 22)(7, 23)(8, 24)(9, 25)(10, 21)(11, 30)(12, 26)

(13, 27)(14, 28)(15, 29),

(1, 3, 2, 5)(6, 10, 8, 9)(12, 13, 15, 14)(17, 19, 20, 18)(21, 22, 25, 24)(26, 28, 29, 27),

(17, 20)(18, 19)(21, 25)(22, 24)(26, 29)(27, 28),

(1, 3, 5, 2, 4)(6, 11, 8, 12, 10, 13, 7, 14, 9, 15)(16, 19, 18, 20)(21, 29)(22, 28, 25, 30)

(23, 27, 24, 26),

(1, 2)(3, 5)(6, 8)(9, 10)(12, 15)(13, 14)(17, 20)(18, 19)(21, 25)(22, 24)(26, 29)(27, 28),

(1, 5, 4, 3, 2)(6, 8, 10, 7, 9)(11, 12, 13, 14, 15)(16, 18, 20, 17, 19)(21, 22, 23, 24, 25)

(26, 29, 27, 30, 28)〉,
R = { (1, 9, 8, 3, 10, 15, 2, 12, 7)(4, 6, 5), (2, 7, 8, 5, 15, 3, 10, 12, 11, 9, 4, 6),

(1, 15, 7, 11, 2, 5)(3, 6, 13, 8)(10, 12), (1, 9, 11, 7, 15, 4, 14, 12)(3, 13, 6, 10),

(1, 3, 6, 2, 12, 9, 15, 5, 7, 8)(4, 14), (1, 7, 5, 13, 3, 6, 8, 14, 9)(10, 15, 12),

(2, 14, 11, 13)(4, 5)(7, 8)(9, 10), (6, 14, 8, 15, 10, 11, 7, 12, 9, 13),

(1, 15, 5, 11, 4, 12, 3, 13, 2, 14)},
L = 1200, 1200, 1200, 1200, 1200, 1200, 300, 20, 20.

(n, d) = (15, 13):
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|U | = 150,

U = 〈 (16, 17, 20, 18, 19)(21, 22, 23, 25, 24)(26, 30, 29, 27, 28),

(1, 29, 2, 30, 3, 26, 4, 28, 5, 27)(6, 24, 8, 25, 9, 23, 7, 22, 10, 21)

(11, 19, 13, 18, 12, 20, 14, 17, 15, 16),

(1, 10, 13)(2, 6, 12)(3, 8, 14)(4, 9, 15)(5, 7, 11)(16, 23, 28)(17, 25, 26)(18, 21, 29)

(19, 22, 27)(20, 24, 30),

(1, 2, 3, 4, 5)(6, 8, 9, 7, 10)(11, 13, 12, 14, 15)〉,
R = { (1, 13, 2, 3, 10, 4, 9, 12, 15)(7, 11), (1, 6, 13, 4, 11, 9, 12, 5, 10)(2, 15, 7, 3, 8),

(1, 12, 5, 2, 4, 7, 11, 13, 6)(3, 14, 8), (1, 13, 8, 11, 3, 9, 5)(4, 6, 14),

(1, 2, 5)(6, 9, 7, 8)(11, 13)(12, 15), (1, 8, 15, 3, 9, 14, 5, 7, 12, 2, 10, 13)(4, 6, 11),

(1, 12, 8, 2, 13, 7, 3, 11, 6)(4, 15, 9, 5, 14, 10)},
L = [ 75, 75, 75, 75, 5, 5, 5 ].

(n, d) = (15, 14):
|U | = 150,

U = 〈 (1, 3)(4, 5)(6, 10)(7, 8)(12, 14)(13, 15)(16, 28, 25, 18, 26, 21)(17, 27, 24)

(19, 30, 23, 20, 29, 22),

(16, 25, 26)(17, 24, 27)(18, 21, 28)(19, 23, 29)(20, 22, 30),

(1, 2, 3, 5, 4)(11, 15, 12, 14, 13)(16, 18, 19, 17, 20)(21, 23, 24, 22, 25)

(26, 28, 29, 27, 30),

(1, 5, 2, 4, 3)(6, 7, 8, 10, 9)(11, 12, 13, 15, 14)〉,
R = { (1, 12, 6, 11, 2, 8, 15, 3, 13, 9, 10, 7, 4), (2, 4)(3, 5)(6, 9, 7, 8)},

L = [ 75, 15 ].

(n, d) = (16, 13): same as (n, d) = (16, 14)

(n, d) = (16, 14):
|U | = 960,

U = 〈 (1, 14, 12, 8, 13, 16, 6, 7, 15, 4, 3, 10, 9, 5, 11)

(17, 30, 28, 24, 29, 32, 22, 23, 31, 20, 19, 26, 25, 21, 27),

(1, 8, 13, 16)(2, 14, 6, 10)(3, 7)(4, 5, 12, 9)(17, 24, 29, 32)(18, 30, 22, 26)(19, 23)

(20, 21, 28, 25)〉,
R = { (1, 3, 8, 14, 10, 5, 12)(2, 4, 16, 15, 6, 11, 9),

(1, 7, 9, 2, 14, 13, 4, 16, 6, 8, 3, 15, 12, 5)(10, 11),

(1, 8, 2, 4, 3, 12)(5, 11, 14)(6, 7, 15, 13, 9, 10),

(1, 12, 13, 4)(2, 14, 6, 10)(3, 7)(5, 8, 9, 16),

(1, 6, 11, 4, 13, 10, 7, 8)(2, 3, 16, 5, 14, 15, 12, 9),

(1, 4)(2, 7)(3, 6)(5, 16)(8, 13)(9, 12)(10, 15)(11, 14), id},
L = [ 480, 480, 160, 120, 120, 15, 1 ].

(n, d) = (18, 17):
|U | = 54,

U = 〈 (1, 7, 13)(2, 8, 14)(3, 9, 15)(4, 10, 16)(5, 11, 17)(6, 12, 18)(19, 25, 31)(20, 26, 32)

(21, 27, 33)(22, 28, 34)(23, 29, 35)(24, 30, 36),

(19, 21, 23)(20, 22, 24)(25, 27, 29)(26, 28, 30)(31, 33, 35)(32, 34, 36),

(1, 3, 5)(2, 4, 6)(7, 9, 11)(8, 10, 12)(13, 15, 17)(14, 16, 18)(19, 21, 23)(20, 22, 24)

(25, 27, 29)(26, 28, 30)(31, 33, 35)(32, 34, 36),

(7, 13)(8, 14)(9, 15)(10, 16)(11, 17)(12, 18)(25, 31)(26, 32)(27, 33)(28, 34)(29, 35)

(30, 36)〉,
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R = { (1, 17, 13, 10, 15, 11, 5, 16, 12, 6, 9, 4, 8, 14, 3)(2, 18),

(1, 17, 18)(2, 13, 7, 3, 12, 15)(4, 14, 9, 16, 10, 6, 11, 8, 5),

(1, 18, 11)(2, 13, 9)(3, 17, 10)(4, 5, 8, 14, 15, 6, 12, 7, 16),

(1, 13, 6, 10, 18, 5, 8, 15, 11, 3, 9, 16, 14, 2, 4, 7, 17),

(1, 13)(2, 16, 6, 14, 4, 18)(3, 15)(5, 17)(7, 10, 11, 8, 9, 12),

(1, 8)(2, 7)(3, 10)(4, 9)(5, 12)(6, 11)(14, 18, 16)},
L = [ 18, 18, 18, 18, 9, 9 ].

(n, d) = (20, 19):
|U | = 200,

U = 〈 (1, 4)(2, 3)(6, 8)(9, 10)(11, 13)(14, 15)(16, 19)(17, 18)(21, 24)(22, 23)(26, 27)(28, 30)

(31, 32)(33, 35)(37, 40)(38, 39),

(21, 24, 22, 25, 23)(26, 28, 30, 27, 29)(31, 33, 35, 32, 34)(36, 39, 37, 40, 38),

(1, 16)(2, 17)(3, 18)(4, 19)(5, 20)(6, 11)(7, 12)(8, 13)(9, 14)(10, 15)(21, 37)(22, 38)

(23, 39)(24, 40)(25, 36)(26, 31)(27, 32)(28, 33)(29, 34)(30, 35),

(1, 5, 4, 3, 2)(6, 7, 8, 9, 10)(11, 15, 14, 13, 12)(16, 17, 18, 19, 20)(21, 25, 24, 23, 22)

(26, 27, 28, 29, 30)(31, 35, 34, 33, 32)(36, 37, 38, 39, 40),

(1, 9, 2, 7)(3, 10, 5, 6)(4, 8)(11, 16)(12, 19, 15, 18)(13, 17, 14, 20)(21, 28)

(22, 26, 25, 30)(23, 29, 24, 27)(31, 39)(32, 37, 35, 36)(33, 40, 34, 38)〉,
R = { (1, 9, 4, 20, 14, 6, 11, 12, 7, 17, 8)(3, 18, 13, 19, 5)(10, 16),

(1, 6, 20, 7, 13, 14)(2, 12, 19, 4)(3, 10, 8, 11, 17)(9, 16),

(1, 6, 17, 15, 5, 7, 18, 14, 4, 8, 19, 13, 3, 9, 20, 12, 2, 10, 16, 11),

(1, 17, 5, 18, 4, 19, 3, 20, 2, 16)},
L = [ 50, 50, 10, 10 ].

(n, d) = (21, 20):
|U | = 294,

U = 〈 (1, 19, 8)(2, 21, 12)(3, 16, 9)(4, 18, 13)(5, 20, 10)(6, 15, 14)(7, 17, 11)(22, 40, 29)

(23, 42, 33)(24, 37, 30)(25, 39, 34)(26, 41, 31)(27, 36, 35)(28, 38, 32),

(22, 26, 23, 27, 24, 28, 25)(29, 33, 30, 34, 31, 35, 32)(36, 40, 37, 41, 38, 42, 39),

(1, 4, 7, 3, 6, 2, 5)(8, 11, 14, 10, 13, 9, 12)(15, 18, 21, 17, 20, 16, 19)

(22, 25, 28, 24, 27, 23, 26)(29, 32, 35, 31, 34, 30, 33)(36, 39, 42, 38, 41, 37, 40),

(1, 22)(2, 23)(3, 24)(4, 25)(5, 26)(6, 27)(7, 28)(8, 29)(9, 30)(10, 31)(11, 32)(12, 33)

(13, 34)(14, 35)(15, 36)(16, 37)(17, 38)(18, 39)(19, 40)(20, 41)(21, 42)〉,
R = { (1, 9, 14, 5, 13, 6, 3, 10, 21, 15, 7, 19, 2, 17, 8, 11, 18, 20, 12, 16),

(1, 5)(2, 11)(3, 15)(6, 9)(7, 21)(8, 10)(12, 17)(14, 16)(19, 20)},
L = [ 98, 49 ].

(n, d) = (22, 21):
|U | = 1210,

U = 〈 (2, 5, 6, 10, 4)(3, 9, 11, 8, 7)(12, 13, 17, 22, 20)(14, 21, 16, 18, 15)(24, 28, 26, 27, 32)

(25, 33, 29, 31, 30)(35, 39, 37, 38, 43)(36, 44, 40, 42, 41),

(1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8)(12, 16, 20, 13, 17, 21, 14, 18, 22, 15, 19),

(23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33)(34, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35),

(1, 13, 11, 12, 10, 22, 9, 21, 8, 20, 7, 19, 6, 18, 5, 17, 4, 16, 3, 15, 2, 14)(23, 34)(24, 35)

(25, 36)(26, 37)(27, 38)(28, 39)(29, 40)(30, 41)(31, 42)(32, 43)(33, 44)〉,
R = { (1, 7, 22, 18, 5, 11, 19, 21, 15, 6, 12, 14, 8, 20, 3)(2, 17, 10, 13, 9)},
L = [ 121 ].

��
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By considering representatives of all conjugacy classes of subgroups in Iso(10), we can
generalize the result of [16].

Theorem 2 a) There exists a (10, 9)−PA of size 49 which is invariant under a subgroup U
in Iso(10) of order 8.

(b) There exists no (10, 9)−PA of size bigger than 49 which is invariant under a subgroup
U in Iso(10) such that |U | ≥ 5.

Proof Part (a) has been proved already in [16]. For part (b) recall first that |Iso(10)| =
217 · 38 · 54 · 72. Therefore we take U to be a representative of the Iso(10)-conjugacy classes
of subgroups isomorphic to one of the following groups: C9, C3 × C3, C7, C5, C8, C4 × C2,
C2 × C2 × C2, Q8, D8. In all these cases it turns out that a maximal U -invariant (10, 9)-PA
C has size at most 49. Consequently, by Sylow’s theorem, we may assume that |U | divides
22 · 3. Thus, in the next step we consider the cases where |U | = 6 with U ∼= C6 or U ∼= S3

or |U | = 12 with U ∼= A4. As before, by computational means we get |C | ≤ 49. This leaves
|U | ∈ {1, 2, 3, 4} as claimed. ��

4 Concluding remarks

We would like to point out that the lower bounds on M(n, n − 1) in Theorem 1, except
n = 10, have been improved for all possible values of n ≤ 22 where the exact value is not
known.

By results in [2], the best known upper bound for M(10, 9) is 87, that is, 49 ≤ M(10, 9) ≤
87. The upper bound is closely related to the fact that no projective plane of order 10 exists.
The existence problem for projective planes of order 12 has not been settled yet. After the
current work we know that 112 ≤ M(12, 11) ≤ 132. It is rather interesting to see that interval
for M(12, 11) is much smaller than that for M(10, 9). The previously known lower bound
60 for M(12, 11) is due to the existence of five mutually orthogonal latin squares (MOLS)
of order 12, cf. [7]. It is therefore worth investigating whether the new bound could lead to
a new bound on the maximum number of MOLS of order 12.

The code C112 of size 112 given in Theorem 1 decomposes into orbits of sizes 72, 27,
12, and 1. The orbit of size 72 is a disjoint union of three equidistant codes of size 24 and
distance 11. It then follows that C112 does not contain a subcode which is a disjoint union
of five equidistant codes of size 12 and distance 12, that is, not even five MOLS of order 12
can be be obtained from the code.

We like to thank the referees for drawing our attention to a very recent paper [1] in
which the existence of five MOLS of order 18 has been established, thereby also proving
M(18, 17) ≥ 90. We also thank one of the referees for an independant check of the minimum
distances of the codes given in the proof of Theorem 1.
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