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Permutation Codes for Sources 
TOBY BERGER, MEMBER, IEEE, FREDERICK JELINEK, SENIOR MEMBER, IEEE, 

AND JACK K. WOLF, MEMBER, IEEE 

Absfracf-Source encoding techniques based on permutation codes are 
investigated. For a broad class of distortion measures it is shown that 
optimum encoding of a source permutation code is easy to instrument 
even for very long block lengths. Also, the nonparametric nature of 
permutation encoding is well suited to situations involving unknown 
source statistics. 

For the squared-error distortion measure a procedure for generating 
good permutation codes of a given rate and block length is described. 
The performance of such codes for a memoryless Gaussian source is 
compared both with the rate-distortion function bound and with the 
performance of various quantization schemes. The comparison reveals 
that permutation codes are asymptotically ideal for small rates and 
perform as well as the best entropy-coded quantizers presently known for 
intermediate rates. They can be made to compare favorably at high rates, 
too, provided the coding delay associated with extremely long block 
lengths is tolerable. 

I. INTRODUCTION 

V ARIANT 1 and Variant II permutation codes were 
introduced by Slepian [l] for the purpose of reliably 

transmitting digital data over a certain class of noisy 
channels. Shortly thereafter, Dunn [2], [3] considered the 
use of Variant I permutation codes as a means for digitizing 
vectors generated by a time-discrete memoryless Gaussian 
source. We have extended the work of Dunn in several 
ways. In particular, a procedure has been devised that 
generates, for a broad class of sources, Variant I and 
Variant II permutation codes of a specified rate and block 
length that are nearly optimum in the mean-squared-error 
(MSE) sense. It is shown that the encoding and decoding 
of source permutation codes is fully instrumentable for any 
monotonic nondecreasing convex- v nonnegative distortion 
measure. In the Gaussian MSE case, permutation source 
codes are shown to be asymptotically ideal for low rates 
and to perform as well as the best entropy-coded quantizers 
presently known for intermediate rates. The instrument- 
ability of permutation codes and their applicability to 
situations in which the source statistics are imperfectly 
known are also discussed. 

Calculation of the performance of the Gaussian MSE 
Variant II codes necessitated the generation of tables of 
Fraser normal scores for large values of n. We have included 
some of these tables herein, since the only table previously 
published [4] is restricted to y1 2 10. 
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II. ENCODING OF PERMUTATION CODES 

Consider a time-discrete information source emitting the 
sequence of real random variables {xk, k = 1,2,. . .}. The 
source outputs need not be either statistically independent or 
identically distributed. We are concerned with block coding 
(block quantizing) of the &dimensional random vector 
x = (X1,X2,‘. . ,x,). Any set of M n-vectors, B = {y1,y2, 
. . . ,yM}, constitutes a source block code of rate 

R = n-l log, M. (1) 

When the source output vector assumes the value X, it 
should be encoded into whichever y E B minimizes some 
prescribed block distortion measure d(x,y). The resulting 
per-letter average distortion of the code B is defined as 

D = n-‘E[$; d(x,y)], (2) 

where E denotes expectation with respect to the distribution 
of x. 

The optimum encoding procedure for a general block 
code is very complex. In its worst form, the source output 
vector must be compared with each of the codewords y,, 
k = 1,2,. . . ,M, and then encoded as the subscript of that 
codeword that attains the minimum distortion. For very 
large M this is a horrendous task. The appeal of permuta- 
tion codes stems principally from the fact, embodied in 
Theorem 1 below, that they possess a simple optimum 
encoding procedure for a broad class of interesting 
distortion measures. 

In Slepian’s Variant I and Variant II permutation codes, 
the codewords y,, k = 1,2,. . .,M, are chosen in the 
following manner. 

Variant Z Codes: The first codeword is an n-vector of the 
form 

+ nl + +n2-+ + flK + 
Y, = (PI,. . ‘41#2,‘. ‘$2,’ . ‘,PK,’ . .,PK), (3) 

where the ,ui are K real numbers satisfying p1 > p2 > 
. . . > pK, and the ni are positive integers satisfying 

n, + n2 + . . . + n,y = n. (4) 

The other codewords yZ,y3,. ‘,y, are all the distinct 
words that can be obtained by rearranging the components 
of y1 in all possible ways. There are a total of 

M = n!/fi n,! 
i=1 (54 

codewords. 
Variant ZZ Codes: The first codeword yl is again of the 

form specified by (3), but with the added proviso that the pi 
are all nonnegative, pl > c(~ >. . . > pK 2 0. The other 
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words of the code are formed by assigning algebraic signs 
to the components of y, in all possible ways, and then 
permuting these signed components in all possible ways. 
The number of codewords in a Variant II code therefore is 

M  = 2hn!,fi n,!, 
i-1 (5b) 

where h = n if ,LL~ > 0 and n - nK if ,LL~ = 0. 
Theorem 1: Consider a block distortion measure of the 

form 

where x = (x,, . . .,x,), y = (vi,. . ,y,), g( .) is nonde- 
creasing, and f( .) is nonnegative, nondecreasing, and 
convex u for positive arguments. Then optimum encoding 
of Variant I and Variant II permutation codes with respect 
to d(x,y) is accomplished by the simple algorithms described 
below. 

Variant I Encoding Algorithm. 
1) Replace the n, largest components of x by pl. 
2) Replace the next 1z2 largest components of x by pZ. 

K) Replace the nK smallest components of x by ,LL~. 
Use the permutation of y, that results from these replace- 

ments to represent X. 
Variant II Encoding Algorithm: 
1) Replace the 17, components of x largest in absolute 

value by either +p, or -pl, the sign chosen to agree with 
that of the component it replaces. 

2) Replace the n2 components of x next largest in absolute 
value by either +,L[~ or -p2, the sign again chosen to agree 
with that of the component it replaces. 

K) Replace the n, components of x smallest in absolute 
value by either +,B~ or by - pK, the sign again chosen to 
agree with the sign of the component it replaces. 

Use the codeword that results from these replacements to 
represent X. 

Proof: See Appendix 1. 

It should be noted that, if the source letters x1,x2,. . ‘,x, 
are independent and identically distributed, then all code- 
words of a Variant I code occur equiprobably under 
optimum encoding. tf, in addition, the source letter distri- 
bution is symmetric about zero, then the same becomes 
true for Variant 11 codes. The requirement of independence 
imposed on the xk here can be replaced by the somewhat 
less stringent requirement of exchangeability as described, 
for example, by Feller [S]. 

11 I. MINIMUM-MEAN-SQUARED-ERROR (MMSE) 
PERMUTATION CODES 

The ever-popular squared-error distortion measure 

d(x,y) = n-l il (xt - YrY (7) 

is a special case of those considered in Theorem 1. Jn this 

section, we describe a method for constructing Variant I 
and Variant II permutation codes of a given rate and block 
length that are optimum in the squared-error sense. 

Define the random variable ~j, j = 1,. . . ,n, to be the $h 
largest component of the source vector X, and the random 
variable yj to be thejth largest of the absolute values of the 
components of X. For convenience, let 

Si = n, + y/2 + . . . + ni (8) 

and define S, = 0. Then the MSE values of optimally 
encoded Variant I and Variant II codes are given, respec- 
tively, by 

D, = n-‘E 2 
L 

$J (tj - pJ2 
1 

Pa> 
i=l j=,S-I+1 

and 

Noting that 

2 (qj - pi)’ . 
1  

C’b) 
i=l j=Si-1+1 

we can rewrite (9) in the form 

(10) 

nD, = E\x\’ - 2  5 pi : Etj + 5 nipi (1 la) 
i=l .j=Si-1+1 i=l 

nD,, = Elx12 - 2 5 pi 2  Eqj + 5 nipi’, (lib) 
i=l j=Si-I+1 i=l 

where lx12 is the summation in (10). 
Differentiation with respect to pi reveals that the best 

choice of the parameters pl,. . . ,pK for given n,, . . . ,n, is 

pi = niel i E5j, Variant I (12a) 
j=.S-I+1 

pi = a,-1 
3 EVj, Variant II. (12b) 

j=Si-I+1 

The value of MSE that results when the pi are chosen in 
accordance with (12) is 

We  stress that the derivation of (12) and (13) did not assume 
the xk to be statistically independent or identically distri- 
buted. However, when the components of x are highly 
dependent, permutation codes perform relatively poorly 
even when the optimum pi are used. 

The performance of optimum source permutation codes 
of a given rate usually improves as the block length n 
increases. Since it is easy to encode permutation codes 
optimally even for large n, it therefore is desirable to have a 
method of generating optimum Variant I and Variant II 
codes of a specified rate and block length n >> 1. However,  
when n is large, there are many ways in which K and the 
group sizes n1,n2,. . . , K n can be chosen so that the code rate 
R [given by (1) and (5a)] closely approximates a specified 
value. We  now describe an iterative technique that searches 
for the values of K and n,, . . . ,nK that minimize D of (13) 
for a specified rate and block length. 
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Define 
Pi = 44 i = 1,2,. . .,K. (14) 

Then, if each ni is large, we can use Stirling’s formula to 
approximate the rate R by 

Variant I 

l - 2 Pi  log Pi, Variant II (pK > 0). 
i=l 

(15) 

Furthermore, the MSE for the optimum {pi} of (12) is given 
exactly by 

D = n-‘Elxl’ - i pi~i2. 
i=l 

Treating (15) as an equality, we can minimize D with respect 
to Pl,P2,‘. . ,pK subject to the rate constraint. The pi that 
result are 

pi = 2-fl”‘/(C~zl 2-BPj2), (17) 

where p is chosen so that j? of (15) equals some specified 
rate value R*. 

Note that, in actuality, we do not have an analytic 
solution for the best ni for three reasons. First, although 
ni = npi according to (14), np, usually is not an integer. 
Second, each pi depends on all the pi, each of which is, in 
turn, a complicated function of all the ni via (12) and (8). 
Third, the above procedure assumes that K is known, 
whereas we actually want to find the best K. We attack these 
obstacles as follows. With K temporarily held fixed, we 
iterate (12), (17) and (14) in that order until the same {ni} 
set appears on two successive iterations, indicating con- 
sistency. The best K then may be found via a simple search 
routine. An algorithm of this sort that we used to generate 
good permutation codes is described in Appendix II. Fairly 
broad conditions under which this algorithm is capable of 
generating permutation codes that are truly optimum in the 
MSE sense are derived in Appendixes III and IV. In 
particular, independent zero-mean Gaussian data satisfy 
these conditions for both Variant I and Variant II codes. 

IV. PERFORMANCE FOR GAUSSIAN DATA 

The performance of Variant I and Variant II codes 
generated by the computer algorithm of Appendix II has 
been calculated for diverse rates and block length n = 400 
for independent Gaussian data. Smooth curves drawn 
through the resulting (R,D) points are shown in Fig. 1. 
Also shown is the lower bound provided by Shannon’s [6] 
rate-distortion function formula 

R(D) = 3 log, (02/D), (18) 

where c2 is the variance of the source. For 1 I R I 3 the 
performance achieved by the permutation codes lies nearly 
on the line 

R = $ + + log, (o’/D) bits/letter. (19) 

It is interesting to note that (19) is the same formula 
that Goblick and Holsinger [7] report to be an accurate 

fit to the lower envelope of the performance curves of single- 
sample quantizers with uniform spacing subject to entropy 
coding. Further comparison of permutation codes and 
entropy-coded quantizers is given in Section VI. 

For rates R < 1, the performance of Variant I codes 
approaches that of the rate-distortion curve. In particular, 
the lowest rate Variant I code of block length n has n, = 1 
and n2 = n - 1. Its optimum pi are p1 = Et, and 
p2 = -pl/(n - 1). This code is a simplex code, and its 
performance is given by 

R = n-l log n (20) 

D/o2 = 1 - (n - 1)-l,u12. (21) 

The asymptotic behavior of p1 has been studied extensively 
by Gumbel [8], who has shown that for independent 
Gaussian data 

p1 - J2 log, n + constant. 

Combining (20) through (22), we have for large n 

D/a2 cz 1 - 2R log, 2 + O(n-’ Jlog n). (23) 

When (23) is compared with the asymptotic form of (18) 
for small R, we see that the two agree for large n. Thus, the 
simplex Variant I codes are asymptotically optimum for 
small R (large n). By way of contrast, it is easily shown that 
the best quantizer with only two representation points for n 
independent Gaussian source outputs behaves as 

D/a2 = 1 - (2/7r)R log, 2, (24) 

which is not asymptotically optimum. 
The computer algorithm described in Appendix II 

yielded somewhat better Variant I codes than those that 
Dunn [3] had been able to find by educated guesswork. The 
following two n = 400 codes are easily compared: 

Dunn {n,> = (5,5,35,40,65,100,65,40,35,5,5) 

R = 2.86367, D = 0.03389 

computer {ni} = (1,2,7,20,46,77,94,77,46,20,7,2,1) 

R = 2.79184, D = 0.03362. 

The computer-generated code achieves approximately the 
same D at a smaller value of R. 

The performance of maximum-rate Variant I codes 
(K = n, ni = 1, pi = Eti) as a function of block length is 

(R,D/02) = (n-’ log n!, 1 - C’S), 

where 

Values of S for independent Gaussian data have been 
tabulated by David et al. [9] for n < 400. Maximum-rate 
codes are seen to perform quite poorly relative to the rate- 
distortion bound. The sharp upswing at high rates of the 
permutation-code performance curves in Fig. 1 may be 
explained as follows. The E[tj] (or E[qJ) values for neigh- 
boring values of j do not differ by very much. Unless one 
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0 LLOYD -MAX QUANTIZERS, “NCODED 

D LLOYD -MAX QUANTIZERS, CODED 

q DVNN, VARIANT I CODES (n: 400) 

Fig. 1. Comparison of permutation codes,  quantizers, and  R(D). 

collects such neighboring values into groups and represents 
them by a common ,u, the code will contain clusters of 
codewords with almost identical coordinates in n-space. A 
good code is characterized by widely scattered codewords, 
so this clustering is highly undesirable and serves to further 
underscore the importance of the optimum grouping 
technique developed in Section III and Appendix II. 

The only table of Gaussian E~j previously available was 
that of Klotz [4] for n I 10. Since much larger values of n 
had to be investigated, new tables were generated. The 
Gaussian Eqj also form the reference data base in applica- 
tions of a popular nonparametric statistical test for sym- 
metry of probability densities called the Fraser normal 
scores test [IO]. Accordingly, we have included tables of 
Eqj for n = 100,200, 300, and 400 for reference purposes in 
Appendix V, together with recursive formulas that can be 
used to generate tables for the intervening values of n. 

V. THEINSTRUMENTATION PROBLEM 

The encoding methods for permutation codes described 
in Section II assumed that encoding consisted simply of 
replacing the source word by the closest codeword. In 
actuality, for transmission over a channel or for storage in a 
memory, it is necessary to generate a digital representation 
of the appropriate codeword. This entails performing two 
operations: sorting and coding. 

The most straightforward approach to the sorting 
problem would be to use one of several available techniques, 
such as quicksort [l 11, samplesort [12], or treesort [13], 
to completely order the source samples (or their absolute 
values in the case of Variant II codes), and then to group 
the time indices of the largest n, samples into one set, the 
time indices of the next largest n2 samples into a second set, 
and so on. If n  is large and many of the group sizes nj also 

are fairly large, it will pay to capitalize on the latter fact to 
avoid having to perform a complete ordering. In such cases 
the sorting problem is not trivial. Moreover, its importance 
is intensified by the fact that the complexity of sorting via 
complete ordering is known [l l] to grow as n log n, which 
it turns out would dominate the complexity of the rest of 
the encoder in the limit of large n. 

Next, the sorted index arrangements must be coded. For 
small n  one might arbitrarily assign a different binary 
codeword of length 

log, M  = log, n! - ids log, ni! 

to each of the M  different index arrangements and use table 
look-up. As n grows, this becomes unmanageable rapidly. 
Ifni = 1 fori = l,... ,K, then known permutation encoding 
techniques [14] may be used whose complexity grows 
linearly with n. However, codes with ni = 1 for all i per- 
form poorly for reasons discussed in Section IV. In Appendix 
VI we describe another technique, based on Jelinek’s [IS] 
version of Elias’s noiseless coding technique, that applies 
to all possible values of {Mi} and also has been shown [15] 
to grow only linearly with n. It has been called to our 
attention that a comparable method appears in a patent 
application of Slepian [16] covering permutation coding 
schemes for channels. 

For Variant II codes it is necessary to encode the sign 
pattern, also. This poses no problem when all 2” sign 
patterns are equally likely, as in the case when the source 
outputs are zero mean and independent. For nonequi- 
probable sign patterns, a Huffman-type coding technique 
might be most applicable. 

The source decoder is an instrument that translates the 
“index codewords” into representation words (vi ,y2,. . . ,u,,), 
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where y, = + pi if k belongs to the ith index set; the sign is 
+ for Variant I codes and is determined from the sign 
portion of the codeword otherwise. A procedure that 
accomplishes this task with a complexity that also grows 
only linearly with n is described in Appendix VI. 

VI. PERMUTATION CODES VERSUS QUANTIZERS 

It was noted in Section IV that the MSE performance of 
permutation codes for an independent Gaussian source is 
bounded from below by the lower envelope (19) of the 
performance curves of single-sample quantizers with uni- 
formly spaced levels. These are the best single-sample 
quantizers presently known in the (R,D) sense [7], [17]. 
In order for permutation codes to perform close to the 
curve given by (19) for high R, they must have very large 
block lengths. However, permutation encoding, as described 
in Sections II and V, is so simple that it nevertheless may be 
easier to implement such codes than to tackle the buffer 
overflow problems [lS], [19] associated with entropy 
coding of the highly nonequiprobable outputs of a uniformly 
spaced multilevel quantizer. In the absence of entropy 
coding, the best single-sample quantizers are those of Lloyd 
[20] and Max [21]. F or n = 400, we see from Fig. 1 that 
optimum Variant I and Variant II codes outperform 
uncoded Lloyd-Max quantizers for R < 3.7 and R < 4.5, 
respectively. 

It should be appreciated that comparable simplicity 
cannot be obtained with single-sample quantization 
techniques in the face of unknown, possibly time-varying 
source statistics. In order to match the quantization levels 
to the data, one must store all the data first, then calculate 
and send the levels, and finally quantize the data letter by 
letter. This amounts to a complicated block coding scheme 
that requires a much longer coding delay (at least at the 
transmitter) than does the permutation scheme. In addition, 
if it is desired to code the quantizer outputs in order to 
preserve rate, one must send both the sample relative 
frequencies of the quantization bins and the variable-length 
code being employed. 

VII. SUMMARY 

The principal results of this paper are reiterated below. 
1) We have developed techniques for optimizing the 

parameters of permutation codes for sources. 
2) We have shown that in the Gaussian MSE case 

permutation codes are asymptotically ideal at low rates and 
perform as well as the best entropy-coded quantizers at 
intermediate rates. 

The relationship between permutation codes and single- 
sample quantizers perhaps is illuminated further by the 
following observation. A Variant II code with K = 1 
(hence n, = n and R = 1) has representation points 
( + aJ2/q f oJ2/71,. . . , f042/rc), which are identical to 
those of an optimum l-bit quantizer. Its performance is 
given by the point marked in Fig. 1 by the circle and triangle 
for n = 2 and lies almost right on the curve given by (19). 

3) We have argued that permutation codes, in large part 
because of the simple, essentially nonparametric nature of 
their optimum encoding algorithms, compare favorably 
with the other source encoding techniques presently in use, 
especially in the commonly encountered case in which the 
source statistics are unknown and/or possibly time varying. 
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It is worth stressing that the nonparametric nature of 
permutation encoding makes it well suited to situations in 
which the source statistics are either unknown or time 
varying. In such situations one could proceed as follows. 
Select a code rate R close to the capacity of the channel 
being used for transmission, and a block length n as long as 
practical considerations will permit. Partition M  into a 
grouping {n,} that has rate R. A good choice for {n,}, in the 
absence of any knowledge to the contrary, is the optimum 
Gaussian MSE partition for rate R found by the method 
described in Appendix II. Encode successive n-vectors as 
usual, but also collect sample order statistics. After a 
duration comparable to the time constant of the pheno- 
menon responsible for the time-varying behavior (if this is 
known), send the {pi} of (12) as calculated from the sample 
order statistics.’ Then convert the received permutation 
rank orders into numerical vectors using this {pi} set. 
Note that the sample {pi} yield even better performance 
than would the “true” {pi} were they known. Hence, this 
may be a desirable procedure to follow even when the source 
statistics are known. 

APPENDIX I 
PROOF OF THEOREM 1 

We shall establish the theorem for Variant I codes and a distortion 
measure of the form 

d(w) = i f(lxt - Yd (25) 
i=l 

where f’(.) is nonnegative, nondecreasing, and convex v for positive 
arguments. The extensions to arbitrary nondecreasing g(.) and to 
Variant II codes noted in the theorem statement should be obvious. 

From the additive nature of (25), it suffices to show that, if x1 2 
x2 2 . . .Z x,, then the basic codeword 

is the one that minimizes d(x,y). Furthermore, once this has been 
established for n = 2, it is easily established for n > 2 by induction. 
Hence, let n = 2 and let y, = (u1,u2). There are six cases to consider, 
namely, 

Casel: xl~vl>_v2~x2 Case 4: vl L xl 2 x2 2 v2 
Case2: x1 2 u1 2 xz >_ v2 Case 5: 01 2 x1 2 vz 2 x2 
Case 3: x1 2 x2 2 0, 2 vz Case 6: u1 2 uz 2 x1 2 x2. 

In each case we must establish that 

1 Rate probably can be conserved by sending only the changes in the 
f(ix~ - ~111 + f(lx~ - uz\) 5 f(.lxl - uz() + f(lxz - VII). (26) 

It is clear that Cases 4, 5, and 6 will follow by symmetry once (26) is 
Pi. established for Cases 1, 2, and 3, respectively. 
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Tl 
Fig. 2. Sketch off(x) and the similar triangles 71 and T1. 

Case 1: We have o1 - x2 L t’z - x2 L 0 and x1 - u2 2 xl - 
t’, 2 0. Hence, (26) follows from the monotonicity of.f(.). 

Before treating Cases 2 and 3, we note that if we can establish (26) 
fory(lx - ~1) = f(ix - ~1) - f(O), then it clearly will hold for .f(.) 
as well. Hence we lose no generality by assuming,/“(O) = 0. 

Lemma: If a 2 0 and b 2 0, thenf(a) + f(b) 5 f(a + b). 
Proof: See Fig. 2. A straight line is drawn through the points 

(a, f (a)) and (b, f (b)). Since f (.) is convex u and f (0) = 0, the line 
intersects the abscissa at a nonnegative value. Triangles Tl and T2 
are similar. The base of Tz is larger than the base of T1, so the altitude 
of TX is larger than f(a), the altitude of T,. Thus the straight line 
intersects the point (a + b, h) where 

f(a) + f(b) I h I .f(a + b). Q.E.D. 

Case 2: We have 

.f(lx, - Cll) + f(lXZ - 4) 5 f (IX1 -- x11) + f (I% - 4) 

I f (IX1 - u,l) 

where the first inequality follows from xI 5 U, and monotonicity, the 
second from the lemma, and the third from nonnegativity. 

Case 3: We have 

.f(lX* - 4) I .f(lXl - 02/J, 

since in this case xz - cz 5 x1 - t’z and f is nondecreasing. Let 

3Cl4) = .f(la + x2 - cd - .f(lxz - till). 

Applying the lemma to f+(.) yields 

f (IX1 - 24) + f (1.x2 - 4) 

= .3(lXl - x21) + 3ClDI - 021) + 2fClX2 - OIlI 

5 f(lXl -- x2 + 2’1 - L.21) + 2f (Ix, - 011) 

= f(lx1 - 4) +- .f(lxz - Cll). Q.E.D. 

APPENDIX II 
AN ALGORITHM FOR GENERATING GOOD 

PERMUTATION CODES 
The following computational algorithm, based on the theory of 

Section II, generates permutation codes of a specified rate R* and 
block length n that are good in the MSE sense. Fig. 3 provides a flow- 
chart description of the algorithm. Fairly broad conditions under which 

Fig. 3. Flow chart for permutation code algorithm. 

the algorithm is capable of generating codes that are truly optimum are 
derived in Appendixes III and IV. 

1) Input n, R*, Variant I or II, and Etj or Ejyj for 1 = 1,. . ,>I. 
2) If Variant I, set K equal to the smallest odd integer whose base 2 

log exceeds R*. If Variant II, set K equal to the smallest integer whose 
base 2 log exceeds R*. 

3) Set* p = I and make the integers ni, i = 1,. . ,K, approximately 
equal; e.g., if K divides n, set ni = n/K for all i. 

4) Compute IL,,~~,’ . ‘,/I, from (13). 
5) Evaluate the pi by (17). Adjust p until (15) is satisfied for 

d = R*.3 
6) Compute new ni as the closest integers to npi such that 

cfy, ni = n. 
7) If ni = 0 for any i, proceed to step II). 
8) If the new and old ni agree for all i, proceed to step 9). Otherwise, 

return to step 4). 
9) Store n,,. . . ,nK,D, and the exact value of R calculated from (2) 

and (5). 
10) If Variant I, replace K by K + 2, reduce the largest ni by 2, 

relabel ni as ni+l for i = I;..,K - 2, and put nl = ~7~ = 1. If 
Variant II, replace K by K + 1, reduce the largest ni by I, relabel ni 
as ni+l for i = 1,. . .,K - I, and put n, = 1. Return to step 4). 

11) Print {IZ~}, R, and D stored in step 9). Go to step 13) unless K is 
odd and code is Variant I. 

12) Set K equal to the smallest even integer whose base 2 log exceeds 
R*, and return to step 3). 

13) stop. 

2 The desired value of p usually is positive. The reason is that (17) implies that pi. and 
hence ni, decreases with increasing ?~;2 for p > 0, a property that is shnwn in Appendix 
III to be desirable in a broad class of interesting problems. 

3 It follows from (17) that 

dR^ = - P lw32e 0 [ ,;, PiPi -- (5, ,wi2)] = - P logzc var (lr2) > 

so 8 is a monotonic decreasing function of p, Hence, the value of p that satisfies (15) 
is unique and can be determined rapidly by a modified Newton-Raphson method. 
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Table I illustrates the convergence of a typical sequence of {n,} sets 
obtained with this algorithm in a practical example. 

It is shown in Appendix III that, if Eq, is a convex-u function of j, 
then the Variant II algorithm can generate permutation codes that are 
truly optimum in the M S E  sense. Moreover, it is shown in Appendid 
IV that, in the important case of statistically independent source 
outputs whose absolute values are identically distributed according to 
a probability density function f,,,(.) that is nonincreasing on [O,CO), 
Eq, is indeed a convex-u function. We conjecture, but unfortunately 
are unable to prove that, when this convexity prevails, the Variant II 
algorithm always produces a code whose K and {ni} differ from their 
optimum counterparts by at most 1; the unit inaccuracies are caused 
by the diophantine nature of the problem. 
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TABLE I 
SEQUENCEOF{~~} SETS FOR INDEPENDENT STANDARDIZED 

GAUSSIAN DATA (VARIANT I, n = 400, R* = 1.5, K ODD) 

K=3 133 

K-tKf2 1 

100 
,“a same 

2 

K+Ki-2 
The corresponding situation for Variant I codes is as follows. The 

Variant I algorithm can generate MMSE codes whenever ET,, is 
convex u for ,j E {I ,2,. . ,[n/2]} and is convex n for .i E {[n/2] + 1,. . . an}. 
When this convexity prevails, we conjecture that the algorithm always 
will generate a code that is optimum in the diophantine sense described 
previously. In the case of independent identically distributed source 
outputs, the desired convexity will be in effect whenever fX(.) is 
unimodal, symmetric, and zero mean. 

K-KS2 

134 
200 
202 
202 
200 
216 
226 
228 
230 
230 
228 
238 
240 
242 
242 
240 
252 69 4 I 0 

APPENDIX III 

A NECESSARY CONDITION FOR 
OPTIMALITY OF THE ALGORITHM OF APPENDIX II 

Observe from (14) and (17) that thep,, and hence the n,, always are 
monotonic functions of the flui’. This is a consequence of the fact that 
in step 5) the ici are not permitted to vary in accordance with (12) while 
thep, (hence the n;) are being optimized. As a result, the algorithm of 
Appendix II can converge only to codes that are characterized by 
groupings {ni} that generate icli via (12), which are such that ni actually 
varies monotonically with /ci ‘. It now will be shown that, for a broad 

Print 

let 

Then 

n(D - D’) : 

- 

= 

n, = n, = 1, n2 = n6 = 4, n, = n5 = 74, n, = 242 
R = 1.47514, D = 0.18595 

b = nl-, = n,’ > nl = n,‘-, = a. 

$ L+l+...+ liL+3*+&+.+i +. 

- ;(v L+l +...+ 4‘+dz 

L+b+l +...+ vL.+,+tY. 

and interesting class of examples, the optimum code indeed is It follows after some algebraic manipulation that 
characterized by an inverse relationship between 11~ and fli2. In such 
cases, therefore, it is possible for the said optimum code to be found nab(D - D’) = a[(y + z)’ - (x + y)*] + b(x2 

by the algorithm of Appendix II with p > 0. 
For simplicity, the ensuing discussion will be restricted to Variant II 

= (x - z)[(b - a)(x + z) - 2uy] 
where 

codes only, after which the implications for Variant I codes will be 
discussed. Since the optimum /I CZ for Variant II codes necessarily 
decrease with increasing i, it will suffice to show that the optimum ni 
are monotonic increasing with i. From (12b) the values of the pci that 
minimize the MSE for given {n,} are 

where eJ A  E~J~. From (13)the resulting minimum MSE is 

EIXIZ - 5 nipi . 
i=l 1 

Theorem 2: Suppose uj is a convex-u function ofj, i.e., suppose 

A2vi = '7j+2 - 2Vj+l + ‘fj 2 03 I SjSn-2. (29) 

Then the optimum ni increase monotonically with i. 
Proof: We shall show that, if n,- 1 > n, for some 1, then D can be 

decreased by reversing the roles of n,-, and n,. That is, if a new 
grouping ini’} is defined by 

ni’ = 

l 

ni, ifl-lorl 
n,, i=l-I 
nl-l, i=l (30) 

then 
D’ < D, (31) 

where D’ is defined by the right-hand side of (28) with the ni replaced by 
the n,’ and with the pi recalculated from (27) using the ni’ in place of 
the ni. 

We establish (31) as follows. Let L = n1 + n2 + . . + nLwz, and 

. 

n 
x 4 c VL+,r 

j=l 

b a+b 
z A c ill,+j. (34) 

j=b+l 

(32) 

+ ilL+o+b Y 

- zZ) 

(33) 

But x > z because of (32) and the fact that rl, > &,. . .,ij, > 0, so 
D 2 D’ iff (b - a)(x + z) - 2uy 2 0, or equivalently iff 

x+z - 2y >o 
a b-u- ’ 

Upon substituting (34) into (35), we see that proving the theorem has 
been reduced to establishing the inequality 

That (36) is indeed a valid inequality is a consequence of the con- 
vexity hypothesis (29). To see this, plot the points 4, versus j and then 
connect them by straight lines. This results in a piecewise linear 
convex-u function of a continuous variable, call it 4(x), 1 5 x 5 n. 
Define the function t*(x), I 5 x 5 n, to equal Q(x) except in the 
interval L + a + 1 < x < L + b, wherein it consists of a straight 
line segment joining q(L + a + 1) to v(L + b). Then G*(x) also is 
convex u. Moreover the three terms on the left side of (36) each are 
upper bounds to the corresponding terms in the inequality 

which is valid because ii* is convex u. Hence, (36) also is valid and the 
theorem is proved. 
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The corresponding result for Variant I codes is stated below. The 
proof is a reasonably straightforward extension of that of Theorem 2 
and therefore is omitted. 

Theorem 3: If ECj is convex u for j E {1,2,. . . ,[n/2]} and convex n 
for j E {[n/2] + 1,. . . ,n}, then the optimum nl vary inversely with the 
optimum fliZ. 

APPENDIX IV 

CONVEXITY OF ORDER 
STATISTICS FOR INDEPENDENT DATA 

Theorem 2 leads us to search for conditions under which the vi will 
satisfy the convexity hypothesis (29). The follotving theorem provides 
an important class of examples in which (29) is satisfied. 

Theorem 4: If the source outputs are statistically independent and 
identically distributed in such a way that the probability density 
function f;,,(.) of the absolute value of a source output is a non- 
increasing function of positive argument, then the 7, satisfy the 
convexity hypothesis (29). 

Proof: The starting point for the proof is Pearson’s [22] formula 
for the average difference between the jth and the (j + l)th largest of 
n independent identically distributed randoin variables, namely, 

?I m 
OS j -m 

cD”- ‘(1 - @)j dx, 

where @( .) is the cumulative distribution function common to each of 
the random variables. In the present instance we are interested in the 
ordered absolute source outputs in which case Pearson’s formula reads 

where 

It follows that 

- 

- 

.Affjcn cc OS j 0 
@“-‘(I - @)Jdx (38) 

CD(x) = s Xf o 1x1 (t) dt. (39) 

O” n A,! = s [O 0 j 
@n-j(l - @)j 

- w-j-y1 - m)j+l dx. (40) I 
Upon changing the integration variable from x to z = Q(x), we obtain 

z”-J-‘(1 - z)j+l dz (41) 
I 

1 1 

h(z) = f,,(G) = j+@-‘(z)) . 

Observe that, since z is an increasing function of x and vice versa, 
h(z) is a nondecreasing function of z becausefiXl(X) has been assumed 
to be a nonincreasing function of X. 

Using the beta density 

we can rewrite (41) in the form 

f 

1 
(n + l)A’lf, = h(z)[Dj+l.n-j+l(z) - B~+~,n-j(z)l dz. (44) 

0 

Assume temporarily that h(z) is differentiable, and define 

b(z) = 
s 

‘Wy+l,a-j+l(t) - Bj+2,n-dt)l dt. 
0 
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Integrate (44) by parts, noting that b(0) = b(1) = 0, to obtain 

s 

1 
(n + l)A2qJ = - h’(z)b(z) dz. (46) 

0 

Next, use the fact that B[,&.) is the probability density that governs the 
Ith largest of I + m - 1 independent random variables distributed 
uniformly on [O,l]. Accordingly, 

b(z) = p[uj+’ I z] - p[ujf2 I z], (47) 

where Uk denotes the kth largest of n + I independent uniformly 
distributed random variables, and P[.] denotes the probability of the 
event within the brackets. But (Uj+’ 5 z) * (Ujf2 5 z), so 

b(z) I 0, O<z<l. (48) 

When (48) is coupled with the fact that h’(z) L 0 because h(z) is 
nondecreasing, it follows from (46) that A2vj 2 0 as required for the 
application of Theorem 2. The extension to piecewise differentiable 
h(.) is straightforward and therefore is omitted. 

The result corresponding to Theorem 4 for ordinary rather than 
absolute order statistics is as follows. 

Theorem 5: If the source outputs are statistically independent and 
identically distributed according to a unimodal symmetric zero-mean 
probability density, then the Ecj satisfy the convexity relations 
necessary for the application of Theorem 3. 

APPENDIX V 

TABLES OF FRASER NORMAL SCORES 

Let x = (xl; . ,x,) be a vector of independent identically dis- 
tributed standardized normal (Gaussian) random variables. Define 
the random variable qj to be theJth largest of the absolute values of the 
components of X, j = 1,2,. ,n. The Fraser normal scores Etyj are 
used in a statistical test for the symmetry of probability distributions 
[4], [lo] and in the construction of optimum Variant II source per- 
mutation codes as described in this paper. The one table of Fraser 
normal scores previously published [4] covers only the range n 5 IO. 

In Table II we give the Fraser normal scores Eq,, j = 1,. . . ,n, to an 
accuracy of nine decimal places for n = 100, 200, 300, and 400. For 
intermediate values of n, one can use the general recursive formulas [23] 

E[G,~+~I = 1 W~,-I,II - (n - j)EI~..J~ (49) 

1 
E[~,-I,JI = ; {jE[a.,j+J + (n - iP3d~ (50) 

where a.,, is the jth largest random variable from an independent 
identically distributed sample of size n. The rate of accumulation of 
computational error is smaller when one goes from II to it - 1 by 
means of (50) than when one goes from 1~ to II + I by means of (49) 
[231. 

The claim of nine-place accuracy in Table II is based on the following 
test. Tables for n = 100, 200, 300, and 400 originally were computed 
via a double precision routine to 12 decimal places. Then (50) was 
used to iterate from 400 down to 300, whereupon all entries in the 
table for 300 sq obtained were observed to agree with those of the 
original table for 300 for at least nine digits after the decimal point. 
Similar consistency checks were run from 300 down to 200, 200 down 
o 100, and 100 down to 10. 

APPENDIX VI 

ENCODING AND DECODINGOF PERMUTATIONS 

The optimum permutation encoding procedures described in 
rheorem 1 result in a codeword of the form 
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TABLE II 
FRASER NORMAL SCORES FOR n = 100,200,300, AND 400 

N-100 N=200 N=300 N=IOO 

001-100 001-100 101-200 001-100 101-200 201-300 001-100 101-200 201-300 301-400 

I 2.746951688 
2.414bi34T94m 

_1.96860131)8 
2;&3-8O@liW 

0.671610465 3.091973030 0.96441716~.~.429504477 
2 K.;i;l~O636---- 2.792392218 0.9577972$7 0.424937531 

2.231102282 2.488557454 0.656031193 2.629776209 0.9512lPlOb 0.420379467 
2.101079545 2.369488649 0.640301256 2.516005061 0.944681666 0.4i52.30154 
1.999049064 2.276688471 0.640609971 2.427609676 0.936164635 0.41126946ll 

1.914356194 2 l 00 7 2 35 861495 0 93172%8 
_ 

1.841510255 2.134596:55 
32956502 

0:.:25340036 2:29:771160 0:92530619: 
0 Ob7S72 1 
0::022334:0 

1.7773132014 -I;Olll339TT 0 617759785 
1.719686002 2.025809124 0:610214970 

2 ~8430223 0 QLO927138 
2:189990651 0:912S63321 

0 .r+mT9iz 
0.393210406 

i.b672756w-- 7.979325631 O.bOiTOm40 2 14bm2670 0 90627 054 
2:106181242 0:90000:673 

0 386nr OTTI 
1.519086221 1.936754293 0.595228657 0:384219547 

89744Ob74 0 . 5377i9-5705 2 0692744OO 0 -7 
060855008 0.580375210 2:034969135 0:837566982 

0 37-9 
0:375259709 

1.493407553 l .WWI79H5 ~.~9ii~~~~~2;~662~~~;~i3')962~ 0.370‘191151 
1.455349315 1.794388813 0.565649289 1.972330347 0.875265242 0.366330043 
1.421192460 1.763923729 0~.55&33239E I.%4401536 0.2.6316315(1 0.361876242 
1.387711932 1.735014111 0.551045386 1.917476557 0.863094694 0.357429644 

TO7485079 O.?JiWf,7 27 1 69l#b,,m 0 . m91 0 352990141 
681195793 0.53655a:lO 1:857444402 0.851050803 01348557622 

1.295602635 1~6550706 ?.W29357431~~ Txwimbm-D.66lO7m 0.344131979 
1.257228715 1.531853402 0.522183815 1.821694591 0.839129252 0.339713105 
1.239841433 T.W&Xi398T iXZiTX37G73 1;~6maO76B-6.8332m515 0.335300893 
1.213155433 1.585193508 0.5079lbbb3 1.779459615 0.827325919 0.330895238 

T.CF7bYl.564553Tl3 0 0. 21467349 0 32smmF-~ 
1.543522439 0.493752603 0.815636872 0:322103182 
1.5Z3347333 6~867ii7W---T1;?2IJ31~27 0.8~34025 0.317716575 

25 1.152795750 
2h 1.138599793 
27 1.115053049 
2R 1.092110100 
29 1.059729271 
36 -1.~7KE377T33 
31 1.026507273 
32 1.005501245 
31 0.98512579h 
34 0.955058230 
35 0.945372004 
35 O.PT6b4648r 
17 @.907051730 
3~ 0.~98399343 
19 O.P700472nO 
40 0.051974732 
4, 0.4341~2005 
42 0.916550409 
43 0.7993h7159 
44 0.782320339 
45 0.7h5498731 
46 0.748891847 
47 0.732459024 
49 0.7152R337b 
49 0.700261752 
50 O.b*4422bQl 
51 o.hba752342 
52 0.55124543* 
53 0.537894835 
54 0.622693943 
55 0.607635425 
5h 0.%92715277 
57 0.577927758 
5q 0.563255435 
59 0.54Q724061 
00 0.534798551 
51 0.519984461 
62 0.50577ba93 
63 0.411071572 
54 0.477654289 
55 0.453751001 
bh 0.449927815 
b7 0.435190992 
58 0.422536912 
69 0.4089h2094 
70 0.3954h3171 

1.503580299 0.479587365 1.703444746 0.804058354 0.313336112 
1.484T76742 0;47269USlT~~ 1.665899152 0.798309414 0.308951594 
1.456004454 0.455716847 1.668858018 0.792586772 0.304593221 

031 0.458 5857 1.6 .-Gmm5F3 
1.430303372 0.451837099 1.535150775 0.781218687 0.295873713 
1.413117271 b;4~493OU70 1.620448Oli 0;775572421 0.291522483 
1.396339052 0.438044320 1.505125552 0.769950aOb 0.287175807 
1.379945318 0.4JIl793i4 1.5WSl71369 X754353452 0.282835588 
1.363914500 0.424334846 1.575554569 0.758779976 0.278501733 

T;TWZRT2Tr)5nTTm- 1 56lW679l 0.75T2TP3037K-z7%i72147 
1.332855102 0.410705142 1:547320466 0.747703167 0.259847737 
1.317811523 b.4E3JpI9132 1.533649777 0.742199110 0.255528410 
1.303051051 0.397151793 1.520250013 0.735717477 0.261214074 
1.288559421 0.390402715 1.507137554 0.731257925 0.255904537 
1.274353338 0.3835714~97 1.494259751 0.725820115 0.2~2500010 
l.~Z6~~.37~~~~--~~24~300102 
1.246559338 0.370261059 1.469251984 0.715008400 0.244004824 
1.233179203 0.3b~Al6~~~~~~I.4~~BOBSO 6.7?J9633651 0.239714088 
1.219910047 0.355917383 1.445121943 0.704279753 0.235427804 
1.206852482 b.356Z9A9 mL%33366336 v.6T89458U2 0.231145837 
1.193997708 0.343537458 1.421805559 0.593531594 0.226858249 

TI; IBT3376GT u;3 m- ~~~~57~.~~~-U.222594803 
1.158863976 0.330418398 1.399238145 0.583061831 0.218325454 
1.155559933 0.323830793 1.388216975 0.577805501 0.214060148 
1.144448438 0.317257344 1.377351996 0.672557853 0.209798758 
1.132492981 0.310697709 1.3bbbb7029 0.557348543 0.205541242 
1.120697413 0.304151550 1.35512623& 0.652147571 0.201287485 
1.ltNO559li il;29T616F3?-- 1.345T34VJ3 K65696438U 0.197037415 

1.335485378 0.651798811 0.192790950 1.097562975 0.291098337 
1.085213371 0.284590528 
1.075002146 0.278095089 
1.053924590 0.271511404 
1.052975225 0.255139250 
1.042152793 0.250578346 
1.031450233 6.252228358 
1.07086457R 0.245788993 __._.~~ 
1.010392437 
1.000029985 
0.989773955 
0.97952112A 
0.959558420 
0.9q9hlZRRZ 

0.239359951 
0.232940937 
0.225531~5~ 
i3.~2013la25 
0.21374li4a 
0.207359345 

6;949751555 0.200985134 
0.93998211s 0.194521235 
O.WO301579 0.189254372 
h970707570 o.lal915270 
0.911197590 0.175573557 
0.9017h9533 0.169239254 
0.892421179 0.1529ila23 
0.903150193 0.155591067 
o.873954518 0.150275734 
0.964817474 0.143958531 

0.546650508 0.1a8548006 
0.541519519 0.184308502 
0.535405295 0.180072357 
0.531307695 0.175829490 
0.5252254aO 0.171609821 
0.621151413 0.157383270 
0.515112254 0.163159758 
0.511078805 0.158939204 
0.605060813 0.154721531 
0.501058057 ~~.~50505561 
0.595070351 0.145294514 
0.591097452 0.142085014 
0.585139150 b.137a78082 
0.5A1195258 0.133673543 

ii325375135 
1.315398569 
1.305551514 
1.295529432 
1.285228389 
1.275744544 
1.257374238 
1.258113979 
1.248960439 
1.239910434 ._-- .- .~ 
1.230950924 
1.222109000 
1.213351879 
1.204585893 
1.195111485 
1.187623208 

1.179219iOb 
l.i70898722 
1.152558085 
1.154495711 
1.146409593 
1.138397799 
1.130458472 
1.122589820 
1.114790118 
1.107057702 
1.099390965 
1.0917na3bo 
1.08424838$ 
1.075769607 
1.069350618 
1.051990071 
1.054585550 
1.047439122 
1.040246233~ 
1.033106808 
1.025019701 
1.018983799 
1.011998025 
1.005051333 
0.998171709 
0.991331169 
0.984535759 
0.977785551 
0.971079544 

0.575255573 0.129471619 
0.571349875 0.125271934 
0.5564i7977 0.121074512 
0.551559685 0.115879277 
0.555684807 0.112586154 
0.551823154 0.108495067 
0.546974543 0.104305941 
0.542138788 0.100118702 
0.537315711 0.695933275 
0.532505133 0.091749585 
0.527705880 0.087567550 
0.522920778 0.083387122 
0.518146558 0.079208202 
0.513384352 0.075030726 
0.568533693 0.0708~4619 
0.503894520 0.066679808 
0.499156670 0.052505220 
0.494449985 0.058333782 
0.489744308 0.054152420 
0.405049484 0.049992051 
0.480355361 0.045822532 
0.475691788 0.041654072 
0.471028516 0.037486333 
0.455375699 0.033319335 
0.461732890 0.029152890 
0.457100047 0.024986301 
0.452477029 0.020821487 
0.447863696 0.016657520 
0.443259910 0.011491511 
0.438665534 0.008328245 
0.434080434 0.004153850 

71 O.la20359Ql- 
72 0.369650107 
71 0.355790755 
74 0.342152 991 
75 P.32999554n 
76 0.315999710 
77 0.102914R90 
7R o.?e9A~403R 
79 0.276~330@2 
9P 0.253Q79511 
ai 0.251120875 
92 0.23Rqn4780 
83 o.?255zeaa3 
‘I4 0. ,I 27~0‘3Ql 
95 0.2~009R557 
95 0.197419674 
97 0.174792079 
98 0.16217~53~ 
59 0.1495922c4 
90 0.1370359R7 
91 0.124502470 
97 0.111Qs0077 
9’ 0.099496547 
14 cl.3R7020075 
9= 0.17455867R 
76 3.‘,621104P 
97 0.049h7'415 
9R 0.037245745 
90 1.174q25574 

IO,> o.“,‘c109n9 

o;i557Rla50 0.1375562a8 
0.445800904 b.1313b9557 
0.837R87959 0.125078410 
O.a29041R,O 0.111192293 
0.920258570 0.1125llb51 
O.Rll539255 0.105234433 
0.9028Rl242 0.099952187 
0.794283099 0.093594063 
h/n5743389 o.on7429813 
0.7772hO710 0.0n1159189 
0.769P-3704 0.074911944 
O.?hO451054 O.bb8657833 
ii752141485 0;052405611 
0.743R737f.4 0.0551=8033 
0.73555bbRb 0.049911852 
0.7?74R9091 0.043657850 
0.71935944P 0.037425759 
0.711247959 0.031185289 
0.703272050 0.024945419 
0.h95291414 0.01e70R530 
O.Cn7354914 0.017471755 
0.579451582 0.006235531 

3.176986992 1.147392353 0.673047446 0.317946729 
2.884516377 1.141367601 0.669128262 0.314656612 
2.726335277 1.135364415 0.665219340 0.311373910 
2.615936123 1.129441426 0.661320570 0.306092561 

e2.530325627 1.123536084 0.657431640 0.304814563 
2.459901jlf 1.117673661 0.6535S3040 0.301539674 
2.400036156 1.111847448 0.649684061 0.296266413 
2.347636131 1.106058755 0.645624797 0.295000159 
2.300986850 1.100306910 0.641975140 0.291735070 
2.256863120 1.094591260 0.636134988 0.266473105 
2.220403270 1.088911168 0.634304237 0.265214225 

2YSW972U7 1;663266012 0.630482784 0.281956368 
2.152089902 1.077655188 0.626570531 0.276705555 
2.121382552 1.072078105 0.622867377 0.275455687 
2.092554867 1.066534192 0.519073224 0.272206743 
2.065368631 1.061022884 0.615287975 0.268964664 
2.039528921 1.055543537 0.611511536 0.265723471 
ZUiSiT4144 1.050095917 O.bO7743011 0.262485066 
1.991868796 1.044679203 0.603984707 0.259249429 
1.969598088 1.039292987 0.600234132 0.256016523 
1.948263900 1.033936773 0.596491995 0.252786308 
1.921781676 1.028510077 0.592758206 0.249550748 
1.908078015 1.023312425 0.589032676 0.246333603 
1.889683777 1.018043358 0.585315318 0.243111438 
1.870757575 1.012802421 0.581505043 0.239891613 
1.853034551 1.007589174 0.577904768 0.236674293 
1.835875447 1.002403107 0.574211406 O-233459439 
1.819240700 0.997244036 0.570525873 0.230247015 
1.803094879 0.992111311 0.566848088 0.227035985 
1.787406083 0.987004507 0.553177958 0.223829312 
1.772145492 0.981923531 0.559515431 0.220623960 
1.757286979 0.975867697 0.555060399 0.217420893 
1.742805780 0.971836728 0.552212791 0.214220074 
1.728583217 0.955830253 0.548572529 0.211021467 
i.714895457 0.9bla47912 0.544939535 0.207825039 
1.70142a307 0.955889351 0.541313735 0.204530752 
1.588252037 0.951954221 0.537695050 0.201438571 
1.675382222 0.947042185 0.534083405 0.198248462 
1.652774514 0.942152911 0.530478730 0.195060390 
1.550425022 0.937285071 0.52ba80947 0.191874319 
1.638324205 0.932441347 0.523289985 0.188690215 
1.526457791 0.927518426 0.519705772 0.185508044 
1.5148151a3 0.922bl7002 0.516128237 0.182327771 
1.503389503 0.918035774 0.512557310 0.179149361 
1.592168515 0.913277448 0.508992920 0.175972781 
1.581144585 0.908538735 o.s’o5435ooo 0.172797997 
1.570309513 0.903820351 0.501883481 0.169624975 
1.559555999 0.899122019 0.498338294 0.156453681 
1.549176502 0.894443467 0.494799375 0.153284081 
i.53aab47oi 0.889784427 0.491255555 0.160116142 
1.528713951 0~885144535 0.487740070 0.155949832 
1.518718409 0.880523838 0.484219555 0.153785115 
1.508872400 0.875921779 0.480705045 0.150621960 
1.499170599 0.871338212 0.477196477 0.147460333 
1.489507955 0.856772893 0.473693788 0.144300202 
1.480179682 0.862225583 0.470196915 0.141141534 
1.470881239 0.857695047 0.465705798 0.137984295 
1.461705318 0.853184055 0.463220373 0.134828454 
1~452555822 0.848589380 0.459740581 0.131673978 
1.443722856 0.844211800 0.456266362 0.128520634 
1.434902712 0.839751095 0.452797656 0.125358991 
1.426192855 0.835307054 0.449334404 0.122218415 
I.417589919 0.830879452 0.445875547 0.119069075 
1.409090685 0.826458113 0.442424029 0.115920940 
1.400592Oa8 0.822072802 0.438975791 0.112773976 
1.392391189 0.817593331 0.435534776 0.109528152 
1~384185185 0.813329501 0.432097928 0.106683438 
1~3750713a8 0.808981118 0.428666192 0.103339800 
1.368047229 0.804647993 0.42523951, 0.100197207 
1.360110241 0.800329937 0.421817831 0.097055628 
1.352258061 0.796026757 0.41840109@ 0.093915030 
1.344488423 0~791738300 0.414989257 0.090775383 
1.335799150 0.787454359 0.411582256 0.067636654 
1.329188150 0.783204768 0.408180040 0.004498813 
1.321553413 0.778959355 0.404782558 0.081361829 
1.314193008 0.774727948 0.401389157 0.076225671 
1.306805074 0.770510382 0.398001585 0.075090310 
1.299487821 0.755305491 0.394617991 0.071955713 
1.292239526 0.762115112 0.391238925 0.066621850 
1.285058526 0.757939088 0.387864336 0.055688687 
1.277943220 0.753775259 0.384494173 0.062556194 
l.210892064 0.749624472 0.381128388 0.059424338 
1.263903555 0.745486573 0.377166936 0.056293090 
1.255976286 0.741351414 0.374409750 0.053162424 
1.250108836 0.737240845 0~371056802 0.050032307 
1.243299872 0.733148722 0.367708035 0.046902705 
1.236548096 0.729060900 0.354363403 0.043773579 
1.229852252 0.724985239 0.361022857 0.040644898 
1.223211126 0.720921598 0.357686352 0.037516652 
1.216523543 0.716869841 0.354353640 0.034386654 
1.210088365 0.7li829832 0.351025274 0.031261501 
1.203604490 0.708801438 0.347700610 0.026134491 
1.197170850 0.704784527 0.344379800 0.025007542 
1.190786410 0.700778969 0.341062100 0.021860376 
1.184450168 0.696764638 0.337749565 0.011753611 
1.178161151 0.692801405 0.334440050 0.015629061 
1.171918415 0.688829148 0.331134210 

0.32ii32002 
0.012504911 

1.155721043 0. b848bf744 0.009373127 
1.159568147 0.680917072 0.324533381 0.006252911 
1.153458863 0.576977012 0.321233305 0.003125163 
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with the appropriate algebraic signs at tached in the Variant II case. 
W e  shall present below a  scheme that maps the A4 = n!/I-If’, I tii! 
such permutat ions y inlo M points n(y) spaced uniformly in the unit 
interval, and  then represents each n(y) by the first Q  digits in its binary 
fraction expansion,  where Q  is the smallest integer greater than 
log, M. The procedure for generat ing the binary codeword 

11) Go  to 2). 

Q(y) =  slsZ"'$Q (52) 

corresponding to y is most easily described by the following Algol- 
type program. For Variant II codes,  n  more binary digits are appended  
to Q(y) to supply the sequence of algebraic signs. 

12) Z(iJ +  Z(i[) - 1. 
13) it 0. 
14) i+i+l. 
15)  If Z(i) =  0, go  to 14). Otherwise continue. 
16) i, +  i. 
17) stop. 
It can be  shown that the encoding and  the decoding algorithms 

described above require neither memory nor computational time to 
grow more than linearly with it [15]. 
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P+d@. 
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Go  to 2). 
j +  0. 
.j+j+ 1. 
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[31 

[41 

[51 

[61 

I71 

PI 

[91 

UOI 

ti:l’ 

u31 

u41 

[151 

I:;] 

D81 

u91 

La  

WI 

t221 

[231 

F. N. David et al., Normal Centroids, Medians and  Scores for 
Ordinal Data. Cambridge: Cambridge Univ. Press, 1968.  
J. H&jek and  2. Sidak, Theory of Rank Tests. New York: 
Academic Press, 1967.  
C. A. R. Hoare, “Quicksort,” Comput.  J., vol. 5, 1962,  pp. 10-15. 
W. D. Frazer and  A. C. McKellar, “Samplesort: A sampling 
approach to minimal storage tree sorting,” J. Ass. Comput.  
Mach., vol. 17, July 1970.  
R. W. Floyd, “Treesort 3,” Commun.  Ass. Compat.  Mach., 
~01.7, 1964, p. 701.  
D. H. Lehmer,  “Teaching combinatorial tricks to a  computer,” 
in Combinatorial Analysis, R. Bellman and  M. Hall, Jr., Eds. 
Providence, R.I.: Amer. Math. Sot., 1960.  
F. Jelinek, Probabilistic Information Theory.  New York: 
McGraw-Hill, 1968,  pp. 479-489.  
D. Slepian, U.S. Patent 3  396  351.  
H. Gish and  J. N. Pierce, “Asymptotically efficient quantizing,” 
IEEE Trans. Inform. Theory,  vol. IT-14, Sept. 1968,  pp. 676-683.  
F. Jelinek, “Buffer overflow in variable length coding of fixed 
rate sources,” IEEE Trans. Znform. Theory,  vol. IT-14, May 1968,  
pp. 490-501.  
K. Schneider and  F. Jelinek, “Variable length-to-block coding of 
fixed rate sources for transmission through fixed rate noiseless 
channels,” submitted to ZEEE Trans. Inform. Theory.  
S. Lloyd, “Least  square quantization in PCM,” Bell Telephone 
Lab., Internal Memo.,  1959.  
J. Max, “Quantizing for minimum distortion,” IEEE Trans. 
Inform. Theory,  vol. IT-6, Mar. 1960,  pp. 7-12. 
K. Pearson, “Note on  Francis Galton’s problem,” Biometrika, 
vol. 1, 1902,  pp. 390-399.  
H. L. Harter, “Expected values of normal order statistics,” 
Biometrika, vol. 48, 1961,  pp. 151-165.  


