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Perfect Snake-in-the-Box Codes
for Rank Modulation

Alexander E. Holroyd

Abstract—For odd n, the alternating group on n elements is
generated by the permutations that jump an element from an odd
position to position 1. We prove Hamiltonicity of the associated
directed Cayley graph for all odd n 6= 5. (A result of Rankin
implies that the graph is not Hamiltonian for n = 5.) This solves
a problem arising in rank modulation schemes for flash memory.
Our result disproves a conjecture of Horovitz and Etzion, and
proves another conjecture of Yehezkeally and Schwartz.

Index Terms—Hamiltonian cycle, Cayley graph, snake-in-the-
box, Gray code, rank modulation.

I. INTRODUCTION

THE following questions are motivated by applications in-
volving flash memory. Let Sn be the symmetric group of

permutations π = [π(1), . . . , π(n)] of [n] := {1, . . . , n}, with
composition defined by (πρ)(i) = π(ρ(i)). For 2 ≤ k ≤ n let

τk :=
[
k, 1, 2, . . . , k − 1, k + 1, . . . , n

]
∈ Sn

be the permutation that jumps element k to position 1 while
shifting elements 1, 2, . . . , k−1 right by one place. Let Sn be
the directed Cayley graph of Sn with generators τ2, . . . , τn,
i.e. the directed graph with vertex set Sn and a directed edge,
labelled τi, from π to πτi for each π ∈ Sn and each i =
2, . . . , n.

We are concerned with self-avoiding directed cycles (hence-
forth referred to simply as cycles except where explicitly
stated otherwise) in Sn. (A cycle is self-avoiding if it visits
each vertex at most once). In applications to flash memory, a
permutation represents the relative ranking of charges stored in
n cells. Applying τi corresponds to the operation of increasing
the ith charge to make it the largest, and a cycle is a
schedule for visiting a set of distinct charge rankings via such
operations. Schemes of this kind were originally proposed in
[1].

One is interested in maximizing the length of such a cycle,
since this maximizes the information that can be stored. It
is known that Sn has a directed Hamiltonian cycle, i.e. one
that includes every permutation exactly once; see e.g. [1]–
[3]. However, for the application it is desirable that the cycle
should not contain any two permutations that are within a cer-
tain fixed distance r of each other, with respect to some metric
d on Sn. The motivation is to avoid errors arising from one
permutation being mistaken for another [1], [4]. The problem
of maximizing cycle length for given r, d combines notions of

Microsoft Research, Redmond, USA. holroyd@microsoft.com.
Copyright (c) 2014 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Gray codes [5] and error-detecting/correcting codes [6], and is
sometimes known as a snake-in-the-box problem. (This term
has its origins in the study of analogous questions involving
binary strings as opposed to permutations; see e.g. [7]).

The main result of this article is that, in the case that has
received most attention (described immediately below) there
is a cycle that is perfect, i.e. that has the maximum size even
among arbitrary sets of permutations satisfying the distance
constraint.

More precisely, our focus is following case considered in
[8]–[10]. Let r = 1 and let d be the Kendall tau metric
[11], which is defined by setting d(π, σ) to be the inversion
number of π−1σ, i.e. the minimum number of elementary
transpositions needed to get from π to σ. (The ith elementary
transposition swaps the permutation elements in positions i
and i + 1, where 1 ≤ i ≤ n − 1). Thus, the cycle is not
allowed to contain any two permutations that are related by a
single elementary transposition. The primary object of interest
is the maximum possible length Mn of such a directed cycle
in Sn.

It is easy to see that Mn ≤ n!/2. Indeed, any set of
permutations satisfying the above distance constraint includes
at most one from the pair {π, πτ2} for every π, but these pairs
partition Sn. To get a long cycle, an obvious approach is to
restrict to the alternating group An of all even permutations.
Since an elementary transposition changes the parity of a
permutation, this guarantees that the distance condition is
satisfied. The generator τk lies in An if and only if k is odd.
Therefore, if n is odd, this approach reduces to the problem
of finding a maximum directed cycle in the directed Cayley
graph An of An with generators τ3, τ5, . . . , τn. Yehezkeally
and Schwartz [8] conjectured that for odd n the maximum
cycle length Mn is attained by a cycle of this type; our result
will imply this. (For even n this approach is less useful, since
without using τn we can access only permutations that fix n.)
As in [8]–[10], we focus mainly on odd n.

For small odd n, it is not too difficult to find cycles in An

with length reasonably close to the upper bound n!/2, by ad-
hoc methods. Finding systematic approaches that work for all
n is more challenging. Moreover, getting all the way to n!/2
apparently involves a fundamental obstacle, but we will show
how it can be overcome.

Specifically, it is obvious that M3 = 3!/2 = 3. For general
odd n ≥ 5, Yehezkeally and Schwartz [8] proved the inductive
bound Mn ≥ n(n − 2)Mn−2, leading to Mn ≥ Ω(n!/

√
n)

asymptotically. They also showed by computer search that
M5 = 5!/2 − 3 = 57. Horowitz and Etzion [9] improved
the inductive bound to Mn ≥ (n2 − n − 1)Mn−2, giving



0018-9448 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2016.2620160, IEEE
Transactions on Information Theory

2

Mn = Ω(n!). They also proposed an approach for constructing
a longer cycle of length n!/2 − n + 2(= (1 − o(1))n!/2),
and showed by computer search that it works for n = 7 and
n = 9. They conjectured that this bound is optimal for all
odd n. Zhang and Ge [10] proved that the scheme of [9]
works for all odd n, establishing Mn ≥ n!/2 − n + 2, and
proposed another scheme aimed at improving the bound by 2
to n!/2−n+4. Zhang and Ge proved that their scheme works
for n = 7, disproving the conjecture of [9] in this case, but
were unable to prove it for general odd n.

The obvious central question here is whether there exists
a perfect cycle, i.e. one of length n!/2, for any odd n > 3.
As mentioned above, Horovitz and Etzion [9] conjectured a
negative answer for all such n, while the authors of [8], [10]
also speculate that the answer is negative. We prove a positive
answer for n 6= 5.

Theorem 1. For all odd n ≥ 7, there exists a directed
Hamiltonian cycle of the directed Cayley graph An of the
alternating group An with generators τ3, τ5, . . . , τn. Thus,
Mn = n!/2.

Besides being the first of optimal length, our cycle has a
somewhat simpler structure than those in [9], [10]. It may in
principle be described via an explicit rule that specifies which
generator should immediately follow each permutation π, as
a function of π. (See [2], [12], [13] for other cycles of that
can be described in this way). While the improvement from
n!/2− n+ 2 to n!/2 is in itself unlikely to be important for
applications, our methods are quite general, and it is hoped
that they will prove useful for related problems.

We briefly discuss even n. Clearly, one approach is to
simply leave the last element of the permutation fixed, and
use a cycle in An−1, which gives Mn ≥ Mn−1 for even n.
Horovitz and Etzion [9] asked for a proof or disproof that
this is optimal. We expect that one can do much better. We
believe that Mn ≥ (1 − o(1))n!/2 asymptotically as n → ∞
(an n-fold improvement over (n − 1)!/2), and perhaps even
Mn ≥ n!/2 − O(n2). We outline a possible approach to
showing bounds of this sort, although it appears that a full
proof for general even n would be rather messy. When n = 6
we use this approach to show M6 ≥ 315, improving the bound
M6 ≥ 57 of [9] by more than a factor of 5.

Hamiltonian cycles of Cayley graphs have been extensively
studied, although general results are relatively few. See e.g. [3],
[14]–[16] for surveys. In particular, it is unknown whether
every undirected Cayley graph is Hamiltonian. Our key con-
struction (described in the next section) appears to be novel
in the context of this literature also.

Central to our proof are techniques having their origins in
change ringing (English-style church bell ringing). Change
ringing is also concerned with self-avoiding cycles in Cayley
graphs of permutations groups (with a permutation represent-
ing an order in which bells are rung), and change ringers
discovered key aspects of group theory considerably before
mathematicians did – see e.g. [17]–[20]. As we shall see, the
fact that A5 has no Hamiltonian cycle (so that we have the
strict inequality M5 < 5!/2) follows from a theorem of Rankin
[21], [22] that was originally motivated by change ringing.

II. BREAKING THE PARITY BARRIER

In this section we explain the key obstruction that frustrated
the previous attempts at a Hamiltonian cycle ofAn in [8]–[10].
We then explain how it can be overcome. We will then use
these ideas to prove Theorem 1 in Sections III and IV.

By a cycle cover of a directed Cayley graph we mean a
set of self-avoiding directed cycles whose vertex sets partition
the vertex set of the graph. A cycle or a cycle cover can be
specified in several equivalent ways: we can list the vertices
or edges encountered by a cycle in order, or we can specify
a starting vertex of a cycle and list the generators it uses in
order, or we can specify which generator immediately follows
each vertex – i.e. the label of the unique outgoing edge that
belongs to the cycle or cycle cover. It will be useful to switch
between these alternative viewpoints.

A standard approach to constructing a Hamiltonian cycle is
to start with a cycle cover, and then successively make local
modifications that unite several cycles into one, until we have
a single cycle. (See [2], [8]–[10], [12], [14]–[16], [19], [23]–
[25] for examples.) However, in An and many other natural
cases, there is a serious obstacle involving parity, as we explain
next.

The order order(g) of a group element g is the smallest
t ≥ 1 such that gt = id, where id is the identity. In our case,
let τk, τ` be two distinct generators of An, and observe that
their ratio ρ := τ`τ

−1
k is simply the permutation that jumps

element ` to position k while shifting the intervening elements
by 1. For example, when n = 9 we have τ9 = [912345678]
and τ−17 = [234567189], so τ9τ

−1
7 = [123456978] (element

9 jumps first to position 1 and then back to position 7). In
general, the ratio ρ has order q := |k − `|+ 1, which is odd.
In the example, q = 3.

The fact that order(ρ) = q corresponds to the fact that in the
Cayley graph An, starting from any vertex, there is a cycle of
length 2q consisting of directed edges oriented in alternating
directions and with alternating labels τ` and τk. Consider one
such alternating cycle Q, and suppose that we have a cycle
cover that includes all q of the τk-edges of Q. Consequently, it
includes none of the τ`-edges of Q (since it must include only
one outgoing edge from each vertex). An example is the cycle
cover that uses the outgoing τk-edge from every vertex of An.
Then we may modify the cycle cover as follows: delete all the
τk-edges of Q, and add all the τ`-edges of Q. This results in
a new cycle cover, because each vertex of the graph still has
exactly one incoming edge and one outgoing edge present.

Suppose moreover that all the τk-edges of Q lay in distinct
cycles in the original cycle cover. Then the effect of the
modification is precisely to unite these q cycles into one new
cycle (having the same vertices). The new cycle alternately
traverses the new τ`-edges and the remaining parts of the
q original cycles. All other cycles of the cycle cover are
unaffected. See Fig. 1 (left) for the case (k, `) = (n − 2, n)
(with q = 3), and Fig. 1 (right) for the permutations at the
vertices of the alternating cycle Q.

A modification of the above type reduces the total number
of cycles in the cycle cover by q − 1, and therefore, since q
is odd, it does not change the parity of the total number of
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Fig. 1. Left: linking 3 cycles by replacing generator τn−2 with generator τn
in 3 places. We start with the 3 thin blue cycles, each of which comprises a
dotted edge labeled with generator τn−2, and a curved arc that represents the
remaining part of the cycle. We delete the dotted edges and replace them with
the thick solid black edges (labelled τn), to obtain one (solid) cycle, containing
the same vertices as the original 3 cycles. Right: the permutations at the six
vertices that are marked with solid discs in the left picture. The permutation
at the (green) circled vertex is [. . . . . . , a, b, c], where a, b, c ∈ [n], and the
permutations are listed in clockwise order around the inner hexagon starting
and finishing there. The ellipsis · · · · · · represents a sequence of n−3 distinct
elements of [n], the same sequence everywhere it occurs. A solid black curve
indicates that the ratio between the two successive permutations is τn (so that
an element jumps from position n to 1), while a dotted blue curve indicates
τ−1
n−2 (with a jump from 1 to n− 2).

cycles. Less obviously, it turns out that this parity is preserved
by such a modification even if we relax the assumption that
the q deleted edges lie in distinct cycles. (See [21] or [22] for
proofs.) This is a problem, because many cycle covers that
one might naturally start with have an even number of cycles.
This holds in particular for the cycle cover that uses a single
generator τk everywhere (for n ≥ 5), and also for the one that
arises in an obvious inductive approach to proving Theorem 1
(comprising |An|/|An−2| = n(n − 1) cycles each of length
|An−2|). Thus we can (apparently) never get to a Hamiltonian
cycle (i.e. a cycle cover of one cycle) by this method.

The above ideas in fact lead to the following rigorous
condition for non-existence of directed Hamiltonian cycles.
The result was proved by Rankin [21], based on an 1886 proof
by Thompson [18] of a special case arising in change ringing;
Swan [22] later gave a simpler version of the proof.

Theorem 2. (Rankin) Consider the directed Cayley graph G of
a finite group with two generators a, b. If order(ab−1) is odd
and |G|/ order(a) is even, then G has no directed Hamiltonian
cycle.

An immediate consequence is that A5 has no directed
Hamiltonian cycle (confirming the computer search result of
[9]), and indeed An has no directed Hamiltonian cycle using
only two generators for odd n ≥ 5.

To break the parity barrier, we must use at least three gen-
erators in a fundamental way. The problem with the previous
approach was that order(τ`τ

−1
k ) is odd: we need an analogous

relation involving composition of an even number of ratios of
two generators. In terms of the graph An, we need a cycle of
length a multiple of 4 whose edges are oriented in alternating
directions. It is clear that such a thing must exist for all odd
n ≥ 7, because the ratios τkτ−1` generate the alternating group
on the n− 2 elements {3, . . . , n}, which contains elements of

τn−2

τn−4τn−4

τn−2

τn−4 τn−4

τn

τn
τn

τn

τn
τn

· · · · a b c d e
e · · · · a b c d
· · · · a b e c d
d · · · · a b e c
· · · · d a b e c
c · · · · d a b e
· · · · c d a b e
e · · · · c d a b
· · · · c d e a b
b · · · · c d e a
· · · · b c d e a
a · · · · b c d e
· · · · a b c d e

Fig. 2. The key construction. Left: replacing a suitable combination of
generators τn−2 and τn−4 with τn links 6 cycles into one, breaking the
parity barrier. We start with the 2 blue and 4 red thin cycles, and replace
the dotted edges with the thick black solid edges to obtain the solid cycle.
Right: the permutations appearing at the vertices marked with solid discs,
listed in clockwise order starting and ending at the circled vertex, which is
[. . . . , a, b, c, d, e]. The ellipsis · · · · represents the same sequence everywhere
it occurs.

even order. We will use the example:

order
(
ζ
)

= 2, where ζ := τnτ
−1
n−2τnτ

−1
n−4τnτ

−1
n−4. (1)

It is a routine matter to check (1): the ratio τnτ
−1
n−s is the

permutation that jumps an element from position n to n − s
(while fixing 1, . . . , n − s − 1 and shifting n − s, . . . , n − 1
right one place), so to compute the composition ζ of three
such ratios we need only keep track of the last 5 elements.
Fig. 2 (right) shows the explicit computation: starting from an
arbitrary permutation π = [. . . , a, b, c, d, e] ∈ An, the succes-
sive compositions π, πτn, πτnτ−1n−2, πτnτ

−1
n−2τn, . . . , πζ

2 = π
are listed – the ellipsis · · · · represents the same sequence
everywhere it occurs. This explicit listing of the relevant
permutations will be useful later.

We can use the above observation to link 6 cycles into one,
as shown in Fig. 2 (left). Let Q′ be a length-12 cycle in An

with edges in alternating orientations that corresponds to the
identity (1). That is to say, every alternate edge in Q′ has
label τn, and is oriented in the same direction around Q′. The
other 6 edges are oriented in the opposite direction, and have
successive labels τn−2, τn−4, τn−4, τn−2, τn−4, τn−4. Suppose
that we start with a cycle cover in which the two τn−2-edges
and the four τn−4-edges of Q′ all lie in distinct cycles. Then
we can delete these 6 edges and replace them with the six τn-
edges of Q′. This results in a new cycle cover in which these
6 cycles have been united into one, thus reducing the number
of cycles by 5 and changing its parity. See Fig. 2 (left) – the
old cycles are in thin red and blue, while the new cycle is
shown by solid lines and arcs.

We will prove Theorem 1 by induction. The inductive step
will use one instance of the above 6-fold linkage to break the
parity barrier, together with many instances of the simpler 3-
fold linkage described earlier with (k, `) = (n−2, n). The base
case n = 7 will use the 6-fold linkage in the reverse direction
(replacing six τn-edges with τn−2, τn−4, . . .), together with
the cases (k, `) = (7, 5), (7, 3) of the earlier linkage.
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Fig. 3. The hypergraph of Proposition 3, when n = 9. The vertices are all the ordered pairs (a, b) = ab ∈ [n](2), and the hyperedges are triangles of the
form {ab, bc, ca}. Hyperedges are colored according to the step of the induction at which they are added. In the last step from n = 8 to n = 9, all the white
hyperedges are added, i.e. those incident to vertices that contain element 9.

III. HYPERGRAPH SPANNING

The other main ingredient for our proof is a systematic way
of organizing the various linkages. For this the language of
hypergraphs will be convenient. Similar hypergraph construc-
tions were used in [9], [10]. A hypergraph (V,H) consists
of a vertex set V and a set H of nonempty subsets of V ,
which are called hyperedges. A hyperedge of size r is called
an r-hyperedge.

The incidence graph of a hypergraph (V,H) is the bipartite
graph with vertex set V ∪H , and with an edge between v ∈ V
and h ∈ H if v ∈ h. A component of a hypergraph is a com-
ponent of its incidence graph, and a hypergraph is connected
if it has one component. We say that a hypergraph is acyclic
if its incidence graph is acyclic. Note that this a rather strong
condition: for example, if two distinct hyperedges h and h′

share two distinct vertices v and v′ then the hypergraph is
not acyclic. (Several non-equivalent notions of acyclicity for
hypergraphs have been considered – the notion we use here is
sometimes called Berge-acyclicity – see e.g. [26]).

We are interested in hypergraphs of a particular kind that are
related to the linkages considered in the previous section. Let
[n](k) be the set of all n!/(n−k)! ordered k-tuples of distinct
elements of [n]. If t = (a, b, c) ∈ [n](3) is a triple, define the
triangle ∆(t) = ∆(a, b, c) := {(a, b), (b, c), (c, a)} ⊂ [n](2)

of pairs that respect the cyclic order. (Note that ∆(a, b, c) =
∆(c, a, b) 6= ∆(c, b, a).) In our application to Hamiltonian
cycles, ∆(a, b, c) will encode precisely the linkage of 3 cycles
shown in Fig. 1. The following fact and its proof are illustrated
in Fig. 3.

Proposition 3. Let n ≥ 3. There exists an acyclic hypergraph
with vertex set [n](2), with all hyperedges being triangles
∆(t) for t ∈ [n](3), and with exactly two components: one
containing precisely the 3 vertices of ∆(3, 2, 1), and the other
containing all other vertices.

Proof. We give an explicit inductive construction. When n =
3 we simply take as hyperedges the two triangles ∆(3, 2, 1)
and ∆(1, 2, 3).

Now let n ≥ 4, and assume that ([n− 1]
(2)
, H) is a hyper-

graph satisfying the given conditions for n− 1. Consider the
larger hypergraph ([n](2), H) with the same set of hyperedges,
and note that its components are precisely: (i) ∆(3, 2, 1); (ii)
an acyclic component which we denote K that contains all

vertices of [n− 1](2) \∆(3, 2, 1); and (iii) the 2n− 2 isolated
vertices {(i, n), (n, i) : i ∈ [n− 1]}.

We will add some further hyperedges to ([n](2), H). For
i ∈ [n − 1], write i+ for the integer in [n − 1] that satisfies
i+ ≡ (i+ 1) mod (n− 1), and define

D :=
{

∆(i, i+, n) : i ∈ [n− 1]
}

=
{

∆(1, 2, n),∆(2, 3, n), . . .

. . . ,∆(n− 2, n− 1, n), ∆(n− 1, 1, n)
}
.

Any element ∆(i, i+, n) of D has 3 vertices. One of them,
(i, i+), lies in K, while the others, (i+, n) and (n, i), are
isolated in ([n](2), H). Moreover, each isolated vertex of
([n](2), H) appears in exactly one hyperedge in D. Therefore,
([n](2), H ∪D) has all the claimed properties.

We remark that the above hypergraph admits a simple (non-
inductive) description – it consists of all ∆(a, b, c) such that
max{a, b} < c and b ≡ (a+ 1) mod (c− 1).

In order to link cycles into a Hamiltonian cycle we will
require a connected hypergraph. For n ≥ 3 there is no
connected acyclic hypergraph of triangles with vertex set
[n](2). (This follows from parity considerations: an acyclic
component composed of m triangles has 1 + 2m vertices,
but |[n](2)| is even.) Instead, we simply introduce a larger
hyperedge, as follows.

Corollary 4. Let n ≥ 5 and let a, b, c, d, e ∈ [n] be distinct.
There exists a connected acyclic hypergraph with vertex set
[n](2) such that one hyperedge is the 6-hyperedge ∆(a, b, e)∪
∆(c, d, e), and all others are triangles ∆(t) for t ∈ [n](3).

Proof. By symmetry, it is enough to prove this for any one
choice of (a, b, c, d, e); we choose (2, 1, 4, 5, 3). The result
follows from Proposition 3, on noting that ∆(3, 4, 5) =
∆(4, 5, 3) is a hyperedge of the hypergraph constructed there:
we simply unite it with ∆(3, 2, 1) = ∆(2, 1, 3) to form the
6-hyperedge.

IV. THE HAMILTONIAN CYCLE

We now prove Theorem 1 by induction on (odd) n. We
give the inductive step first, followed by the base case n = 7.
The following simple observation will be used in the inductive
step.
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Lemma 5. Let n ≥ 3 be odd, and consider any Hamiltonian
cycle of An. For every i ∈ [n] there exists a permutation
π ∈ An with π(n) = i that is immediately followed by a
τn-edge in the cycle.

Proof. Since the cycle visits all permutations of An, it must
contain a directed edge from a permutation π satisfying
π(n) = i to a permutation π′ satisfying π′(n) 6= i. This is
a τn-edge, since any other generator would fix the rightmost
element.

Proof of Theorem 1, inductive step. We will prove by induc-
tion on odd n ≥ 7 the statement:

there exists a Hamiltonian cycle of An

that includes at least one τn−2-edge. (2)

As mentioned above, we postpone the proof of the base case
n = 7. For distinct a, b ∈ [n] define the set of permutations
of the form [. . . , a, b]:

An(a, b) :=
{
π ∈ An :

(
π(n− 1), π(n)

)
= (a, b)

}
.

Let n ≥ 9, and let L = (τs(1), τs(2), . . . , τs(m)) be the
sequence of generators used by a Hamiltonian cycle of An−2,
as guaranteed by the inductive hypothesis, in the order that
they are encountered in the cycle starting from id ∈ An−2
(where m = (n− 2)!/2, and s(i) ∈ {3, 5, . . . , n− 2} for each
i). Now start from any permutation π ∈ An(a, b) and apply
the sequence of generators L (where a generator τk ∈ An−2
is now interpreted as the generator τk ∈ An with the same
name). This gives a cycle in An whose vertex set is precisely
An(a, b). (The two rightmost elements a, b of the permutation
are undisturbed, because L does not contain τn.) Note that, for
given a, b, different choices of the starting vertex π in general
result in different cycles.

We next describe the idea of the proof, before giving
the details. Consider a cycle cover C comprising, for each
(a, b) ∈ [n](2), one cycle C(a, b) with vertex set An(a, b)
of the form described above (so n(n − 1) cycles in total).
We will link the cycles of C together into a single cycle by
substituting the generator τn at appropriate points, in the ways
discussed in Section II. The linking procedure will be encoded
by the hypergraph of Corollary 4. The vertex (a, b) of the
hypergraph will correspond to the initial cycle C(a, b). A 3-
hyperedge ∆(a, b, c) will indicate a substitution of τn for τn−2
in 3 of the cycles of C, linking them together in the manner of
Fig. 1. The 6-hyperedge will correspond to the parity-breaking
linkage in which τn is substituted for occurrences of both τn−2
and τn−4, linking 6 cycles as in Fig. 2. One complication is
that the starting points of the cycles of C must be chosen so
that τn−2- and τn−4-edges occur in appropriate places so that
all these substitutions are possible. To address this, rather than
choosing the cycle cover C at the start, we will in fact build
our final cycle sequentially, using one hyperedge at a time, and
choosing appropriate cycles C(a, b) as we go. We will start
with the 6-hyperedge, and for each subsequent 3-hyperedge
we will link in two new cycles. Lemma 5 will ensure enough
τn−2-edges for subsequent steps: for any (a, b, c) ∈ [n](3),
there is a vertex of the form [. . . , a, b, c] in C(b, c) followed

by a τn−2-edge. The inductive hypothesis (2) will provide the
τn−4-edges needed for the initial 6-fold linkage.

We now give the details. In preparation for the sequential
linking procedure, choose an acyclic connected hypergraph
([n](2), H) according to Corollary 4, with the 6-hyperedge
being ∆0∪∆′0, where ∆0 := ∆(c, d, e) and ∆′0 := ∆(a, b, e),
and where we write

(a, b, c, d, e) = (n− 4, n− 3, n− 2, n− 1, n). (3)

Let N = |H| − 1, and order the hyperedges as H =
{h0, h1, . . . , hN} in such a way that h0 = ∆0 ∪ ∆′0 is the
6-hyperedge, and, for each 1 ≤ i ≤ N , the hyperedge hi
shares exactly one vertex with

⋃i−1
`=0 h`. (To see that this is

possible, note that for any choice of h0, . . . , hi−1 satisfying
this condition, connectedness of the hypergraph implies that
there exists hi that shares at least one vertex with one of
its predecessors; acyclicity then implies that it shares exactly
one.)

We will construct the required Hamiltonian cycle via a
sequence of steps j = 0, . . . , N . At the end of step j we
will have a self-avoiding directed cycle Cj in An with the
following properties.

(i) The vertex set of Cj is the union of An(x, y) over all
(x, y) ∈

⋃j
i=0 hi.

(ii) For every (x, y, z) ∈ [n](3) such that (y, z) ∈
⋃j

i=0 hi
but ∆(x, y, z) /∈ {∆0,∆

′
0, h1, h2, . . . , hj}, there exists

a permutation π ∈ An of the form [. . . , x, y, z] that is
followed immediately by a τn−2-edge in Cj .

We will check by induction on j that the above properties
hold. The final cycle CN will be the required Hamiltonian
cycle. The purpose of the technical condition (ii) is to ensure
that suitable edges are available for later linkages; the idea is
that the triple (x, y, z) is available for linking in two further
cycles unless it has already been used.

We will describe the cycles Cj by giving their sequences
of generators. Recall that L is the sequence of generators of
the Hamiltonian cycle of An−2. Note that L contains both
τn−2 and τn−4, by Lemma 5 and the inductive hypothesis (2)
respectively. For each of k = n− 2, n− 4, fix some location
i where τk occurs in L (so that s(i) = k), and let L[τk] be
the sequence obtained by starting at that location and omitting
this τk from the cycle:

L[τk] :=
(
τs(j+1), τs(j+2) . . . , τs(m), τs(1), . . . , τs(j−1)

)
.

Note that the composition in order of the elements of L[τk] is
τ−1k .

For step 0, let C0 be the cycle that starts at id ∈ An and
uses the sequence of generators

τn, L[τn−2], τn, L[τn−4], τn, L[τn−4],

τn, L[τn−2], τn, L[τn−4], τn, L[τn−4],

(where commas denote concatenation). This cycle is precisely
of the form illustrated in Fig. 2 (left) by the solid arcs
and lines. The curved arcs represent the paths corresponding
to the L[·] sequences. The vertex set of each such path
is precisely An(u, v) for some pair (u, v); we denote this
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path P (u, v). The solid lines represent the τn-edges. More-
over, since Fig. 2 (right) lists the vertices (permutations)
at the beginning and end of each path P (u, v), we can
read off the pairs (u, v). With a, . . . , e as in (3), the pairs
are {(d, e), (c, d), (e, c), (b, e), (a, b), (e, a)}. This set equals
∆0 ∪ ∆′0 = h0, so property (i) above holds for the cycle
C0.

We next check that C0 satisfies (ii). Let (x, y, z) ∈ [n](3) be
such that (y, z) ∈ h0. The cycle C0 includes a path P (y, z)
with vertex set An(y, z) and generator sequence L[τk] (where
k is n − 2 or n − 4). Let C(y, z) be the cycle that results
from closing the gap, i.e. appending a τk-edge f to the end of
P (y, z). Note that P (y, z) and C(y, z) both have vertex set
An(y, z). By Lemma 5 applied to An−2, the cycle C(y, z)
contains a permutation of the form [. . . , x, y, z] immediately
followed by a τn−2-edge, g say. Edge g is also present in
C0 unless g = f . Consulting Fig. 2, and again using the
notation in (3), we see that this happens only in the two
cases (x, y, z) = (e, c, d), (e, a, b). But in these cases we
have ∆(x, y, z) = T0, T

′
0 respectively. Thus condition (ii) is

satisfied at step 0.
Now we inductively describe the subsequent steps. Suppose

that step j − 1 has been completed, giving a cycle Cj−1 that
satisfies (i) and (ii) (with parameter j − 1 in place of j). We
will augment Cj−1 to obtain a larger cycle Cj , in a manner
encoded by the hyperedge hj . Let

hj = ∆(a, b, c) =
{

(a, b), (b, c), (c, a)
}

(where we no longer adopt the notation (3)). By our choice
of the ordering of H , exactly one of these pairs belongs
to
⋃j−1

i=0 hi; without loss of generality, let it be (b, c). By
property (ii) of the cycle Cj−1, it contains a vertex of the
form [. . . , a, b, c] immediately followed by a τn−2-edge, f say.
Delete edge f from Cj−1 to obtain a directed path Pj−1 with
the same vertex set. Append to Pj−1 the directed path that
starts at the endvertex of Pj−1 and then uses the sequence of
generators

τn, L[τn−2], τn, L[τn−2], τn.

Since order(τnτ
−1
n−2) = 3, this gives a cycle, which we denote

Cj .
The new cycle Cj has precisely the form shown in Fig. 1

(left) by the solid arcs and lines, where Cj−1 is the thin blue
cycle in the upper left, containing the circled vertex, which is
the permutation [. . . , a, b, c]. The arc is Pj−1, and the dotted
edge is f . As before, the permutations at the filled discs may
be read from Fig. 1 (right). Thus, Cj consists of the path
Pj−1, together with two paths P (a, b), P (c, a) with respective
vertex sets An(a, b), An(c, a) (the other two thin blue arcs in
the figure), and three τn-edges (thick black lines) connecting
these three paths. Hence Cj satisfies property (i).

We now check that Cj satisfies (ii). The argument is similar
to that used in step 0. Let (x, y, z) satisfy the assumptions in
(ii). We consider two cases. First suppose (y, z) ∈

⋃j−1
i=0 hi.

Then property (ii) of Cj−1 implies that Cj−1 has a vertex of
the form [. . . , x, y, z] followed by a τn−2-edge g, say. Then g
is also present in Cj unless g = f . But in that case we have
(x, y, z) = (a, b, c), and so ∆(x, y, z) = hj , contradicting the

TABLE I
RULES FOR GENERATING A DIRECTED HAMILTONIAN CYCLE OF A7 .

row permutations generator
1 6777∗∗∗, 7776∗∗∗ τ5
2 67∗∗∗∗∗, 76∗∗∗∗∗ τ3
3 5671∗∗∗, 576∗∗∗∗ τ5
4 2567∗∗∗, 4576∗∗∗ τ5
5 5671234, 5612347, 5623714, 5637142 τ3
6 5623471, 5671423 τ5
7 otherwise τ7

Permutations of the given forms should be followed by the generator in the
same row of the table. The symbol ∗ denotes an arbitrary element of [7], and
a denotes any element other than a.

assumption on (x, y, z). On the other hand, suppose (y, z) ∈
hj \

⋃j−1
i=0 hi. Then (y, z) equals (a, b) or (c, a). Suppose the

former; the argument in the latter case is identical. Let C(a, b)
be the cycle obtained by appending a τn−2-edge to P (a, b).
Applying Lemma 5 shows that C(a, b) contains a vertex of
the form [. . . , x, a, b] followed by a τn−2-edge g, say. Then
g is also present in P (a, b) unless x = c, but in that case
∆(x, y, z) = hj , contradicting the assumption in (ii). Thus,
property (ii) is established.

To conclude the proof, note that the final cycle CN is
Hamiltonian, by property (i) and the fact that the hypergraph
of Corollary 4 has vertex set [n](2). To check that it includes
some τn−2-edge as required for (2), recall that hN has only
one vertex in common with h0, . . . , hN−1, so there exist x, y, z
with (y, z) ∈ hN but ∆(x, y, z) /∈ H . Hence property (ii)
implies that CN contains a τn−2-edge.

Proof of Theorem 1, base case. For the base case of the in-
duction, we give an explicit directed Hamiltonian cycle of A7

that includes τ5 at least once. (In fact the latter condition must
necessarily be satisfied, since, as remarked earlier, Theorem 2
implies that there is no Hamiltonian cycle using only τ3 and
τ7.)

Table I specifies which generator the cycle uses immediately
after each permutation of A7, as a function of the permutation
itself. The skeptical reader may simply check by computer
that these rules generate the required cycle. But the rules were
constructed by hand; below we briefly explain how.

First suppose that from every permutation of A7 we use the
outgoing τ7-edge, as specified in row 7 of the table. This gives
a cycle cover comprising |A7|/7 = 360 cycles of size 7. Now
consider the effect of replacing some of these τ7’s according
to rows 1–6 in succession. Each such replacement performs a
linkage, as discussed in Section II. Row 1 links the cycles in
sets of 3 to produce 120 cycles of length 21, each containing
exactly one permutation of the form 67∗∗∗∗∗ or 76∗∗∗∗∗.
Row 2 then links these cycles in sets of 5 into 24 cycles of
length 105, each containing exactly one permutation of the
form 675∗∗∗∗ or 765∗∗∗∗. Rows 3 and 4 link various sets of
three cycles, permuting elements 1234, to produce 6 cycles.
Finally, rows 5 and 6 break the parity barrier as discussed
earlier, uniting these 6 cycles into one.
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TABLE II
A CYCLE OF LENGTH 315 IN S6 WITH NO TWO PERMUTATIONS RELATED

BY AN ELEMENTARY TRANSPOSITION.(
64 523532543533533254354353354325335432

64 5332535232523253533543533533254353354325
)3
.

The cycle uses the sequence of generators (τk(i)) where (k(i))315i=1 is the
given sequence. Commas are omitted, and superscripts indicate repetitions.

V. EVEN SIZE

We briefly discuss a possible approach for even n. Recall
that Mn is the maximum length of a cycle Sn in which no
two permutations are related by an adjacent transposition.

To get a cycle longer than Mn−1 we must use τn. But this
is an odd permutation, so we cannot remain in the alternating
group An. We suggest following τn immediately by another
odd generator, say τn−2, in order to return to An (note that
τ2 is forbidden). In order to include permutations of the form
[. . . , j] for every j ∈ [n], we need to perform such a transition
(at least) n times in total in our cycle. In the ith transition we
visit one odd permutation, αi say, between the generators τn
and τn−2. For the remainder of the cycle we propose using
only generators τk for odd k, so that we remain in An.

One may fix the permutations α1, . . . , αn in advance. The
problem then reduces to that of finding long self-avoiding
directed paths in An−1, with specified start and end vertices,
and avoiding certain vertices – those that would result in
a permutation that is related to some αi by an elementary
transposition. There are O(n2) vertices to be avoided in total.

Since, for large n, the number of vertices to be avoided is
much smaller than |An−1|, we think it very likely that paths
of length (1 − o(1))|An−1| exist, which would give Mn ≥
(1 − o(1))n!/2 as n → ∞. It is even plausible that Mn ≥
n!/2−O(n2) might be achievable. The graph An−1 seems to
have a high degree of global connectivity, as evidenced by the
diverse constructions of cycles of close to optimal length in
[8]–[10]. For a specific approach (perhaps among others), one
might start with a short path linking the required start and end
vertices, and then try to successively link in short cycles (say
those that use a single generator such as τn−1) in the manner of
Fig. 1, leaving out the relatively few short cycles that contain
forbidden vertices. It is conceivable that the forbidden vertices
might conspire to prevent this, for example by blocking even
short paths between the start and end vertices. However, this
appears unlikely, especially given the flexibility in the choice
of α1, . . . , αn.

While there appear to be no fundamental obstacles, a
proof for general even n along the above lines would likely
be rather messy. (Of course, this does not preclude some
other approach). Instead, the approach was combined with a
computer search to obtain a cycle of length 315 = 6!/2− 45
for n = 6, given in Table II, answering a question of [9], and
improving the previous record M6 ≥ 57 [9] by more than
a factor of 5. The case n = 6 is in some respects harder
than larger n: the forbidden vertices form a larger fraction of
the total, and A5 has only two generators, reducing available
choices. (On the other hand, the search space is of course

relatively small). Thus, this result also lends support to the
belief that Mn ≥ (1− o(1))n!/2 as n→∞.

The search space was reduced by quotienting the graph S6
by a group of order 3 to obtain a Schreier graph, giving a
cycle in which the sequence of generators is repeated 3 times.
The cycle is given in Table II.
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