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On the other hand, if we define ~D(i) to be
~D(i) = fl 2 �c j c� 1 + i� l 2 �c

; i < l < c� 1g

then

D(c� 1 + i� g) =
~D(i)[ fc� 1; ig; if i 2 �c

~D(i); otherwise.
(3)

So, from (2) and (3)

i is a nongap () �c�1+i�g = c+ i� 2g +# ~D(i):

This gives an inductive procedure to decide whether i belongs to �
decreasingly from i = c� 2 to i = 2.

Remark 8.2: From the proof of Theorem 8.1 we see that a semi-
group can be determined by k = maxfi j �i = �i+1g and the values
�i for i 2 fc� g + 1; . . . ; 2c � g � 3g.
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Permutation Arrays for Powerline Communication and
Mutually Orthogonal Latin Squares

Charles J. Colbourn, Torleiv Kløve, Fellow, IEEE, and Alan C. H. Ling

Abstract—We develop a connection between permutation arrays that are
used in powerline communication and well-studied combinatorial objects,
mutually orthogonal latin squares (MOLS). From this connection, many
new results on permutation arrays can be obtained.

Index Terms—Doubly resolvable design, mutually orthogonal latin
squares (MOLS), permutation array, permutation code, powerline
communications.

I. INTRODUCTION AND DEFINITIONS

We consider permutations of the elements of some fixed set R with
n elements. Let Sn denote the set of all n! permutations. An (n; d)
permutation array (PA) is a subset of Sn with the property that the
Hamming distance between any two distinct permutations in the subset
is at least d. Some constructions for permutation arrays are given in [2],
[7], [10]. We develop here a correspondence between these arrays and
certain combinatorial objects. From this link, many constructions in
[7], [10] are obtained.
Permutation arrays are of recent interest because of their application

to data transmission over power lines (see, for example, [8], [9], [12]).
Permutation arrays have also been applied in the design of block ci-
phers [5], and some of the constructions described here are outlined
there in that setting. In the powerline application, the main idea is to
vary the voltage by a small amount and use this variation to transmit
signals. There are three main forms of noise whichmay affect the trans-
mission:

• permanent narrow-band noise, which affects some frequency
over a long period (e.g., noise from electrical equipment);

• impulse noise of short duration, which affects many frequencies;
and

• white Gaussian noise (background noise).

In many traditional data transmission media (e.g., telephone lines
and satellite communication) white Gaussian noise is the dominating
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kind of error affecting the system, but in this application the other two
kinds of error are more important. In [8], [9], permutation arrays are
used to correct errors for this type of transmission. The problem reduces
to finding, for a given n and d, the maximum number of codewords in
an (n; d) permutation array.

II. EQUIVALENT OBJECTS

We represent an (n; d) PA of size v on the elements of Sn as a v�n

array

• each row is a permutation of the symbols of a set S of size n, and
• any two rows disagree in at least d columns.

The second condition is equivalent to requiring that any two distinct
rows agree in at most n� d columns; we write � = n� d. Such a per-
mutation array is then denoted byB(n; �; v). For example, aB(4; 1; 6)
is shown next

1 2 3 4

1 3 4 2

2 3 1 4

3 4 1 2

4 1 3 2

4 2 1 3

LetX be a set of cardinality v. A generalized Room square packing
(GRSP) of size n and index � defined onX is an n�n array F having
the following properties:

• every cell of F contains a subset (possibly empty) of X;
• each symbol of X occurs once in each row and once in each
column of F ; and

• any two distinct symbols of X occur together in at most � cells
of F .

Denote such a GRSP by T(n; �; v).
An (n; �)-packing is a pair (X;B) where

• X is a set of v elements;
• B is a collection of b subsets (called blocks) ofX such that every
pair of distinct elements occurs in at most � blocks; and

• every element occurs in precisely n blocks.

A resolution class is a set of disjoint blocks in B whose union isX . A
resolution of an (n; �)-packing, (X;B), is a partition of B into reso-
lution classes R = fR1; R2; . . . ; Rng. A packing admitting at least
one resolution is resolvable. Two resolutions of (X;B), say R and
S , are orthogonal if each resolution class of R intersects every res-
olution class of S in at most one block. An (n; �)-packing is doubly
resolvable if it has two orthogonal resolutions. A doubly resolvable
(n; �)-packing of order v is denoted by DR(n; �; v).

The next two constructions can be found in [6], and are included here
for completeness.

Theorem 2.1: There exists aDR(n; �; v) if and only if there exists
a T(n; �; v).

Proof: From a T(n; �; v), an (n; �) packing can be constructed
by taking the cells in T as blocks. Two orthogonal resolutions can
be obtained by taking the rows and columns as resolution classes.
Conversely, if there exists a doubly resolvable (n; �) packing, then a
T(n; �; v) can be constructed by using the n parallel classes in the
two orthogonal resolutions to index rows and columns.

Theorem 2.2: There exists a T(n; �; v) if and only if there exists a
B(n; �; v).

Proof: Index the rows of theB(n; �; v) from 1 to v. We construct
an n � n array as follows. The symbol k appears in the (i; j) cell of
T(n; �; v) if and only if the (k; j) entry of B(n; �; v) is i. Every ele-
ment occurs exactly once in each row since each row is a permutation
and, hence, contains each element once. Every element occurs exactly
once in each column because each row is a permutation and, hence,
maps each element to a unique element. Two points occur together in
at most � blocks in the n � n array since any two permutations agree
in at most � positions.

A latin square of side n is an n�n array in which each cell contains
a single element from an n-set S, such that each element occurs exactly
once in each row and exactly once in each column. Two latin squares
L and L0 of the same order are orthogonal if L(a; b) = L(c; d) and
L0(a; b) = L0(c; d); implies a = c and b = d. An equivalent definition
for orthogonality is as follows: Two latin squares of side n, L = (ai;j)
(on symbol set S), and L0 = (bi;j) (on symbol set S0) are orthogonal
if every element in S � S0 occurs exactly once among the n2 pairs
(ai;j ; bi;j), 1 � i, j � n. A set of latin squaresL1; . . . ; Lm ismutually
orthogonal, or a set ofMOLS, if for every 1 � i < j � m, Li and Lj

are orthogonal.
A transversal design of order or group size n, block size k, and index

�, denoted TD�(k; n), is a triple (V;G;B), where

• V is a set of kn elements;
• G is a partition of V into k classes (called groups), each of size
n;

• B is a collection of k-subsets of V (called blocks);
• every unordered pair of elements from V is either contained in
exactly one group, or is contained in exactly � blocks, but not
both.

When � = 1, one writes simply TD(k; n).
A TD(k; n) is equivalent to the existence of k � 2 mutually or-

thogonal latin squares of order n, and the various generalizations of
transversal designs all have reasonably natural interpretations in that
formulation. An orthogonal arrayOA(k; s) is a k� s2 array with en-
tries from an s-set S having the property that in any two rows, each
(ordered) pair of symbols from S occurs exactly once. A TD(k; n) is
also equivalent to an OA(k; n).
Now we interpret the constructions in [7].
Let C be a PA over R of size M . Represent the PA as rows of an

M � n array, which we also denote by C . The following terminology
is introduced in [7].

• C is r-bounded if no element ofR appears more than r times in any
column of C .

• C is r-balanced if each element of R appears exactly r times in
each column of C .

• C is r-separable if it is a disjoint union of r (n; n) PAs of size n.

C is r-bounded if and only if each block in the corresponding doubly
resolvable packing has block size at most r.C is r-balanced if and only
if each block in the corresponding doubly resolvable packing has block
size exactly equal to r.

Lemma 2.3: An (n; n � 1) PA C with M = rn permutations is
r-separable if and only if there exists r MOLS of order n.

Proof: A set of r MOLS of order n is a TD(r + 2; n); use ele-
ments of each of two groups to define a pair of orthogonal resolutions of
theTD(r; n) obtained by deleting the two groups. This is aT(r; 1;n).
In the other direction, any (n; n) PA of size n is equivalent to a latin

square of order n, as follows. When we construct the n � n square
A from the (n; n) PA, each cell only has one symbol because if x,
y 2 A(i; j), then P (x; j) = i and P (y; j) = i, but then row x and
row y agree in column j. Since each cell has one entry, we use A(i; j)
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to denote the only element in the cell. If A(i; j) = A(i; k) = x,
then P (x; j) = P (x; k) = i, but then row x is not a permutation.
If A(i; j) = A(k; j) = y, then P (y; j) = i and P (y; j) = k so the
permutation in the PA maps one element to two symbols.

Since C is r-separable, we can obtain r latin squares in this way.
Next, we establish that these r squares are orthogonal. Suppose
Aa(i1; j1) = Aa(i2; j2) = x and Ab(i1; j1) = Ab(i2; j2) = y.
Then PA(x; j1) = i1, PA(x; j2) = i2, PA(y; j1) = i1, and
PA(y; j2) = i2. Then, if j1 6= j2, rows x and y agree in two
positions. If j1 = j2, then it must happen that i1 = i2; otherwise, the
PA is not well defined. But this is impossible.

Now Theorem 4 in [7] can be interpreted as follows.

Lemma 2.4: If there exists a doubly resolvable packing with block
size at most r on n classes on jCj points, and sMOLS of orderm, then
there exists a doubly resolvable packing with block size at most r with
nm classes on mjCj points.

The proof of this is a standard inflation (see [4]), since s MOLS
of order m can be viewed as a doubly resolvable TD(s;m). There
are many known constructions for MOLS and the bounds are widely
known; see [1], [3], [4], and references therein.

We state the main application of MOLS to permutation arrays.

Theorem 2.5: If there exist sMOLS of order n, then there exists an
s-separable (n; n � 1) permutation array of size sn.

Proof: Let the symbols in the tth latin square be (t � 1)n to
(t � 1)n + n � 1. We construct an n � n square with the (i; j) cell
containing the k symbols from the (i; j) cell in each of the k latin
squares.We establish that the constructed square is aT(n; 1; kn). Each
latin square uses n symbols, so the total number of symbols is kn. Each
row and each column contains each symbol exactly once since the k
squares are latin. Each pair of elements occurs at most once in a cell
because the k squares are mutually orthogonal. Hence, there exists a
T(n; 1; kn). By Theorem 2.2, there exists a B(n; 1; kn). The s latin
squares employed yield the s-separability.

For many values of n, Theorem 2.5 improves upon the result of [7]
(equivalently, that obtained from Lemma 2.4). For n = 10, we obtain
size 2 � 10 rather than 1 � 10; for n = 12, we find 5 � 12 rather
than 2 � 12, and for n = 14 we find 3 � 14 rather than 1 � 14. De la
Torre, Colbourn, and Ling [5] use this correspondence to find a (40;39)
permutation array of size 7 � 40 rather than 4 � 40. The exact number
of MOLS is not known for any n � 10which is not a prime or a power
of a prime; nevertheless, Theorem 2.5 tells us the best result that can
be obtained for separable permutation arrays. Nevertheless, it happens
that the largest (n; n � 1) permutation array can be much larger than
the largest separable one; indeed, for n = 6 the largest separable (6; 5)
permutation array contains only six permutations, but Kløve [11] has
shown that the largest (6; 5) permutation array has size 18. Thus, in
the construction of permutation arrays, Theorem 2.5 provides a useful
construction but may not provide the largest permutation array.
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Upper Bounds on Separating Codes

Gérard D. Cohen, Senior Member, IEEE, and
Hans Georg Schaathun, Member, IEEE

Abstract—The combinatorial concept of separating systems has
numerous applications, such as automata theory, digital fingerprinting,
group testing, and hashing. In this correspondence, we derive upper
bounds on the size of codes with various separating properties.

Index Terms—Error-correcting codes, hashing, separating systems, su-
perimposed codes.

An (n;M; d)q code is a set ofM words of length n over an alphabet
of q elements, at minimum distance d apart. If the code forms a linear
vector space of dimension k = logqM over (q), then we call it an
[n; k; d]q code. A (t; u)-separating code, also known as a (t; u)-sepa-
rating system or (t; u)-SS, is defined as follows.

Definition 1: A pair (T; U) of disjoint sets of words is called a
(t; u)-configuration if #T = t and #U = u. Such a configuration
is separated if there is a position i, such that every word of T is dif-
ferent from any word of U on position i.

A code is (t; u)-separating if every (t; u)-configuration is separated.
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