
IEEE TRANSACTIONSON INFOIWATIONTHEORY,VOL. IT-30, NO. 3,MAY1984 553 

TABLE II 
SETOF~ALUESOF r FOR J = ~,CHOSEN 

TOPRODUCECYCLICALLY 
DISTINCTSEOUENCES 

TABLE III 
DESIGNPARAMETERTRADE-OFFSFORGMW SEQUENCES 

WITHA CONSTRAINT J = 7 

I M = 14 I M = 28 

NGMw(w) L NGMW(w) L 

156 14 4141632 28 
2268 28 14224896 112 
3780 56 23708160 448 
3780 112 23708160 1792 
2268 224 14224896 7168 

756 448 4741632 28672 

Theorem 2 indicates that the GMW sequences counted in (59) 
do not all have the same linear span. The following example 
illustrates the breakdown of the NoMw sequences into collections 
with the same linear span and tabulates balance properties as 
well. 

Example: Consider a design in which the ROM size constrains 
J to be 7. Since 2’ - 1 is prime, all binary 7-tuples except 
0000000 and 1111111, are base-2 representations of numbers 
relatively prime to 2’ - 1. One set of acceptable choices for r 
with cyclically inequivalent base-2 representations is shown in 
Table II, which contains a total of N,(7) = 18 entries, with 

( 1 
G /J for each value of w. 

In this design M must be a multiple of 7. Table III displays 
the number Now(w) of cyclically distinct sequences which can 
be constructed with an A4 stage generator, along with other data, 
for two choices of M, namely, 14 and 28. The GMW sequences in 
the M = 14 design all have periodic correlation peak-to-sidelobe 
ratio of 16 ‘383 : 1, and are 2-tuple balanced for w 2 2, and 
1Ctuple balanced for w = 1 (the m-sequence subset). Similarly 
the GMW sequences in the M = 28 design all have periodic 
correlation peak-to-sidelobe ratio of 268 435 455 : 1, and are 
4-tuple balanced for w 2 2, and 28-tuple balanced for w = 1. 
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Permutation Codes for the Laplacian Source 
STEPHEN A.TOWNES, MEMBER,IEEE,AND J.B.O'NEAL,JR., 

SENIORMEMBER,IEEE 

Abstract-Permutation codes for the Laplacian source are developed. 
The performance of these codes is evaluated and compared with other 
quantizers and the rate-distortion function. It is shown that there is a 
bit-rate region in which the permutation codes outperform certain single- 
sample quantizers. 

I. INTRODUCTION 

Permutation coding is a block coding/quantization scheme 
based upon an ordering relationship between n output samples 
of a source. The concept was originally introduced by Slepian [l] 
as a form of channel coding called permutation modulation. The 
first application to source coding subject to a fidelity criterion 
was by Dunn [2] in a study of n-dimensional quantizers for 
Gaussian sources. Berger, Jelinek, and Wolf [3] presented a 
detailed analysis of the theory of permutation codes as a form of 
source coding with their application to Gaussian sources as an 
example. The work that followed included a comparison of 
permutation codes and optimum quantizers [4], a quasi-permuta- 
tion coding scheme for Gaussian sources [5], and a comparison of 
permutation coding and variable bit-rate encoding 161. 

The work herein expands upon these earlier treatments by 
developing permutation codes for a Laplacian source and 
evaluating their performance theoretically and by simulation. The 
Laplacian source was chosen because the signals to be encoded 
and transmitted in speech and television differential pulse-code 
modulation (PCM) systems have a first-order probability density 
that is approximately Laplacian. It will be shown that for all four 
of the block lengths tested there is a bit-rate region in which the 
permutation codes outperform previously derived single-sample 
quantizers. It should be noted that since this work was com- 
pleted, Berger [7] has derived a new family of single-sample 
quantizers and shown their equivalence to the permutation codes. 

II. THEORY 

Consider a discrete time source whose output at the i th instant 
in time is random variable Xi with the continuous probability 
density function (pdf) p ( xi). (The development for a discrete pdf 
would be similar.) These source outputs do not have to be 
identically distributed or independent. The n-vector x = 
(Xl, X2,‘. .> xn) of outputs from the source is to be encoded by 
the codeword c = (c,, c2;. ., c,) from the set of A4 n-vectors C, 
i.e., the infinite set of n-vectors produced by the source is to be 
mapped into the finite set C. When the vector x is emitted by the 
source, the codeword c E C, which minimizes some distortion 
measure d(x, c), is chosen to represent x. The per-letter (or 
per-output) average distortion of code C is then 

where the expected value (E) is taken with respect to the distri- 
bution of x. 

The restriction that we will make in designing permutation 
codes is that each element of C must be a permutation of the 
other elements. The first codeword in a Variant I permutation 
code (for a description of Variant II codes see [3]) is an n-vector 
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of the form 
+ n, -+ + nz + + nk -+ 

Cl = (U1,U1,...,~1,~2,~*,~..,U2,u3,..., Uk,...,Uk), (4 

where the ui and k are real numbers satisfying ui < u2 < . . . 
< uk and the ni are positive integers such that n1 + n2 
+ . . . + n k = n. The remaining M - 1 codewords in C are all of 
the distinct words that can be obtained by permuting the compo- 
nents of ci. There are, therefore, a total of 

M= 
n! 

n,!n,! f . . 1 nk. (3) 

codewords. The rate of this code is then (in bits/sample) 

R = n-l log, M. (4) 
The optimum encoding procedure is described in the following 

theorem from [3]. 

Theorem: Consider a block distortion measure of the form 

d(x,c) = g i f(bt - 4 9 
i t=1 i 

where x = (x~,x~;..,x,), c= (c1,c2,...,cn), g(.) is nonde- 
creasing, and f( .) is nonnegative, nondecreasing, and convex for 
positive arguments. Then the optimum encoding of Variant I 
permutation codes with respect to d( n, c) is accomplished by the 
algorithm described below. 

1) Replace the nl smallest components of x by ui. 
2) Replace the next n2 smallest components of x by u2. 
. 
. 

k) Replace the nk largest components of x by uk. 

Use the permutation of ci that results from these replacements 
to represent x. 

The proof of this theorem is also found in [3]. The main effort 
in permutation coding, then, once the ui and ni are known, is 
the ordering of x to determine the proper element of C to 
represent x. 

As an illustration, consider the permutation code based on the 
codeword 

ci = (-l,-1,0,0,0,1,1). 

Here we have n = 7, k = 3, n, = n3 = 2, n2 = 3, u1 = -u3 = 
- 1, and u2 = 0. There are 210 different codewords and the code 
rate is l.l-bits/sample, i.e., each source output can be repre- 
sented by 1.10 binary digits. Suppose the source emits the vector 
x = (2.1, - 1.2,0.8,0.2,0.0,0.2,0.9). The codeword chosen to rep- 
resent x is then cj = (1, -l,O,O, -l,O, 1) since the two smallest 
values of x were mapped into - l’s, the three middle values were 
mapped into O’s and the two largest values were mapped into 1’s. 

The per-output squared-error distortion measure 

d(x, c,> = neltcl (XI - c,)‘, (5) 
used so frequently in system performance analysis, is a special 
case of the class of distortion measures of the theorem. The 
performance of a Variant I permutation code under this distor- 
tion measure can be determined as follows [3]. For the output 
random vector X = (Xi, X2,. . . , X,), define the random variable 
5, j = 1,2;. ., n as the jth smallest component of X (i.e., Y, is 
smallest and Y, is the largest). Also define si = n1 + n2 
+ . . * Sn, and s,, = 0. Then, according to [7, eq. (loa)], the 

average per-letter distortion will be 

5 (q-u,)‘] (6) 
Li=lj=szml+l 1 

It can then be shown [3] that for fixed k and ni, the optimum u, 
are 

s, 
ui = n-l 2 E(q), (7) 

j=s,-l+l 

and the resulting per-letter distortion is 

t8) 

An iterative algorithm for finding the optimum k and ni that 
minimize D of (8) subject to a specified rate and block length n 
is given in [3]. 

III. APPLICATIONTOTHELAPLACIANSOURCE 

A. Introduction 

The permutation coding of the Laplacian source is of interest 
because it has been shown [S] that if one ignores the sample-to- 
sample correlation in a typical speech waveform and plots the 
(long-term) distribution of the samples, the Laplacian probability 
density function provides a reasonable fit to this distribution. The 
same can also be said of samples of the error signal in a 
differential system [S]. Other densities may provide a better fit, 
but the simplicity of the Laplacian pdf makes it easy to work 
with yet still provide good results. 

The Laplacian source generates a sequence of outputs, each of 
which is a random variable with the pdf 

p(x) = $e-iy -a3~XX<. 

B. Theoretical Performance 
The theoretical performance of a permutation code for a block 

of n samples, number of “quantization levels” k, and numbers of 
samples n,, n2;. ., nk assigned to each level can be determined 
from (4) and (8). The goal, then, is to find the set {k, nl; . ., nk} 
such that, for a specified rate of the code, the distortion is 
minimized. It should be noted that, because of the finiteness of 
the number of possible codes of a specified block length, it may 
not be possible to obtain a code of exactly the rate needed, but 
for a sufficiently long block length one can get very close. One 
can find the best code for a specific rate by an exhaustive search, 
but as the block length grows, the practicality of this decreases. 
The method used for generating the codes presented here was to 
first use the algorithm presented in [3] to obtain first cut parame- 
ter values, and then manually adjust the parameters until very 
little change in distortion was noted at the specified rate. These 
codes, then, are good codes, but not necessarily the best. The 
expected values of the order statistics for the Laplacian pdf were 
generated as detailed in Appendix. 

The theoretical performance of permutation codes for block 
lengths of 10,20, 100, and 400 samples are shown in Fig. 1 for bit 
rates up to 3 bits/sample. The rate R versus normalized distor- 
tion ( D/a2) curves for the block lengths of 100 and 400 samples 
were formed by computing the performance at 0.5, 1.0, 1.5, 2.0, 
2.5, and 3.0 bits/sample and then drawing a smooth curve 
between these points. For block lengths of 10 and 20 samples, the 
performance was plotted for all codes for which n, = nk I n2 = 
nk-l 5 ” ’ , and then a lower bound was drawn through these 
points as shown in Fig. 2 for n = 10. The parameters for codes 
for n = 100 and 400 are presented in Tables I and II. The 
performance of these codes has been verified by simulation. 
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Fig. 1. Performance of (Variant I) permutation codes for a Laplacian source 
and blocks of 10, 20,100, and 400 samples. 

. 
4  

. 
. 
\* 
:* . 
\ \ 

‘\ \ ’ 

‘. 
\ * 

\ \ 
‘. 

\ 
\ 

\ 
\ -. 

\ 
. . 

\ 
\ - 

\ 
\ 

1. 
\ 

\ 
. 

. 
. 

. 
Y 

.2 . 3 .4 .5 .6 .7 .B .b 1.0 

Normalized Distortion (D/o') 

Fig. 2. Performance of permutation codes of block length 10 samples and 
q = nk 5 it2 = ilk-, 5 “’ 

The curves show that, as might be expected, the code with the 
longer block length performs better than one with a shorter block 
length. At very low bit rates (< 0.5 bits/sample) the codes are 
fairly close together, but as the bit rate increases, the difference 
becomes much more noticeable. As the block length increases, 
however, the encoding delay also increases, and for n = 400 and 
an S-KHz sampling rate (traditionally used for speech), one 
would have to wait 50 ms at least. For n = 100, the delay is 12.5 
ms. In speech coding it is known that any delay exacerbates the 
effect of echoes. Even if there are no echoes, a delay of 250 ms or 

more becomes objectionable. Because 250 ms corresponds to a 
delay of 2000 samples at 8 KHz, it would be possible to increase 
the block length substantially over the 400 samples used here and 
reap the benefits of improved performance for speech signals if 
echoes were not a factor. 

C. Comparisons with Quantizer Performance 
Fig. 1 also shows the rate-distortion function (RDF) [9], the 

performance of the optimum single sample quantizer [9], and the 
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TABLE I 
(VARIANTI)PERMUTATION CODE PARAMETERSFOR BITRATESFROM 0.5 TO 3.0 BITS/SAMPLE AND A BLOCK LENGTH 0~100 SAMPLES 

-4.4942303 
-3.4942303 

1.9951378 0.1062397 11 1 1 -4.4942303 
2 1 -3.4942303 
3 2 -2.8275637 
4 4 -2.R275637 
5 16 -1.lR92216 
6 52 n.o 

2.4960481 0.0754522 13 1 1 -4.4942303 
2 1 -3.4942303 
3 1 -2.9942303 
4 4 -2.3317303 
5 9 -1.5007121 
6 15 -0.777368 
7 38 0.0 

2.9924334 0.0677083 12 1 1 -4.4942303 
2 3 -3.0497859 
3 R  -1.8810R10 
4 IO -1.0982940 
5 12 -.5924596 
6 I6 -.1845875 

performance of the minimum mean-squared error (MMSE) single 
sample quantizer for the Laplacian source [9]. The efficacy of the 
permutation codes can be judged by comparing them with these 
curves. 

Table III presents the comparison between the RDF and 
n = 100 and 400 permutation codes in terms of the signal-to-noise 
ratio (SNR = a2/D). Note that for n = 400, the performance is 
within 1 dB of the RDF for bit rates of less than 1.5 bits/sample, 
and for n = 100 the performance is within 1 dB of the RDF for 
bit rates less than 1.0 bits/sample. As the bit-rate increases, 
though, the code performance diverges from the RDF. Observa- 
tion of the tendency of the permutation-code performance curves 
to get closer to the RDF with no apparent bound as n increases, 
leads to the conjecture that for a large enough n, it may be 
possible to get arbitrarily close to the RDF. No proof of this 
statement exists at the present. 

The optimum single sample quantizer is one that minimizes the 
mean-squared error subject to the constraint of a fixed-output 
entropy rate. This quanizer requires a complex buffering system 
for the entropy coding for which the difficulties and modifica- 
tions have been discussed in [6], [lo], [ll]. The modifications 
introduced to avoid buffer underflow and overflow tend to make 
the performance slightly less than optimum. The bit rates below 
which the permutation codes of n = 10, 20, 100, and 400 outper- 
form the optimum quantizer are 1.15, 1.30, 1.70, and 2.00 
bits/sample, respectively. In fact, at 1 bit/sample these codes are 
1.14, 2.20, 2.52, and 2.70 dB better, respectively. The trade-off in 
performance between these two schemes must be considered in 
light of the complexity of the ordering of the source outputs for 

the permutation codes. The permutation codes make synchroni- 
zation easier since they are block codes. 

We can also compare the MMSE quantizer and the permuta- 
tion codes. For n = 10,20, and 100, the bit rates below which the 
permutation codes outperform the MMSE quantizer are 1.45, 
1.80, and 2.80 bits/sample. At 3 bits/sample, the n = 400 per- 
mutation code is still about 1.87 dB better than the MMSE 
quantizer. Notice that the permutation codes for n = 10, 20,100, 
and 400 show the same improvement over the MMSE quantizer 
at 1 bit/sample as they did over the optimum quantizer. The 
MMSE quantizer is very simple to implement and does not add 
any delay to the system, but the permutation codes can provide 
significant improvement at the expense of added delay and 
complexity. 

IV. CONCLUSION 

Permutation codes for the Laplacian source have been derived 
and analyzed for low bit rates. These codes were compared with 
MMSE and entropy-coded quantizers and found to perform at 
least as well over certain ranges of bit rate. 

APPENDIX 
GENERATION OF EXPECTED VALUES OF ORDER STATISTICS 

FROM A LAPLACIAN DISTRIBUTION 

A. Introduction 
Govindarajulu [12] has shown that the expected value of the 

random variable x : n, the i th-order statistic from n independent 
samples from a symmetric pdf p(x), can be related to the 
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TABLE II 
(VARIANT ~)PERMUTATION CODE PARAMETERSFORBIT RATES FROM 0.5 TO 3.0 BITS/SAMPLE AND A BLOCK LENGTH OF 400 SAMPLES 

1.0040699 .2686778 
I 

1 
6 

31 
324 

-5.8767)125 
-4.0184492 
-2.2796768 

0.0 

1 
11 
59 

258 

-5.R767825 
-3.5823709 
-1.6752082 

0.0 

1 
2 
6 

lh 
74 

202 

-5.8767825 
-4.6267825 
-3.5499967 
-2.505h425 
-1.2394660 
0.0 6 

1 
3 
7 

12 
28 
68 

162 

-5.R7h7825 
:4.43233X1 
-3.3217372 
-2.4876113 
-1.7135408 
-.R849562 

0.0 

1 -5.87h7825 
2 -4.62617825 
3 -3.R10115R 
7 -3.070R198 

in -2.422nfl59 
2n -1.RlR7271 
32 -1.2345409 
74 -.5998784 

102 0.0 

-I-- 3.0021015 .0321717 
2 
3 
4 
5 
6 
7 
II 
9 - - 

[13, ex. 3.1.11 that 

E(K:,) = i j-1, (A21 
j=n-i+l 

and thus 

TABLE III 
SNR COMPARISONOF RDF ANDPERMUTATIONCODESOFBLOCK 

LENGTHSOF~~~AND~~~~AMPLES 

I SNR (dB) 
Rate I_____________________________________ 

bits/sample I RDF n=400 n=lOO 
_______________I________________________------------- 

0.5 I 3.15 
/ _______________I___________ -- -3:1"_ ----- j ---- 'T- 

1.0 I 6.62 I 5.71 I 5.53 
_______________I___________) (__-----_--_~_ --------- 

1.5 I 9.43 I a.33 
_______________I___________ ,______________ I ---- '_rE- 

2.0 I 12.66 I 10.85 I 9.74 
_______________I___________I____________--I-- ---- ---- 

2.5 I 15.69 I 13.11 I 11.22 
_______________I___________) ,______________1__________ 

3.0 I la.68 I 14.93 I 11.69 
_-_-________________--------------------------------- 

(A3) 

This can be simplified by realizing that 

(A41 

where n and k are integers as usual. Eq. (A3) then becomes 

expected values of the random variable 5: k, the j th-order statis- 
tic from k independent samples from the related one-sided pdf 
p(z), by the expansion 

645) 

E(T:,) = 2-j is (;)mk:.-k) - Ii( a,E(,;.,:,,]. 
k=O 

This is the form used in the following computations. 

B. Computation 
The computation required to find E( y: .) can be substantially 

reduced by the use of the symmetry of the pdf of X and the 
symmetry of the binomial coefficients as stated in (A4). From 

(Al) 
In the case of the zero-mean Laplacian pdf with a variance of 2 
and the exponential pdf with mean and variance of 1, it is known 
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TABLE IV TABLE VI 
EXPECTEDVALUESOFORDERSTATISTICSFROMTHELAPLACIAN EXPECTEDVALUESOFORDERSTATISTICSFROMTHELAPLACIAN 

DISTRIBUTION n = 100 DISTRIBUTION n = 300 

I EcYi:“l EIYjtl:,l EIYi.2:,,1 E[Yi+3:,,1 EIYi+4:,,1 
1 -4.494230 -3.494230 -2.994230 -2.660897 -2.410897 
6 -2.210897 -2.044230 -1.901373 -1.776373 -1.665262 

11 -1.565262 -1.474353 -1.391020 -1.314097 -1.242668 
16 -1.176001 -1.113501 -1.054678 -0.999122 -0.946491 
21 -0.896491 -0.848872 -0.803417 -0.759939 -0.718272 
26 -0.678272 -0.639811 -0.602774 -0.567059 -0.532577 
31 -0.499243 -0.466985 -0.435735 -0.405432 -0.376019 
36 -0.347446 -0.319665 -0.292633 -0.266306 -0.240645 
41 -0.215611 -0.191164 -0.167261 -0.143858 -0.120906 
46 -0.098350 -0.076131 -0.054181 -0.032428 -0.010796 

TABLE V 
EXPECTEDVALUESOFORDERSTATISTICSFROMTHELAPLACIAN 

DISTRIBUTION n = 200 

I EIYI:,,l EIYjtl:,,l EtYi+2:"1 EtYI+3:nl EtYi+4:"1 
1 -5.184884 -4.184884 -3.684884 -3.351550 -3.101550 
6 -2.901550 -2.734884 -2.592027 -2.467027 -2.355916 

11 -2.255916 -2.165006 -2.081673 -2.004750 -1.933321 
16 -1.866655 -1.804155 -1.745331 -1.689776 -1.637144 
21 -1.587144 -1.539525 -1.494071 -1.450592 -1.408926 
26 -1.368926 -1.330464 -1.293427 -1.257713 -1.223230 
31 -1.189897 -1.157639 -1.126389 -1.096086 -1.066674 
36 -1.038102 -1.010325 -0.983298 -0.956982 -0.931341 
41 -0.906341 -0.881950 -0.858141 -0.834885 -0.812158 
46 -0.789936 -0.768197 -0.746920 -0.726087 -0.705678 
51 -0.685678 -0.666071 -0.646840 -0.627972 -0.609453 
56 -0.591272 -0.573414 -0.555871 -0.538629 -0.521680 
61 -0.505013 -0.488620 -0.472491 -0.456618 -0.440993 
66 -0.425608 -0.410457 -0.395531 -0.380825 -0.366333 
71 -0.352047 -0.337962 -0.324074 -0.310375 -0.296861 
76 -0.283528 -0.270370 -0.257383 -0.244562 -0.231903 
81 -0.219402 -0.207055 -0.194857 -0.182805 -0.170895 
86 -0.159121 -0.147481 -0.135968 -0.124578 -0.113306 
91 -0.102145 -0.091087 -0.080126 -0.069254 -0.058460 
96 -0.047734 -0.037065 -0.026442 -0.015852 -0.005282 

[13, eq. 3.1.81, the symmetry of p(x) gives 

E(T:,) = -E(L,+1:,). W) 
Thus only int [ n/2] of the expected values need be calculated. 

The problem encountered in calculating the binomial probabil- 
ities 22” is the magnitude of the numbers involved. For large 

n, i ) ;: can be very large and 2-” can be very small, both out of 
the range of most computers. The procedure used was to calcu- 
late P(k), the kth binomial probability, by setting the largest 
one P(L) to some arbitrary large number and using the recursion 
relation 

P(k)=P(k-l).(n-k+l)/k, L+lsk<n. 

(A71 
Symmetry was used to fill out the lower half. Since 

k (1)2-n = 1, 
k=O 

the scale factor needed to bring the P(k) down to their true 
values can easily be found. 

The computations of E( y: .) were performed using the un- 
scaled P(k) values in place of ( 1 ;: 2-n in (A5) and then these 
numbers were scaled by the computed scale factor. This tech- 
nique avoided underflow and overflow problems. 

I EtYI:nl EIy~+l:~l EtYi.2:,,1 EtYi+3:,,1 E[Yi+4:"1 
1 -5.589517 -4.589517 -4.089517 -3.756183 -3.506183 
6 -3.306183 -3.139517 -2.996660 -2.871660 -2.760548 

11 -2.660548 -2.569639 -2.486306 -2.409383 -2.337954 
16 -2.271288 -2.208788 -2.149964 -2.094409 -2.041777 
21 -1.991777 -1.944158 -1.898703 -1.855225 -1.813559 
26 -1.773559 -1.735097 -1.698060 -1.662346 -1.627863 
31 -1.594530 -1.562272 -1.531022 -1.500718 -1.471307 
36 -1.442735 -1.414958 -1.387930 -1.361615 -1.335974 
41 -1.310974 -1.286583 -1.262774 -1.239518 -1.216791 
46 -1.194569 -1.172829 -1.151553 -1.130720 -1.110311 
51 -1.090311 -1.070704 -1.051473 -1.032605 -1.014086 
56 -0.995904 -0.978047 -0.960503 -0.943262 -0.926313 
61 -0.909646 -0.893253 -0.877124 -0.861251 -0.845626 
66 -0.830241 -0.815090 -0.800164 -0.785458 -0.770966 
71 -0.756680 -0.742595 -0.728707 -0.715008 -0.701494 
76 -0.688161 -0.675003 -0.662016 -0.649196 -0.636537 
81 -0.624037 -0.611692 -0.599497 -0.587448 -0.575544 
86 -0.563779 -0.552151 -0.540657 -0.529293 -0.518057 
91 -0.506946 -0.495957 -0.485088 -0.474335 -0.463697 
96 -0.453170 -0.442754 -0.432444 -0.422240 -0.412139 

101 -0.402139 -0.392238 -0.382434 -0.372726 -0.363110 
106 -0.353586 -0.344152 -0.334807 -0.325547 -0.316373 
111 -0.307282 -0.298273 -0.289345 -0.280495 -0.271723 
116 -0.263027 -0.254407 -0.245860 -0.237385 -0.228982 
121 -0.220648 -0.212384 -0.204187 -0.196057 -0.187992 
126 -0.179991 -0.172054 -0.164179 -0.156365 -0.148612 
131 -0.140916 -0.133279 -0.125698 -0.118172 -0.110700 
136 -0.103279 -0.095909 -0.088587 -0.081312 -0.074080 
141 -0.066890 -0.059738 -0.052622 -0.045538 -0.038482 
146 -0.031451 -0.024440 -0.017446 -0.010463 -0.003487 

TABLE VII 
EXPECTEDVALUESOF ORDERSTATISTICSFROMTHELAPLACIAN 

DISTRIBUTION II = 400 

I E[YI:~I E[Yi+l:,,l EIYi+2:nl EtYj+g:,,l EtYjt4:nl 
1 -5.876783 -4.876783 -4.376783 -4.043449 -3.793449 
6 -3.593449 -3.426783 -3.283925 -3.158925 -3.047814 

11 -2.947814 -2.856905 -2.773572 -2.696649 -2.625220 
16 -2.558554 -2.496054 -2.437230 -2.381674 -2.329043 
21 -2.279043 -2.231424 -2.185969 -2.142491 -2.100824 
26 -2.060824 -2.022363 -1.985326 -1.949611 -1.915129 
31 -1.881795 -1.849537 -1.818287 -1.787984 -1.758573 
36 -1.730001 -1.702223 -1.675196 -1.648880 -1.623239 
41 -1.598239 -1.573849 -1.550040 -1.526784 -1.504057 
46 -1.481834 -1.460095 -1.438819 -1.417985 -1.397577 
51 -1.377577 -1.357969 -1.338739 -1.319871 -1.301352 
56 -1.283170 -1.265313 -1.247769 -1.230528 -1.213579 
61 -1.196912 -1.180519 -1.164390 -1.148517 -1.132892 
66 -1.117507 -1.102355 -1.087430 -1.072724 -1.058231 
71 -1.043946 -1.029861 -1.015972 -1.002274 -0.988760 
76 -0.975427 -0.962269 -0.949282 -0.936461 -0.923803 
81 -0.911303 -0.898958 -0.886762 -0.874714 -0.862809 
86 -0.851045 -0.839417 -0.827923 -0.816559 -0.805323 
91 -0.794212 -0.783223 -0.772353 -0.761601 -0.750962 
96 -0.740436 -0.730019 -0.719710 -0.709506 -0.699405 

101 -0.689405 -0.679504 -0.669700 -0.659991 -0.650376 
106 -0.640852 -0.631418 -0.622072 -0.612813 -0.603639 
111 -0.594548 -0.585539 -0.576610 -0.567761 -0.558989 
116 -0.550293 -0.541673 -0.533125 -0.524651 -0.516248 
121 -0.507914 -0.499650 -0.491453 -0.483323 -0.475258 
126 -0.467258 -0.459322 -0.451448 -0.443635 -0.435883 
131 -0.428191 -0.420558 -0.412982 -0.405463 -0.398000 
136 -0.390593 -0.383240 -0.375941 -0.368694 -0.361500 
141 -0.354357 -0.347265 -0.340223 -0.333230 -0.326285 
146 -0.319389 -0.312539 -0.305737 -0.298980 -0.292269 
151 -0.285602 -0.278979 -0.272400 -0.265865 -0.259371 
156 -0.252919 -0.246509 -0.240140 -0.233811 -0.227521 
161 -0.221271 -0.215060 -0.208887 -0.202752 -0.196655 
166 -0.190594 -0.184570 -0.178582 -0.172629 -0.166712 
171 -0.160830 -0.154981 -0.149167 -0.143386 -0.137638 
176 -0.13192i -0.126240 -0.120588 -0.114968 -0.109378 

C. Results 181 -0.103818 -0.098288 -0.092786 -0.087312 -0.081866 
186 -0.076446 -0.071051 -0.065681 -0.060334 -0.055008 

The E(y, .) for n = 100, 200, 300, and 400 are shown in 191 -0.049704 -0.044418 -0.039149 -0.033897 -0.028658 
Tables IV-VII. 1% -0.023431 -0.018213 -0.013004 -0.007800 -0.002600 
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Only one half of the E( y: .) are presented since the other half 
can be found from relation (A6). 
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Source Coding Bounds Using Quantizer 
Reproduction Levels 

W ILLIAM A. PEARLMAN, MEMBER,  IEEE AND AL1 CHEKIMA 

Abstract-Constraining the reproduction alphabet to be  of small size in 
encoding continuous-ampli tude memoryless sources has been  shown to give 
very small degradat ion from the ideal performance of the rate-distortion 
bound.  The opt imum fixed-size reproduction alphabet and  its individual 
letter probabilities are required in order to encode the source with perfor- 
mance approaching that of theory. These can be  found through a  somewhat  
lengthy, bnj convergent,  algorithm. Given reasonably chosen fixed sets of 
reproduction letters and  / or their probabilities, we define new rate-distor- 
tion functions which are coding bounds under  these alphabet constraints. 
W e  calculate these functions for the Gaussian and  Laplacian sources and  
the squared-error distortion measure and  find that performance near  the 
rate-distortion bound  is achievable using a  reproduction alphabet consisting 
of a  small number  of opt imum qnantizer levels. 

I. INTRODUCTION 

The encoding of a discrete-time continuous-amplitude mem- 
oryless source is often accomplished by single-sample quantiza- 
tion followed by coding to produce a per-symbol bit rate 
approaching the minimum of the entropy of the quantized se- 
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quence. This so-called “entropy coding” is accomplished either 
by variable-length buffer-instrumented Huffman codes [l] or 
permutation codes [2], [3] operating on long sequences of quan- 
tized values. A quantizer is optimum when it gives the smallest 
entropy for a given average distortion, as defined by a single-letter 
distortion measure (usually squared-error). An optimum quan- 
tizer may in theory require a large number of quantization or 
reproduction levels, especially as the rate grows larger. In prac- 
tice, however, the optimum performance is closely approximated 
with a finite number M of reproduction levels, and M grows 
smaller as the rate decreases or distortion increases. 

Except for the trivial zero-rate case, the optimum quantizer is 
not an optimum encoder, because its rate-versus-distortion char- 
acteristic is above that of the theoretical minimum given by the 
rate-distortion function. For the Gaussian source and squared- 
error distortion measure, Goblick and Holsinger [4] have shown 
numerically that the optimum uniform quantizer attains a rate 
0.25 bits above the rate-distortion bound for rates above 0.75 
bits. Gish and Pierce [5] derived for general sources and distor- 
tion measures that, as the number of reproduction levels grows 
large, the minimal rate is achieved by a uniform quantizer. This 
rate is only 0.255 above the Shannon lower bound, which, in turn, 
coincides with the rate-distortion function in the region of low 
distortion for many sources. Current evidence is that the absolute 
width of the gap between the optimum quantizer rate-versus-dis- 
tortion characteristic and the rate-distortion function successively 
narrows at low rates until it vanishes at zero rate. Berger [3] has 
recently obtained this result numerically for Gaussian and Lapla- 
cian sources with squared-error distortion. Recently, Farvardin 
and Modestino [6] have verified this low rate behavior for several 
classes of source distributions with squared-error distortion. 
Moreover, they find only negligible differences in performance 
between optimum nonuniform and optimum uniform quantizers. 
For a one bit quantizer of a  unit variance Laplacian source, 
Netravali and Saigal[7] found an average distortion between 0.26 
and 0.27, consistent with the aforementioned researchers. Our 
own calculations, using specialized forms of algorithms to be 
described, independently corroborate [3] and [7] for Gaussian 
and Laplacian sources. We  remark that No11 and Zelinski [8] have 
previously reported much larger gaps in performance between the 
optimum quantizer and the rate-distortion bound for several 
non-Gaussian sources at one bit. These results, however, were 
obtained with the constraints of symmetric quantizers with an 
even number of levels, the minimum entropy of which is one bit. 

Finamore and Pearlman [9] have recently exhibited block codes 
that realize coding performance better than that of the optimum 
quantizer and close to the rate-distortion bound and use only a 
small number of reproduction values. The construction of such 
codes and the search techniques for finding the codeword for a 
given source sequence are explained in detail by Pearlman [lo]. In 
this and the previous paper [9] codes are found with performance 
close to that promised by the theory. The selection of letters in 
the codewords depends upon finding a set of optimum reproduc- 
tion values and an associated set of optimal probabilities. The 
computation and storage requirements for implementing these 
codes are moderate enough to make them a viable alternative to 
entropy-coded quantization for a combination of rate and source 
density offering sufficient performance gain. 

The vehicle for the theory of Finamore and Pearlman [9] is a 
rate-distortion function with a constrained-size reproduction al- 
phabet (set of reproduction values). The rate values of this 
function for a given average distortion are theoretically obtaina- 
ble by coding with a given size reproduction alphabet. These 
functional values provide bounds on rates for encoding with a 
reproduction alphabet constrained only in size. These rates can- 
not exceed the rates of the corresponding optimum quantizer 
with the same number of reproduction values. Moreover, calcula- 
tions of this rate-distortion function for the Gaussian and Lapla- 
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