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Abstract

We deternne to what &tent permutation decoding can be used for the codes from desarguesian
projective and affine planes. We define the notios-BD-sets to correct errors, and construct some
specific small sets fag = 2 ard 3 for desarguesian planes of prime order.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The codes from finite geometries are the well known generalized Reed—Muller codes,
and subfield subcodes of these. They have the projective and affine semi-linear groups as
automorphism groups and are good candidates for the use of permutation decoding. Here
we examine to what extent permutation dding can be used for the codes from finite
desarguesian planes. We define the notion of partial permutation decoding using sets of
automorphisms that can correct ugsterrors, where is somenumber less thaty the full
error-correction capability of the code, calling thesBD-sets. Weobtain explicits-PD-
sets for somefathe codes.

The automorphism group of a desarguesian geometry is 2-transitive on points so
clearly the whole group will act as a 2-PD-set. Naturally we would like to find smaller
2-PD-sets and also to ask for whishup to the full error-correction capability can we
find s-PD-sets. We find partial solutions to these questions in this paper. In particular,
we show inSection 3 Propositions 3.2and 3.3, that 3-PD-sets ést for the codes and
their duals for all degguesian projective planes for any choice of information symbols
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and that 4-PD-sets exist for particularly chosen information sets. A similar, but weaker,
set of results is obtaied for affine desarguesian planes.Section 4we obtain specific
2-PD-sets for desarguesian planes of prime order for particular known information sets: see
Proposition 4.2vhich uses an informatiosetfrom a Singer cycleProposition 4.3using
a Moorhouse 16] basis, wherave construct 2-PD-sets of 37 elements for desarguesian
affine planes of any prime ordgy, and Proposition 4.4again using a Moorhouse basis,
where we onstruct 2-PD-sets of 43 elements for desarguesian projective planes of any
prime orderp. In Proposition 4.5ve obtain 3-PD-sets fohe code and the dual code in
the affine prime case of sizep2 p — 1) and p?, resectively, and we show that the set
for the dual code is minimal. IBection S5ve give a table of someomputational results of
sizes ofs-PD-sets obtained for codes from planes of relatively small order, where we used
Magma [3] or GAP [7] for the computations.

Finally in the Appendix we show hat PD-sets for full error-correction for projective
desarguesian planes do not exist for orgldarge enough:Table 2shows hat forq = p
prime andp > 103,q = 2 ande > 12, = 3®ande > 6,q = 5% ande > 4,q = 7® and
e> 3,q=11°ande > 2,q = 13 ande > 2, orq = p®for p > 13 ande > 1, PD-sets
for full error-correction cannot exist, with similar results holding for the affine and dual
cases. This is in contrast to some binary codes obtained from graphs with the symmetric
group acting, where PD-sets were found for the infinite class of codesl §€¥2].

2. Background

Fadlowing generally the notation inl], an incidence structur® = (P, B,7), with
point setP, block set5 and incidence is at-(v, k, A) design, if|P| = v, everyblock
B € Bis incident with preciselk points, and every distinct points are together incident
with preciselyA blocks. The design isymmetric if it has thesamenumber of points and
blocks.

If F is the fieldIF, of order p wherep is a prime, thecode Cg (D) (or Cp(D)) of the
designD overF is the space spanneg the incdence vectors of the blocks over If the
point set ofD is denoted byP and the block set byg, and if Q is any sibset of P, then
we will denote the incidence vector @& by ve. ThusCr(D) = (vB|B € B), and is a
subspace of 7, the full vector space of functions frofft to F. Thedimension oiCp(D)
is called thep-rank of D.

The codes here will bénear codes, i.e. subspaces of the ambient vector space. If a
codeC over a fieldof orderq is of lengthn, dimensiork, and mhimum weightd, then we
write [n, k, d]q to show this information. Ayener ator matrix for the code is & x n matix
made up of a basis fo€. Thedual or orthogonal codeC- is the athogonal subspace
under the standard inner product (,), i@~ = {v € F" | (v,c) = Oforallc € C}.

A check (or parity-check) matrix for C is a generator matrixi for C*; the syndrome

of a vectory € F"is Hy'. A codeC is self-orthogonal if C € C* and isself-dual if

C = C'.If ¢ € C then thesupport of ¢ is the set of non-zero coordinate positionspf

and theweight of c is the cardinality of the support. gonstant vector is one for which

all the non-zero coordinate entries are the same.allhene vector will be denoted by,

and is the constant vector of weight the length of the code. Two linear codes of the same
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length and over the same field a@semor phic if they canbe obtained from one another
by permuting the coordinate positions. Angde is isomorphic to a code with generator
mattix in so-calledstandard form, i.e. the form[lx | A]; a check matrix then is given by
[—AT | In_k]. The firstk coordinates are thi@for mation symbols (or set) and denoted by
7, and the lash — k coordinates are theheck symbols, denoted byC. An automor phism
of a codeC is an isomophism fromC to C. The automaohism group will be denoted by
Aut(C). Any automorphism clearly preserves eagtight classof C, i.e. the set of vectors
of C of a given weight.

For any firite field Fq of order g, the set ofpoints andr-dimensional subspaces
(respectively flats) of am-dimensional projective (resgtively affine) geometry forms
a 2-design wich we will denote by P (Fq) (respectively AG (Fq)). In particular,
the desarguesian projective and affine planes of order g are denoted by P& (Fq)
(respectively AG 1(Fq)) but wewill simply use PG(Fq) and AG(Fq), as is customary.
Theautomor phism groups, PI'Lm1(Fg) or AI'Lm(Fq), resgectively, of these designs
(and codes) are the full projective or affine semi-linear groups, and always 2-transitive on
points. Ifq = p® wherepis a prime, the ades of these designs are olfgrand are subfield
subcodes of the generalized Reed—Muller codes: $e€ligter 5] for a full treatment.
The dimension and minimum weight is known in each case: $g€heorem 5.7.9]. In
particular, in the case of planes, which is what we consider here, the result is as follows:

Result 2.1. If g = p% the p-rank of the design of points and lines of RBq) is

€ e
(pgl) + 1 and thatof the design of points and lines of A®q) is (pgl) . In both

cases the minimum weight vectors are theideace vectors of the lines and their scalar
multiples.

The dual codes of the codes from the finite geometry designs are not, in general,
generalized Reed—Muller codes, and much less is known about their minimum weights
except in the casg = 2, or in the prime case. For desarguesian planes of arderp®
wherep is prime, the minimum weighd+ of C satisfies

q+p=<d-<2q, 1)

with equality at the lower bound fqu = 2, and aig = p. See §—6] for improvements on
this in the case op odd.

Permutation decoding was first developed by MacWilliams14] and involvesfinding
a set ofautomorphisms of a code called a PD-set. The method is described fully in
MacWilliams and Sloanelp, Chater 15] and Huffmang, Sedion 8]. We extend the
definition of PD-sets ts-PD-sets fois-error-correction:

Definition 2.2. If C is at-error-correcting code with information sétand check set,
then aPD-set for C is a setS of automorphisms o€ which is sut that everyt-set of
coordinate positions is moved by at least one membériato the check positions.

Fors < t ans-PD-s¢t is a setS of automorphisms of which is sut that everys-set
of coordinate positions is moved by at least one membériafo C.

That a PD-set will fully use the error-correction potential of the code follows easily
and is proved in Huffman9, Theorem 8.1]. That ars-PD-set will corrects errors also
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follows, and we restate this result in order to use sdfD-sets fors-error-correction,
wheres < t:

Result 2.3. Let C be an[n, k, dlq t-error-correcting code. Suppostis a check matrix
for C in standard form, i.e. such thdt,_ is in the redundancy positions. Lgt= ¢ + e

be a vector, where € C ande has weighs < t. Then he information symbols ity are

correct if and only if the weight of the syndronkky™ of y is <s.

The algorithm for permutation decoding is as follows: we haveearor-correcting
[n, k, d]lg codeC with check matrixH in standard form. Thus the generator matrix
G = [lx | AlandH = [—AT | In_], for someA, and the firsk coordinate positions
correspond to the information symbols. Any veataf lengthk is encoded asG. Suppose
X is sent andy is received and at mosterrors occur, whers < t. LetS = {g1, ..., Om}
be ans-PD-set. Compute the syndromesyg)' fori = 1,...,muntil ani is found
such that the weight of this vectorssor less. Compute the codewordhat hasltie same
information symbols agg and decodg ascgi_l.

Such sets ngiht not exist at all, and the property of having a PD-set might not
be invariant under isomorphism of codes, i.e. it depends on the choi@e asfd C.
Furthermore, there is a bound on the minimum size that theSsetay have, due to
Gordon [g], from a formula due to Sariheim [L7], and quoted and proved i8]f

Result 2.4. If S is a PD-set for @-error-correctingn, k, d]q codeC, andr = n — Kk,
then

o= [2[2=2] [e=te2]) )

This result can be adaptedd4ePD-sets fois < t by replacing by s in the formula.

To obtain PD-sets, one needs a generator matrix for the code in standard form, and thus
one needs to know what to take as information symbols. Even for desarguesian planes,
general sets of information symbols are not known; in the projective case the fact that the
code is cyclic can be used, and, in the case of planes of prime order, we have the following
result of Moorhousel6]:

Result 2.5 (Moorhouse). Letr = AG,(IFp) where p is a prime. A bais for the mde

Cp () can be found by taking the incidence vectors of the following lines: allthines

from any one parallel class; aqpy— 1 lines from any other parallel class; and so on, until

a single line is hosen from one of the final two parallel classes, and no lines are chosen
from the remaininglass. This gives

I0+(I0—1)+(|0—2)+m+1=p(p+1)/2=(p;rl>

lines, whose incidenceeetors form a basis fdCp ().

Similarly, a basis for the desarguesian projective plane of prime order can be found by
including the line at infinity By usinghomogeneous coordinates for the projective case,
one sees that a basis for the plane slilbw how to find an information set.

Another basis for the prime case was given by Blokhuis and Moorh@lise [
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Result 2.6. Let II = PG(Fp) wherepis a prime, and lef denote a conic idl. Then a
basis for the cod€p(II) can be found by taking the incidence vectors of all nonsecants to
C, i.e. all tangats and exterior lines.

A basis foGC(H)l can be found by taking the complements of the incidence vectors
of the secants.

3. Existence of s-PD-setsfor desarguesian planes

We show thaboth the code and its dual of any desarguesian projective plane will have
3-PD-sets no matter what information geis chosen. To ensure that the code will correct
three errors, we will take the ordgr> 7; for the dual code, where the minimum weight
in the case = p prime is 2o, we reedq > 5. In general our bounds on the order relate to
the error-correction capability of the code, which might not be the same as that of its dual.
First we neea lemma.

Lemma3.1. If g = p® > 5, where p is grime,then

1. (p(p+1)/2)® > p®+2and P — (p(p+1)/2)® > p®+2;
2. (p(p+1)/2%+1> p®+2and P+ p®+1— (p(p+1)/2)°—1> p®+2.

Proof. The proof of this is quite direct, so we omit it[J

We use these inequalities to prove the existence of 3-PD-sets for desarguesian planes:

Proposition 3.2. Let II = PG (Fq), where g= p® and p is a prime, C= [024+q+ 1,
(p(p+1)/2)¢+1, q + 1]p its p-ary code, and G its automorphism group. Then i,
a 3-PD-set can be found in G for C using any information set; similarly for & for the
dual code C- =[0? 4+ q + 1, d*+ q — (p(p + 1)/2)%, d*]p where g+ p < d* < 2q.

If g > 8, information sets exist for C such that 4-PD-sets can be found in G; similarly
for CL forq > 5.

Proof. Note first thatG is transitive on triangles and on collinear triples of points: see, for
exampe, [10, Chater 2].

Concerning 3-PD-sets, I&tdenote information symbols f@ andC the checlksymbols,
and let7 = {Py, P>, P3} be a set of three points. We first show that b6tandC contain
both triangles and sets of collinear triples. In fact, if a set of pointq ihas no three points
collinear, then it must be an arc in the plane and hence of size atqre&. BothZ and
C have size bigger than this lhyemma 3.1 so this is inpossible. Ao, neithefZ norC can
have all points collinear since this would restrict their sizege- 1. Thus both types of
triple occur in bothZ andC. By transtivity then, 7 can be mapped to the error positions
by some member dB, in thecase ofC and in the case o .

For 4-PD-sets, we eed to consider sets of four points . Such a sets ather a
quadrangle, or a point and three collinear points, or all four collinear points. Again taking
7 for the information symbols and for the check symbols, using the lemma we see that
bothZ andC contain 4-sets of the first two types. SinGeis transitive on these types
of 4-set, we can always map such a 4-set to the check symbols. In the case of sets of
four collinear points, we do not have transitivity. We have to ensuredh{&tr C) andZ
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(for Ct) contains a representative of every orbit@facting on collinear 4-sets. Sin
is transitive on incident point-line pairs and singe- 4, each line excluding an arbitrary
point contains such representatives.

We may choos€ for C by starting with an information set for a corresponding affine
plane and adding a point from the line at infinity. In this csell contain aline exduding
one point. Thusg has a 4-PD-set in this case.

Now let L be anyline of PG(IFg), let P, ..., Pyy1 be the points o, let P be a point
off L and letL; be the line joiningP to P,i = 1,...,q+ 1. Thenv'?, ... vtat are
independent and yieldy1 when restricted to the positiol, . . ., Py11. Herce, we may
chooseT to contain Py, . .., Pq11. With the rresponding check set as the information
set,C' has a 4-PD-set. [

Similar results hold for the desarguesian affine planes, but we have to be more restrictive
in our choice of information set since we do not have transitivity on collinear triples of
points:

Proposition 3.3. Letr = AG2(Fq) where g= p® and p is a prime, C= (9%, (p(p +
1)/2)¢, qlp its p-ary code, and G its automorphism group. Then ¢/, a 3-PD-®t can
be found in G for C. Similarly, for g= 5, a 3-PD-set can be found in G for the dual code
Ct =102 92— (p(p+ 1)/2)% d*+]p where g+ p < d* < 2q.

Proof. As in the projective case, but using the alternative inequalitieseimma 3.1
we see that all possible information sets and check sets contain triangles and collinear
triples.

We may choos€, as in the lasparagraph of the proof d®roposition 3.2to contain
the points of an (affine) line. With the corresponding check set as informatio seas
a 4-PD-setsince everyG-orbit of collinear triples has a triple on this line.

To show thatC may be chosen to contain a line excluding a point, we work with the
column vectors of the incidence matrix of the affine plane npod.et up denote the
column vector corresponding to the poiAt Choose a lineL and a pointP oniit. Let
Q be any other point of.. Let A # L be a line onP and letB be theline on Q pardlel to
A. ltis easy to see thgt_ g g UR = ) _rca UR. Herce,uq is a linear combination adip
and the vectorag, R ¢ L. So, an infemation set can be selected frgiR: R ¢ L} U{P}.

The corresponding check set conta{ii3 : Q € L, Q # P}. ConsequentlyC has a
3-PD-set. O

Note. Forq = p using the Moorhouselp] basis ofResult 2.5both the information and
check sets will contain either a line or a line excluding one point. We can now use this
basis to obtain a similar result for prime-order affine planes for 4-PD-sets; the basis we use
is discussed fully irSection 4

Proposition 3.4. Let 7 = AG(Fp) where p is a pme and p > 11, C =
[pz, (”“), p] its p-ary code, and G be its automorphism group. Then G contains a
p

2
4-PD-set for the code using information set

I={G(,j)|0<i<j<p-1},



J.D. Key et al. / European Journal of Combinatorics 26 (2005) 665-682 671

and check set
C={(.DIp-1zi>]j=0L.

The same @sult is true for p> 5 for CL = [pz, p? — (pgl), Zp] (using C as
p
information set).

Proof. For the resulto be true forC, the check positions must contain a representative
of every orbit of 4-sets of points. In the affine case there are more orbits and more
geometrical configurations tham the projective case, ard is transitive on triangles but
not on quadrangles. The basic types of configuration are the same as in the projective case:
four points collinear, exactly theemllinear, or a quadrangle. Althouda is transitive on
triangles, it is not transitive on collinear triples and thus the first two types of 4-set are
in more than two orbits. However, if we ensure tfidtas at leasp — 1 collinear points,
then these two configurations are taken care of. Cle@rly) | 1 <i < p — 1} is such
a set. For th quadrangles, sincé is transitive on trianglesve reed only show that the
quadrangl€(0, 0), (1, 0), (0, 1), (a, b)} (wherea #£ 0,b £ 0,a + b # 1) can be mapped
into a quarangle of points irC. Thiscan easily be shown to be possible using a suitable
translationzi j : (X,y) = (X,y) + (i, ), wherep—-2 > i > j 4+ 2 > 2 (working
(mod p)). This shows that every 4-set can be mapped &md thatG will thus contain a
4-PD-set forC.

The result forC* follows similarly. O

4. Explicit 2-PD setsfor planes of prime order

Now we @nsider planes of prime order We give exflicit 2-PD-sets ér codes of these
planes for two distinct sets of information symbols.

First we have a geeral result for cyclic codes of a particular dimension. Note that by the
standard definition of a cyclic code of dimensioand lengtim with co-ordinate positions
0,1,...,n—1,then-cycle(0, 1,...,n—1)is in the autororphism group of the code and
thus anyk consecutive positions can be taken as the information symbols. Note also that
throughout we will write our maps on the right and, correspondingly, use row vectors for
points of the geometrical designs and write our matrices on the right.

Proposition 4.1. Let C = [n, k,d]q be a cyclic code of odd length n over the field
Fq of order g, where k= (n+ 1)/2, (n,q) = 1and d > 5. Label the coordinate
positions0, 1,...,n — 1 and takeZ = {0, 1,...,k — 1} for the information symbols.
Let A= Aut(C) < §,,andleto :i —i+2landu :i — qi (modn). If S= (o) and

g # +1 (modn), thenS = SU uS is a 2-PD-st ofsize2n for C.

Proof. Suppose two errors occur at positidasandiz, where 0< i; < ip < n— 1. If
eitherio —ig —lor(n—1) — (i2 —i1) is less tharin — 3)/2, then{i1, i2} can be brought
into the check positins by some power of.

If i = 0andip = k = (n+ 1)/2, then{0, k} cannot move into the check positions by
S. Since v = 0 andku = qk, if gk # k or k — 1 thenu S will take any pair of positions
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to the check positions.His is equivalent t@ % 4+1 (modn). ThusSU pSwill form a
2-PD-set provided that £ +1 (modn). O

Note. Thatu € Aut(C) is proved in MacWilliams14].

Thus if we take our information positions to be consecutive positions defined by a cycle
acting on the code, we will have the following:

Proposition 4.2. Let Il = PG (Fp) where p> 5is a prime,and C the p-ary code af .
Writing n = p? + p + 1, then C = [n, (n + 1)/2, p + 1]p. Let S be theeyclic group
generated by a Singer cycle and take= {0, 1, ..., ((n + 1)/2) — 1} for the information
symbolsas defined by S. Then, in the notatiorPodpositiond.1for o andp, SU S will
form a 2-PD-set for C and S will form a 2-PD-set for-Gor p > 3. Furthermore, the
order of u is 3.

Proof. Itis clear thatp = +1 ( mod n), so0 the proposition gives the first part immediately.
Since he dimension o€ is (n—1)/2 < n/2, itis immediate (seeld]) that Swill suffice
for two errors forC-.

That 1« has order 3 follows since(u)® = pSi = i, becausep® = 1 (mod p? +
p+1. O

The Moorhouse basis desult 2.5extends to a basis for a projective plane of prime
order in the natural way by including the incidence vector of the line at infinity. In the
projective case, if homogeneous coordinates are used, then it is clear that if we have
the homogeneous coordinates for a set of lines that produce a basis for the code of the
plane then the points with the same homogeneous coordinates as these lines will form an
information set for the code. We can find aformation set for the code of the affine
desarguesian plane of ordprby selecting a projective line which meets an information
set of the ode of the projective desarguesian plane of oqler a singke point and taking
this line to be the line at infinity.

In this way it is not difficdt to verify that the following points can be taken as
information ymbols for thep-ary code of the desarguesian affine plangAG) of prime
orderp:

0.0 ©1 ©2 - O p-1
2,2 - 2,p-1 )
(p - 1! p— 1)

Here, if we take for the line at infinity>™ = (0, 0, 1)/, then we takep lines (1, 0, a)’ for
O<a=< p—1through(0,1,0)p—1lines(l,1,a) forl <a < p—1through(1, —1, 0),
p—2lines(l,2,a) for2 <a< p—1through(l, —21,0),...,1line (1, p— 1, a)’ for

a = p — 1 through(Zl, 1, 0), and then take the corresponding points for our information
set, as shown above. Thugtimformation symbols are

I={(0,))10<i<j=<p-1} (3
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Fig. 1. Affine planes displaying the ‘Moorhouse’ check set and subdivisioRsojosition 4.3

and the check symbols

C={0.Dlp—-1=i>j=0}h (4)
We will use the following notation for a translation in the affine group A%Eq):

Tab: (X, ¥) = (X, ¥) + (@, b), )
for (x,y), (a, b) € AG2(Fg).

Proposition 4.3. Letw = AG2(IFp) where p> 5is a prime,and C its p-ary code. Let
n=[(p+1)/6],and Y = {zynvn | 0 < u,v < 5}. Then, usingZ = {(i, j) |0 <i <

j < p— 1} asinfformation set, Y is a 2-PD-set for C if$ —1 (mod 6, and Y U {11}
is a 2-PD-set for C if p= 1 (mod 6), i.e. C has a 2-PD-set of sizg37. Furthermore,
(Y U {11.1))8 is a 2-PD-set of 3 elemerg for C*, usingC of Eq.(4) as irformation set,
and where is ddiined in Eq(10).

Proof. Clearlyp = 6n+ 1. TheseC = {(i,j) | 0 < j <i < p— 1} is the check
sé corresponding to the information s&t and we setP = 7 U C. For eachu, v with
0<u,v <5, letCy, = Ct_unuwn.

We now define a partition ofP. The partition is illustrated inFig. 1, A and B, for the
primes 29 and 31, respectively.

ForO<u,v <5/ letS, = {(i,j) | max0,p— (u+Dn) <i < p—un,on <
j < min((v + 1)n, p)}. Clearly, S,y € S.0t—unwn forallu,v (0 < u,v < 5), with
equality unlespp = —1 (mod 6 and eitheu = 5 orv = 5. We refer to these subsets
as ‘squares’, even though this is slightly inaccuratp & —1 (mod 6. In this case, the
squares partitiofP.

If p=1(mod 6, we define the ‘veicallines’V; = {(0,j) |[un < j < (u+ Dn}
and the ‘horizontal linesH, = {(i,p—1) | p— U+ 1n<i < p—un}forO<u <5.
We rdfer to (0, p — 1) as the ‘top point’. It is easily seen that, whpn= 1 (mod 6, P is
patitioned by the squares, the horizontal and vertical lines and the top point.

Let X = {T_unwn | 0 < u, v < 5}. We will show thatY = {t~1 | € X} is a 2-PD-set
forCif p=—1(mod 6 andY U {r1 1} isa 2-PD-set foC if p=1(mod 6.
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We mnsider first the casp = —1 (mod 6. Let A= {(a,b) |0 <a,b<3,a+b <
3}. ThenCy,, contains every square of the forBu;a,,+b With (a,b) € A, reducing
subscripts modulo 6. Thus, , is contained inCy_a,»—b if (a,b) € A. Herce, §,, and
Si—a+cv—b+d are contained i€t for somer € X if (a, b), (c,d) € A. Conmputing the
differences(c, d) — (a, b) in Z% for all (a, b), (c,d) € A, we see tht the only pairs of
squares unaccounted for are those of the f&m andS,42,,+2.

To deal with such pairs, we naotice that if 2 u < 5 then(,, containsS,;4,,, if
2 < v < 5thenCy,, containsy, ,+4, and ifeitheru or v is in {4, 5} thenC,,, contains
Sit2,042-

Consider the paif, , andS,;2,,+2 and letu” andv’ be chosen so that8 u’, v’ < 5,
U =u+2andv’ =v+2.Ifu < v andv < v’ thenboth squares are @, ,, sincev’ > 2
and hencé,, ,y contains bott§, ;2 ,/+0 andS,1o,,/+4. Similarly, if u < u’ andv’ < v then
both squares are i\, ,, if U’ < uandv < v’ thenboth squares are ify, ,», and ifu’ < u
andv’ < v thenboth squares are iy, .

Since we hag now slown that evey pair from?P is contained inCt, for somer € X,
it follows thatY is a 2-PD-set foC if p= —1 (mod 6.

We now urn to the casg = 1 (mod 6. LetB = A U {(4,0), (0,4)}. ThenCy,
contains every square of the foi;a,»+b With (a, b) € B, reducing subscripts modulo 6.
Arguing as above, we see thpairs of squares of the for&, , and Sy_atc.v—b+d are
contained inCt for somet € X if (a,b),(c,d) € B. Conputing the differences
(c,d)—(a,b)in Z% forall (a, b), (c, d) € B, we find thatevery mir of squares is contained
in someCrt for somer € X.

Next, we observe that the vertical livg is contained inCa2 u+b+3 for all (a, b) € E,
whereE = DU {(5,3)} andD = {(a,b) | 0 < a,b < 3,a+ b > 3}. Thus,V, and
S+2+cut+b+3+d are contained it for somer € X if (a,b) € E and(c,d) € B.
Computirg the sumga, b) + (¢, d) in Zé for all (a,b) € E and(c, d) € B, we find that
every @ir consisting of a square and vertical line is contained in sGm@r somer € X.

A similar argument applies togirs consisting of a square and horizontal line.

The top point is contained i@a+2 b+2 for every(a, b) € D. Thus, the top point and
Sat2+cbt2+d are contained irCt for sometr € X if (a,b) € D and(c,d) € B.
Computirg the sumga, b) + (¢, d) in Zg for all (a,b) € D and(c,d) € B, we find
that every pair consisting of a squaredahe toppoint is contained in somér for some
7 € X, except for the squar&, 1. However, it iseasily seen that the top point aBd; are
contained irCt_1,_1.

Let0 < v < v’ < 5. Hther(Cs, orCs,,y will contain bothV, andV,,. Also, eitherCs ,
or Cs 5 will contain bothV,, and the top point.

Similar argumentsgply to the horizontal lines and the top point.

Finally, consider the two line¥, andH, where 0< u,v < 5. The vertical lineV,
is contained iNCay2,,+b+3 for all (a,b) € E and the horizontal lineH, is contained
in Cut+ct+3.d+2 for all (c,d) € F, whereF = D U {(3,5)}. Conputing the differences
(@,b)—(c,d)in Zg forall (a,b) € E and(c, d) € F, we find thatevery mir consisting
of a horizontal line and vertical line is contained in sofitefor somer € X.

This completes the argument that {r1 1} is a 2-PD-set foC if p =1 (mod 6.



J.D. Key et al. / European Journal of Combinatorics 26 (2005) 665—682 675
That(Y U {r1.1})8 is a 2-PD-set foC+ in all cases now follows immediately, since the
mappings interchanges the first and second coordinatél

We now obtain an analogue for the desarguesian projective planes of prime order. First
we defined = {(L,i,)) [0<i,j<p—-1, A1 ={1i,))I0<i=<j=<p-1}
L={0,1i)|0<i < p-1}andP = (0,0, 1) explicitly, and setd, = A — A;. Then
we can take for an information s&f; for C,(PG(Fp)) the set

Ip={1Li,)10<i<j=<p-1U{00D}=A1U{P}, (6)
and the corresponding check set will then be
Cp={Li,)|Ip—-1=i>j=>0U{0Li)|0<i<p-1=AUL (7)

We wriite the element of PGI(Fq) corresponding to the translatieq, as

1 ab
0 0 1

Proposition 4.4. Let Il = PG (IFp) where p> 5is a prime, and let (he its p-ary code.
Ifn=[(p+1)/6],let

Y= {fun—wn |0 < U, v <5},

Yo = {70,0, T0,—(p—e)/2> T—(p+e)/2.—(p—e)/2s T—(p—e)/2.—pte)s
wheree € {—1, 1} and p= ¢ (mod 6, and

1 00 10 0
oo=|0 0 1:|, |:0 1 j|, O’2=|:1
010 01 0

1 0

0

0O O 0
o3=|0 -1 0 |, 1].
1 00

Then, using theniformation sefZ;; of Eq.(6), C has a 2-PD-se¥ U Yo U Yo U {1} in
the case p= —1 (mod 6 andY U Yo U 60Yo U {01, T1.1} in the case p= 1 (mod 6), of
size 42and 43, respectively.

Furthermore, using the information s€t; of Eq.(7), the set

O OB

= O O
L 1

OpFr OFr O

(Y U {1,100 U {1, 02, 03, £1,103, t1,104, £-1,104, 04, 0403, 1,004}
(where is the identity map) of size 46 is a 2-PD-set fot C

Proof. LetCj be the check set correspondindig. Note hat the intesedion of Z;7 with
thepointset{(1,i, j) | 0 <i, j < p—1}, whichisthepoint set of the affine plane A@EF )
obtained by removing the ling0, 1,i) |0 <i < p— 1} U {(0, 0, 1)}, corresponds to the
information set inProposition 4.3The trarslationz, , for that affine plane corresponds to
the collineationz, p of II, as given in Eq.§). LetY = {71 | t € X}, whereX is as in
Proposition 4.3Then anypair of affine points may be mapped irdg; by an element of
Y if p=—1(mod 6 and ofY U {#1 1} if p=1(mod 6.
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Now consider the setXo = {70,0, T0,(p—e)/2; T(p+e)/2,(p—e)/2> T(p—e)/2,p—e) Of
translatons, wheres € {—1,1} andp = ¢ (mod 6. The union Ufexo Crrt is the
set of points of the affine plane. Moreover, only one elementXgfis not in X. Let
Yo = {71 | T € Xo}. Then, any pair of points of], one an affine point and the other in
{(0,1,i) |0 <i < p— 1}, may be mpped into the s&f;; by an element ofo.

The collineatiorvg of I moves (0, 0, 1) to the check point (0, 1, 0). Since all elements
of Yo fix each of the non-affine poisita pair of points of /7 consisting of (0, 0, 1) and an
affine point may be mapped into the gt by an element o Yo.

Finally, we must consider pairs of non-affine points. Those which do not contain
(0, 0, 1) are already ;7. Pairs ofthe form {(0, 1,1i), (0,0, 1)}, with i # 0, may
be mapped into the s&t;; by og. For the pair{(0, 1,0), (0,0, 1)}, we mayuse the
collineationos.

Hence, we gea 2-PD-setY U Yo U 6oYo U {01} in the casep = —1 (mod 6 and
Y U Yo U Yo U {o1, 1.1} in the casep = 1 (mod 6. Thesesets have gis 42 and 43,
respectively.

The proof for the dual code follows from the proof fGr with C;; as information set:
two points in the check sef;7, are calt with by:; two affinepoints by(\? U {T1.1})o0;
two onL or P and one orC by o2; one inA, andP by {03, 71 103}; one affine and one on
L by {04, 0403, 71,104, T_1,104, T1,004}. [

Note. The size of the set we have given in the dual case is larger than necessary as we can
in fact get a set of size 41, and the actual bound is very likely lower. We include the 46-set
for simplification of the argument.

We now bok for specific 3-PD-sets in the affine case. kot F, anda # 0, define
collineations of AG(Fp):

a: (x,y) — (ax, ay), 9)
51X Y) = (Y. %) (10)

for (x,y) € AGx(Fp). LetZ ={a | a € Fg} andT = {rap | 0 < a,b < p— 1}, the
translation group of AG(Fp).

Proposition 4.5. Letr = AG»(IFp) where pis a prime, and let T be its translation group,
Z and$§ as defined above and in EQLO). For p > 7, TZ U T Z§ is a 3-PD-set for the
code C ofr using the ifiormation set of Eq(3), and for p> 5, Tis a ninimal 3-PD-set
for the dual code € of rr, using the mformation set of E(4).

Proof. First deal with the duacode: he check set i€ = {(i,j) | 0 <i < j <
p — 1}. We may map an arbitrary pie of points in the affine plane to one of the form
(0,0), (i1, j1), (i2, j2) whereO<i; <iz < p—1andO0< ji, o < p— L.

It is easy b translae such a tple intoC if iy = 0orip =i20rjp=0o0rj, =0o0r
j1 = j2. We will now assume that none of these equalities hold. We distinguish two cases:
j1 < jeandjz < j1.

Casel. j1 < j2. We can translate the triple t@, p — 1 — j2), (i1, p— 1 — j2 + jo),
(i2, p—1). ThistripleisinCif p—1— jo+ j1 > i1.
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We can also translate the triple 6, 0), (i2 — i1, j2— j1), (p—1i1, p— j1), whichalso
belongs to this case. This can be translateddnifop — 1 — (p— j1) + (jo— j1) = i2—1i1.
Thatis,jo—1>i2—i1.

If p—1—jo+j1<izandjo—1<iz—i1, thenp—1+ ji1 <io. Butthisis impossible,
sincej; > 0.

Case2. j2 < j1. Wecan translate the triple t®, p—1— j2), (i1, j1— j2— 1), (i2, p— D).
This triple is inC if —i1 + j1 — j2 > 1.

We can also translate the triple (0, 0), (i2—i1, p+j2—j1), (p—i1, p— j1), whichalso
belongs to this case. This can be translated@nifo-(io—i1)+(p+j2—j1)—(p—j1) > 1.
Thatis,ip —iz+ j2 > 1.

We can also translate the triple (0, 0), (p—i2, p—j2), (p+i1—i2, j1— j2), whichalso
belongs to this case. This can be translated@nfo—(p—i2) + (p— j2) — (j1— j2) > 1.
Thatis,—j1 +1i2 > 1.

Assuming that these three inequalities fail, we get the inequalitiest j1 — j2 <
li1—i2+j2<1 —j1+i2 < 1land, takingthese in pairg; — iz <2, —i1+iz2— jo <
2,i1— j1+ j2 <2.Hence,ji—ig=00r1 —i1+iz—jo=0o0rland;— j1+j2=0o0r
1. Combining these equations in pairs, we see that the only possible case is that in which
the three ght-hand sides are all 0. This givies= j1, so thatj; > i1, andj> = j1 —i1.

We can translate the tripl€0, 0), (i1, j1), (j1, j1 — i1), With i1 < j1, to each of the
triplesto(0, p—1— j1), (i1, p—1), (j1, p—1—i1),and(0,i1 — 1), (j1 —i1, p— 1),
(p—i1, p—1—ja+ip)and(©, ji—i1—1),(p—j1. p—1),(P— j1+i1, ji—1). These
triples are irC if the following inequalities hold respectivelyi+ j1 < p—1,21— j1 > 1,
and2jl—i1 >p+ 1

Assume now that all three inequalities fail. Them — j1 < —p+ 1,21 — j1 < 1,
and 2j; — i1 < p + 1. Combining these inequalities in pairs, we get the inequalities
i1—2j1 < —p+2 -2i1+ j1 < 2,andi1 + j1 < p+ 2. Hencej1 — 2j; = —por
—p+1—-2i1+j1=0o0r1,and1 + j1 = por p+ 1. The only case possible is when
these gpressions take the valuesp, 0 andp, resgectively, givingji1 = 2i; and 31 = p.
Thusp = 3 contrary to hypothesis.

This concludes the proof thatis a 3-PD-set foC+.

To show thait is minimal, we will exhibit a triple inC all of whose translates by non-
trivial elements ofT are not inC. In referring to translations; j below,we will assume
thatO0<i, j < p— 1. We mgy write p = 3k + 1 + ¢ wheree € {0, 1}. We show hat the
triple (0, k), (k, 3k + ¢), (2k + ¢, 2k + ¢) has the desired property.

The translatiorr; } maps(0, k) intoC if i < k and eitherj <2k+csorj >2k+i+¢
orifi > kandi —k < j < 2k+¢ and not otherwise. The translation; maps(k, 3k +¢)
intoCif j =0orifi <2k+eandj >i+korifi >2k+ecandj >i —2k—1—¢and
not otherwise. The translatianj; maps(2k + ¢, 2k +¢) intoCif i < kandi < j <kor
if i > kand eitherj < korj >i. Itis atedous, but essentially elezntary, exercise to
show that the only translation mamgi all three points of the triple int6 is o o.

We give an illustration inFig. 2, A, B and C, of the translations which move each of the
points of the tiple into the check set, whep = 23, by highlighting with heavier dots the
images of the origin (0, 0) in these cases. Theck set in this case consists of the points
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Fig. 2. lllustration of the images of the origin undemistations mapping the given points into the check set for
C+ in casep = 23.

contained within the large triangle and the points of the triple are enclosed in small square
boxes.

Now consider the cod€, where the beck seti< = {(i,j) | p—1>1i > j > O}
We reed to show that any three points can be mappeddrig TZ U T Z§. All cases in
which any two of the three points are ‘horizontal’ or ‘vertical’ or lie on the lije= x’
can be easily translated inth From the firstpart of the proof, any remaining triple can
be translated int¢(i, j) | 0 <i < j < p — 1}. Moreover, unlesstte tiple has the form
{(, =1, (0, ), (k, k)}, with i, j andk distinct, we can map it by further translation anél
intoC. If 2i # —1, we can apply the mag¥ to the triple, follow it by a suitable translation
and then by to map the triple intc. Findly, if 2i = —1, we first apply the translation
@, j)— @, ]+ 1) and then proceed as above.

SinceT is anormal subgroup of the full automorphism group of AGp), TZU T Z5
is a 3-PD-setfoC. [

Note. A similar argument yields 3-PD-sets for tipeojective case, for both the code and

its dual. Since the arguments are so similar to those in the propositions, and since the sets
obtained are not of optimal size (of the ordemdfand p? respectively), we omit the result.

The sets can be constructed, in a fairly obvious manner, from our results.

5. Computational resultsfor small planes

Table 1 shows the size of some PD-sets for emting various numbers of errors using
p-ary codes of desarguesian planes of oglarpower ofp, and theirduals, that we have
obtained by computation using Magngj pr GAP [7]. In the table,D denotes the design,

n is the length 6the cde,k (respectivelyk') the dimension ofC (respectivelyC), d
(respectivelydt) the mhimum weight;t is the nunber of errors corrected fortaPD-set

S of size|S|, andG denotes the group spanned 8ywhereT denotes the translation
group (in the affine casef a Shger group andN the normalzer of a Singer group (in

the projective case)i the automorphism groupT Z = {ra | = € T,a € F} (see

Eqg. ©)), and a number in that column denotes the order of the group. The Hall and Hughes
non-desarguesian projective planes of order 9 are included. Some of the computations were
done using the basis &esult 2.6 Related results can be found in Limbupasiripat][
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Table 1
Size oft-PD-sets found by computation
c ct
D n k d t S| G kb d+ t |S| G
AG>(F5) 25 15 5 2 19 T 10 10 3 25 T
4 55 A
AG>(F7) 49 28 7 2 18 T 21 14 3 49 T
3 95 A 4 109 A
5 227 A
6 542 A
AG,(F11) 121 66 11 2 20 T 55 22 2 7 T
3 119 TZ 3 121 T
4 358 A 4 164 A
AG5(F13) 169 91 13 2 19 T 78 26 2 21 T
3 107 TZ 3 169 T
AGo(F17) 289 153 17 3 127 TZ 136 34 3 289 T
AG,(F19) 361 190 19 3 126 TZ 171 38 3 361 T
PG (F5) 31 16 6 2 14 S 15 10 4 93 N
P& (F7) 57 29 8 2 17 A 28 14 4 158 A
3 40 S 5 463 A
6 949 A
PG (Fg) 73 28 9 4 70 A 45 10 4 472 A
PGy (Fg) 91 37 10 4 109 A 54 15 5 1367 A
PGy (F11) 133 67 12 5 556 A 66 22 5 526 A
Hallg 91 41 10 2 15 3840 54 15
3 47 A
4 123 A
Hugheg 91 41 10 2 21 324 54 14
3 8 2592
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Appendix

In Tables 2and3 we compare the der of the automorphism group of a desarguesian
projective plane of ordeq with the lower bound ofResult 2.4for the size of a PD-set
correcting up to the full error-capability of the code. The rows up to the entry 103 are for
g prime; the next, up to 4096, are fqr= 2%, then F up to 729, 5 up to 625, ? up to 343,
11° up to 121, 18 up to 169. The cut-off value for each of these cases indicates that for
higher primes in the first, and higher primewgers in the others, the required lower bound
is greater than the group order and thus a PD-set for full error-correction cannot exist.
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Table 2
Codes of desarguesian projective planes: ratio of Idwend of PD-set size to the total number of automorphisms
q C t r b b/|G|
2 [7,4, 3] 1 3 3 178571e-02
3 [13,7,4] 1 6 3 534188e-04
5 [31, 16, 6] 2 15 7 B8172e-05
7 [57, 29, 8] 3 28 15 26397e-06
11 [133, 67, 12] 5 66 63 .96572e-07
13 [183, 92, 14] 6 91 127 .%6687e-07
17 [307, 154, 18] 8 153 518 .45302e-08
19 [381, 191, 20] 9 190 1045 .B7100e-08
23 [553, 277, 24] 11 276 4224 .4)454e-08
29 [871, 436, 30] 14 435 34336 .87227e-08
31 [993, 497, 32] 15 496 68926 .0D014e-08
37 [1407, 704, 38] 18 703 557499 .5B839e-07
41 [1723, 862, 42] 20 861 2239792 .8P674e-07
43 [1893, 947, 44] 21 946 4493130 .83629e-07
47 [2257, 1129, 48] 23 1128 18003387 .56436e-07
53 [2863, 1432, 54] 26 1431 143767340.3@999e-06
59 [3541, 1771, 60] 29 1770 1156730820.88031e-06
61 [3783, 1892, 62] 30 1891 2317889060.20941e-05
67 [4557, 2279, 68] 33 2278 18583724854.54754e-05
71 [5113, 2557, 72] 35 2556 74519110992.15422e-04
73 [5403, 2702, 74] 36 2701 149270503098.851129e-04
79 [6321, 3161, 80] 39 3160 1198153834565.89B89e-04
83 [6973, 3487, 84] 41 3486 4798704980282.13D90e-03
89 [8011, 4006, 90] 44 4005 38506833445257.78303e-03
97 [9507, 4754, 98] 48 4753 618058116423527.88682e-02
101 [10303, 5152, 102] 50 5151 247663857963042028236e-01
103 [10713, 5357, 104] 51 5356 495769444868181891402e-01
4 [21, 10, 5] 2 11 4 30688e-05
8 [73, 28, 9] 4 45 12 22677e-07
16 [273, 82, 17] 8 191 38 .22111e-09
32 [1057, 244, 33] 16 813 180 .&r748e-11
64 [4161, 730, 65] 32 3431 1623 .621247e-13
128 [16513, 2188, 129] 64 14325 40696 .08365e- 14
256 [65793, 6562, 257] 128 59231 3965945.68747e-14
512 [262657, 19684, 513] 256 242973 362517128752859e-14
1024 [1049601, 59050, 1025] 512 990551 777983195793943583e-12
2048 [4196353, 177148,2049] 1024 4019205 206845429457074447107598e-08
4096 [16781313, 531442,4097] 2048 16249871 756341245794444596829562914925331&-01
9 [91, 37, 10] 4 54 12 #1320e-07
27 [757, 217, 28] 13 540 190 .24564e-10
81 [6643, 1297, 82] 40 5346 17757 .32605e-12
243 [59293, 7777, 244] 121 51516 116800246.92146e-12
729 [532171, 46657, 730] 364 485514 214359682981956@7891e-09
25 [651, 226, 26] 12 425 364 .19474e-09
125 [15751, 3376, 126] 62 12375 10329361.797e-11

625 [391251, 50626, 626] 312 340625 2829472619204857544638B3e-04



J.D. Key et al. / European Journal of Combinatorics 26 (2005) 665-682 681

Table 2 ¢ontinued

q C t r b /|G|
49 [2451, 785, 50] 24 1666 20419 .03341e-10
343 [117993, 21953, 344] 171 96040 6641985336739627  .15565e-05
121 [14763, 4357, 122] 60 10406 3132513775 .40887e-08
169 [28731, 8282, 170] 84 20449 6132177579328  .60494e-06
Table 3

Dual codes of desarguesian projective planes: rafidower bound of PD-set size to the total number of
automorphisms

q C t r b b/|G|
2 [7,3, 4] 1 4 2 119048e-02
3 [13, 6, 6] 2 7 4 712251e-04
5 [31, 15, 10] 4 16 28 52688e-05
7 [57, 28, 14] 6 29 122 26670e-05

11 [133, 66, 22] 10 67 2252 .06013e-05

13 [183, 91, 26] 12 92 9322 .15010e-05

17 [307, 153, 34] 16 154 160470 .3D885e-05

19 [381, 190, 38] 18 191 660742 .9®186e-05

23 [553, 276, 46] 22 277 10556212 .35065e-04

29 [871, 435, 58] 28 436 711041773 .42313e-03

31 [993, 496, 62] 30 497 2884912687 .38615e-03

37 [1407, 703, 74] 36 704 189533056602 .4@004e-02

41 [1723, 861, 82] 40 862 3092795496552 .87565e-01
4 [21, 11, 6] 2 10 7 ¥8704e-05
8 [73, 45, 10] 4 28 63 P7405e-06

16 [273, 191, 18] 8 82 23715 .38615e-06

32 [1057, 813, 34] 16 244 25331267483 .64238e-03
9 [91, 54, 15] 7 37 992 16824e-05

27 [757, 540, 38] >18 217 11028091675 .30343e-02

25 [651, 425, 45] 22 226 36052751125 .18335e-01

The columns offable 2are labelled as followsy, theorder of the fieldC, the mde;t, the
error-correction capability;, the redundancy, the lower bound froniResult 2.4b/|G|,
whereG is the autororphism group of the code.

Table 3is the mrresponding set foc’ noting that we do not actually know the
minimum weight ofCt in general in the odd non-prime case, exceptfes 9 andq = 25.

We used the known bounds, as reference&attion 2 see Eg. 1) and the sbsequent
paragraph.
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