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Permutation Codes for Sources

TOBY BERGER, MeMBER, iEEE, FREDERICK JELINEK, SENIOR MEMBER, IEEE,
AND JACK K. WOLF, MEMBER, IEEE

Abstract—Source encoding techniques based on permutation codes are
investigated. For a broad class of distortion measures it is shown that
optimum encoding of a source permutation code is easy to instrument
even for very long block lengths. Also, the nonparametric nature of
permutation encoding is well suited to situations involving unknown
source statistics.

For the squared-error distortion measure a procedure for generating
good permutation codes of a given rate and block length is described.
The performance of such codes for a memoryless Gaussian source is
compared both with the rate-distortion function bound and with the
performance of various quantization schemes. The comparison reveals
that permutation codes are asymptotically ideal for small rates and
perform as well as the best entropy-coded quantizers presently known for
intermediate rates. They can be made to compare favorably at high rates,
too, provided the coding delay associated with extremely long block
. lengths is tolerable.

I. INTRODUCTION

ARIANT I and Variant II permutation codes were
Vintroduced by Slepian [1] for the purpose of reliably
transmitting digital data over a certain class of noisy
channels. Shortly thereafter, Dunn [2], [3] considered the
use of Variant I permutation codes as a means for digitizing
vectors generated by a time-discrete memoryless Gaussian
source. We have extended the work of Dunn in several
ways. In-particular, a procedure has been devised that
generates, for a broad class of sources, Variant I and
Variant II permutation codes of a specified rate and block
length that are nearly optimum in the mean-squared-error
(MSE) sense. It is shown that the encoding and decoding
of source permutation codes is fully instrumentable for any
monotonic nondecreasing convex- LU nonnegative distortion
measure. In the Gaussian MSE case, permutation source
codes are shown to be asymptotically ideal for low rates
and to perform as well as the best entropy-coded quantizers
presently known for intermediate rates. The instrument-
ability of permutation codes and their applicability to
situations in which the source statistics are imperfectly
known are also discussed.

Calculation of the performance of the Gaussian MSE
Variant 11 codes necessitated the generation of tables of
Fraser normal scores for large values of #n. We have included
some of these tables herein, since the only table previously
published [4] is restricted to n < 10.
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II. ENCODING OF PERMUTATION CODES

Consider a time-discrete information source emitting the
sequence of real random variables {x;, k = 1,2,---}. The
source outputs need not be either statistically independent or
identically distributed. We are concerned with block coding
(block quantizing) of the n-dimensional random vector
x = (X1,X,, - +,X,). Any set of M n-vectors, B = {y,,y,,
-+ +,¥u}, constitutes a source block code of rate

R =n""'log, M. (N

When the source output vector assumes the value x, it
should be encoded into whichever y € B minimizes some
prescribed block distortion measure d(x,y). The resulting
per-letter average distortion of the code B is defined as

n”'E[min d(x,y)], )

yeB

D =

where E denotes expectation with respect to the distribution
of x.

The optimum encoding procedure for a general block
code is very complex. In its worst form, the source output
vector must be compared with each of the codewords y,,
k = 1,2,---,M, and then encoded as the subscript of that
codeword that attains the minimum distortion. For very
large M this is a horrendous task. The appeal of permuta-
tion codes stems principally from the fact, embodied in
Theorem 1 below, that they possess a simple optimum
encoding procedure for a broad class of interesting
distortion measures.

In Slepian’s Variant I and Variant II permutation codes,
the codewords y,, k = 1,2,---,M, are chosen in the
following manner.

Variant I Codes: The first codeword is an n-vector of the
form

« nyp -

Yi= (s it sty ks sl (3

where the p, are K real numbers satisfying u, > p, >
<+ > g, and the n; are positive integers satisfying

- ny - “« nx —

ny 4+ ny; + 0 Ay = A 4)
The other codewords y,,ys,---,py are all the distinct
words that can be obtained by rearranging the components
of y, in all possible ways. There are a total of

M = n!/ﬁ n;! (5a)

i=1
codewords.
Variant 1I Codes: The first codeword y, is again of the
form specified by (3), but with the added proviso that the y;

are all nonnegative, y; > p, >---> pg > 0. The other
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words of the code are formed by assigning algebraic signs
to the components of y, in all possible ways, and then
permuting these signed components in all possible ways.
The number of codewords in a Variant I code therefore is
K
M = 2"nl/]] n!, (5b)
i=1
where i = nif uyy > 0Oand n — ng if ux = 0.
Theorem 1: Consider a block distortion measure of the
form

dy) = g (% 105 = ) ©

where x = (X, --,x), ¥ = (¥, ,Va), g(+) is nonde-
creasing, and f(.) is nonnegative, nondecreasing, and
convex v for positive arguments. Then optimum encoding
of Variant I and Variant II permutation codes with respect
to d(x,y) is accomplished by the simple algorithms described
below.

Variant I Encoding Algorithm :

1) Replace the n, largest components of x by ;.

2) Replace the next n, largest components of x by u,.

K) Replace the ng smallest components of x by .

Use the permutation of y, that results from these replace-
ments to represent x.

Variant 11 Encoding Algorithm:

1) Replace the n, components of x largest in absolute
value by either +pu, or —yu,, the sign chosen to agree with
that of the component it replaces.

2) Replace the n, components of x next largest in absolute
value by either -+ u, or — u,, the sign again chosen to agree
with that of the component it replaces.

K) Replace the ny components of x smallest in absolute
value by either +puy or by — pug, the sign again chosen to
agree with the sign of the component it replaces.

Use the codeword that results from these replacements to
represent x.

Proof: See Appendix I.

It should be noted that, if the source letters x,,x,,- - -,x,
are independent and identically distributed, then all code-
words of a Variant I code occur equiprobably under
optimum encoding. If, in addition, the source letter distri-
bution is symmetric about zero, then the same becomes
true for Variant Il codes. The requirement of independence
imposed on the x; here can be replaced by the somewhat
less stringent requirement of exchangeability as described,
for example, by Feller [5].

III. MINIMUM-MEAN-SQUARED-ERROR (MMSE)
PERMUTATION CODES

The ever-popular squared-error distortion measure

dxy) = n' Y (% - p)? %
t=1

is a special case of those considered in Theorem 1. In this

161

section, we describe a method for constructing Variant I
and Variant Il permutation codes of a given rate and block
length that are optimum in the squared-error sense.

Define the random variable ¢;, j = 1, - -,n, to be the jth
largest component of the source vector x, and the random
variable #; to be the jth largest of the absolute values of the
components of x. For convenience, let

Si=n1+n2+"‘+ni (8)

and define S; = 0. Then the MSE values of optimally
encoded Variant I and Variant II codes are given, respec-
tively, by

K S
Dy = n'E [2 Yo - uy] (%)
i=1 j=S;-1+1
and
K S;
Dy = n'E [z ny u»Z] . o)
i=1 j=S;-1+1
Noting that
Z €yk2 = ’7k2 = Z Xk (10)
k=1 k=1 k=1

we can rewrite (9) in the form

Si

K
nD, = Elx|*> = 2 .Zl moox

J=8i-1+1

K
En; + Y ngt, (11b)
1 i=1

K
E¢; + '—21 np? (11a)

Si

K
nDy = Elx* =2 3w %

J=Si-1t

where |x|? is the summation in (10).
Differentiation with respect to u; reveals that the best

choice of the parameters p,,- - -,ug for given ny,- - -,ng is
S
w=mn_" Y E&,,  Variantl (12a)
Jj=Si-1+1
Si
w;=n"" Y  En, VariantlL (12b)

i=Si-1+1

The value of MSE that results when the u; are chosen in
accordance with (12) is
K
D=n! (E|xl2 -y n,-uiz) . (13)
i=1
We stress that the derivation of (12) and (13) did not assume
the x, to be statistically independent or identically distri-
buted. However, when the components of x are highly
dependent, permutation codes perform relatively poorly
even when the optimum p; are used.

The performance of optimum source permutation codes
of a given rate usually improves as the block length »
increases. Since it is easy to encode permutation codes
optimally even for large n, it therefore is desirable to have a
method of generating optimum Variant I and Variant II
codes of a specified rate and block length n >» 1. However,
when 7 is large, there are many ways in which K and the
group sizes ny,n,,- - - 0 can be chosen so that the code rate
R [given by (1) and (5a)] closely approximates a specified
value. We now describe an iterative technique that searches
for the values of X and n,,- - -,ng that minimize D of (13)
for a specified rate and block length.
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Define

pi=mn,  i=12---K (14)

Then, if each n; is large, we can use Stirling’s formula to
approximate the rate R by

K
- Y pilogp, Variant I
=1

~
P24
=
II>

K
1t — Y pilogp, Variant IT (ug > 0).
i=1
(15)

Furthermore, the MSE for the optimum {g;} of (12) is given
exactly by

K
D =n"'Elx* - Z pini. (16)
i=1
Treating (15) as an equality, we can minimize D with respect
to py,p2,- - -»Px Subject to the rate constraint. The p; that
result are

pi= 27T 27,

where B is chosen so that R of (15) equals some specified
rate value R*.

Note that, in actuality, we do not have an analytic
solution for the best n; for three reasons. First, although
n; = np,; according to (14), np; usually is not an integer.
Second, each p; depends on all the y;, each of which is, in
turn, a complicated function of all the »; via (12) and (8).
Third, the above procedure assumes that K is known,
whereas we actually want to find the best K. We attack these
obstacles as follows. With K temporarily held fixed, we
iterate (12), (17), and (14) in that order until the same {n;}
set appears on two successive iterations, indicating con-
sistency. The best K then may be found via a simple search
routine. An algorithm of this sort that we used to generate
good permutation codes is described in Appendix II. Fairly
broad conditions under which this algorithm is capable of
generating permutation codes that are truly optimum in the
MSE sense are derived in Appendixes III and IV. In
particular, independent zero-mean Gaussian data satisfy
these conditions for both Variant I and Variant II codes.
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IV. PERFORMANCE FOR GAUSSIAN DATA

The performance of Variant I and Variant II codes
generated by the computer algorithm of Appendix Il has
been calculated for diverse rates and block length n = 400
for independent Gaussian data. Smooth curves drawn
through the resulting (R,D) points are shown in Fig. 1.
Also shown is the lower bound provided by Shannon’s [6]
rate-distortion function formula

R(D) = % log, (¢*/D), (18)

where o2 is the variance of the source. For 1 < R < 3 the
performance achieved by the permutation codes lies nearly
on the line

R = ¢ + }log, (¢*/D) (19)

It is interesting to note that (19) is the same formula
that Goblick and Holsinger [7] report to be an accurate

bits/letter.
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fit to the lower envelope of the performance curves of single-
sample quantizers with uniform spacing subject to entropy
coding. Further comparison of permutation codes and
entropy-coded quantizers is given in Section VI.

For rates R < 1, the performance of Variant I codes
approaches that of the rate-distortion curve. In particular,
the lowest rate Variant I code of block length n has n, = 1
and n, = n — 1. Its optimum y; are pu, = E¢, and
U, = —puq/(n — 1), This code is a simplex code, and its
performance is given by

R=n"1logn (20)
Die* =1 — (n — D)™y, Q1

The asymptotic behavior of y; has been studied extensively
by Gumbel [8], who has shown that for independent
Gaussian data

Wy ~ V2 log, n + constant. (22)
Combining (20) through (22), we have for large n
D/c* ~ 1 — 2Rlog, 2 + O(n~ ' logn).  (23)

When (23) is compared with the asymptotic form of (18)
for small R, we see that the two agree for large n. Thus, the
simplex Variant I codes are asymptotically optimum for
small R (large n). By way of contrast, it is easily shown that
the best quantizer with only two representation points for »n
independent Gaussian source outputs behaves as

Dje* = 1 — (2/n)R log, 2, 24)

which is not asymptotically optimum.

The computer algorithm described in Appendix II
yielded somewhat better Variant I codes than those that
Dunn [3] had been able to find by educated guesswork. The
following two n = 400 codes are easily compared:

Dunn {n} = (5,5,35,40,65,100,65,40,35,5,5)
R = 2.86367, D = 0.03389

computer {n;} = (1,2,7,20,46,77,94,77,46,20,7,2,1)
R = 279184, D = 0.03362,

The computer-generated code achieves approximately the
same D at a smaller value of R.

The performance of maximum-rate Variant 1 codes
(K = n,n; = 1, y; = EE,) as a function of block length is

(R,D/6*) = (n"*logn!, 1 — n™1S),

where

n

S =Y (E[ED™
=1
Values of S for independent Gaussian data have been
tabulated by David er al. [9] for n < 400. Maximum-rate
codes are seen to perform quite poorly relative to the rate-
distortion bound. The sharp upswing at high rates of the
permutation-code performance curves in Fig. 1 may be
explained as follows. The E[¢;] (or E[#;]) values for neigh-
boring values of j do not differ by very much. Unless one
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Fig. 1.

collects such neighboring values into groups and represents
them by a common u, the code will contain clusters of
codewords with almost identical coordinates in n-space. A
good code is characterized by widely scattered codewords,
so this clustering is highly undesirable and serves to further
underscore the importance of the optimum grouping
technique developed in Section IIl and Appendix II.

The only table of Gaussian Ey; previously available was
that of Klotz [4] for n < 10. Since much larger values of »
had to be investigated, new tables were generated. The
Gaussian En; also form the reference data base in applica-
- tions of a popular nonparametric statistical test for sym-
metry of probability densities called the Fraser normal
scores test [10]. Accordingly, we have included tables of
En;forn = 100, 200, 300, and 400 for reference purposes in
Appendix V, together with recursive formulas that can be
used to generate tables for the intervening values of n.

V. THE INSTRUMENTATION PROBLEM

The encoding methods for permutation codes described
in Section II assumed that encoding consisted simply of
replacing the source word by the closest codeword. In
actuality, for transmission over a channel or for storage in a
memory, it is necessary to generate a digital representation
of the appropriate codeword. This entails performing two
operations: sorting and coding.

The most straightforward approach to the sorting
problem would be to use one of several available techniques,
such as quicksort [11], samplesort [12], or treesort [13],
to completely order the source samples (or their absolute
values in the case of Variant II codes), and then to group
the time indices of the largest #, samples into one set, the
time indices of the next largest n, samples into a second set,
and so on. If » is large and many of the group sizes #; also

Comparison of permutation codes, quantizers, and R(D).

are fairly large, it will pay to capitalize on the latter fact to
avoid having to perform a complete ordering. In such cases
the sorting problem is not trivial. Moreover, its importance
is intensified by the fact that the complexity of sorting via
complete ordering is known [11] to grow as » log #, which
it turns out would dominate the complexity of the rest of
the encoder in the limit of large n.

Next, the sorted index arrangements must be coded. For
small » one might arbitrarily assign a different binary
codeword of length

X
log, M = log, n! — Y. log, n;!
i=1

to each of the M different index arrangements and use table
look-up. As n grows, this becomes unmanageable rapidly.
Ifn, = lfori = 1,---,K, then known permutation encoding
techniques [14] may be used whose complexity grows
linearly with #. However, codes with #; = 1 for all i per-
form poorly for reasons discussed in Section IV. In Appendix
VI we describe another technique, based on Jelinek’s [15]
version of Elias’s noiseless coding technique, that applies
to all possible values of {n;} and also has been shown [15]
to grow only linearly with n. It has been called to our
attention that a comparable method appears in a patent
application of Slepian [16] covering permutation coding
schemes for channels.

For Variant II codes it is necessary to encode the sign
pattern, also. This poses no problem when all 2" sign
patterns are equally likely, as in the case when the source
outputs are zero mean and independent. For nonequi-
probable sign patterns, a Huffman-type coding technique
might be most applicable.

The source decoder is an instrument that translates the
“index codewords” into representation words (¥,,72," * *» V)
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where y, = +p, if k belongs to the ith index set; the sign is
+ for Variant I codes and is determined from the sign
portion of the codeword otherwise. A procedure that
accomplishes this task with a complexity that also grows
only linearly with # is described in Appendix VL.

VI. PERMUTATION CODES VERSUS QUANTIZERS

It was noted in Section IV that the MSE performance of
permutation codes for an independent Gaussian source is
bounded from below by the lower envelope (19) of the
performance curves of single-sample quantizers with uni-
formly spaced levels. These are the best single-sample
quantizers presently known in the (R,D) sense [7], [17].
In order for permutation codes to perform close to the
curve given by (19) for high R, they must have very large
block lengths. However, permutation encoding, as described
in Sections II and V, is so simple that it nevertheless may be
easier to implement such codes than to tackle the buffer
overflow problems [18], [19] associated with entropy
coding of the highly nonequiprobable outputs of a uniformly
spaced multilevel quantizer. In the absence of entropy
coding, the best single-sample quantizers are those of Lloyd
[20] and Max [21]. For n = 400, we see from Fig. | that
optimum Variant [ and Variant II codes outperform
uncoded Lloyd-Max quantizers for R < 3.7 and R < 4.5,
respectively.

The relationship between permutation codes and single-
sample quantizers perhaps is illuminated further by the
following observation. A Variant II code with K = 1
(hence n; = n and R = 1) has representation points
(+02/m, +0~/2/m,---,+0~/2/), which are identical to
those of an optimum [-bit quantizer. Its performance is
given by the point marked in Fig. 1 by the circle and triangle
for n = 2 and lies almost right on the curve given by (19).

It is worth stressing that the nonparametric nature of
permutation encoding makes it well suited to situations in
which the source statistics are either unknown or time
varying. In such situations one could proceed as follows.
Select a code rate R close to the capacity of the channel
being used for transmission, and a block length » as long as
practical considerations will permit. Partition n into a
grouping {n,;} that has rate R. A good choice for {n;}, in the
absence of any knowledge to the contrary, is the optimum
Gaussian MSE partition for rate R found by the method
described in Appendix II. Encode successive n-vectors as
usual, but also collect sample order statistics. After a
duration comparable to the time constant of the pheno-
menon responsible for the time-varying behavior (if this is
known), send the {y;} of (12) as calculated from the sample
order statistics." Then convert the received permutation
rank orders into numerical vectors using this {u;} set.
Note that the sample {y;} yield even better performance
than would the “true” {u;} were they known. Hence, this
may be a desirable procedure to follow even when the source
statistics are known.

! Rate probably can be conserved by sending only the changes in the
Hi.
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It should be appreciated that comparable simplicity
cannot be obtained with single-sample quantization
techniques in the face of unknown, possibly time-varying
source statistics. In order to match the quantization levels
to the data, one must store all the data first, then calculate
and send the levels, and finally quantize the data letter by
letter. This amounts to a complicated block coding scheme
that requires a much longer coding delay (at least at the
transmitter) than does the permutation scheme. In addition,
if it is desired to code the quantizer outputs in order to
preserve rate, one must send both the sample relative
frequencies of the quantization bins and the variable-length
code being employed.

VII. SUMMARY

The principal results of this paper are reiterated below.

1) We have developed techniques for optimizing the
parameters of permutation codes for sources.

2) We have shown that in the Gaussian MSE case
permutation codes are asymptotically ideal at low rates and
perform as well as the best entropy-coded quantizers at
intermediate rates.

3) We have argued that permutation codes, in large part
because of the simple, essentially nonparametric nature of
their optimum encoding algorithms, compare favorably
with the other source encoding techniques presently in use,
especially in the commonly encountered case in which the
source statistics are unknown and/or possibly time varying.
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APPENDIX |
PROOF OF THEOREM 1

We shall establish the theorem for Variant I codes and a distortion
measure of the form

n
d(x.y) = Zlf(IXx - »b (25)
t:

where f(-) is nonnegative, nondecreasing, and convex U for positive
arguments. The extensions to arbitrary nondecreasing g(-) and to
Variant II codes noted in the theorem statement should be obvious.

From the additive nature of (25), it suffices to show that, if x; >
X, =--+> Xx,, then the basic codeword

Y1 = (g sl gyt e oyl sl G HE)

is the one that minimizes d(x,y). Furthermore, once this has been
established for n = 2, it is easily established for » > 2 by induction.

Hence, let n = 2 and let y; = (vy,v,). There are six cases to consider,
namely,
Case 1: xy = vy > vy > x, Cased: vy = x{ = x3 = U,
Case 2: x, =2 v, = x3 = 0, Case 5: vy = X; = Uy = X,
Case 3: x( = x;, =2 vy = 0, Case 6: vy = vy = X1 = X,
In each case we must establish that
flxy = vil) + f(x2 — 02D) < fxr — v2]) + fUx2 — vd). (26)

It is clear that Cases 4, 5, and 6 will follow by symmetry once (26) is
established for Cases 1, 2, and 3, respectively.
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Fig. 2. Sketch of f(x) and the similar triangles Ty and T;.

Case I: We have v; — x2 = v, — x, = 0 and x; — v, = x; —
v; = 0. Hence, (26) follows from the monotonicity of f(-).

Before treating Cases 2 and 3, we note that if we can establish (26)
for f(Jx — v]) = f(x — v]) — £(0), then it clearly will hold for f(-)
as well. Hence we lose no generality by assuming f(0) = 0.

Lemma:1If a = 0and b = 0, then f(a) + f(b) < f(a + b).

Proof: See Fig. 2. A straight line is drawn through the points
(a, f(@) and (b, f(B)). Since f(-) is convex U and f(0) = 0, the line
intersects the abscissa at a nonnegative value. Triangles 7, and T
are similar. The base of T, is larger than the base of T}, so the altitude
of T, is larger than f(a), the altitude of 7. Thus the straight line
intersects the point (@ + b, &) where

f@+ fb) < h<fla+ b Q.E.D.
Case 2: We have
flxe = o) + fxz — 02) < fllx1 = x2]) + f(lx2 = v2])
< f(x — 02
< flxe = va) + flx2 = v
where the first inequality follows from x, < v, and monotonicity, the

second from the lemma, and the third from nonnegativity.
Case 3: We have

Flx2 — v2) < f(x0 — 02]),
since in this case x, — v, < x; — v, and fis nondecreasing. Let
flah) = fa + x2 = vi) = fx2 — va]).
Applying the lemma to f(-) yields
Sxy = o1l) + fx2 — 22
= fllxi — x2l) + fve = 02D + 2f(Ix2 = v
S flx = x2 + 00— 2D + 2f (2 — vil)
= f(ixs = v2l) + f(jx2 — w1

Q.E.D.

APPENDIX {1

AN ALGORITHM FOR GENERATING GOOD
PeRMUTATION CODES

The following computational algorithm, based on the theory of
Section 1I, generates permutation codes of a specified rate R* and
block length # that are good in the MSE sense. Fig. 3 provides a flow-
chart description of the algorithm. Fairly broad conditions under which
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INPUT:
n,R* 8, VARIANT, ORDER STATISTICS

k~—k+2| [k—k+1]

SET

Ai=n, ALL |J—-N9-[ A=o, anvi |

JVARIANT I orK EVEN

L

Fig. 3. Flow chart for permutation code algorithm.

the algorithm is capable of generating codes that are truly optimum are
derived in Appendixes IIT and IV.

1) Input n, R*, Variant I or II, and E¢; or Ey;forj = 1,---.n.

2) If Variant I, set K equal to the smallest odd integer whose base 2
log exceeds R*. If Variant II, set K equal to the smallest integer whose
base 2 log exceeds R*.

3) Set?> g = 1 and make the integers n;, i = 1,- - -,K, approximately
equal; e.g., if K divides n, set n; = n/K for all 7.

4) Compute sy,uz,- - ix from (13).

5) Evaluate the p;, by (17). Adjust 8 until (15) is satisfied for
R = R*?

6) Compute new #, as the closest integers to np; such that
ZiK=1 np = n

7) If n; = 0 for any i, proceed to step 11).

8) If the new and old #; agree for all #, proceed to step 9). Otherwise,
return to step 4).

9) Store n,,- - -1k, D, and the exact value of R calculated from (2)
and (5).

10) If Variant I, replace K by K + 2, reduce the largest n; by 2,
relabel n;, as m;4, for i = 1,---,K — 2, and put n; = nx = 1. If
Variant 11, replace K by K + 1, reduce the largest n; by 1, relabel n;
as miyy fori = 1,---,K — 1, and put #; = 1. Return to step 4).

11) Print {n;}, R, and D stored in step 9). Go to step 13) unless K is
odd and code is Variant I.

12) Set K equal to the smallest even integer whose base 2 log exceeds
R*, and return to step 3).

13) Stop.

2 The desired value of 8 usually is positive. The reason is that (17) implies that p;, and
hence n;, decreases with increasing n;2 for 8 > 0, a property that is shown in Appendix
IIT to be desirable in a broad class of interesting problems.

3 It follows from (17) that

dli K K
g B logze [,Z! pipi® -~ (_Zl mmz)] = ~ flogze var (u?),
i€ =

so R is a monotonic decreasing function of . Hence, the value of g that satisfies (15)
is unique and can be determined rapidly by a modified Newton-Raphson method.
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Table I illustrates the convergence of a typical sequence of {n;} sets
obtained with this algorithm in a practical example.

It is shown in Appendix 1II that, if Ex; is a convex-u function of j,
then the Variant II algorithm can generate permutation codes that are
truly optimum in the MSE sense. Moreover, it is shown in Appendix
IV that, in the important case of statistically independent source
outputs whose absolute values are identically distributed according to
a probability density function f|x|(-) that is nonincreasing on [0,00),
En, is indeed a convex-u function. We conjecture, but unfortunately
are unable to prove that, when this convexity prevails, the Variant 11
algorithm always produces a code whose K and {n;} differ from their
optimum counterparts by at most 1; the unit inaccuracies are caused
by the diophantine nature of the problem.

The corresponding situation for Variant I codes is as follows. The
Variant I algorithm can generate MMSE codes whenever E¢;, is
convex U for je{1,2,---,[n/2]} and is convex m for je{[n/2] + 1,---an}.
When this convexity prevails, we conjecture that the aigorithm always
will generate a code that is optimum in the diophantine sense described
previously. In the case of independent identically distributed source
outputs, the desired convexity will be in effect whenever fx(-) is
unimodal, symmetric, and zero mean.

APPENDIX III

A NECESSARY CONDITION FOR
OPTIMALITY OF THE ALGORITHM OF APPENDIX II

Observe from (14) and (17) that the p;, and hence the n;, always are
monotonic functions of the ;2. This is a consequence of the fact that
in step 5) the u; are not permitted to vary in accordance with (12) while
the p; (hence the ;) are being optimized. As a result, the algorithm of
Appendix II can converge only to codes that are characterized by
groupings {n;} that generate yx; via (12), which are such that #; actually
varies monotonically with ;2. It now will be shown that, for a broad
and interesting class of examples, the optimum code indeed is
characterized by an inverse relationship between »; and 2. In such
cases, therefore, it is possible for the said optimum code to be found
by the algorithm of Appendix IT with # > 0.

For simplicity, the ensuing discussion will be restricted to Variant II
codes only, after which the implications for Variant 1 codes will be
discussed. Since the optimum g2 for Variant II codes necessarily
decrease with increasing i, it will suffice to show that the optimum »;
are monotonic increasing with i, From (12b) the values of the u; that
minimize the MSE for given {#;} are

1 gt oty '
Hi = — ﬁjs i= ]" * "K (27)
Hi j=pg+ ++ +n-q+1
where 77; A En;. From (13) the resulting minimum MSE is
K
D = n“[E|X]Z - ni,u;Z:l . (28)
i=1

Theorem 2: Suppose 7, is a convex-u function of j, i.e., suppose

A%y = fjh = 20+, 20, 1<j<n-—2 29

Then the optimum n; increase monotonically with 7.

Proof: We shall show that, if n,_, > n, for some /, then D can be
decreased by reversing the roles of n,_; and n;. That is, if a new
grouping {n;’} is defined by

ni, i#Il—1orl
n' = {n, i=10-1
Ry, i=1 30)
then
D <D, (3D

where D’ is defined by the right-hand side of (28) with the »; replaced by
the »;” and with the x; recalculated from (27) using the #,” in place of
the n;.

We establish (31) as follows. Let L = n; + n, +++-+ 1., and
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TABLE I

SEQUENCE OF {r;} SETS FOR INDEPENDENT STANDARDIZED
GAUssiaN DATA (VARIANT I, 7 = 400, R* = 1.5, K Obp)

K=3 133 134 133
100 200 100

99 202 9
99 202 9g:| same

K- K+ 2 1 99 200 99 1
2 90 216 920 2
2 85 226 85 2
2 84 228 84 2
2 83 230 83 2
2 83 230 83 ﬂsame
K-> K+ 2 1 2 83 228 83 2 1
1 3 77 238 77 3 1
1 4 75 240 75 4 1
1 4 74 242 14 4 |
1 4 74 242 74 4 1:] same
Ko K+2 1 1 4 74 240 74 4 1 1
0 1 4 69 252 69 4 1 0
Print n,=n,=1,n, = =4, n, =n, =74, n, = 242
= 1.47514, D = 0.18595
let
b=m_,=n">n=n'_,=a (32)
Then
1 1
mD - D) = ;(ﬁL+1 4o Lea)? + 1; (rsass +F Mo

ey o4 foan)?

o=

- ;(ﬁL+b+l +ooot Arsasn)t

It follows after some algebraic manipulation that

nab(D — D) = al(y + 2)? — (x + »)?] + b(x* — z?)
= (x — b — a)x + z) — 2a)] (33
where
a b atb
XA Y Ay yA L+ z A Z Ly (34
i=1 j=at+1 j=b+1

But x > z because of (32) and the fact that 7, > #s,---,7, > 0, so
D = D iff (b — a)(x + z) — 2ay = G, or equivalently iff
x + 2
a b—a
Upon substituting (34) into (35), we see that proving the theorem has
been reduced to establishing the inequality

1 4 2 b 1 atb
=2 ALe; — - D ALes 2 ALy, =00 (36)
a iz b—a;Z3 aj=p+i1

That (36) is indeed a valid inequality is a consequence of the con-
vexity hypothesis (29). To see this, plot the points 7; versus j and then
connect them by straight lines. This results in a piecewise linear
convex-uU function of a continuous variable, call it 7(x), 1 < x < a.
Define the function 7*(x), 1 < x < n, to equal 7(x) except in the
interval L + @ + 1 < x < L + b, wherein it consists of a straight
line segment joining #(L + a + 1) to #(L + b). Then 7*(x) also is
convex . Moreover the three terms on the left side of (36) each are
upper bounds to the corresponding terms in the inequality

o PRt} RIS (AR
n U > 5

+1
+ 7 (L+“—7—+b)zo <Y

a +

which is valid because 7* is convex L. Hence, (36) also is valid and the
theorem is proved.
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The corresponding result for Variant I codes is stated below. The
proof is a reasonably straightforward extension of that of Theorem 2
and therefore is omitted.

Theorem 3: If E&; is convex U for je({1,2,---,[n/2]} and convex N
for j € {[n/2] + 1,-.-,n}, then the optimum n; vary inversely with the
optimum 2.

APPENDIX IV

CONVEXITY OF ORDER
STATISTICS FOR INDEPENDENT DATA

Theorem 2 leads us to search for conditions under which the »; will
satisfy the convexity hypothesis (29). The following theorem provides
an important class of examples in which (29) is satisfied.

Theorem 4: If the source outputs are statistically independent and
identically distributed in such a way that the probability density
function fl XI(') of the absolute value of a source output is a non-
increasing function of positive argument, then the #; satisfy the
convexity hypothesis (29).

Proof: The starting point for the proof is Pearson’s [22] formula
for the average difference between the jth and the (j + I)th largest of
n independent identically distributed randoin variables, namely,

(”) fw "Il — @) dx,
J —®

where ®(-) is the cumulative distribution function common to each of
the random variables. In the present instance we are interested in the
ordered absolute source outputs in which case Pearson’s formula reads

('f) fw o1 — ®) dx
J 0

O(x) = fo ix (@) d.

—Af, = (8)
where
(39

It follows that

25 _ _ “| (n . .
A%y = Afjypy — Ay = ; " i(1 — @)/
0

n i1 — Jj+1
—(j+l)<p (1 — o) ]dx. (40)

Upon changing the integration variable from x to z = ®(x), we obtain

1 n
A%, = f h(z) [( ) "1 = z)
0 J
- (j Z 1) eI — z)f“] dz (41)

1 1
fix®  fx(@71@)

Observe that, since z is an increasing function of x and vice versa,
h(z) is a nondecreasing function of z because fixl(x) has been assumed
to be a nonincreasing function of x.

Using the beta density

where

h(z) = 42)

Bup(x) = ;gz)ii(;)(l —xETIxTl 0= x <1, (43)
we can rewrite (41) in the form
(n + DAa*q; = J: WBs 4 1,m-5+1(2) = Byazn- (2 dz. (44)
Assume temporarily that A(z) is differentiable, and define
bo) = f:[ﬁyu,n—jﬂ(f) B OV @)
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Integrate (44) by parts, noting that 5(0) = b(1) = 0, to obtain

1
(n + DAY, = — f h(2)b(z) dz. (46)
0
Next, use the fact that ; .(-) is the probability density that governs the
Ith largest of / + m — 1 independent random variables distributed
uniformly on [0,1]. Accordingly,

b(z) = PI[U*! < 7] — P[U/*? < Z], 47

where U* denotes the kth largest of n + 1 independent uniformly
distributed random variables, and P[-] denotes the probability of the
event within the brackets. But (U/*! < z) = (U’*2 < z), so

b(z) <0, 0sz< 1. (48)

When (48) is coupled with the fact that A’(z) = 0 because A(z) is
nondecreasing, it follows from (46) that A%7; > 0 as required for the
application of Theorem 2. The extension to piecewise differentiable
h(-) is straightforward and therefore is omitted.

The result corresponding to Theorem 4 for ordinary rather than
absolute order statistics is as follows.

Theorem 5: If the source outputs are statistically independent and
identically distributed according to a unimodal symmetric zero-mean
probability density, then the E¢; satisfy the convexity relations
necessary for the application of Theorem 3.

APPENDIX V

TABLES OF FRASER NORMAL SCORES

Let x = (x(,--,x,) be a vector of independent identically dis-
tributed standardized normal (Gaussian) random variables. Define
the random variable #; to be the jth largest of the absolute values of the
components of x, j = 1,2,---,n. The Fraser normal scores En; are
used in a statistical test for the symmetry of probability distributions
[4], [10] and in the construction of optimum Variant II source per-
mutation codes as described in this paper. The one table of Fraser
normal scores previously published [4] covers only the range n < 10.

In Table II we give the Fraser normal scores Ex;, j = 1,---,n,to an
accuracy of nine decimal places for n = 100, 200, 300, and 400. For
intermediate values of », one can use the general recursive formulas [23]

—_

Elan,j+1] = ~ {nElon-1,)] — (0 — J)E[on, I} 49

-

Eloy—1,4] = ~ {jElom,j+1] + (n — JIE[an 1} (50)

n
where «,,; is the jth largest random variable from an independent
identically distributed sample of size n. The rate of accumulation of
computational error is smaller when one goes from »n to n — 1 by
means of (50) than when one goes from # to # + 1 by means of (49)
[23].

The claim of nine-place accuracy in Table 11 is based on the following
test. Tables for » = 100, 200, 300, and 400 originally were computed
via a double precision routine to 12 decimal places. Then (50) was
used to iterate from 400 down to 300, whereupon all entries in the
table for 300 so obtained were observed to agree with those of the
original table for 300 for at least nine digits after the decimal point.
Similar consistency checks were run from 300 down to 200, 200 down
0 100, and 100 down to 10.

APPENDIX VI

ENCODING AND DECODING OF PERMUTATIONS

The optimum permutation encoding procedures described in
Theorem 1 result in a codeword of the form

Y = (gt -5k, l<i <K, SH
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TABLE 11
FRrRASER NORMAL SCORES FOR 7 = 100, 200, 300, AND 400
N=100 N=200 N=300
001~-100 001-100 101200 001-100 101-200 201-300 001-100
J
1 2.746957688  2,968601388 0.671610465 35091973030 0,964417163 04429504477 3.176988992
14684194 2.658082090 0.663800636 2.792392288 0.957T97257 0.424937531 240884516377
3 2.231102282 20488557454 0.6%6031193 2,629776209 0,951219100 0.420379467 24726335217
4 2.101079%543 2.369488849 0.,648301256 2,516005081 0.9446818084 0.415830154 2.615936123
5 14999049864 20276688471 04640609971 2.427609676 0.930106035 0.#11289#6! 24 530325827
6 1 . 6 X 4 Db T 24459965017
7 1.841510255 2.13&596155 0+ 625340038 2 292711160 0.925!00192 0.002233470 24400036156
8 1.7773020 4 2,0 238430223 0.,51892T138 0.39TTIT912  2.347638131
9 1.719686002 2.025809120 0.6!02!#910 2,189990651 0.91!503321 00393210486 20300986850
10 1,867378698 1,9 6 0T0 2.258863120
11 1.619086221 1.936766293 0 595228657 2.1061812&2 0-90000Q673 0.3062!9561 20220403270
. . . . 2. 184972447
13 1.532661733 1.860866008 0.580315280 2,034989185 0,887566982 0,375259709 2152089902
14 1.49340755%3 1.826817985 0.572996698  2,002942317 0.881399421 0.370791161 2,1213082552
15 14656349315 14794388813 0,565649289 14972830347 0,875265242 00366330043 20092554867
T6 1.421192460 1. 763923729 0,558332398 1,944408536 0.8691563880 0,361876242 2,065368631
17 1.387711932 1735014111 0,551045386 10917476557 00863094694 04357429644 24039628921
. . . () . . T Z.0151T4144
19 1.325062201 1681196793 0,536558510 1867444402 0.351050003 00348557622 14991868796
20 1,295%6028135 1,856020736 0.,529357434 1. 844086818 0. 845074997 0.344131979 1,969598088
21 1,267228716 10631853402 0,522183815 1,821694591 0,839129252 04339713105 1. 948263900
22 1.239841433 1.608603983 0,515037079  1,800180708 0.833213058 0,335300893 1.927781676
23 14213355433 14586193608 0,507916663 12779469616 0,827325919 0.330895238 1908078015
2471, 1876 . . - . - 98035  1,889088777
25 14162796750 14543622439 0,493752603 1,740199629 0.815636872 04322103182 1. 870757575
26 1.138596793 1523347333 0.,488T07892 ~ 1,721531327 0.809834025 0.317716575 1.853034561
27 1.115053049 1,503680299 0,479687366 1.703444766 0,804058354 0,313336112 1.835875447
28 1.092110100 1,484578T42 0, 4726950517 ~ 1,685899152 04798309414 0.308961694 1.819240700
29 1,06972927 1466004454 0,465716847 16668858018 0,792586772 04304593221 1.803094879
36 1,047872993 . . . < 786830001 0.,300230593" 1. 787406083
31 1.026507273 1,430303372 0,451837099 1636160775 0.781218687 0295873713 16772145492
32 1.,005601246 1.413117271 0.444330070 1.620448011 0., TT5572421 0.291522483 1e 757286979
33 0.985126796 1,396339062 0.438044320 1,605125662 0.769950806 0+287176807 1. 742806780
34 0.965058230 1379945318 0.431173394 1.590171369 0.764353452 0,282836588 1o 728683217
35 0,945372004 1.363914600 0,424334846 1.575566669 00758779976 0278501733 1. 714896457
36 04976046481 T 348727229 043171510239 3230003 0.,274172147 1, 701428307
37 0,907061730 1. 332865102 04410705142 1 547320466 0.157703157 04269847737 1. 688262037
38 0.888299343 14317811523 0.403919132 " 14533549777 0.742199110 0.265528410 1675382222
39 0.RT0042280 1+303051061 0.397151793 1,520260013 04736717477 04261214074 1+ 662774614
40 0,851974732 14288569421 04390402715 14507137554 0.731257925 04256904637 14650426022
41 0.R34182005 1,274353338 0.383671497 14494269761 04725820115 04252600010 1.638324206
42 04816650409 1.260390474 0.,374957T4Y I, 4&i T2Z080371570,248300102 1. 626457791
43 0,799357169 14246669338 0,370261059 14469251984 0.115008600 04244006824 1.614816183
44 0,782320339 10233179203 0,363581065  1,457080850 0.709633851 0.239714088 1. 603389503
45 04765498731 1, 219910047 0,356917383 10445121943 0.704279753 04235427804 1592168516
46 0.748891847 1,206852482 0.23502695639 T 1, %3736633670,598945802 0.231145887 1. 581144585
47 0.732489824 1.193997708 0.3436374568 1.421805659 04693631694 00226868249 1.570309613
43 0.716283376 1. IB8T33ITA6T 0. 337020506 T, 410832057 0,688337134 0,22259480% 14559655999
49 0,700263752 1.,168863976 0.330418398 10399238146 0,683061831 0.218325464 1.549176602
50 04584422691 14156569933 04323830793 10388216975 0,6TTBOS5S01 04214060148 le 538864701
51 0,668752382 1a 144448438 04317257344 1377361996 0,672567863 0.209798768 14528713961
52 14553245432 1132492981 0,310697709 Ve35658T029 0.667348643 04205541242 1.518718409
53 0,637894836 1.120697413 04304151550 1356126234 0,662147571 04201287486 1.508872400
54 0622693940 1. 109055914 0297618536 ~ T1,3345734093 0.,556964380 0,197037416 14499170599
85 0,607636425 1.097562975 04291098337 1335485378 04651798811 0.192790950 1.489607955
56 0.592716277 1. 086213371 0.284590628 1.325375136 0.646650608 0,188548006 1. 480179682
57 04577927768 1.075002146 04278095089 1315398669 0641519519 04184308502 1. 470881239
58 045632654135 1063924590 0.271611404 1.305551514 04636405295 04180072357 14461708318
59 0,548724061 1.0%2976226 04265139260 16295829432 0.631307695 04175839490 14452656822
60 04534298661 1.042152793 04258678346 1,286228389 0.626226480 0.171609821 1o 443722856
61 04519984461 1.031450233 0,252228358 12276744544 04621161413 04167383270 1,434902712
62 04505776893 1.020864678 0,245788993 1.267374238 0,616112264 04163159758 1.426192856
63 00491671572 14010392437 0239359951 1258113979 0.611078805 04158939204 1.417589919
54 04677664289 1,000029985 0,232940937 1.248960439 0.606060813 04154721531 14 409090686
65 0,463751001 0.989773956 04226531659 14239910434 0,601058067 0,150506661 1. 400692088
65 04549927818 0,979621128 0,220131825% 1.230960924 04596070351 0.146294514 1. 392391189
67 0.436190992 00969568420 04213741148 1.222109000 04591097452 0,142085014 1.384185185
68 04622536912 0.959612882 04207359345 14213351879 0.586139160 0.137878082 14376071388
69 0.408962094 0949751685 04200986134 10204686893 04581195268 0,133673643 1.368047229
70 0.395463171 0.939982118 0.194621235 1.196111486 0.,576265573 0.129471619 1360110241
71 0.38203684an 04930301579 04188264372 14187623208 04571349875 04125271934 1.352258061
72 04368680102 N,920707570 04181915270 ~ 1.179219706 0.566447977 0.121074512 14344488423
73 04355380765 00911197690 04175573657 1170898722 04561559685 0,116879277 1336799150
T4 04342162991 0.901769633 0,169239264 1.162658085 0.556684807 04112686154 1329188150
75 0e32R99664N 0e892421179 04162911823 1154495711 0551823154 0,108495067 14321653413
76 0.315988219 0883150193 0,156591067 14146409593 04546974543 0.104305941 14314193008
77 04302834890 04873954618 04150276734 1.138397799 0,542138788 0,100118702 1306805074
TR 0428983403R 04964832474 0143968561 1.130458472 04537315711 04095933215 14299487821
79 0,2765993082 04855781850 04137666288 14122589820 0s532505133 0,091749585 14292239526
A0 04263979511 0o 865800904 04131369657 14114790118 04527706880 0,087567558 1285058526
81 04251120875 0e8378874859 04125078410 1107057702 0522920778 0,083387122 14277943220
82 04238204780 00829041N00 0.11R792293 16099390966 04518146658 0,079208202 16 270892064
87 04225528883 0,R20258670 0112511051 1,091788360 00513384352 0.,075030726 16263903565
94 0421279089] 04811539266 04106234433 1.084248389 04508633693 0070854619 14256976286
85 04200088557 0s 802881242 00099962187 1.076769607 04503894520 0,066679808 1,250108836
86 0,127419674 0e 794283099 0,093694063 1069350618 06499166670 0,062506220 1243299872
87 0,174792079 Ne 7A57433R9 04087429813 1061990071 04494449985 0,058333782 1.236548096
88 061521726739 0a 777260710 0,081169189 1,054686660 0,489744308 0.054162420 1. 229852252
29 04149592264 0768823704 0,074911944 16047439122 0485069484 00049992061 1.223211126
90 0.137Nn35887 0e 760661054 0,068657833 1.040246233 0,480365361 0.045822632 16216623543
91 04124502476 00752141486 04062406611 1033106808 0.475691788 0.041654072 1,210088365
Q92 04111090022 0e 743R73764 0,056158033 1,026019701 0.471028616 0,037486333 14203604490
97 0,N199493654? Ne 735656686 04049911862 1018983799 0,466375699 0,033319335 1.197170850
%4 0,987020075 Oe 727489091 0.043667860 1011998025 04461732890 0,029152890. 14190786410
9% 0,074558678 0471926948 04037425759 1.005061333 0,457100047 0,024906801 1,184450168
94 04762110428 0s 711207959 0,031185289 ~0,996172709 0.,452677029 0.020821487 14178161151
97 0,049677415 00703272060 06024946419 00991331169 0.447863696 0,016657520 1171918415
IR 0sN3T245745 0.695291414 0,018708530 06984535759 0,443259910 04012491511 106165721043
90 1,1248255%% 0687356914 0,012471756 0977785551 0,438665534 0,008328245 14159568147
10) 0.012610902 0.679461582 0,006235631 0.971079644 0,434080434 04004163860 1.153458863

N=400

101-200

14147392353
1.141367801
1.135384415
1,1294414626
14123538084
1.117673661
14111847448
1.106058755
14100306910
14094591260
1,088911168
1.083266012
14077655188
1.,072078106
14066534192
14061022884
14055543637
1.050095917
14044679203
1.039292987
1,033936773
1,028610077
1.023312426
1.018043358
1.012802421
1.007589174
1.002403187
04997244036
00992111311
00987004607
04981923531
0.976867697
0.971836728
00966830253
0.961847912
04956889351
0.951954221
04947042186
04942152911
0937286071
04932441347
04927618426
0922817002
04918036774
0913277448
04908538735
0.903820351
0899122019
00894443467
06889784427
0.885144636
04880523838
04875921779
04871338212
04866772893
04862225583
00857696047
04853184055
04848689380
04844211800
0.839751096
04835307054
0.830879462
00826468113
04822072802
04817693331
046813329501
0.808981118
0804647993
00800329937
04796026767
04791738300
04787464359
0e 783204768
04778959355
06774727948
04770510382
00766306491
0e762116112
0. 757939088
0,753775259
0¢ 749624472
0e745486573
OeT41361614
0, 737248845
0e 733148722
04729060900
00724985239
06720921598
00716869841
04712829832
00708801438
0s 704784527
04700778969
0,696764638
0692801405
0688629148
0e 68486TT44
04680917072
04676977012

201-300

0e 673047448
0. 669128262
00665219340
0.661320570
0657431840
0. 653553040
04669684061
0,645824797
00641975140
0.638134988
00 634304237
0. 630482784
00626670531
04622867377
04619073224
0.615287975
0.611511536
0.607743811
00603984707
0.600234132
04596491995
04592758206
0.589032676
0,585315318
0.581606043
0.577904768
0, 574211406
0.570525873
0.566848088
04563177968
04559515431
0.555860399
0.552212791
0. 548572529
04544939536
00541313735
04537695050
04534083406
0.530478730
0. 526880947
0.523289985
0.519705772
0.516128237
00512557310
0, 508992920
0. 505435000
0,501883481
0.498338294
0,494799375
04491266655
04487740070
04484219555
0, 480705045
0.477196477
0,473693788
0470196916
0.466705798
0463220373
00459740581
04456266362
0. 452797656
00 449334404
0445876547
004426424029
00438976791
0.435534776
00432097928
00428656192
04425239511
0.421817831
0418401098
04414989257
0.411582256
0,408180040
0.404782558
04401389757
00398001585
04394617991
00391238925
04387864336
04384494173
00381128388
04377766930
04374409750
00371056802
00367708035
00364363403
0361022857
04357686352
00354353840
00351025274
0347700610
0e 3644379800
04341062800
00337749565
0¢ 334440050
00331134210
0,327432002
0e 324533381
00321238305

301-400

00317946729
0e314658612
04311373910
0. 308092581
04304814583
04301539874
0e 298268413
0. 295000159
0291735070
00288473105
0285214225
0.281958388
00278705555
0e 275455687
0272208743
00268964684
0e 265723471
0262485066
06259249429
0256016523
0.252786308
00249558748
00246333803
0e243111438
0,239891613
0e 236674293
00233459439
00230247015
0.227036985
00223829312
0.220623960
0e217420893
00214220074
04211021467
0207825035
00204630752
0 201438571
06198248462
0,195060390
0.191874319
0.188690215
0.185508044
0.182327771
0e 179149361
0.175972781
0e172797997
0e 169624975
0e 166453681
0e 163284081
00160116142
00156949832
0.153785115
0e 150621960
0e147460333
04 144300202
Oelbll41534
04137984295
04134828454
0e131673978
0e 128520834
0125368991
0e122218415
0.119069076
06115920940
0e112773976
0.109628152
0.106483438
0.103339800
04100197207
0.097055628
00093915030
0.090775383
0087636654
0,084498813
00081361829
0.,078225671
0.075090310
0.071955713
0068821850
0.065688687
0062556194
0e 059424338
04056293090
0.053162424
04050032307
00046902705
064063773579
00 040644898
04037516652
0.034388854
00031261501
04028134491
0025007542
0,021880376
0.018753611
0.015629081
0. 012504911
0.,009373127
0006252911
0.00312%5163
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with the appropriate algebraic signs attached in the Variant II case.
We shall present below a scheme that maps the M = n!/IIF., #;!
such permutations y into M points n(y) spaced uniformly in the unit
interval, and then represents each n(yp) by the first Q digits in its binary
fraction expansion, where Q is the smallest integer greater than
log, M. The procedure for generating the binary codeword

D(y) = 5152 -Sg (52)

corresponding to y is most easily described by the following Algol-
type program. For Variant 1I codes, » more binary digits are appended
to ®(y) to supply the sequence of algebraic signs.

Encoding Algorithm

1) < n;, i=12--- K
I(0) « 0.
[« 0.
2y <[+ 1.
ii—1
3) mem+ P Y IG).
i=0

4) If I = n — 1, go to 8). Otherwise continuie.

p L@

5 P .
)(_n—l

6) I() « IG) — 1.

7y Goto2).

8) j« 0.

9) jej+ 1.

10) Ifn < 277, 5; « 0. Otherwise (s; « land n « = — 279),
1)y Ifj < @, go to [9]. Otherwise stop.
The corresponding Algol-type program for recovering the i, and

hence y, from ®(y) is as follows.

Decoding Algorithm

Q
D Pend 5274
j=

1) =n, i=12---K.

[« 0.
) I« I1+1.
3) R« 0.

i« 0.
4) i« i+ 1.

S) R« R + I().

6) If R < P, go to 4). Otherwise continue.

T i« i

8) If/ < n — 1, continue. Otherwise go to 12).
9) Pe (P — R+ I0))n — D).

10) I(i) « IG) — 1.
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11) Goto2).

12) I(G) « I() — 1.

13) i« 0.

14) i« i+ 1.

15) If I(i) = 0, go to 14). Otherwise continue.
16) i, « i

17) Stop.

It can be shown that the encoding and the decoding algorithms
described above require neither memory nor computational time to
grow more than linearly with n [15].
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