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a b s t r a c t

A perfect code in a graph Γ = (V , E) is a subset C of V that is an independent set such that
every vertex in V \ C is adjacent to exactly one vertex in C . A total perfect code in Γ is a
subset C of V such that every vertex of V is adjacent to exactly one vertex in C . A perfect
code in the Hamming graph H(n, q) agrees with a q-ary perfect 1-code of length n in the
classical setting. In this paper we give a necessary and sufficient condition for a circulant
graph of degree p − 1 to admit a perfect code, where p is an odd prime. We also obtain a
necessary and sufficient condition for a circulant graph of order n and degree pl −1 to have
a perfect code, where p is a prime and pl the largest power of p dividing n. Similar results
for total perfect codes are also obtained in the paper.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Since the beginning of coding theory in the late 1940s, perfect codes have been important objects of study in information
theory; see the surveys [9,19] for a large number of results on perfect codes. Hamming and Golay codes are well known
examples of perfect codes, and their importance is widely recognized. The notion of perfect codes can be generalized to
graphs [2,13] in a natural way, such that q-ary perfect e-codes of length n in the classical setting are precisely perfect e-codes
in the correspondingHamming graphH(n, q). SinceHamming graphs are a particular family of Cayley graphs, perfect codes in
Cayley graphs can be viewed as generalizations of perfect codes in the classical case. From a group theoretic point of view, the
simplest Cayley graphs are circulant graphs, namely Cayley graphs on cyclic groups. However, even in this innocent-looking
case, the question about when a general circulant graph admits a perfect 1-code is unsettled. Contributing to improvement
of this unsatisfactory situation, we answer this question for two families of circulant graphs and give similar results for total
perfect codes in this paper.

Let Γ = (V , E) be a simple undirected graph and e ≥ 1 an integer. The ball with radius e and centre u ∈ V is the set of
vertices of Γ with distance at most e to u in Γ . A subset C of V is called a perfect e-code [2,13] in Γ if the balls with radius
e and centres in C form a partition of V . As mentioned above, q-ary perfect e-codes of length n in the classical setting [9,19]
are simply perfect e-codes in the Hamming graph H(n, q). In graph theory, perfect 1-codes in a graph are called efficient
dominating sets or independent perfect dominating sets of the graph. In the rest of this paper a perfect 1-code is simply
called a perfect code. A subset C ⊆ V is called a total perfect code in Γ (see e.g. [8]) if every vertex of Γ has exactly one
neighbour in C . This concept is related to diameter perfect codes, which were introduced in [1] for distance regular graphs
and adapted in [7] for Lee metric over Zn and Zn

q . As mentioned in [21], when the Manhattan (for Zn) or Lee (for Zn
q) distance

is considered, total perfect codes coincide with diameter perfect codes of minimum distance four.
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Perfect codes in Cayley graphs are particularly charming objects. Given a finite group G and an inverse-closed subset X of
G not containing the identity element, the Cayley graph Cay(G, X) onG relative to the connection set X is the graphwith vertex
set G such that u, v ∈ G are adjacent if and only if vu−1

∈ X . This graph is connected if and only if S is a generating set of G. In
the special case when G = Zn is the additive group of integers modulo n, a Cayley graph Cay(Zn, S) on Zn is called a circulant
graph. In [15] sufficient conditions for Gaussian and Eisenstein–Jacobi graphs to contain perfect e-codes were given, and
these conditions were proved to be necessary in [20] in a more general setting. In [18] it was proved that there is no perfect
code in any Cayley graph on SL(2, 2f ), f > 1 with respect to a conjugation-closed connection set. In [3] a methodology for
constructing infinite families of E-chains of Cayley graphs on symmetric groups was given, where an E-chain is a countable
family of nested graphs each containing a perfect code. In [6] perfect codes in a Cayley graph with a conjugation-closed
connection set were studied by way of equitable partitions, yielding a nonexistence result in terms of irreducible characters
of the underlying group. In [14] it was proved that a conjugation-closed subset C of a group G is a perfect code in a Cayley
graph on G if and only if there exists a covering projection from the Cayley graph to a complete graph with C as a fibre. A
similar result was obtained in [21] for total perfect codes in Cayley graphs. In a recent work [10], perfect codes in Cayley
graphs were studied from the viewpoint of group rings, and among other results conditions for a normal subgroup of a finite
group to be a perfect code in some Cayley graph of the group were obtained.

Perfect codes in circulant graphs have been studied by several researchers in recent years. In [16], 3- and 4-regular
connected circulant graphs admitting a perfect code were characterized, and a sufficient condition for a general circulant
graph to have a perfect code was given. In [4] a necessary and sufficient condition for a circulant graph to admit a perfect
code with size a prime number was given and all such perfect codes were characterized. In [17] a few results on perfect
codes in circulant graphs were proved. In [20] perfect e-codes in an interesting family of circulant graphs with degree twice
an odd prime were studied in the more general setting of cyclotomic graphs.

In spite of the efforts above, our understanding of perfect codes in circulant graphs is still quite limited. In this paper we
prove the following results with the help of cyclotomic polynomials.

Theorem 1.1. Let n be a positive integer and p be an odd prime. A connected circulant graph Cay(Zn, S) of degree p − 1 admits
a perfect code if and only if p divides n and s ̸≡ s′ mod p for distinct s, s′ ∈ S ∪ {0}.

Theorem 1.2. Let n, l be positive integers, and let p be a prime such that pl divides n but pl+1 does not divide n. A connected
circulant graph Cay(Zn, S) of degree pl − 1 admits a perfect code if and only if s ̸≡ s′ mod pl for distinct s, s′ ∈ S ∪ {0}.

Theorem 1.3. Let n be a positive integer and p be an odd prime. A connected circulant graph Cay(Zn, S) of degree p admits a total
perfect code if and only if p divides n and s ̸≡ s′ mod p for distinct s, s′ ∈ S.

Theorem 1.4. Let n, l be positive integers, and let p be a prime such that pl divides n but pl+1 does not divide n. A connected
circulant graph Cay(Zn, S) of degree pl admits a total perfect code if and only if s ̸≡ s′ mod pl for distinct s, s′ ∈ S.

2. Proofs

Let ζn be a primitive nth root of unity, say ζn = e2π i/n. The nth cyclotomic polynomial is defined [11] as

λn(x) =

∏
1≤d<n,(d,n)=1

(x − ζ d
n ).

The roots ofλn(x) are precisely the primitive nth roots of unity, that is,λn(x) =
∏

ζ∈En (x−ζ ), where En is the set of all primitive
nth roots of unity. We will use the following well known results (see e.g. [11, Section 9.1]) in the proof of Theorems 1.1–1.4.

Lemma 2.1.

(a)

xn − 1 =

∏
d|n

λd (x) ; (1)

(b) λn(x) ∈ Z[x];
(c) λn(x) is irreducible in Z[x].

In particular, by (1), for any prime p and integer j ≥ 1,

λpj (x) =
xp

j
− 1

xpj−1
− 1

= (xp
j−1

)p−1
+ (xp

j−1
)p−2

+ · · · + xp
j−1

+ 1. (2)

Define

fA(x) =

∑
a∈A

xa
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for any non-empty finite set A of nonnegative integers. For a subset S of Zn, denote

S0 = S ∪ {0}.

The following lemma reduces the perfect code problem for circulant graphs to a number theoretic problem.

Lemma 2.2. A subset C of Zn is a perfect code in Cay(Zn, S) if and only if there exists q(x) ∈ Z[x] such that

fC (x)fS0 (x) = (xn − 1)q(x) + (xn−1
+ · · · + x + 1). (3)

Proof. By the definition of a perfect code, C is a perfect code in Cay(Zn, S) if and only if every integer in {0, 1, . . . , n − 1}
can be written in a unique way as (c + s) mod n with c ∈ C and s ∈ S0, which is equivalent to fC (x)fS0 (x) =

∑
c∈C,s∈S0

xc+s
≡

xn−1
+ · · · + x + 1 mod (xn − 1). Thus C is a perfect code in Cay(Zn, S) if and only if (3) holds for some q(x) ∈ Z[x]. □

The next lemma was proved in [16, Remark 1]. We give a different proof using Lemma 2.2 for the completeness of the
present paper.

Lemma 2.3 ([16, Remark 1]). A connected circulant graph Cay(Zn, S) of order n ≥ 4 and degree k = |S| admits a perfect code
provided that k + 1 divides n and s ̸≡ s′ mod (k + 1) for distinct s, s′ ∈ S ∪ {0}.

Proof. Consider a connected circulant graph Cay(Zn, S) with order n ≥ 4 and degree k = |S|. Suppose that k + 1 divides n,
say n = m(k + 1) for some integer m ≥ 1, and s ̸≡ s′ mod (k + 1) for distinct s, s′ ∈ S ∪ {0}. We may write S0 = S ∪ {0} =

{s0, s1, . . . , sk}, where s0, s1, . . . , sk are pairwise distinct modulo (k + 1). Without loss of generality we may assume s0 = 0
and si ≡ i mod (k + 1) for i ∈ {1, 2, . . . , k}. Then xsi ≡ xi mod (xk+1

− 1) for i ∈ {0, 1, . . . , k} and fS0 (x) =
∑

s∈S0
xs ≡

xk + · · · + x + 1 mod (xk+1
− 1). So there exists q(x) ∈ Z[x] such that fS0 (x) = (xk+1

− 1)q(x) + (xk + · · · + x + 1).
Set C = {0, k + 1, 2(k + 1), . . . , (m − 1)(k + 1)}. Then

fC (x) = x(m−1)(k+1)
+ · · · + xk+1

+ 1 =
xm(k+1)

− 1
xk+1 − 1

=
xn − 1
xk+1 − 1

and hence

fC (x)fS0 (x) = (xn − 1)q(x) + (xn−1
+ · · · + x + 1).

Therefore, by Lemma 2.2, C is a perfect code in Cay(Zn, S). □

As shown in [16,17] by counterexamples, the sufficient condition for the existence of a perfect code in Cay(Zn, S) given
in Lemma 2.3 may not be necessary. However, it is indeed necessary when k = 4 (see [16]) or when n/(k+ 1) is a prime and
S ∪ {0} is aperiodic (see [4] for definition).

Proof of Theorem 1.1. By Lemma 2.3, it remains to prove the ‘only if’ part. Suppose that Cay(Zn, S) is connected of degree
|S| = p−1 and admits a perfect code C , where p is an odd prime. Then by Lemma 2.2, (3) holds for some q(x) ∈ Z[x]. Setting
x = 1 in (3), we obtain p|C | = |C ||S0| = fC (1)fS0 (1) = n. Hence p divides n. Write n = plm with l ≥ 1 and m not divisible by
p. Then |C | = pl−1m and pl does not divide |C |.

By Lemma 2.1, λp(x), λp2 (x), . . . , λpl (x) are distinct irreducible polynomials each dividing xn − 1 and (xn − 1)/(x − 1) =

xn−1
+ · · · + x + 1. Combining this with (3), we obtain that λpj (x) divides fC (x) or fS0 (x) for each j ∈ {1, 2, . . . , l}.

Claim 1. There exists at least one j ∈ {1, 2, . . . , l} such that λpj (x) divides fS0 (x).

Suppose otherwise. Then λp(x), λp2 (x), . . . , λpl (x) all divide fC (x). Since they are irreducible and hence pairwise coprime,
it follows that

∏l
j=1λpj (x) divides fC (x). That is,

fC (x) = g(x)
l∏

j=1

λpj (x) (4)

for some g(x) ∈ Z[x]. Since p is a prime, by (2) we have λpj (1) = p for each j ≥ 1. Setting x = 1 in (4), we then obtain
|C | = fC (1) = pl · g(1). Since g(1) is an integer, it follows that pl divides |C |, which is a contradiction. This proves Claim 1.

Since |S0| = p, we may write S0 = {s0, s1, . . . , sp−1}, where s0 = 0 and s1, s2, . . . , sp−1 are pairwise distinct. Denote by ti
the unique integer in {0, 1, . . . , p − 1} such that si ≡ ti mod p, for 0 ≤ i ≤ p − 1. In particular, t0 = 0 as s0 = 0. We have

fS0 (x) =

p−1∑
i=0

xsi ≡

p−1∑
i=0

xti mod (xp − 1). (5)

Claim 2. If j ∈ {2, . . . , l}, then λpj (x) does not divide fS0 (x).
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Suppose to the contrary that λpj (x) divides fS0 (x) for some j ∈ {2, . . . , l}, say, fS0 (x) = λpj (x)h(x), where h(x) ∈ Z[x]. Since
j ≥ 2, xp

j−1
≡ 1 mod (xp − 1). This together with (2) implies λpj (x) ≡ p mod (xp − 1). Thus,

fS0 (x) ≡ p · h(x) mod (xp − 1), (6)

where h(x) is the unique polynomial of degree less than p such that h(x) ≡ h(x) mod (xp − 1). Combining (5) and (6), we
have

p−1∑
i=0

xti ≡ p · h(x) mod (xp − 1).

Since both sides of this equation are polynomials of degree less than p whilst xp − 1 has degree p, it follows that
p−1∑
i=0

xti = p · h(x). (7)

Since 0 ≤ ti ≤ p − 1 and t0 = 0, this implies that all ti = 0, that is, every element of S is a multiple of p. However, this
implies that Cay(Zn, S) is disconnected, which contradicts our assumption. This proves Claim 2.

Combining Claims 1 and 2, we know that λp(x) divides fS0 (x). Thus, by (5) and xp − 1 = (x − 1)λp(x), we obtain∑p−1
i=0 x

ti ≡ 0 mod λp(x). Since
∑p−1

i=0 x
ti has degree atmost p−1whilst λp(x) has degree p−1, it follows that

∑p−1
i=0 x

ti = aλp(x)
for some integer a. Setting x = 1, we obtain p = ap and so a = 1. Therefore,

∑p−1
i=0 x

ti = λp(x) = xp−1
+ · · · + x + 1. In other

words, {t0, t1, . . . , tp−1} = {0, 1, . . . , p − 1}, or equivalently, s ̸= s′ mod p for distinct s, s′ ∈ S0. □

Proof of Theorem 1.2. Again, by Lemma 2.3, it remains to prove the ‘only if’ part. Suppose that Cay(Zn, S) is connected of
degree |S| = pl − 1 and admits a perfect code C , where n, l are positive integers and p a prime such that pl divides n but pl+1

does not. Then by Lemma 2.2, (3) holds for some q(x) ∈ Z[x]. Setting x = 1 in (3), we obtain pl|C | = |C ||S0| = fC (1)fS0 (1) = n.
Since pl+1 does not divide n, p does not divide |C |.

Similar to the proof of Theorem 1.1, we see that λpj (x) divides fC (x) or fS0 (x) for each j ∈ {1, 2, . . . , l}. We prove further
that:

Claim 3. λpj (x) divides fS0 (x) for each j ∈ {1, 2, . . . , l}.

To prove this, let J denote the set of integers j ∈ {1, 2, . . . , l} such that λpj (x) divides fC (x). Since λp(x), λp2 (x), . . . , λpl (x)
are irreducible and hence pairwise coprime,

fC (x) = g(x)
∏
j∈J

λpj (x) (8)

for some g(x) ∈ Z[x]. By (2), we have λpj (1) = p for each j ≥ 1. Thus, setting x = 1 in (8), we obtain |C | = fC (1) = p|J|
· g(1).

Since g(1) is an integer, it follows that p|J| divides |C |. Since p does not divide |C |, we must have J = ∅ and so Claim 3 is
proved.

Since |S0| = pl, we may write S0 = {s0, s1, . . . , spl−1}, where s0 = 0. Denote by ti the unique integer in {0, 1, . . . , pl − 1}
such that si ≡ ti mod pl, for 0 ≤ i ≤ pl − 1. In particular, t0 = 0 as s0 = 0. We have

fS0 (x) =

pl−1∑
i=0

xsi ≡

pl−1∑
i=0

xti mod (xp
l
− 1). (9)

On the other hand, by Claim 3,

fS0 (x) = h(x)
l∏

j=1

λpj (x) (10)

for some h(x) ∈ Z[x]. By (1),
∏l

j=1λpj (x) = (xp
l
−1)/(x−1) =

∑pl−1
j=0 xj divides xp

l
−1. This together with (9) and (10) implies

that
∑pl−1

j=0 xj divides
∑pl−1

i=0 xti . Since the former has degree pl − 1 whilst the latter has degree at most pl − 1, it follows that

the latter must have degree pl − 1 and moreover
∑pl−1

i=0 xti = a
∑pl−1

j=0 xj for some integer a. Setting x = 1, we obtain pl = apl

and so a = 1. That is,
∑pl−1

i=0 xti =
∑pl−1

j=0 xj. Therefore, {t0, t1, . . . , tpl−1} = {0, 1, . . . , pl − 1} and the proof is complete. □

Similar to Lemma 2.2, one can easily verify the following result.

Lemma 2.4. A subset C of Zn is a total perfect code in Cay(Zn, S) if and only if there exists q(x) ∈ Z[x] such that

fC (x)fS(x) = (xn − 1)q(x) + (xn−1
+ · · · + x + 1). (11)
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Similar to [16, Remark 1] (see Lemma 2.3), we have the following observation.

Lemma 2.5. A connected circulant graph Cay(Zn, S) of order n ≥ 4 and degree k = |S| admits a total perfect code provided that
k divides n and s ̸≡ s′ mod k for distinct s, s′ ∈ S.

In fact, since all elements of S are pairwise distinct modulo k, for any v ∈ Zn there exists a unique s ∈ S such that
v ≡ s mod k, implying that {ki : 0 ≤ i < n/k} is a total perfect code in Cay(Zn, S).

Theorem 1.3 can be proved using Lemmas 2.4 and 2.5 and following the proof of Theorem 1.1 but with S ∪ {0} replaced
by S = {s0, s1, . . . , sp−1}. (Since s0 ̸= 0 in the current case, t0 may not be 0, but one can see that not all elements of S are
congruent to each other modulo p as p is odd and each n − si ∈ S. So from (7) we can still derive that all ti = 0.)

Theorem 1.4 can be proved using Lemmas 2.4 and 2.5 and following the proof of Theorem 1.2 but with S ∪ {0} replaced
by S = {s0, s1, . . . , spl−1}.

3. Remarks

We remark that ourmethod in the previous section can be adapted to give a totally different proof of the following known
result.

Theorem3.1 ([16, Theorem2]). A cubic connected circulant graph of order n ≥ 4 admits a perfect code if and only if n ≡ 4 mod 8.

Proof. It can be verified that, for a cubic connected circulant graph Cay(Zn, S), where n ≥ 4 and S = {n/2, s, n− s} for some
1 ≤ s ≤ (n/2) − 1, n must be even and moreover n ≡ 4 mod 8 if and only if 4 divides n and the elements of S ∪ {0} are
pairwise distinct modulo 4. Thus, by Lemma 2.3, if n ≡ 4 mod 8, then Cay(Zn, S) admits a perfect code C .

Suppose that Cay(Zn, S) admits a perfect code C . Similar to the proof of Theorem 1.1, by Lemma 2.2, (3) holds and so
4|C | = |C ||S0| = fC (1)fS0 (1) = n. This together with the connectedness of Cay(Zn, S) implies that n is a multiple of 4 and
s must be odd. Write n = 2lm with l ≥ 2 and m odd. Then |C | = 2l−2m. Since 2l−1 does not divide |C |, similar to Claim 1
in the proof of Theorem 1.1 one can show that exactly two of λ2(x), λ22 (x), . . . , λ2l (x) divide fS0 (x). So there is at least one
j ∈ {2, . . . , l} such that λ2j (x) divides fS0 (x). Note that λ2j (x) = x2

j−1
+ 1 by (2).

Write s = 2j−1q + r , where q and r are integers and 0 ≤ r ≤ 2j−1
− 1. Since s is odd and j ≥ 2, r is odd and so

1 ≤ r ≤ 2j−1
− 1. We have

fS0 (x) = x0 + xn/2 + xs + xn−s

= 1 + (x2
j−1

)2
l−jm

+ (x2
j−1

)q · xr + (x2
j−1

)2
l−j+1m−q−1

· x2
j−1

−r

≡ 1 + (−1)2
l−jm

+ (−1)q · xr + (−1)2
l−j+1m−q−1

· x2
j−1

−r mod (x2
j−1

+ 1)

≡ 1 + (−1)2
l−jm

+ (−1)q · (xr − x2
j−1

−r ) mod (x2
j−1

+ 1).

Thus, since x2
j−1

+ 1 divides fS0 (x), it also divides 1+ (−1)2
l−jm

+ (−1)q · (xr − x2
j−1

−r ). However, this polynomial has degree
at most 2j−1

− 1 as 1 ≤ r ≤ 2j−1
− 1. Therefore, 1 + (−1)2

l−jm
+ (−1)q · (xr − x2

j−1
−r ) = 0, yielding 1 + (−1)2

l−jm
= 0 and

r = 2j−1
− r . Hence l = j and r = 2j−2. Since r is odd, we then have l = j = 2. So n = 4m with odd m. Thus n ≡ 4 mod 8

and the proof is complete. □

It is well known that Cayley graphs are vertex-transitive. In general, perfect codes in vertex-transitive graphs are also
of considerable interest. For example, the problem of characterizing vertex-transitive graphs admitting a perfect code was
posed in [12]. In the same paper it was proved that a connected cubic vertex-transitive graph of order 2m (m ≥ 3) has a
perfect code if and only if it is not isomorphic to the Möbius ladderM2m−1 . (SinceM2m−1 is isomorphic to the cubic circulant
graph Cay(Z2m , {2m−1, 1, −1}) and 2m is divisible by 8 whenm ≥ 3, the fact thatM2m−1 has no perfect codes can be thought
as a special case of Theorem 3.1.) Since 2m

≡ 0 mod 8whenm ≥ 3, this implies that, in contrast to Theorem 3.1, a connected
cubic Cayley graph of order n admitting a perfect code may not satisfy n ≡ 4 mod 8, as shown also in [12, Table 1]. It would
be interesting to give a characterization of cubic Cayley graphs (or cubic vertex-transitive graphs) admitting at least one
perfect code.
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