
160 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-I 8, NO. 1, JANUARY 1912

Permutation Codes for Sources
TOBY BERGER, MEMBER, IEEE, FREDERICK JELINEK, SENIOR MEMBER, IEEE,

AND JACK K. WOLF, MEMBER, IEEE

Absfracf-Source encoding techniques based on permutation codes are
investigated. For a broad class of distortion measures it is shown that
optimum encoding of a source permutation code is easy to instrument
even for very long block lengths. Also, the nonparametric nature of
permutation encoding is well suited to situations involving unknown
source statistics.

For the squared-error distortion measure a procedure for generating
good permutation codes of a given rate and block length is described.
The performance of such codes for a memoryless Gaussian source is
compared both with the rate-distortion function bound and with the
performance of various quantization schemes. The comparison reveals
that permutation codes are asymptotically ideal for small rates and
perform as well as the best entropy-coded quantizers presently known for
intermediate rates. They can be made to compare favorably at high rates,
too, provided the coding delay associated with extremely long block
lengths is tolerable.

I. INTRODUCTION

V ARIANT 1 and Variant II permutation codes were
introduced by Slepian [l] for the purpose of reliably

transmitting digital data over a certain class of noisy
channels. Shortly thereafter, Dunn [2], [3] considered the
use of Variant I permutation codes as a means for digitizing
vectors generated by a time-discrete memoryless Gaussian
source. We have extended the work of Dunn in several
ways. In particular, a procedure has been devised that
generates, for a broad class of sources, Variant I and
Variant II permutation codes of a specified rate and block
length that are nearly optimum in the mean-squared-error
(MSE) sense. It is shown that the encoding and decoding
of source permutation codes is fully instrumentable for any
monotonic nondecreasing convex- v nonnegative distortion
measure. In the Gaussian MSE case, permutation source
codes are shown to be asymptotically ideal for low rates
and to perform as well as the best entropy-coded quantizers
presently known for intermediate rates. The instrument-
ability of permutation codes and their applicability to
situations in which the source statistics are imperfectly
known are also discussed.

Calculation of the performance of the Gaussian MSE
Variant II codes necessitated the generation of tables of
Fraser normal scores for large values of n. We have included
some of these tables herein, since the only table previously
published [4] is restricted to y1 2 10.

Manuscript received February 1 I ! 197 1. This research, conducted at
Cornell University, was supported m part by NSF Grant GK 14449,
NASA Contract 2-5643, and AFOSR Contract F44620-71-C-0001.

T. Berger and F. Jelinek are with the School of Electrical Engineer-
ing, Cornell University, Ithaca, N.Y. 14850.

J. K. Wolf is with the Department of Electrical Engineering,
Polytechnic Institute of Brooklyn, Brooklyn, N.Y. He is now on leave
at the Department of Electrical Engineering, University of Hawaii,
Honolulu, Hawaii 96822.

II. ENCODING OF PERMUTATION CODES

Consider a time-discrete information source emitting the
sequence of real random variables {xk, k = 1,2,. . .}. The
source outputs need not be either statistically independent or
identically distributed. We are concerned with block coding
(block quantizing) of the &dimensional random vector
x = (X1,X2,‘. . ,x,). Any set of M n-vectors, B = {y1,y2,
. . . ,yM}, constitutes a source block code of rate

R = n-l log, M. (1)

When the source output vector assumes the value X, it
should be encoded into whichever y E B minimizes some
prescribed block distortion measure d(x,y). The resulting
per-letter average distortion of the code B is defined as

D = n-‘E[$; d(x,y)], (2)

where E denotes expectation with respect to the distribution
of x.

The optimum encoding procedure for a general block
code is very complex. In its worst form, the source output
vector must be compared with each of the codewords y,,
k = 1,2,. . . ,M, and then encoded as the subscript of that
codeword that attains the minimum distortion. For very
large M this is a horrendous task. The appeal of permuta-
tion codes stems principally from the fact, embodied in
Theorem 1 below, that they possess a simple optimum
encoding procedure for a broad class of interesting
distortion measures.

In Slepian’s Variant I and Variant II permutation codes,
the codewords y,, k = 1,2,. . .,M, are chosen in the
following manner.

Variant Z Codes: The first codeword is an n-vector of the
form

+ nl + +n2-+ + flK +
Y, = (PI,. . ‘41#2,‘. ‘$2,’ . ‘,PK,’ . .,PK), (3)

where the ,ui are K real numbers satisfying p1 > p2 >
. . . > pK, and the ni are positive integers satisfying

n, + n2 + . . . + n,y = n. (4)

The other codewords yZ,y3,. ‘,y, are all the distinct
words that can be obtained by rearranging the components
of y1 in all possible ways. There are a total of

M = n!/fi n,!
i=1 (54

codewords.
Variant ZZ Codes: The first codeword yl is again of the

form specified by (3), but with the added proviso that the pi
are all nonnegative, pl > c(~ >. . . > pK 2 0. The other

BERGER et d. : PERMUTATlON CODES FOR SOURCES’ 161

words of the code are formed by assigning algebraic signs
to the components of y, in all possible ways, and then
permuting these signed components in all possible ways.
The number of codewords in a Variant II code therefore is

M = 2hn!,fi n,!,
i-1 (5b)

where h = n if ,LL~ > 0 and n - nK if ,LL~ = 0.
Theorem 1: Consider a block distortion measure of the

form

where x = (x,, . . .,x,), y = (vi,. . ,y,), g(.) is nonde-
creasing, and f(.) is nonnegative, nondecreasing, and
convex u for positive arguments. Then optimum encoding
of Variant I and Variant II permutation codes with respect
to d(x,y) is accomplished by the simple algorithms described
below.

Variant I Encoding Algorithm.
1) Replace the n, largest components of x by pl.
2) Replace the next 1z2 largest components of x by pZ.

K) Replace the nK smallest components of x by ,LL~.
Use the permutation of y, that results from these replace-

ments to represent X.
Variant II Encoding Algorithm:
1) Replace the 17, components of x largest in absolute

value by either +p, or -pl, the sign chosen to agree with
that of the component it replaces.

2) Replace the n2 components of x next largest in absolute
value by either +,L[~ or -p2, the sign again chosen to agree
with that of the component it replaces.

K) Replace the n, components of x smallest in absolute
value by either +,B~ or by - pK, the sign again chosen to
agree with the sign of the component it replaces.

Use the codeword that results from these replacements to
represent X.

Proof: See Appendix 1.

It should be noted that, if the source letters x1,x2,. . ‘,x,
are independent and identically distributed, then all code-
words of a Variant I code occur equiprobably under
optimum encoding. tf, in addition, the source letter distri-
bution is symmetric about zero, then the same becomes
true for Variant 11 codes. The requirement of independence
imposed on the xk here can be replaced by the somewhat
less stringent requirement of exchangeability as described,
for example, by Feller [S].

11 I. MINIMUM-MEAN-SQUARED-ERROR (MMSE)
PERMUTATION CODES

The ever-popular squared-error distortion measure

d(x,y) = n-l il (xt - YrY (7)

is a special case of those considered in Theorem 1. Jn this

section, we describe a method for constructing Variant I
and Variant II permutation codes of a given rate and block
length that are optimum in the squared-error sense.

Define the random variable ~j, j = 1,. . . ,n, to be the $h
largest component of the source vector X, and the random
variable yj to be thejth largest of the absolute values of the
components of X. For convenience, let

Si = n, + y/2 + . . . + ni (8)

and define S, = 0. Then the MSE values of optimally
encoded Variant I and Variant II codes are given, respec-
tively, by

D, = n-‘E 2
L

$J (tj - pJ2
1

Pa>
i=l j=,S-I+1

and

Noting that

2 (qj - pi)’ .
1

C’b)
i=l j=Si-1+1

we can rewrite (9) in the form

(10)

nD, = E\x\’ - 2 5 pi : Etj + 5 nipi (1 la)
i=l .j=Si-1+1 i=l

nD,, = Elx12 - 2 5 pi 2 Eqj + 5 nipi’, (lib)
i=l j=Si-I+1 i=l

where lx12 is the summation in (10).
Differentiation with respect to pi reveals that the best

choice of the parameters pl,. . . ,pK for given n,, . . . ,n, is

pi = niel i E5j, Variant I (12a)
j=.S-I+1

pi = a,-1
3 EVj, Variant II. (12b)

j=Si-I+1

The value of MSE that results when the pi are chosen in
accordance with (12) is

We stress that the derivation of (12) and (13) did not assume
the xk to be statistically independent or identically distri-
buted. However, when the components of x are highly
dependent, permutation codes perform relatively poorly
even when the optimum pi are used.

The performance of optimum source permutation codes
of a given rate usually improves as the block length n
increases. Since it is easy to encode permutation codes
optimally even for large n, it therefore is desirable to have a
method of generating optimum Variant I and Variant II
codes of a specified rate and block length n >> 1. However,
when n is large, there are many ways in which K and the
group sizes n1,n2,. . . , K n can be chosen so that the code rate
R [given by (1) and (5a)] closely approximates a specified
value. We now describe an iterative technique that searches
for the values of K and n,, . . . ,nK that minimize D of (13)
for a specified rate and block length.

162 IEEE TRANSACTIONS ON INFORMATION THEORY, JANUARY 1912

Define
Pi = 44 i = 1,2,. . .,K. (14)

Then, if each ni is large, we can use Stirling’s formula to
approximate the rate R by

Variant I

l - 2 Pi log Pi, Variant II (pK > 0).
i=l

(15)

Furthermore, the MSE for the optimum {pi} of (12) is given
exactly by

D = n-‘Elxl’ - i pi~i2.
i=l

Treating (15) as an equality, we can minimize D with respect
to Pl,P2,‘. . ,pK subject to the rate constraint. The pi that
result are

pi = 2-fl”‘/(C~zl 2-BPj2), (17)

where p is chosen so that j? of (15) equals some specified
rate value R*.

Note that, in actuality, we do not have an analytic
solution for the best ni for three reasons. First, although
ni = npi according to (14), np, usually is not an integer.
Second, each pi depends on all the pi, each of which is, in
turn, a complicated function of all the ni via (12) and (8).
Third, the above procedure assumes that K is known,
whereas we actually want to find the best K. We attack these
obstacles as follows. With K temporarily held fixed, we
iterate (12), (17) and (14) in that order until the same {ni}
set appears on two successive iterations, indicating con-
sistency. The best K then may be found via a simple search
routine. An algorithm of this sort that we used to generate
good permutation codes is described in Appendix II. Fairly
broad conditions under which this algorithm is capable of
generating permutation codes that are truly optimum in the
MSE sense are derived in Appendixes III and IV. In
particular, independent zero-mean Gaussian data satisfy
these conditions for both Variant I and Variant II codes.

IV. PERFORMANCE FOR GAUSSIAN DATA

The performance of Variant I and Variant II codes
generated by the computer algorithm of Appendix II has
been calculated for diverse rates and block length n = 400
for independent Gaussian data. Smooth curves drawn
through the resulting (R,D) points are shown in Fig. 1.
Also shown is the lower bound provided by Shannon’s [6]
rate-distortion function formula

R(D) = 3 log, (02/D), (18)

where c2 is the variance of the source. For 1 I R I 3 the
performance achieved by the permutation codes lies nearly
on the line

R = $ + + log, (o’/D) bits/letter. (19)

It is interesting to note that (19) is the same formula
that Goblick and Holsinger [7] report to be an accurate

fit to the lower envelope of the performance curves of single-
sample quantizers with uniform spacing subject to entropy
coding. Further comparison of permutation codes and
entropy-coded quantizers is given in Section VI.

For rates R < 1, the performance of Variant I codes
approaches that of the rate-distortion curve. In particular,
the lowest rate Variant I code of block length n has n, = 1
and n2 = n - 1. Its optimum pi are p1 = Et, and
p2 = -pl/(n - 1). This code is a simplex code, and its
performance is given by

R = n-l log n (20)

D/o2 = 1 - (n - 1)-l,u12. (21)

The asymptotic behavior of p1 has been studied extensively
by Gumbel [8], who has shown that for independent
Gaussian data

p1 - J2 log, n + constant.

Combining (20) through (22), we have for large n

D/a2 cz 1 - 2R log, 2 + O(n-’ Jlog n). (23)

When (23) is compared with the asymptotic form of (18)
for small R, we see that the two agree for large n. Thus, the
simplex Variant I codes are asymptotically optimum for
small R (large n). By way of contrast, it is easily shown that
the best quantizer with only two representation points for n
independent Gaussian source outputs behaves as

D/a2 = 1 - (2/7r)R log, 2, (24)

which is not asymptotically optimum.
The computer algorithm described in Appendix II

yielded somewhat better Variant I codes than those that
Dunn [3] had been able to find by educated guesswork. The
following two n = 400 codes are easily compared:

Dunn {n,> = (5,5,35,40,65,100,65,40,35,5,5)

R = 2.86367, D = 0.03389

computer {ni} = (1,2,7,20,46,77,94,77,46,20,7,2,1)

R = 2.79184, D = 0.03362.

The computer-generated code achieves approximately the
same D at a smaller value of R.

The performance of maximum-rate Variant I codes
(K = n, ni = 1, pi = Eti) as a function of block length is

(R,D/02) = (n-’ log n!, 1 - C’S),

where

Values of S for independent Gaussian data have been
tabulated by David et al. [9] for n < 400. Maximum-rate
codes are seen to perform quite poorly relative to the rate-
distortion bound. The sharp upswing at high rates of the
permutation-code performance curves in Fig. 1 may be
explained as follows. The E[tj] (or E[qJ) values for neigh-
boring values of j do not differ by very much. Unless one

BERGER et a[. : PERMUTATION CODES FOR SOURCES 163

0 LLOYD -MAX QUANTIZERS, “NCODED

D LLOYD -MAX QUANTIZERS, CODED

q DVNN, VARIANT I CODES (n: 400)

Fig. 1. Comparison of permutation codes, quantizers, and R(D).

collects such neighboring values into groups and represents
them by a common ,u, the code will contain clusters of
codewords with almost identical coordinates in n-space. A
good code is characterized by widely scattered codewords,
so this clustering is highly undesirable and serves to further
underscore the importance of the optimum grouping
technique developed in Section III and Appendix II.

The only table of Gaussian E~j previously available was
that of Klotz [4] for n I 10. Since much larger values of n
had to be investigated, new tables were generated. The
Gaussian Eqj also form the reference data base in applica-
tions of a popular nonparametric statistical test for sym-
metry of probability densities called the Fraser normal
scores test [IO]. Accordingly, we have included tables of
Eqj for n = 100,200, 300, and 400 for reference purposes in
Appendix V, together with recursive formulas that can be
used to generate tables for the intervening values of n.

V. THEINSTRUMENTATION PROBLEM

The encoding methods for permutation codes described
in Section II assumed that encoding consisted simply of
replacing the source word by the closest codeword. In
actuality, for transmission over a channel or for storage in a
memory, it is necessary to generate a digital representation
of the appropriate codeword. This entails performing two
operations: sorting and coding.

The most straightforward approach to the sorting
problem would be to use one of several available techniques,
such as quicksort [l 11, samplesort [12], or treesort [13],
to completely order the source samples (or their absolute
values in the case of Variant II codes), and then to group
the time indices of the largest n, samples into one set, the
time indices of the next largest n2 samples into a second set,
and so on. If n is large and many of the group sizes nj also

are fairly large, it will pay to capitalize on the latter fact to
avoid having to perform a complete ordering. In such cases
the sorting problem is not trivial. Moreover, its importance
is intensified by the fact that the complexity of sorting via
complete ordering is known [l l] to grow as n log n, which
it turns out would dominate the complexity of the rest of
the encoder in the limit of large n.

Next, the sorted index arrangements must be coded. For
small n one might arbitrarily assign a different binary
codeword of length

log, M = log, n! - ids log, ni!

to each of the M different index arrangements and use table
look-up. As n grows, this becomes unmanageable rapidly.
Ifni = 1 fori = l,... ,K, then known permutation encoding
techniques [14] may be used whose complexity grows
linearly with n. However, codes with ni = 1 for all i per-
form poorly for reasons discussed in Section IV. In Appendix
VI we describe another technique, based on Jelinek’s [IS]
version of Elias’s noiseless coding technique, that applies
to all possible values of {Mi} and also has been shown [15]
to grow only linearly with n. It has been called to our
attention that a comparable method appears in a patent
application of Slepian [16] covering permutation coding
schemes for channels.

For Variant II codes it is necessary to encode the sign
pattern, also. This poses no problem when all 2” sign
patterns are equally likely, as in the case when the source
outputs are zero mean and independent. For nonequi-
probable sign patterns, a Huffman-type coding technique
might be most applicable.

The source decoder is an instrument that translates the
“index codewords” into representation words (vi ,y2,. . . ,u,,),

164 IEEE TRANSACTIONS ON INFORMATION THEORY, JANUARY 1912

where y, = + pi if k belongs to the ith index set; the sign is
+ for Variant I codes and is determined from the sign
portion of the codeword otherwise. A procedure that
accomplishes this task with a complexity that also grows
only linearly with n is described in Appendix VI.

VI. PERMUTATION CODES VERSUS QUANTIZERS

It was noted in Section IV that the MSE performance of
permutation codes for an independent Gaussian source is
bounded from below by the lower envelope (19) of the
performance curves of single-sample quantizers with uni-
formly spaced levels. These are the best single-sample
quantizers presently known in the (R,D) sense [7], [17].
In order for permutation codes to perform close to the
curve given by (19) for high R, they must have very large
block lengths. However, permutation encoding, as described
in Sections II and V, is so simple that it nevertheless may be
easier to implement such codes than to tackle the buffer
overflow problems [lS], [19] associated with entropy
coding of the highly nonequiprobable outputs of a uniformly
spaced multilevel quantizer. In the absence of entropy
coding, the best single-sample quantizers are those of Lloyd
[20] and Max [21]. F or n = 400, we see from Fig. 1 that
optimum Variant I and Variant II codes outperform
uncoded Lloyd-Max quantizers for R < 3.7 and R < 4.5,
respectively.

It should be appreciated that comparable simplicity
cannot be obtained with single-sample quantization
techniques in the face of unknown, possibly time-varying
source statistics. In order to match the quantization levels
to the data, one must store all the data first, then calculate
and send the levels, and finally quantize the data letter by
letter. This amounts to a complicated block coding scheme
that requires a much longer coding delay (at least at the
transmitter) than does the permutation scheme. In addition,
if it is desired to code the quantizer outputs in order to
preserve rate, one must send both the sample relative
frequencies of the quantization bins and the variable-length
code being employed.

VII. SUMMARY

The principal results of this paper are reiterated below.
1) We have developed techniques for optimizing the

parameters of permutation codes for sources.
2) We have shown that in the Gaussian MSE case

permutation codes are asymptotically ideal at low rates and
perform as well as the best entropy-coded quantizers at
intermediate rates.

The relationship between permutation codes and single-
sample quantizers perhaps is illuminated further by the
following observation. A Variant II code with K = 1
(hence n, = n and R = 1) has representation points
(+ aJ2/q f oJ2/71,. . . , f042/rc), which are identical to
those of an optimum l-bit quantizer. Its performance is
given by the point marked in Fig. 1 by the circle and triangle
for n = 2 and lies almost right on the curve given by (19).

3) We have argued that permutation codes, in large part
because of the simple, essentially nonparametric nature of
their optimum encoding algorithms, compare favorably
with the other source encoding techniques presently in use,
especially in the commonly encountered case in which the
source statistics are unknown and/or possibly time varying.

ACKNOWLEDGMENT

The authors are indebted to Dr. D. Slepian and Dr. A. D.
Wyner of the Bell Telephone Laboratories for informative
discussions, and to L.-W. Fung of Cornell University for
programming their computer calculations.

It is worth stressing that the nonparametric nature of
permutation encoding makes it well suited to situations in
which the source statistics are either unknown or time
varying. In such situations one could proceed as follows.
Select a code rate R close to the capacity of the channel
being used for transmission, and a block length n as long as
practical considerations will permit. Partition M into a
grouping {n,} that has rate R. A good choice for {n,}, in the
absence of any knowledge to the contrary, is the optimum
Gaussian MSE partition for rate R found by the method
described in Appendix II. Encode successive n-vectors as
usual, but also collect sample order statistics. After a
duration comparable to the time constant of the pheno-
menon responsible for the time-varying behavior (if this is
known), send the {pi} of (12) as calculated from the sample
order statistics.’ Then convert the received permutation
rank orders into numerical vectors using this {pi} set.
Note that the sample {pi} yield even better performance
than would the “true” {pi} were they known. Hence, this
may be a desirable procedure to follow even when the source
statistics are known.

APPENDIX I
PROOF OF THEOREM 1

We shall establish the theorem for Variant I codes and a distortion
measure of the form

d(w) = i f(lxt - Yd (25)
i=l

where f’(.) is nonnegative, nondecreasing, and convex v for positive
arguments. The extensions to arbitrary nondecreasing g(.) and to
Variant II codes noted in the theorem statement should be obvious.

From the additive nature of (25), it suffices to show that, if x1 2
x2 2 . . .Z x,, then the basic codeword

is the one that minimizes d(x,y). Furthermore, once this has been
established for n = 2, it is easily established for n > 2 by induction.
Hence, let n = 2 and let y, = (u1,u2). There are six cases to consider,
namely,

Casel: xl~vl>_v2~x2 Case 4: vl L xl 2 x2 2 v2
Case2: x1 2 u1 2 xz >_ v2 Case 5: 01 2 x1 2 vz 2 x2
Case 3: x1 2 x2 2 0, 2 vz Case 6: u1 2 uz 2 x1 2 x2.

In each case we must establish that

1 Rate probably can be conserved by sending only the changes in the
f(ix~ - ~111 + f(lx~ - uz\) 5 f(.lxl - uz() + f(lxz - VII). (26)

It is clear that Cases 4, 5, and 6 will follow by symmetry once (26) is
Pi. established for Cases 1, 2, and 3, respectively.

BERGER et al. : PERMUTATION CODES FOR SOURCES 165

Tl
Fig. 2. Sketch off(x) and the similar triangles 71 and T1.

Case 1: We have o1 - x2 L t’z - x2 L 0 and x1 - u2 2 xl -
t’, 2 0. Hence, (26) follows from the monotonicity of.f(.).

Before treating Cases 2 and 3, we note that if we can establish (26)
fory(lx - ~1) = f(ix - ~1) - f(O), then it clearly will hold for .f(.)
as well. Hence we lose no generality by assuming,/“(O) = 0.

Lemma: If a 2 0 and b 2 0, thenf(a) + f(b) 5 f(a + b).
Proof: See Fig. 2. A straight line is drawn through the points

(a, f (a)) and (b, f (b)). Since f (.) is convex u and f (0) = 0, the line
intersects the abscissa at a nonnegative value. Triangles Tl and T2
are similar. The base of Tz is larger than the base of T1, so the altitude
of TX is larger than f(a), the altitude of T,. Thus the straight line
intersects the point (a + b, h) where

f(a) + f(b) I h I .f(a + b). Q.E.D.

Case 2: We have

.f(lx, - Cll) + f(lXZ - 4) 5 f (IX1 -- x11) + f (I% - 4)

I f (IX1 - u,l)

where the first inequality follows from xI 5 U, and monotonicity, the
second from the lemma, and the third from nonnegativity.

Case 3: We have

.f(lX* - 4) I .f(lXl - 02/J,

since in this case xz - cz 5 x1 - t’z and f is nondecreasing. Let

3Cl4) = .f(la + x2 - cd - .f(lxz - till).

Applying the lemma to f+(.) yields

f (IX1 - 24) + f (1.x2 - 4)

= .3(lXl - x21) + 3ClDI - 021) + 2fClX2 - OIlI

5 f(lXl -- x2 + 2’1 - L.21) + 2f (Ix, - 011)

= f(lx1 - 4) +- .f(lxz - Cll). Q.E.D.

APPENDIX II
AN ALGORITHM FOR GENERATING GOOD

PERMUTATION CODES
The following computational algorithm, based on the theory of

Section II, generates permutation codes of a specified rate R* and
block length n that are good in the MSE sense. Fig. 3 provides a flow-
chart description of the algorithm. Fairly broad conditions under which

Fig. 3. Flow chart for permutation code algorithm.

the algorithm is capable of generating codes that are truly optimum are
derived in Appendixes III and IV.

1) Input n, R*, Variant I or II, and Etj or Ejyj for 1 = 1,. . ,>I.
2) If Variant I, set K equal to the smallest odd integer whose base 2

log exceeds R*. If Variant II, set K equal to the smallest integer whose
base 2 log exceeds R*.

3) Set* p = I and make the integers ni, i = 1,. . ,K, approximately
equal; e.g., if K divides n, set ni = n/K for all i.

4) Compute IL,,~~,’ . ‘,/I, from (13).
5) Evaluate the pi by (17). Adjust p until (15) is satisfied for

d = R*.3
6) Compute new ni as the closest integers to npi such that

cfy, ni = n.
7) If ni = 0 for any i, proceed to step II).
8) If the new and old ni agree for all i, proceed to step 9). Otherwise,

return to step 4).
9) Store n,,. . . ,nK,D, and the exact value of R calculated from (2)

and (5).
10) If Variant I, replace K by K + 2, reduce the largest ni by 2,

relabel ni as ni+l for i = I;..,K - 2, and put nl = ~7~ = 1. If
Variant II, replace K by K + 1, reduce the largest ni by I, relabel ni
as ni+l for i = 1,. . .,K - I, and put n, = 1. Return to step 4).

11) Print {IZ~}, R, and D stored in step 9). Go to step 13) unless K is
odd and code is Variant I.

12) Set K equal to the smallest even integer whose base 2 log exceeds
R*, and return to step 3).

13) stop.

2 The desired value of p usually is positive. The reason is that (17) implies that pi. and
hence ni, decreases with increasing ?~;2 for p > 0, a property that is shnwn in Appendix
III to be desirable in a broad class of interesting problems.

3 It follows from (17) that

dR^ = - P lw32e 0 [,;, PiPi -- (5, ,wi2)] = - P logzc var (lr2) >

so 8 is a monotonic decreasing function of p, Hence, the value of p that satisfies (15)
is unique and can be determined rapidly by a modified Newton-Raphson method.

166

Table I illustrates the convergence of a typical sequence of {n,} sets
obtained with this algorithm in a practical example.

It is shown in Appendix III that, if Eq, is a convex-u function of j,
then the Variant II algorithm can generate permutation codes that are
truly optimum in the M S E sense. Moreover, it is shown in Appendid
IV that, in the important case of statistically independent source
outputs whose absolute values are identically distributed according to
a probability density function f,,,(.) that is nonincreasing on [O,CO),
Eq, is indeed a convex-u function. We conjecture, but unfortunately
are unable to prove that, when this convexity prevails, the Variant II
algorithm always produces a code whose K and {ni} differ from their
optimum counterparts by at most 1; the unit inaccuracies are caused
by the diophantine nature of the problem.

IEEE TRANSACTIONS ON INFORMATION THEORY, JANUARY 1912

TABLE I
SEQUENCEOF{~~} SETS FOR INDEPENDENT STANDARDIZED

GAUSSIAN DATA (VARIANT I, n = 400, R* = 1.5, K ODD)

K=3 133

K-tKf2 1

100
,“a same

2

K+Ki-2
The corresponding situation for Variant I codes is as follows. The

Variant I algorithm can generate MMSE codes whenever ET,, is
convex u for ,j E {I ,2,. . ,[n/2]} and is convex n for .i E {[n/2] + 1,. . . an}.
When this convexity prevails, we conjecture that the algorithm always
will generate a code that is optimum in the diophantine sense described
previously. In the case of independent identically distributed source
outputs, the desired convexity will be in effect whenever fX(.) is
unimodal, symmetric, and zero mean.

K-KS2

134
200
202
202
200
216
226
228
230
230
228
238
240
242
242
240
252 69 4 I 0

APPENDIX III

A NECESSARY CONDITION FOR
OPTIMALITY OF THE ALGORITHM OF APPENDIX II

Observe from (14) and (17) that thep,, and hence the n,, always are
monotonic functions of the flui’. This is a consequence of the fact that
in step 5) the ici are not permitted to vary in accordance with (12) while
thep, (hence the n;) are being optimized. As a result, the algorithm of
Appendix II can converge only to codes that are characterized by
groupings {ni} that generate icli via (12), which are such that ni actually
varies monotonically with /ci ‘. It now will be shown that, for a broad

Print

let

Then

n(D - D’) :

-

=

n, = n, = 1, n2 = n6 = 4, n, = n5 = 74, n, = 242
R = 1.47514, D = 0.18595

b = nl-, = n,’ > nl = n,‘-, = a.

$ L+l+...+ liL+3*+&+.+i +.

- ;(v L+l +...+ 4‘+dz

L+b+l +...+ vL.+,+tY.

and interesting class of examples, the optimum code indeed is It follows after some algebraic manipulation that
characterized by an inverse relationship between 11~ and fli2. In such
cases, therefore, it is possible for the said optimum code to be found nab(D - D’) = a[(y + z)’ - (x + y)*] + b(x2

by the algorithm of Appendix II with p > 0.
For simplicity, the ensuing discussion will be restricted to Variant II

= (x - z)[(b - a)(x + z) - 2uy]
where

codes only, after which the implications for Variant I codes will be
discussed. Since the optimum /I CZ for Variant II codes necessarily
decrease with increasing i, it will suffice to show that the optimum ni
are monotonic increasing with i. From (12b) the values of the pci that
minimize the MSE for given {n,} are

where eJ A E~J~. From (13)the resulting minimum MSE is

EIXIZ - 5 nipi .
i=l 1

Theorem 2: Suppose uj is a convex-u function ofj, i.e., suppose

A2vi = '7j+2 - 2Vj+l + ‘fj 2 03 I SjSn-2. (29)

Then the optimum ni increase monotonically with i.
Proof: We shall show that, if n,- 1 > n, for some 1, then D can be

decreased by reversing the roles of n,-, and n,. That is, if a new
grouping ini’} is defined by

ni’ =

l

ni, ifl-lorl
n,, i=l-I
nl-l, i=l (30)

then
D’ < D, (31)

where D’ is defined by the right-hand side of (28) with the ni replaced by
the n,’ and with the pi recalculated from (27) using the ni’ in place of
the ni.

We establish (31) as follows. Let L = n1 + n2 + . . + nLwz, and

.

n
x 4 c VL+,r

j=l

b a+b
z A c ill,+j. (34)

j=b+l

(32)

+ ilL+o+b Y

- zZ)

(33)

But x > z because of (32) and the fact that rl, > &,. . .,ij, > 0, so
D 2 D’ iff (b - a)(x + z) - 2uy 2 0, or equivalently iff

x+z - 2y >o
a b-u- ’

Upon substituting (34) into (35), we see that proving the theorem has
been reduced to establishing the inequality

That (36) is indeed a valid inequality is a consequence of the con-
vexity hypothesis (29). To see this, plot the points 4, versus j and then
connect them by straight lines. This results in a piecewise linear
convex-u function of a continuous variable, call it 4(x), 1 5 x 5 n.
Define the function t*(x), I 5 x 5 n, to equal Q(x) except in the
interval L + a + 1 < x < L + b, wherein it consists of a straight
line segment joining q(L + a + 1) to v(L + b). Then G*(x) also is
convex u. Moreover the three terms on the left side of (36) each are
upper bounds to the corresponding terms in the inequality

which is valid because ii* is convex u. Hence, (36) also is valid and the
theorem is proved.

BERGER et al.: PERMUTATION CODES FOR SOURCES

The corresponding result for Variant I codes is stated below. The
proof is a reasonably straightforward extension of that of Theorem 2
and therefore is omitted.

Theorem 3: If ECj is convex u for j E {1,2,. . . ,[n/2]} and convex n
for j E {[n/2] + 1,. . . ,n}, then the optimum nl vary inversely with the
optimum fliZ.

APPENDIX IV

CONVEXITY OF ORDER
STATISTICS FOR INDEPENDENT DATA

Theorem 2 leads us to search for conditions under which the vi will
satisfy the convexity hypothesis (29). The follotving theorem provides
an important class of examples in which (29) is satisfied.

Theorem 4: If the source outputs are statistically independent and
identically distributed in such a way that the probability density
function f;,,(.) of the absolute value of a source output is a non-
increasing function of positive argument, then the 7, satisfy the
convexity hypothesis (29).

Proof: The starting point for the proof is Pearson’s [22] formula
for the average difference between the jth and the (j + l)th largest of
n independent identically distributed randoin variables, namely,

?I m
OS j -m

cD”- ‘(1 - @)j dx,

where @(.) is the cumulative distribution function common to each of
the random variables. In the present instance we are interested in the
ordered absolute source outputs in which case Pearson’s formula reads

where

It follows that

-

-

.Affjcn cc OS j 0
@“-‘(I - @)Jdx (38)

CD(x) = s Xf o 1x1 (t) dt. (39)

O” n A,! = s [O 0 j
@n-j(l - @)j

- w-j-y1 - m)j+l dx. (40) I
Upon changing the integration variable from x to z = Q(x), we obtain

z”-J-‘(1 - z)j+l dz (41)
I

1 1

h(z) = f,,(G) = j+@-‘(z)) .

Observe that, since z is an increasing function of x and vice versa,
h(z) is a nondecreasing function of z becausefiXl(X) has been assumed
to be a nonincreasing function of X.

Using the beta density

we can rewrite (41) in the form

f

1
(n + l)A’lf, = h(z)[Dj+l.n-j+l(z) - B~+~,n-j(z)l dz. (44)

0

Assume temporarily that h(z) is differentiable, and define

b(z) =
s

‘Wy+l,a-j+l(t) - Bj+2,n-dt)l dt.
0

167

Integrate (44) by parts, noting that b(0) = b(1) = 0, to obtain

s

1
(n + l)A2qJ = - h’(z)b(z) dz. (46)

0

Next, use the fact that B[,&.) is the probability density that governs the
Ith largest of I + m - 1 independent random variables distributed
uniformly on [O,l]. Accordingly,

b(z) = p[uj+’ I z] - p[ujf2 I z], (47)

where Uk denotes the kth largest of n + I independent uniformly
distributed random variables, and P[.] denotes the probability of the
event within the brackets. But (Uj+’ 5 z) * (Ujf2 5 z), so

b(z) I 0, O<z<l. (48)

When (48) is coupled with the fact that h’(z) L 0 because h(z) is
nondecreasing, it follows from (46) that A2vj 2 0 as required for the
application of Theorem 2. The extension to piecewise differentiable
h(.) is straightforward and therefore is omitted.

The result corresponding to Theorem 4 for ordinary rather than
absolute order statistics is as follows.

Theorem 5: If the source outputs are statistically independent and
identically distributed according to a unimodal symmetric zero-mean
probability density, then the Ecj satisfy the convexity relations
necessary for the application of Theorem 3.

APPENDIX V

TABLES OF FRASER NORMAL SCORES

Let x = (xl; . ,x,) be a vector of independent identically dis-
tributed standardized normal (Gaussian) random variables. Define
the random variable qj to be theJth largest of the absolute values of the
components of X, j = 1,2,. ,n. The Fraser normal scores Etyj are
used in a statistical test for the symmetry of probability distributions
[4], [lo] and in the construction of optimum Variant II source per-
mutation codes as described in this paper. The one table of Fraser
normal scores previously published [4] covers only the range n 5 IO.

In Table II we give the Fraser normal scores Eq,, j = 1,. . . ,n, to an
accuracy of nine decimal places for n = 100, 200, 300, and 400. For
intermediate values of n, one can use the general recursive formulas [23]

E[G,~+~I = 1 W~,-I,II - (n - j)EI~..J~ (49)

1
E[~,-I,JI = ; {jE[a.,j+J + (n - iP3d~ (50)

where a.,, is the jth largest random variable from an independent
identically distributed sample of size n. The rate of accumulation of
computational error is smaller when one goes from II to it - 1 by
means of (50) than when one goes from 1~ to II + I by means of (49)
[231.

The claim of nine-place accuracy in Table II is based on the following
test. Tables for n = 100, 200, 300, and 400 originally were computed
via a double precision routine to 12 decimal places. Then (50) was
used to iterate from 400 down to 300, whereupon all entries in the
table for 300 sq obtained were observed to agree with those of the
original table for 300 for at least nine digits after the decimal point.
Similar consistency checks were run from 300 down to 200, 200 down
o 100, and 100 down to 10.

APPENDIX VI

ENCODING AND DECODINGOF PERMUTATIONS

The optimum permutation encoding procedures described in
rheorem 1 result in a codeword of the form

168 IEEETRANSACTIONS ON INFORMATIONTHEORY,JANUARY 1972

TABLE II
FRASER NORMAL SCORES FOR n = 100,200,300, AND 400

N-100 N=200 N=300 N=IOO

001-100 001-100 101-200 001-100 101-200 201-300 001-100 101-200 201-300 301-400

I 2.746951688
2.414bi34T94m

_1.96860131)8
2;&3-8O@liW

0.671610465 3.091973030 0.96441716~.~.429504477
2 K.;i;l~O636---- 2.792392218 0.9577972$7 0.424937531

2.231102282 2.488557454 0.656031193 2.629776209 0.9512lPlOb 0.420379467
2.101079545 2.369488649 0.640301256 2.516005061 0.944681666 0.4i52.30154
1.999049064 2.276688471 0.640609971 2.427609676 0.936164635 0.41126946ll

1.914356194 2 l 00 7 2 35 861495 0 93172%8
_

1.841510255 2.134596:55
32956502

0:.:25340036 2:29:771160 0:92530619:
0 Ob7S72 1
0::022334:0

1.7773132014 -I;Olll339TT 0 617759785
1.719686002 2.025809124 0:610214970

2 ~8430223 0 QLO927138
2:189990651 0:912S63321

0 .r+mT9iz
0.393210406

i.b672756w-- 7.979325631 O.bOiTOm40 2 14bm2670 0 90627 054
2:106181242 0:90000:673

0 386nr OTTI
1.519086221 1.936754293 0.595228657 0:384219547

89744Ob74 0 . 5377i9-5705 2 0692744OO 0 -7
060855008 0.580375210 2:034969135 0:837566982

0 37-9
0:375259709

1.493407553 l .WWI79H5 ~.~9ii~~~~~2;~662~~~;~i3')962~ 0.370‘191151
1.455349315 1.794388813 0.565649289 1.972330347 0.875265242 0.366330043
1.421192460 1.763923729 0~.55&33239E I.%4401536 0.2.6316315(1 0.361876242
1.387711932 1.735014111 0.551045386 1.917476557 0.863094694 0.357429644

TO7485079 O.?JiWf,7 27 1 69l#b,,m 0 . m91 0 352990141
681195793 0.53655a:lO 1:857444402 0.851050803 01348557622

1.295602635 1~6550706 ?.W29357431~~ Txwimbm-D.66lO7m 0.344131979
1.257228715 1.531853402 0.522183815 1.821694591 0.839129252 0.339713105
1.239841433 T.W&Xi398T iXZiTX37G73 1;~6maO76B-6.8332m515 0.335300893
1.213155433 1.585193508 0.5079lbbb3 1.779459615 0.827325919 0.330895238

T.CF7bYl.564553Tl3 0 0. 21467349 0 32smmF-~
1.543522439 0.493752603 0.815636872 0:322103182
1.5Z3347333 6~867ii7W---T1;?2IJ31~27 0.8~34025 0.317716575

25 1.152795750
2h 1.138599793
27 1.115053049
2R 1.092110100
29 1.059729271
36 -1.~7KE377T33
31 1.026507273
32 1.005501245
31 0.98512579h
34 0.955058230
35 0.945372004
35 O.PT6b4648r
17 @.907051730
3~ 0.~98399343
19 O.P700472nO
40 0.051974732
4, 0.4341~2005
42 0.916550409
43 0.7993h7159
44 0.782320339
45 0.7h5498731
46 0.748891847
47 0.732459024
49 0.7152R337b
49 0.700261752
50 O.b*4422bQl
51 o.hba752342
52 0.55124543*
53 0.537894835
54 0.622693943
55 0.607635425
5h 0.%92715277
57 0.577927758
5q 0.563255435
59 0.54Q724061
00 0.534798551
51 0.519984461
62 0.50577ba93
63 0.411071572
54 0.477654289
55 0.453751001
bh 0.449927815
b7 0.435190992
58 0.422536912
69 0.4089h2094
70 0.3954h3171

1.503580299 0.479587365 1.703444746 0.804058354 0.313336112
1.484T76742 0;47269USlT~~ 1.665899152 0.798309414 0.308951594
1.456004454 0.455716847 1.668858018 0.792586772 0.304593221

031 0.458 5857 1.6 .-Gmm5F3
1.430303372 0.451837099 1.535150775 0.781218687 0.295873713
1.413117271 b;4~493OU70 1.620448Oli 0;775572421 0.291522483
1.396339052 0.438044320 1.505125552 0.769950aOb 0.287175807
1.379945318 0.4JIl793i4 1.5WSl71369 X754353452 0.282835588
1.363914500 0.424334846 1.575554569 0.758779976 0.278501733

T;TWZRT2Tr)5nTTm- 1 56lW679l 0.75T2TP3037K-z7%i72147
1.332855102 0.410705142 1:547320466 0.747703167 0.259847737
1.317811523 b.4E3JpI9132 1.533649777 0.742199110 0.255528410
1.303051051 0.397151793 1.520250013 0.735717477 0.261214074
1.288559421 0.390402715 1.507137554 0.731257925 0.255904537
1.274353338 0.3835714~97 1.494259751 0.725820115 0.2~2500010
l.~Z6~~.37~~~~--~~24~300102
1.246559338 0.370261059 1.469251984 0.715008400 0.244004824
1.233179203 0.3b~Al6~~~~~~I.4~~BOBSO 6.7?J9633651 0.239714088
1.219910047 0.355917383 1.445121943 0.704279753 0.235427804
1.206852482 b.356Z9A9 mL%33366336 v.6T89458U2 0.231145837
1.193997708 0.343537458 1.421805559 0.593531594 0.226858249

TI; IBT3376GT u;3 m- ~~~~57~.~~~-U.222594803
1.158863976 0.330418398 1.399238145 0.583061831 0.218325454
1.155559933 0.323830793 1.388216975 0.577805501 0.214060148
1.144448438 0.317257344 1.377351996 0.672557853 0.209798758
1.132492981 0.310697709 1.3bbbb7029 0.557348543 0.205541242
1.120697413 0.304151550 1.35512623& 0.652147571 0.201287485
1.ltNO559li il;29T616F3?-- 1.345T34VJ3 K65696438U 0.197037415

1.335485378 0.651798811 0.192790950 1.097562975 0.291098337
1.085213371 0.284590528
1.075002146 0.278095089
1.053924590 0.271511404
1.052975225 0.255139250
1.042152793 0.250578346
1.031450233 6.252228358
1.07086457R 0.245788993 __._.~~
1.010392437
1.000029985
0.989773955
0.97952112A
0.959558420
0.9q9hlZRRZ

0.239359951
0.232940937
0.225531~5~
i3.~2013la25
0.21374li4a
0.207359345

6;949751555 0.200985134
0.93998211s 0.194521235
O.WO301579 0.189254372
h970707570 o.lal915270
0.911197590 0.175573557
0.9017h9533 0.169239254
0.892421179 0.1529ila23
0.903150193 0.155591067
o.873954518 0.150275734
0.964817474 0.143958531

0.546650508 0.1a8548006
0.541519519 0.184308502
0.535405295 0.180072357
0.531307695 0.175829490
0.5252254aO 0.171609821
0.621151413 0.157383270
0.515112254 0.163159758
0.511078805 0.158939204
0.605060813 0.154721531
0.501058057 ~~.~50505561
0.595070351 0.145294514
0.591097452 0.142085014
0.585139150 b.137a78082
0.5A1195258 0.133673543

ii325375135
1.315398569
1.305551514
1.295529432
1.285228389
1.275744544
1.257374238
1.258113979
1.248960439
1.239910434 ._-- .- .~
1.230950924
1.222109000
1.213351879
1.204585893
1.195111485
1.187623208

1.179219iOb
l.i70898722
1.152558085
1.154495711
1.146409593
1.138397799
1.130458472
1.122589820
1.114790118
1.107057702
1.099390965
1.0917na3bo
1.08424838$
1.075769607
1.069350618
1.051990071
1.054585550
1.047439122
1.040246233~
1.033106808
1.025019701
1.018983799
1.011998025
1.005051333
0.998171709
0.991331169
0.984535759
0.977785551
0.971079544

0.575255573 0.129471619
0.571349875 0.125271934
0.5564i7977 0.121074512
0.551559685 0.115879277
0.555684807 0.112586154
0.551823154 0.108495067
0.546974543 0.104305941
0.542138788 0.100118702
0.537315711 0.695933275
0.532505133 0.091749585
0.527705880 0.087567550
0.522920778 0.083387122
0.518146558 0.079208202
0.513384352 0.075030726
0.568533693 0.0708~4619
0.503894520 0.066679808
0.499156670 0.052505220
0.494449985 0.058333782
0.489744308 0.054152420
0.405049484 0.049992051
0.480355361 0.045822532
0.475691788 0.041654072
0.471028516 0.037486333
0.455375699 0.033319335
0.461732890 0.029152890
0.457100047 0.024986301
0.452477029 0.020821487
0.447863696 0.016657520
0.443259910 0.011491511
0.438665534 0.008328245
0.434080434 0.004153850

71 O.la20359Ql-
72 0.369650107
71 0.355790755
74 0.342152 991
75 P.32999554n
76 0.315999710
77 0.102914R90
7R o.?e9A~403R
79 0.276~330@2
9P 0.253Q79511
ai 0.251120875
92 0.23Rqn4780
83 o.?255zeaa3
‘I4 0. ,I 27~0‘3Ql
95 0.2~009R557
95 0.197419674
97 0.174792079
98 0.16217~53~
59 0.1495922c4
90 0.1370359R7
91 0.124502470
97 0.111Qs0077
9’ 0.099496547
14 cl.3R7020075
9= 0.17455867R
76 3.‘,621104P
97 0.049h7'415
9R 0.037245745
90 1.174q25574

IO,> o.“,‘c109n9

o;i557Rla50 0.1375562a8
0.445800904 b.1313b9557
0.837R87959 0.125078410
O.a29041R,O 0.111192293
0.920258570 0.1125llb51
O.Rll539255 0.105234433
0.9028Rl242 0.099952187
0.794283099 0.093594063
h/n5743389 o.on7429813
0.7772hO710 0.0n1159189
0.769P-3704 0.074911944
O.?hO451054 O.bb8657833
ii752141485 0;052405611
0.743R737f.4 0.0551=8033
0.73555bbRb 0.049911852
0.7?74R9091 0.043657850
0.71935944P 0.037425759
0.711247959 0.031185289
0.703272050 0.024945419
0.h95291414 0.01e70R530
O.Cn7354914 0.017471755
0.579451582 0.006235531

3.176986992 1.147392353 0.673047446 0.317946729
2.884516377 1.141367601 0.669128262 0.314656612
2.726335277 1.135364415 0.665219340 0.311373910
2.615936123 1.129441426 0.661320570 0.306092561

e2.530325627 1.123536084 0.657431640 0.304814563
2.459901jlf 1.117673661 0.6535S3040 0.301539674
2.400036156 1.111847448 0.649684061 0.296266413
2.347636131 1.106058755 0.645624797 0.295000159
2.300986850 1.100306910 0.641975140 0.291735070
2.256863120 1.094591260 0.636134988 0.266473105
2.220403270 1.088911168 0.634304237 0.265214225

2YSW972U7 1;663266012 0.630482784 0.281956368
2.152089902 1.077655188 0.626570531 0.276705555
2.121382552 1.072078105 0.622867377 0.275455687
2.092554867 1.066534192 0.519073224 0.272206743
2.065368631 1.061022884 0.615287975 0.268964664
2.039528921 1.055543537 0.611511536 0.265723471
ZUiSiT4144 1.050095917 O.bO7743011 0.262485066
1.991868796 1.044679203 0.603984707 0.259249429
1.969598088 1.039292987 0.600234132 0.256016523
1.948263900 1.033936773 0.596491995 0.252786308
1.921781676 1.028510077 0.592758206 0.249550748
1.908078015 1.023312425 0.589032676 0.246333603
1.889683777 1.018043358 0.585315318 0.243111438
1.870757575 1.012802421 0.581505043 0.239891613
1.853034551 1.007589174 0.577904768 0.236674293
1.835875447 1.002403107 0.574211406 O-233459439
1.819240700 0.997244036 0.570525873 0.230247015
1.803094879 0.992111311 0.566848088 0.227035985
1.787406083 0.987004507 0.553177958 0.223829312
1.772145492 0.981923531 0.559515431 0.220623960
1.757286979 0.975867697 0.555060399 0.217420893
1.742805780 0.971836728 0.552212791 0.214220074
1.728583217 0.955830253 0.548572529 0.211021467
i.714895457 0.9bla47912 0.544939535 0.207825039
1.70142a307 0.955889351 0.541313735 0.204530752
1.588252037 0.951954221 0.537695050 0.201438571
1.675382222 0.947042185 0.534083405 0.198248462
1.652774514 0.942152911 0.530478730 0.195060390
1.550425022 0.937285071 0.52ba80947 0.191874319
1.638324205 0.932441347 0.523289985 0.188690215
1.526457791 0.927518426 0.519705772 0.185508044
1.5148151a3 0.922bl7002 0.516128237 0.182327771
1.503389503 0.918035774 0.512557310 0.179149361
1.592168515 0.913277448 0.508992920 0.175972781
1.581144585 0.908538735 o.s’o5435ooo 0.172797997
1.570309513 0.903820351 0.501883481 0.169624975
1.559555999 0.899122019 0.498338294 0.156453681
1.549176502 0.894443467 0.494799375 0.153284081
i.53aab47oi 0.889784427 0.491255555 0.160116142
1.528713951 0~885144535 0.487740070 0.155949832
1.518718409 0.880523838 0.484219555 0.153785115
1.508872400 0.875921779 0.480705045 0.150621960
1.499170599 0.871338212 0.477196477 0.147460333
1.489507955 0.856772893 0.473693788 0.144300202
1.480179682 0.862225583 0.470196915 0.141141534
1.470881239 0.857695047 0.465705798 0.137984295
1.461705318 0.853184055 0.463220373 0.134828454
1~452555822 0.848589380 0.459740581 0.131673978
1.443722856 0.844211800 0.456266362 0.128520634
1.434902712 0.839751095 0.452797656 0.125358991
1.426192855 0.835307054 0.449334404 0.122218415
I.417589919 0.830879452 0.445875547 0.119069075
1.409090685 0.826458113 0.442424029 0.115920940
1.400592Oa8 0.822072802 0.438975791 0.112773976
1.392391189 0.817593331 0.435534776 0.109528152
1~384185185 0.813329501 0.432097928 0.106683438
1~3750713a8 0.808981118 0.428666192 0.103339800
1.368047229 0.804647993 0.42523951, 0.100197207
1.360110241 0.800329937 0.421817831 0.097055628
1.352258061 0.796026757 0.41840109@ 0.093915030
1.344488423 0~791738300 0.414989257 0.090775383
1.335799150 0.787454359 0.411582256 0.067636654
1.329188150 0.783204768 0.408180040 0.004498813
1.321553413 0.778959355 0.404782558 0.081361829
1.314193008 0.774727948 0.401389157 0.076225671
1.306805074 0.770510382 0.398001585 0.075090310
1.299487821 0.755305491 0.394617991 0.071955713
1.292239526 0.762115112 0.391238925 0.066621850
1.285058526 0.757939088 0.387864336 0.055688687
1.277943220 0.753775259 0.384494173 0.062556194
l.210892064 0.749624472 0.381128388 0.059424338
1.263903555 0.745486573 0.377166936 0.056293090
1.255976286 0.741351414 0.374409750 0.053162424
1.250108836 0.737240845 0~371056802 0.050032307
1.243299872 0.733148722 0.367708035 0.046902705
1.236548096 0.729060900 0.354363403 0.043773579
1.229852252 0.724985239 0.361022857 0.040644898
1.223211126 0.720921598 0.357686352 0.037516652
1.216523543 0.716869841 0.354353640 0.034386654
1.210088365 0.7li829832 0.351025274 0.031261501
1.203604490 0.708801438 0.347700610 0.026134491
1.197170850 0.704784527 0.344379800 0.025007542
1.190786410 0.700778969 0.341062100 0.021860376
1.184450168 0.696764638 0.337749565 0.011753611
1.178161151 0.692801405 0.334440050 0.015629061
1.171918415 0.688829148 0.331134210

0.32ii32002
0.012504911

1.155721043 0. b848bf744 0.009373127
1.159568147 0.680917072 0.324533381 0.006252911
1.153458863 0.576977012 0.321233305 0.003125163

BERGER et d. : PERMUTATION CODES FOR SOURCES 169

with the appropriate algebraic signs at tached in the Variant II case.
W e shall present below a scheme that maps the A4 = n!/I-If’, I tii!
such permutat ions y inlo M points n(y) spaced uniformly in the unit
interval, and then represents each n(y) by the first Q digits in its binary
fraction expansion, where Q is the smallest integer greater than
log, M. The procedure for generat ing the binary codeword

11) Go to 2).

Q(y) = slsZ"'$Q (52)

corresponding to y is most easily described by the following Algol-
type program. For Variant II codes, n more binary digits are appended
to Q(y) to supply the sequence of algebraic signs.

12) Z(iJ + Z(i[) - 1.
13) it 0.
14) i+i+l.
15) If Z(i) = 0, go to 14). Otherwise continue.
16) i, + i.
17) stop.
It can be shown that the encoding and the decoding algorithms

described above require neither memory nor computational time to
grow more than linearly with it [15].

REFERENCES
Encoding Algorithm HI

PI

D. Siepian, “Permutation modulation,” Proc. IEEE, vol. 53,
Mar. 1965, pp. 228-236.
J. G. Dunn, “Coding for cont inuous sources and channels,”
Ph.D. dissertation, Dep. Elec. Eng., Columbia Univ., New York,
N.Y., 1965.
__ “The performance of a class of n-dimensional quantizers
for a’ Gaussian source,” m Proc. Symp. Signal Transmission and
Processing, Columbia Univ., New York, N.Y., May 13-14, 1965,
pp. 76-81.
J. Klotz, “Small sample power and efficiency for the one sample
W ilcoxon and normal scores tests,” Ann. Math. Statist.. vol. 34,
1963, pp. 624-632.
W. Feller, An Introduction to Probability Theory and Its Applica-
tions, vol. 2. New York: W iley, 1966, p. 225.
C. E. Shannon, “Coding theorems for a discrete source with a
i$;t;)/3criterion,” IRE Nat. Conu. Rec., pt. 4, Mar. 1959, pp.

T. J. Gdblick, Jr., and J. L,. Holsinger, “Analog source digitiza-
tion: A comparison of theory and practice,” IEEE Trans. Inform.
Theory (Corresp.), vol. IT-13, Apr. 1967, pp. 323-326.
E. J. Gumbel, Statistics of Extremes. New York: Columbia
Univ. Press? 1958.

1)

2)

3)

4)

5)

6)
7)
8)
9)

10)
11)
The

n,!nz!...n,!
i[t

t7!
1

Pt-.
n

Z(i) + ?li, i = 1,2;..,K.
Z(0) +- 0.
I+- 0.
l+lt 1.

il- 1
= + 72 + P C Z(i).

i=O

If 1 = II - I, go to 8). Otherwise continue.

P+d@.

Z(iJ + Z(i,) - 1.
Go to 2).
j + 0.
.j+j+ 1.
If n < 2-j, sj + 0. Otherwise (sj + 1 and K + 71 - 2-j).
If j < Q, go to [9]. Otherwise stop.
corresponding Algol-type program for recovering the il, and

hence y, from Q(y) is as follows.

Decoding Algorithm

1)

2)
3)

4)
5)
6)
7)
8)
9)

10)

Q
P + n c sj2-j.

j=l

Z(i) = lti, i = 1,2;..,K.
I+ 0.
ltlt 1.
R +- 0.
i + 0.
i+- i + 1.
R + R + Z(i).
If R < P, go to 4). Otherwise continue.
iL +- i.
If 1 < n - 1, continue. Otherwise go to 12).
P +- (P - R + Z(ir))(n - l)/Z(iJ.
Z(iJ + Z(i,) - 1.

[31

[41

[51

[61

I71

PI

[91

UOI

ti:l’

u31

u41

[151

I:;]

D81

u91

La

WI

t221

[231

F. N. David et al., Normal Centroids, Medians and Scores for
Ordinal Data. Cambridge: Cambridge Univ. Press, 1968.
J. H&jek and 2. Sidak, Theory of Rank Tests. New York:
Academic Press, 1967.
C. A. R. Hoare, “Quicksort,” Comput. J., vol. 5, 1962, pp. 10-15.
W. D. Frazer and A. C. McKellar, “Samplesort: A sampling
approach to minimal storage tree sorting,” J. Ass. Comput.
Mach., vol. 17, July 1970.
R. W. Floyd, “Treesort 3,” Commun. Ass. Compat. Mach.,
~01.7, 1964, p. 701.
D. H. Lehmer, “Teaching combinatorial tricks to a computer,”
in Combinatorial Analysis, R. Bellman and M. Hall, Jr., Eds.
Providence, R.I.: Amer. Math. Sot., 1960.
F. Jelinek, Probabilistic Information Theory. New York:
McGraw-Hill, 1968, pp. 479-489.
D. Slepian, U.S. Patent 3 396 351.
H. Gish and J. N. Pierce, “Asymptotically efficient quantizing,”
IEEE Trans. Inform. Theory, vol. IT-14, Sept. 1968, pp. 676-683.
F. Jelinek, “Buffer overflow in variable length coding of fixed
rate sources,” IEEE Trans. Znform. Theory, vol. IT-14, May 1968,
pp. 490-501.
K. Schneider and F. Jelinek, “Variable length-to-block coding of
fixed rate sources for transmission through fixed rate noiseless
channels,” submitted to ZEEE Trans. Inform. Theory.
S. Lloyd, “Least square quantization in PCM,” Bell Telephone
Lab., Internal Memo., 1959.
J. Max, “Quantizing for minimum distortion,” IEEE Trans.
Inform. Theory, vol. IT-6, Mar. 1960, pp. 7-12.
K. Pearson, “Note on Francis Galton’s problem,” Biometrika,
vol. 1, 1902, pp. 390-399.
H. L. Harter, “Expected values of normal order statistics,”
Biometrika, vol. 48, 1961, pp. 151-165.

