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Abstract

It is shown that any subsetX which is closed under conjugation does not divideSL(2,2 f ) non-
trivially if f �= 1; that is, there exists no perfect code in the Cayley graph ofSL(2,2 f ) with respect
to X if f �= 1. A list of subsetsX closed under conjugation and natural numbersλ such thatX
possibly dividesλSL(2,2 f ) has been established. Moreover, as a case whereX is not closed under
conjugation, the orbitsX of involutions by conjugation of a Singer cycle ofSL(2,2 f ) have been
considered and it has been determined whether they divideλSL(2,2 f ) non-trivially or not.
© 2003 Elsevier Ltd. All rights reserved.

1. Preliminaries

For a non-empty subsetX of a finite groupG and a natural numberλ, it is said thatX
dividesλG if there is a subsetY of G such that each elementg of G is written in exactly
λ ways asg = xy with x ∈ X andy ∈ Y; the subsetY is called acodewith respect toX
and we writeX · Y = λG. Note that if X dividesλG with codeY, thenλ = |X||Y|/|G|
andλ ≤ |X|. It is saidX trivially dividesλG if X = G or λ = |X|; in thecaseX = G,
we haveX · Y = λG for any subsetY of cardinalityλ, and inthe caseλ = |X|, we have
X · Y = λG with Y = G. For X dividing λG, it could be assumed thatλ ≤ |X| − 1;
otherwise it is the trivial case. IfX is a subgroup ofG or a set of representatives of left
cosets for some subgroup ofG, then X divides G obviously. Suppose that a subsetX
dividesλG with codeY. ThenX · (Yg) = λG for any g ∈ G. Therefore if we can take
elementsg1, g2, . . . , gr of G suchthatY ∪ (Yg1)∪ (Yg2)∪ · · · ∪ (Ygr ) =: Y′ is a disjoint
union, thenX dividesrλG with codeY′.
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Table 1
The character table ofS3

Class name 1 U S
Size 1 3 2
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

Let X be a subset ofG suchthatX doesnotcontain the identity 1 ofG andX coincides
with X−1 := {x−1 | x ∈ X}. Assume thatX dividesG with codeY. ThenY is partitioned
into pairs{y1, y2} suchthat y1 ∈ Xy2 andy2 ∈ Xy1. In particular,|Y| is even.

For a finite groupG and its non-empty subsetΩ , theCayleygraphΓ (G,Ω) is the graph
with the vertex setVΓ = G and the edge setEΓ = {(g,h) | gh−1 ∈ Ω}. Thedistance
∂(v,w) is the shortest length of paths fromw to v; if X �= X−1, we define∂(v,w) by
using directed paths. A subsetC of the vertex setVΓ is called aperfect e-codeif for any
vertexv, there isauniquec in C suchthat∂(v, c) ≤ e. Perfecte-codes in the Cayley graph
Γ (G,Ω) are perfect one-codes in the Cayley graphΓ (G, X), whereX is the set of vertices
x with ∂(x,1) ≤ e in Γ (G,Ω). So when we consider perfecte-codes in a Cayley graph,
we may assume thate = 1. Notethat X dividesG with codeY if andonly if G is covered
by the disjoint sets{Xy | y ∈ Y}. If X · Y = G andX contains the identity, thenY is a
perfect one-code inΓ (G, X\{1}).
Lemma 1. If a subsetX dividesλG with code Y �= G, thenthe Cayley graphΓ (G, X)
haseigenvalue 0. If in addition X contains the identity, the Cayley graphΓ (G, X\{1}) has
eigenvalue−1.

Proof. Let A be the adjacency matrix ofΓ (G, X). For a subsetZ of G, let ΦZ be the
column vector indexed by the elements ofG whose entries are 1 or 0 according as the
vertex belongs toZ or not. Then we haveAΦY = λΦG and AΦG = |X|ΦG. Thus
A(ΦY − λ|X|−1ΦG) = 0. Moreover, ΦY �= λ|X|−1ΦG sinceY �= G. Hence A has
eigenvalue 0. �

Lemma 2 ([1, Theorem 7.2]).Let G bea finite group and{Ci }i the conjugacy classes.
Let X be a subset of G closed under conjugation of G: X= ⋃

i∈I Ci for some index
setI. The eigenvalues of the Cayley graphΓ (G, X) are

∑
i∈I |Ci |ϑ(ci )/ϑ(1), where ci is

a representative of the conjugacy classCi andϑ runs through all irreducible characters
of G. Moreover, the multiplicity of an eigenvalueα of Γ (G, X) equals the sum ofϑ(1)2

over all irreducible charactersϑ suchthatα = ∑
i∈I |Ci |ϑ(ci )/ϑ(1).

For example, the character table ofS3 is given in Table 1, whereU andS are the
conjugacy classes corresponding to the partitions 2111 and 31, respectively. Let X be a
subset ofS3 closed under conjugation. IfX dividesλS3 then it can easily be deduced that
X = U, S3\U or S3 from Lemmas 1and2. In fact, thesubsetsU andS3\U divide S3 with
codeY = {id, (1 2)}.
Theorem 3 (An Analogue to [2]). Let G be a finite group, X its subset(not necessarily
closed under conjugation) andλ a natural number. Assume that G has a subgroup H with
the property that
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(1) the order|X| of X does not divideλ|H |, and
(2) the matrix PH (X̂) is non-singular, where PH is the permutation representation of G

acting on the cosets H\G and X̂ is the sum of elements of X in the group algebra
C[G] over the complex fieldC.

Then Xdoes not divideλG non-trivially.

Proof. Assume that̂XŶ = λĜ in the groupalgebraC[G] for some subsetY of G. Then
PH (X̂)PH (Ŷ) = PH (λĜ) = λPH (Ĝ). By the assumption (2), there exists the inverse
matrix PH (X̂)−1, which can be described as a polynomial ofPH (X̂). Since PH (Ĝ) =
PH (x)PH (Ĝ) for anyx in G, it is obtained thatPH (Ŷ) = PH (X̂)−1λPH (Ĝ) = aλPH (Ĝ)
for some rational numbera. Then, by multiplying the last equation byPH (X̂) from the
left, we havea = |X|−1. Hence it is obtained that

PH (Ŷ) = λ

|X| PH (Ĝ) = λ|H |
|X| J,

whereJ is the matrix with all entries 1. This equation contradicts the fact that the matrix
PH (Ŷ) = ∑

y∈Y PH (y) has integral entries.�

Remarks 4. (1) Thematrix PH (X̂) is non-singular if and only ifR(X̂) is non-singular
for each irreducible representationR appearing inPH .

(2) X dividesλG with codeY if and only if G\X dividesµG with codeY, where
µ = |Y| − λ.

Lemma 5. Let X divideλG with code Y . Assume that there exists a subgroup H of G such
that the matrix PH (X̂) is non-singular. Then the following hold.

(1) The integerλ is divisible by|X|/ gcd(|X|, |H |).
(2) If X is closed under conjugation, thenµ is divisible by (|G| − |X|)/ gcd(|G| −

|X|, |H |), whereµ = |Y| − λ.

Proof. The claim (1) derives fromTheorem 3. Suppose thatX is closed under conjugation.
ThenĜ\X belongs to the center ofC[G]. Thus each irreducible component ofPH (Ĝ\X)
is a scalar by Schur’s lemma. Sinceϑ(Ĝ\X) = −ϑ(X̂) �= 0 for each non-trivial irreducible
characterϑ appearing in the character ofPH , the matrix PH (Ĝ\X) is non-singular.
Therefore the claim (2) of this lemma follows fromTheorem 3. �

We considerwhich X dividesG = SL(2,q) for a powerq of 2. Note that the special
lineargroupSL(2,2) is isomorphic to the symmetric groupS3, and so the argument for
q = 2 is over. Throughout this paper, we assume thatq is a power of 2 greater than 2. Let
I andJ be the index sets

I := {1,2, . . . , (q − 2)/2} and J := {1,2, . . . ,q/2}.
The character table ofSL(2,q) is given inTable 2, whereδ andε are primitive(q−1)st

and(q+1)st roots of unity in the complex number fieldC, respectively. For each subgroup
H of SL(2,q), thepermutation character 1SL(2,q)

H is written as

1SL(2,q)
H = |H |−1

∑
ϑ

(∑
x∈H

ϑ(x)

)
ϑ (1)
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Table 2
The character table ofSL(2,q)

Class name 1 U Ti
(i ∈ I)

S j
( j ∈ J )

Size 1 q2 − 1 q(q + 1) q(q − 1)
χ0 1 1 1 1
χ1 q 0 1 −1
ψm

(m ∈ I) q + 1 1 δmi + δ−mi 0

ϕn
(n ∈ J ) q − 1 −1 0 −(εnj + ε−nj )

Table 3
The decompositions of 1GH (G = SL(2,q) andq = 2 f ≥ 4)

SubgroupH |H | The decomposition
1 1 χ0 + qχ1 + (q + 1)

∑
mψm + (q − 1)

∑
n ϕn

S q + 1 χ0 + ∑
mψm + ∑

n ϕn
NG(S) 2(q + 1) χ0 + ∑

mψm
〈t〉 q − 1 χ0 + 2χ1 + ∑

mψm + ∑
n ϕn

NG(〈t〉) 2(q − 1) χ0 + χ1 + ∑
mψm

U q χ0 + χ1 + 2
∑

mψm
B q(q − 1) χ0 + χ1

Here S is a Singer cycle ofG, t a diagonal matrix of orderq − 1, U the standard unipotent radical{ [
1 α
0 1

] ∣∣∣ α ∈ GF(q)
}
, B = NG(U) the standard Borel subgroup and the summations run overm ∈ I and

n ∈ J .

by the Frobenius reciprocity, where the first summation
∑
ϑ runs over allirreducible

charactersϑ of SL(2,q). UsingTable 2and Eq. (1), the decomposition of the permutation
character 1SL(2,q)

H into irreducible characters is obtained inTable 3 for each subgroupH
of SL(2,q).

2. The case where X is closed under conjugation

Let us assume that the subsetX is closed under conjugation in this section. For
an irreducible representationR, R(X̂) is a scalar by Schur’s lemma and therefore the
condition (2) ofTheorem 3can be checked easily.

Theorem 6. Suppose that X is a non-trivial subset closed under conjugation of
SL(2,q) (q = 2 f ≥ 4). Assume that X does not contain the identity and X divides
λSL(2,q). Then X isone of the following withλ divisible byλ′ in the table.

Subset X λ′ (whenψm(X̂) �= 0 for all m ∈ I)
U q − 1(⋃

i∈I0
Ti

)
∪
(⋃

j ∈J ′ S j

)
|X|/(p0q)(⋃

i∈I ′ Ti
) ∪

(⋃
j ∈J0

S j

)
|X|/(p′q) (|X|/2),

whereI0 (respectivelyJ0) is a subset(possibly empty) of the index setI (respectivelyJ )
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suchthat∑
i∈I0

(δ0
i + δ0

−i ) = 0

respectively
∑
j ∈J0

(ε0
j + ε0

− j ) = 0


for some(q − 1)st (respectively (q + 1)st) root δ0 (respectively ε0) of unity in C,
I ′ (respectivelyJ ′) is a subset(possibly empty) of I (respectivelyJ ),

p0 := gcd(|I0|,q − 1) if I0 �= ∅, or q − 1 otherwise,

p′ := gcd(|I ′|,q − 1) if I ′ �= ∅, or q − 1 otherwise.

Proof. SubsetsX for which the Cayley graphsΓ (SL(2,q), X) have eigenvalue 0 will be
listed first, and then conditions onλ are considered by taking suitable subgroupsH in
Theorem 3. Let

X̂ = aÛ +
∑
i∈I

bi T̂i +
∑
j ∈J

cj Ŝ j ,

wherea,bi (i ∈ I), cj ( j ∈ J ) are 0 or 1.
Assume that the eigenvalue corresponding toχ1 is equal to 0; that is,χ1(X̂) = 0. Then

the equation

0 = 0 +
∑
i∈I

bi q(q + 1) · 1

q
+
∑
j ∈J

cj q(q − 1) · (−1)

q

= (q + 1)
∑
i∈I

bi − (q − 1)
∑
j ∈J

cj

is obtained. By considering this equation moduloq − 1, the set{i ∈ I | bi = 1} has to be
empty since

∑
i∈I bi ≤ |I| = (q − 2)/2. This implies that the index set{ j ∈ J | cj = 1}

is also empty. Therefore, we have

X = U,or ∅.
To determineλ for X = U , let us setH = S. The irreducible representationsR appearing
in PS are those affordingχ0, ψm (m ∈ I) andϕn (n ∈ J ) by Table 3. Since each of
the scalar matricesR(Û) is not zero by the character table, the matrixPS(Û) is non-
singular. If U dividesλSL(2,q), then the integerλ is divisible by |U |/ gcd(|U |, |S|) =
(q2 − 1)/ gcd(q2 − 1,q + 1) = q − 1 byLemma 5(1).

In the case whereψm(X̂) = 0 for somem ∈ I, we have 0= (q2 − 1)a + q(q +
1) × ∑

i∈I (δmi + δ−mi)bi . This equation moduloq implies thata = 0. Thus we have∑
i∈I(δmi + δ−mi)bi = 0 and so{i ∈ I | bi = 1} = I0 for someI0. Therefore, we have

X =
⋃

i∈I0

Ti

 ∪
⋃

j ∈J ′
S j

 .
To determineλ for this subsetX, let us setH = B, the standard Borel subgroup. In that
case the matrixPB(X̂) is non-singular byTables 2and3 and by the argument for the case
χ1(X̂) = 0. If X dividesλSL(2,q), then integerλ is divisible by |X|/ gcd(|X|, |B|) =
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|X|/(p0q) since|X| = q((q+1)|I0|+(q−1)|J ′|) and|B| = q(q−1). Hence the second
row of the list is apparent.

In the case whereϕn(X̂) = 0 for somen ∈ J , the equation

X =
(⋃

i∈I ′
Ti

)
∪
⋃

j ∈J0

S j


holds by an argument similar to the previous case. Ifψm(X̂) = 0 for somem ∈ I, then
the condition onλ is already obtained. Suppose thatψm(X̂) �= 0 for all m ∈ I and let
us setH = B, H = NSL(2,q)(S) andH = NSL(2,q)(〈t〉) in turn. Then the matrixPH (X̂)
is non-singular for eachH by Tables 2and3. Assume thatX dividesλSL(2,q) and set
r0 := gcd(|J0|,q + 1) if J0 �= ∅, or p + 1 otherwise. Then the integerλ is divisible by
|X|/(p′q), |X|/ gcd(|X|,2(q + 1)) = |X|/(2r0) and|X|/ gcd(|X|,2(q − 1)) = |X|/(2p′)
as |X| = q((q + 1)|I ′| + (q − 1)|J0|). In order to take the least common multiple of
these three integers, we calculate the greatest common divisor ofqp′,2r0 and 2p′. The
integer 2 is, however, the greatest common divisor of the last two integers 2r0 and 2p′
since gcd(q −1,q +1) = gcd(q −1,2) = 1. Therefore, the integerλ is divisible by|X|/2
and hence the theorem is proved.�
Problem. For eachX in the table ofTheorem 6, determine whetherX dividesλSL(2,q)
or not.

The list inTheorem 6with λ = 1 settles the perfecte-code problem inSL(2,q) when
SL(2,q) acts on the Cayley graph by conjugation:

Theorem 7. For a subset X closed under conjugation and a power q of 2, the special
linear group SL(2,q) is divided by X non-trivially if and only if q= 2 and X = U or
X = SL(2,2)\U .

In the following, we shall outline the proof ofTheorem 7. When X does not contain
the identity,Theorem 7follows from Theorem 6and the fact that|Y| is even, whereY is
a code ofG with respect toX. Assume thatX contains the identity. It has already been
noticed inSection 1thatG\X dividesµG with µ = |Y| − λ. HenceG\X must bein the
list of Theorem 6. Applying Lemma 5(2), we have the following corollary. The proof is
omitted because it is quite similar to that ofTheorem 6.

Corollary 8. Suppose that X is closed under conjugation and X contains the identity. If
X dividesλSL(2,q), then X isone of the following withλ divisible byλ′ in the table.

Subset X λ′ (whenψm(X̂) = 0 for all m ∈ I)
SL(2,q)\U |X|/(q + 1)

SL(2,q)\
((⋃

i∈I0
Ti

)
∪
(⋃

j ∈J ′ S j

))
|X|/(p0q)

SL(2,q)\
((⋃

i∈I ′ Ti
) ∪

(⋃
j ∈J0

S j

))
|X|/(p′q) (|X|/2),

whereI0 (respectivelyJ0) is a subset(possibly empty) of the index setI (respectivelyJ )
suchthat∑

i∈I0

(δ0
i + δ0

−i ) = 0

respectively
∑
j ∈J0

(ε0
j + ε0

− j ) = 0
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for some(q − 1)st (respectively (q + 1)st) root δ0 (respectively ε0) of unity in C,
I ′ (respectivelyJ ′) is a subset(possibly empty) of I (respectivelyJ ),

p0 := gcd(|I0|,q − 1) if I0 �= ∅, or q − 1 otherwise,

p′ := gcd(|I ′|,q − 1) if I ′ �= ∅, or q − 1 otherwise.

It is clear that the integerλ′ is greater than 1. ThereforeTheorem 7holds.

3. Some cases where X is not closed under conjugation

We consider an orbitX of an involution by conjugation of a Singer cycle as a case where
X is not closed under conjugation.

Let q = 2 f ≥ 4 and GF(q2) be the finite field of q2 elements. Letρ be a primitive
(q + 1)st root of unity in the multiplicative group GF(q2)× and denoteρ j + ρ− j by η j .
For eachα ∈ GF(q) with α �= 0, take matrices

uα :=
[

1 α

0 1

]
and s :=

[
η1 1
1 0

]
=
[
ρ 1
1 ρ

] [
ρ 0
0 ρ−1

] [
ρ 1
1 ρ

]−1

.

Lemma 9. Wehaveη j = η− j , ηq+1 = η0 = 0, η j
2 = η2 j ,

ηi η j = ηi+ j + ηi− j and ηi + η j = (ηi+ j )
1/2(ηi− j )

1/2.

If ηi = η j , then wehave i ≡ ± j modq+1. Theorder of s is q+1; that is, s isa generator
of a Singer cycle. By definition, sj can be written as

sj = η1
−1
[
η j +1 η j

η j η j −1

]
.

Moreover, thefieldGF(q) coincides with the set{η−1
j η j +1 | j = 1,2, . . . ,q}, sincethe

matrix s acts on the project line PG(1,q) regularly.

Theorem 10. Let Xα be the orbit of the involution uα by conjugation of〈s〉:
Xα := {sj uαs− j | j = 0,1,2, . . . ,q} (q = 2 f )

for α ∈ GF(q) with α �= 0. Then Xα does not divideλSL(2,q) non-trivially if α �= η1.

Proof. Let P be the permutation representation ofSL(2,q) acting on the projective line
PG(1,q). If P(X̂α) is non-singular, thenXα does not divideλSL(2,q) non-trivially by
Theorem 3with the subgroupH being the standard Borel subgroupB of orderq(q − 1).
Thus, it is sufficient to show thatP(X̂α) is non-singular.

The elements ofPG(1,q) can be arranged as

v0 =
{

a

[
1
0

] ∣∣∣∣ a ∈ GF(q)×
}

and vi = si v0 for i = 1,2, . . . ,q.

Then the(i , j ) entry P(X̂α)i, j of the matrix P(X̂α) is the number of k’s such that
skuαs−kv j = vi . Note that the matrixP(X̂α) is circulant:P(X̂α)i, j = P(X̂α)i− j ,0 since
sX̂αs−1 = X̂α , where we understand the index moduloq + 1.
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Fork = 0,1,2, . . . ,q, let

skuαs−kv0 =
{

c

[
a
b

] ∣∣∣∣ c ∈ GF(q)×
}
.

We haveb = 0 if andonly if k = 0. Assume thatb �= 0. Then

ab−1 = α−1ηk
−2(η2 + αηk+1ηk) (2)

since

skuαs−k = η1
−2
[
η2 + αηk+1ηk αηk+1

2

αηk
2 η2 + αηk+1ηk

]
.

If the number of indicesk satisfying Eq. (2) is even for eachab−1 ∈ GF(q), then the
matrix P(X̂α) has entries 1 on the diagonal and evenintegers off the diagonal. Hence the
determinant of P(X̂α) is odd; in particular,P(X̂α) is non-singular.

Note that Eq. (2) is equivalent to (3) below:

α(ab−1η2k + η2k+1 + η1)+ η2 = 0 (3)

obtained by multiplying each of the terms of (2) by αηk
2 and usingηk+1ηk = η2k+1 + η1.

Now we would like to show the number ofk satisfying (3) is even for eachab−1 ∈
GF(q). Assume thatk satisfies Eq. (3) and takethe index i suchthat ab−1 = ηi

−1ηi+1
by Lemma 9. Thenab−1ηi + ηi+1 = 0 and 0= (ab−1ηi + ηi+1)ηi−2k = ab−1(η2i−2k +
η2k)+ η2i−2k+1 + η2k+1. Thus

0 = {α(ab−1η2k + η2k+1 + η1)+ η2}
+ α{ab−1(η2i−2k + η2k)+ η2i−2k+1 + η2k+1}

= α(ab−1η2(i−k) + η2(i−k)+1 + η1)+ η2;
that is,i − k (mod q + 1) alsosatisfies Eq. (3). If i − k ≡ k modq + 1 thenηi = η2k and
ηi+1 = η2k+1 by definition of η. Hence we haveαη1 + η2 = 0 sinceab−1 = η2k

−1η2k+1.
This contradictsq ≥ 4 if α �= η1. Therefore, the number ofk satisfying Eq. (3) is even if
α �= η1. Thus the theorem is proved.�

In the case whereα = η1, the set Xη1 divides SL(2,q) since Xη1 is a set of
representatives of the cosetsSL(2,q)/B. Furthermore,Theorem 10implies the theorem
below on conjugation.

Theorem 11. Let q be apower of 2 greater than 2 and X an orbit of an involution by
conjugation of a Singer cycle of SL(2,q). Then XdividesλSL(2,q) non-trivially if and
only if X is conjugate to Xη1; that is, X is a complete set of representatives of left cosets
for a Borel subgroup in SL(2,q).
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