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Abstract

We determine to what extent permutation decoding can be used for the codes from desarguesian
projective and affine planes. We define the notion ofs-PD-sets to corrects errors, and construct some
specific small sets fors = 2 and 3 for desarguesian planes of prime order.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The codes from finite geometries are the well known generalized Reed–Muller codes,
and subfield subcodes of these. They have the projective and affine semi-linear groups as
automorphism groups and are good candidates for the use of permutation decoding. Here
we examine to what extent permutation decoding can be used for the codes from finite
desarguesian planes. We define the notion of partial permutation decoding using sets of
automorphisms that can correct up tos errors, wheres is somenumber less thant , the full
error-correction capability of the code, calling theses-PD-sets. Weobtain explicits-PD-
sets for some of the codes.

The automorphism group of a desarguesian geometry is 2-transitive on points so
clearly the whole group will act as a 2-PD-set. Naturally we would like to find smaller
2-PD-sets and also to ask for whichs up to the full error-correction capability can we
find s-PD-sets. We find partial solutions to these questions in this paper. In particular,
we show inSection 3, Propositions 3.2and 3.3, that 3-PD-sets exist for the codes and
their duals for all desarguesian projective planes for any choice of information symbols
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and that 4-PD-sets exist for particularly chosen information sets. A similar, but weaker,
set of results is obtained for affine desarguesian planes. InSection 4we obtain specific
2-PD-sets for desarguesian planes of prime order for particular known information sets: see
Proposition 4.2which uses an information setfrom a Singer cycle;Proposition 4.3, using
a Moorhouse [16] basis, wherewe construct 2-PD-sets of 37 elements for desarguesian
affine planes of any prime orderp; andProposition 4.4, again using a Moorhouse basis,
where we construct 2-PD-sets of 43 elements for desarguesian projective planes of any
prime orderp. In Proposition 4.5we obtain 3-PD-sets for the code and the dual code in
the affine prime case of sizes 2p2(p − 1) and p2, respectively, and we show that the set
for the dual code is minimal. InSection 5we give a table of somecomputational results of
sizes ofs-PD-sets obtained for codes from planes of relatively small order, where we used
Magma [3] or GAP [7] for the computations.

Finally in theAppendix, we show that PD-sets for full error-correction for projective
desarguesian planes do not exist for orderq large enough:Table 2shows that forq = p
prime andp > 103,q = 2e ande > 12,q = 3e ande > 6, q = 5e ande > 4, q = 7e and
e > 3, q = 11e ande > 2, q = 13e ande > 2, orq = pe for p > 13 ande > 1, PD-sets
for full error-correction cannot exist, with similar results holding for the affine and dual
cases. This is in contrast to some binary codes obtained from graphs with the symmetric
group acting, where PD-sets were found for the infinite class of codes: see [11, 12].

2. Background

Following generally the notation in [1], an incidence structureD = (P,B,I), with
point setP , block setB and incidenceI is a t-(v, k, λ) design, if|P | = v, everyblock
B ∈ B is incident with preciselyk points, and everyt distinct points are together incident
with preciselyλ blocks. The design issymmetric if it has thesamenumber of points and
blocks.

If F is the fieldFp of order p wherep is a prime, thecode CF (D) (or Cp(D)) of the
designD overF is the space spanned by the incidence vectors of the blocks overF . If the
point set ofD is denoted byP and the block set byB, and ifQ is any subset ofP , then
we will denote the incidence vector ofQ by vQ. ThusCF (D) = 〈vB|B ∈ B〉, and is a
subspace ofFP , the full vector space of functions fromP to F . Thedimension ofCp(D)

is called thep-rank ofD.
The codes here will belinear codes, i.e. subspaces of the ambient vector space. If a

codeC over a fieldof orderq is of lengthn, dimensionk, and minimum weightd, then we
write [n, k, d]q to show this information. Agenerator matrix for the code is ak×n matrix
made up of a basis forC. Thedual or orthogonal codeC⊥ is the orthogonal subspace
under the standard inner product (,), i.e.C⊥ = {v ∈ Fn | (v, c) = 0 for all c ∈ C}.
A check (or parity-check) matrix for C is a generator matrixH for C⊥; the syndrome
of a vectory ∈ Fn is H yT . A codeC is self-orthogonal if C ⊆ C⊥ and isself-dual if
C = C⊥. If c ∈ C then thesupport of c is the set of non-zero coordinate positions ofc,
and theweight of c is the cardinality of the support. Aconstant vector is one for which
all the non-zero coordinate entries are the same. Theall-one vector will be denoted by ,
and is the constant vector of weight the length of the code. Two linear codes of the same
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length and over the same field areisomorphic if they canbe obtained from one another
by permuting the coordinate positions. Any code is isomorphic to a code with generator
matrix in so-calledstandard form, i.e. the form[Ik | A]; a check matrix then is given by
[−AT | In−k]. The firstk coordinates are theinformation symbols (or set) and denoted by
I, and the lastn− k coordinates are thecheck symbols, denoted byC. An automorphism
of a codeC is an isomorphism fromC to C. The automorphism group will be denoted by
Aut(C). Any automorphism clearly preserves eachweight class of C, i.e. the set of vectors
of C of a given weight.

For any finite field Fq of order q, the set ofpoints andr -dimensional subspaces
(respectively flats) of anm-dimensional projective (respectively affine) geometry forms
a 2-design which we will denote by PGm,r (Fq) (respectively AGm,r (Fq)). In particular,
the desarguesian projective and affine planes of order q are denoted by PG2,1(Fq)

(respectively AG2,1(Fq)) but wewill simply use PG2(Fq) and AG2(Fq), as is customary.
Theautomorphism groups, PΓ Lm+1(Fq) or AΓ Lm(Fq), respectively, of these designs
(and codes) are the full projective or affine semi-linear groups, and always 2-transitive on
points. Ifq = pe wherep is a prime, the codes of these designs are overFp and are subfield
subcodes of the generalized Reed–Muller codes: see [1, Chapter 5] for a full treatment.
The dimension and minimum weight is known in each case: see [1, Theorem 5.7.9]. In
particular, in the case of planes, which is what we consider here, the result is as follows:

Result 2.1. If q = pe, the p-rank of the design of points and lines of PG2(Fq) is(
p+1

2

)e + 1 and thatof the design of points and lines of AG2(Fq) is
(

p+1
2

)e
. In both

cases the minimum weight vectors are the incidence vectors of the lines and their scalar
multiples.

The dual codes of the codes from the finite geometry designs are not, in general,
generalized Reed–Muller codes, and much less is known about their minimum weights
except in the casep = 2, or in the prime case. For desarguesian planes of orderq = pe

wherep is prime, the minimum weightd⊥ of C⊥ satisfies

q + p ≤ d⊥ ≤ 2q, (1)

with equality at the lower bound forp = 2, and atq = p. See [4–6] for improvements on
this in the case ofp odd.

Permutation decoding was first developed by MacWilliams [14] and involvesfinding
a set ofautomorphisms of a code called a PD-set. The method is described fully in
MacWilliams and Sloane [15, Chapter 15] and Huffman [9, Section 8]. We extend the
definition of PD-sets tos-PD-sets fors-error-correction:

Definition 2.2. If C is a t-error-correcting code with information setI and check setC,
then aPD-set for C is a setS of automorphisms ofC which is such that everyt-set of
coordinate positions is moved by at least one member ofS into the check positionsC.

For s ≤ t ans-PD-set is a setS of automorphisms ofC which is such that everys-set
of coordinate positions is moved by at least one member ofS into C.

That a PD-set will fully use the error-correction potential of the code follows easily
and is proved in Huffman [9, Theorem 8.1]. That ans-PD-set will corrects errors also
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follows, and we restate this result in order to use ours-PD-sets fors-error-correction,
wheres ≤ t :

Result 2.3. Let C be an[n, k, d]q t-error-correcting code. SupposeH is a check matrix
for C in standard form, i.e. such thatIn−k is in the redundancy positions. Lety = c + e
be a vector, wherec ∈ C ande has weights ≤ t . Then the information symbols iny are
correct if and only if the weight of the syndromeH yT of y is ≤s.

The algorithm for permutation decoding is as follows: we have at-error-correcting
[n, k, d]q code C with check matrixH in standard form. Thus the generator matrix
G = [Ik | A] and H = [−AT | In−k], for someA, and the firstk coordinate positions
correspond to the information symbols. Any vectorv of lengthk is encoded asvG. Suppose
x is sent andy is received and at mosts errors occur, wheres ≤ t . LetS = {g1, . . . , gm}
be ans-PD-set. Compute the syndromesH (ygi )

T for i = 1, . . . , m until an i is found
such that the weight of this vector iss or less. Compute the codewordc that has the same
information symbols asygi and decodey ascg−1

i .
Such sets might not exist at all, and the property of having a PD-set might not

be invariant under isomorphism of codes, i.e. it depends on the choice ofI and C.
Furthermore, there is a bound on the minimum size that the setS may have, due to
Gordon [8], from a formula due to Sch¨onheim [17], and quoted and proved in [9]:

Result 2.4. If S is a PD-set for at-error-correcting[n, k, d]q codeC, andr = n − k,
then

|S| ≥
⌈

n

r

⌈
n − 1

r − 1

⌈
. . .

⌈
n − t + 1

r − t + 1

⌉
. . .

⌉⌉⌉
.

This result can be adapted tos-PD-sets fors ≤ t by replacingt by s in the formula.

To obtain PD-sets, one needs a generator matrix for the code in standard form, and thus
one needs to know what to take as information symbols. Even for desarguesian planes,
general sets of information symbols are not known; in the projective case the fact that the
code is cyclic can be used, and, in the case of planes of prime order, we have the following
result of Moorhouse [16]:

Result 2.5 (Moorhouse). Letπ = AG2(Fp) where p is a prime. A basis for the code
Cp(π) can be found by taking the incidence vectors of the following lines: all thep lines
from any one parallel class; anyp − 1 lines from any other parallel class; and so on, until
a single line is chosen from one of the final two parallel classes, and no lines are chosen
from the remaining class. This gives

p + (p − 1) + (p − 2) + · · · + 1 = p(p + 1)/2 =
(

p + 1
2

)

lines, whose incidence vectors form a basis forCp(π).

Similarly, a basis for the desarguesian projective plane of prime order can be found by
including the line at infinity. By usinghomogeneous coordinates for the projective case,
one sees that a basis for the plane willshow how to find an information set.

Another basis for the prime case was given by Blokhuis and Moorhouse [2]:
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Result 2.6. Let Π = PG2(Fp) wherep is a prime, and letC denote a conic inΠ . Then a
basis for the codeCp(Π ) can be found by taking the incidence vectors of all nonsecants to
C, i.e. all tangents and exterior lines.

A basis forCp(Π )⊥ can be found by taking the complements of the incidence vectors
of the secants.

3. Existence of s-PD-sets for desarguesian planes

We show thatboth the code and its dual of any desarguesian projective plane will have
3-PD-sets no matter what information setI is chosen. To ensure that the code will correct
three errors, we will take the orderq ≥ 7; for the dual code, where the minimum weight
in the caseq = p prime is 2p, we needq ≥ 5. In general our bounds on the order relate to
the error-correction capability of the code, which might not be the same as that of its dual.
First we needa lemma.

Lemma 3.1. If q = pe ≥ 5, where p is aprime,then

1. (p(p + 1)/2)e > pe + 2 and p2e − (p(p + 1)/2)e > pe + 2;
2. (p(p + 1)/2)e + 1 > pe + 2 and p2e + pe + 1 − (p(p + 1)/2)e − 1 > pe + 2.

Proof. The proof of this is quite direct, so we omit it.�

We use these inequalities to prove the existence of 3-PD-sets for desarguesian planes:

Proposition 3.2. Let Π = PG2(Fq), where q= pe and p is a prime, C= [q2 + q + 1,

(p(p + 1)/2)e + 1, q + 1]p its p-ary code, and G its automorphism group. Then if q≥ 7,
a 3-PD-set can be found in G for C using any information set; similarly for q≥ 5 for the
dual code C⊥ = [q2 + q + 1, q2 + q − (p(p + 1)/2)e, d⊥]p where q+ p ≤ d⊥ ≤ 2q.

If q ≥ 8, information sets exist for C such that 4-PD-sets can be found in G; similarly
for C⊥ for q ≥ 5.

Proof. Note first thatG is transitive on triangles and on collinear triples of points: see, for
example, [10, Chapter 2].

Concerning 3-PD-sets, letI denote information symbols forC andC the checksymbols,
and letT = {P1, P2, P3} be a set of three points. We first show that bothI andC contain
both triangles and sets of collinear triples. In fact, if a set of points inΠ has no three points
collinear, then it must be an arc in the plane and hence of size at mostq + 2. BothI and
C have size bigger than this byLemma 3.1, so this is impossible. Also, neitherI norC can
have all points collinear since this would restrict their size toq + 1. Thus both types of
triple occur in bothI andC. By transitivity then, T can be mapped to the error positions
by some member ofG, in thecase ofC and in the case ofC⊥.

For 4-PD-sets, we need to consider sets of four points inΠ . Such a set is either a
quadrangle, or a point and three collinear points, or all four collinear points. Again taking
I for the information symbols andC for the check symbols, using the lemma we see that
both I andC contain 4-sets of the first two types. SinceG is transitive on these types
of 4-set, we can always map such a 4-set to the check symbols. In the case of sets of
four collinear points, we do not have transitivity. We have to ensure thatC (for C) andI
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(for C⊥) contains a representative of every orbit ofG acting on collinear 4-sets. SinceG
is transitive on incident point–line pairs and sinceq ≥ 4, each line excluding an arbitrary
point contains such representatives.

We may chooseI for C by starting with an information set for a corresponding affine
plane and adding a point from the line at infinity. In this caseC will contain aline excluding
one point. Thus,C has a 4-PD-set in this case.

Now let L be anyline of PG2(Fq), let P1, . . . , Pq+1 be the points ofL, let P be a point
off L and letLi be the line joiningP to Pi , i = 1, . . . , q + 1. ThenvL1, . . . , vLq+1 are
independent and yieldIq+1 when restricted to the positionsP1, . . . , Pq+1. Hence, we may
chooseI to contain P1, . . . , Pq+1. With the corresponding check set as the information
set,C⊥ has a 4-PD-set. �

Similar results hold for the desarguesian affine planes, but we have to be more restrictive
in our choice of information set since we do not have transitivity on collinear triples of
points:

Proposition 3.3. Let π = AG2(Fq) where q= pe and p is a prime, C= [q2, (p(p +
1)/2)e, q]p its p-ary code, and G its automorphism group. Then if q≥ 7, a 3-PD-set can
be found in G for C. Similarly, for q≥ 5, a 3-PD-set can be found in G for the dual code
C⊥ = [q2, q2 − (p(p + 1)/2)e, d⊥]p where q+ p ≤ d⊥ ≤ 2q.

Proof. As in the projective case, but using the alternative inequalities inLemma 3.1,
we see that all possible information sets and check sets contain triangles and collinear
triples.

We may chooseI, as in the lastparagraph of the proof ofProposition 3.2, to contain
the points of an (affine) line. With the corresponding check set as information set,C⊥ has
a 4-PD-set,since everyG-orbit of collinear triples has a triple on this line.

To show thatC may be chosen to contain a line excluding a point, we work with the
column vectors of the incidence matrix of the affine plane modp. Let uP denote the
column vector corresponding to the pointP. Choose a lineL and a pointP on it. Let
Q be any other point ofL. Let A �= L be a line onP and letB be theline onQ parallel to
A. It is easy to see that

∑
R∈B uR = ∑

R∈A uR. Hence,uQ is a linear combination ofuP

and the vectorsuR, R /∈ L. So, an information set can be selected from{R : R /∈ L}∪ {P}.
The corresponding check set contains{Q : Q ∈ L, Q �= P}. Consequently,C has a
3-PD-set. �

Note. For q = p using the Moorhouse [16] basis ofResult 2.5, both the information and
check sets will contain either a line or a line excluding one point. We can now use this
basis to obtain a similar result for prime-order affine planes for 4-PD-sets; the basis we use
is discussed fully inSection 4.

Proposition 3.4. Let π = AG2(Fp) where p is a prime and p ≥ 11, C =[
p2,

(
p+1

2

)
, p

]
p

its p-ary code, and G be its automorphism group. Then G contains a

4-PD-set for the code using information set

I = {(i , j ) | 0 ≤ i ≤ j ≤ p − 1},
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and check set

C = {(i , j ) | p − 1 ≥ i > j ≥ 0}.
The same result is true for p ≥ 5 for C⊥ =

[
p2, p2 −

(
p+1

2

)
, 2p

]
p

(using C as

information set).

Proof. For the resultto be true forC, the check positions must contain a representative
of every orbit of 4-sets of points. In the affine case there are more orbits and more
geometrical configurations thanin the projective case, andG is transitive on triangles but
not on quadrangles. The basic types of configuration are the same as in the projective case:
four points collinear, exactly three collinear, or a quadrangle. AlthoughG is transitive on
triangles, it is not transitive on collinear triples and thus the first two types of 4-set are
in more than two orbits. However, if we ensure thatC has at leastp − 1 collinear points,
then these two configurations are taken care of. Clearly{(i , 0) | 1 ≤ i ≤ p − 1} is such
a set. For the quadrangles, sinceG is transitive on triangles, we need only show that the
quadrangle{(0, 0), (1, 0), (0, 1), (a, b)} (wherea �= 0, b �= 0, a + b �= 1) can be mapped
into a quadrangle of points inC. This can easily be shown to be possible using a suitable
translationτi, j : (x, y) 
→ (x, y) + (i , j ), where p − 2 ≥ i ≥ j + 2 ≥ 2 (working
(mod p)). This shows that every 4-set can be mapped toC and thatG will thus contain a
4-PD-set forC.

The result forC⊥ follows similarly. �

4. Explicit 2-PD sets for planes of prime order

Now we consider planes of prime orderp. We give explicit 2-PD-sets for codes of these
planes for two distinct sets of information symbols.

First we have a general result for cyclic codes of a particular dimension. Note that by the
standard definition of a cyclic code of dimensionk and lengthn with co-ordinate positions
0, 1, . . . , n−1, then-cycle(0, 1, . . . , n−1) is in the automorphism group of the code and
thus anyk consecutive positions can be taken as the information symbols. Note also that
throughout we will write our maps on the right and, correspondingly, use row vectors for
points of the geometrical designs and write our matrices on the right.

Proposition 4.1. Let C = [n, k, d]q be a cyclic code of odd length n over the field
Fq of order q, where k= (n + 1)/2, (n, q) = 1 and d ≥ 5. Label the coordinate
positions0, 1, . . . , n − 1 and takeI = {0, 1, . . . , k − 1} for the information symbols.
Let A = Aut(C) ≤ Sn, and letσ : i 
→ i + 1 andµ : i 
→ qi (modn). If S = 〈σ 〉 and
q �≡ ±1 (modn), thenS = S∪ µS is a 2-PD-set ofsize2n for C.

Proof. Suppose two errors occur at positionsi1 and i2, where 0≤ i1 < i2 ≤ n − 1. If
eitheri2 − i1 − 1 or (n − 1) − (i2 − i1) is less than(n − 3)/2, then{i1, i2} can be brought
into the check positions by some power ofσ .

If i1 = 0 andi2 = k = (n + 1)/2, then{0, k} cannot move into the check positions by
S. Since 0µ = 0 andkµ = qk, if qk �= k or k − 1 thenµS will take any pair of positions
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to the check positions. This is equivalent toq �≡ ±1 (mod n). ThusS∪ µS will form a
2-PD-set provided thatq �≡ ±1 (modn). �

Note. Thatµ ∈ Aut(C) is proved in MacWilliams [14].

Thus if we take our information positions to be consecutive positions defined by a cycle
acting on the code, we will have the following:

Proposition 4.2. LetΠ = PG2(Fp) where p≥ 5 is a prime,and C the p-ary code ofΠ .
Writing n = p2 + p + 1, then C = [n, (n + 1)/2, p + 1]p. Let S be thecyclic group
generated by a Singer cycle and takeI = {0, 1, . . . , ((n + 1)/2) − 1} for the information
symbols,as defined by S. Then, in the notation ofProposition4.1for σ andµ, S∪µS will
form a 2-PD-set for C and S will form a 2-PD-set for C⊥ for p ≥ 3. Furthermore, the
order ofµ is 3.

Proof. It is clear thatp �≡ ±1 ( mod n), so the proposition gives the first part immediately.
Since the dimension ofC⊥ is (n−1)/2 < n/2, it is immediate (see [14]) that Swill suffice
for two errors forC⊥.

That µ has order 3 follows sincei (µ)3 = p3i = i , becausep3 ≡ 1 (mod p2 +
p + 1). �

The Moorhouse basis ofResult 2.5extends to a basis for a projective plane of prime
order in the natural way by including the incidence vector of the line at infinity. In the
projective case, if homogeneous coordinates are used, then it is clear that if we have
the homogeneous coordinates for a set of lines that produce a basis for the code of the
plane then the points with the same homogeneous coordinates as these lines will form an
information set for the code. We can find an information set for the code of the affine
desarguesian plane of orderp by selecting a projective line which meets an information
set of the code of the projective desarguesian plane of orderp in a single point and taking
this line to be the line at infinity.

In this way it is not difficult to verify that the following points can be taken as
information symbols for thep-ary code of the desarguesian affine plane AG2(Fp) of prime
orderp:

(0, 0) (0, 1) (0, 2) · · · (0, p − 1)

(1, 1) (1, 2) · · · (1, p − 1)

(2, 2) · · · (2, p − 1)
...

(p − 1, p − 1)

. (2)

Here, if we take for the line at infinity�∞ = (0, 0, 1)′, then we takep lines (1, 0, a)′ for
0 ≤ a ≤ p−1 through (0, 1, 0),p−1 lines(1, 1, a)′ for 1 ≤ a ≤ p−1 through(1,−1, 0),
p − 2 lines(1, 2, a)′ for 2 ≤ a ≤ p − 1 through(1,−2−1, 0), . . . , 1 line (1, p − 1, a)′ for
a = p − 1 through(1, 1, 0), and then take the corresponding points for our information
set, as shown above. Thus the information symbols are

I = {(i , j ) | 0 ≤ i ≤ j ≤ p − 1}, (3)
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Fig. 1. Affine planes displaying the ‘Moorhouse’ check set and subdivisions inProposition 4.3.

and the check symbols

C = {(i , j ) | p − 1 ≥ i > j ≥ 0}. (4)

We will use the following notation for a translation in the affine group AGL2(Fq):

τa,b : (x, y) 
→ (x, y) + (a, b), (5)

for (x, y), (a, b) ∈ AG2(Fq).

Proposition 4.3. Let π = AG2(Fp) where p≥ 5 is a prime,and C its p-ary code. Let
n = �(p + 1)/6�, and Y = {τun,−vn | 0 ≤ u, v ≤ 5}. Then, usingI = {(i , j ) | 0 ≤ i ≤
j ≤ p − 1} as information set, Y is a 2-PD-set for C if p≡ −1 (mod 6), and Y∪ {τ1,1}
is a 2-PD-set for C if p≡ 1 (mod 6), i.e. C has a 2-PD-set of size≤37. Furthermore,
(Y ∪ {τ1,1})δ is a 2-PD-set of 37 elements for C⊥, usingC of Eq.(4) as information set,
and whereδ is defined in Eq.(10).

Proof. Clearly p = 6n ± 1. The setC = {(i , j ) | 0 ≤ j < i ≤ p − 1} is the check
set corresponding to the information setI, and we setP = I ∪ C. For eachu, v with
0 ≤ u, v ≤ 5, letCu,v = Cτ−un,vn.

We now define a partition ofP . Thepartition is illustrated inFig. 1, A and B, for the
primes 29 and 31, respectively.

For 0 ≤ u, v ≤ 5, let Su,v = {(i , j ) | max(0, p − (u + 1)n) ≤ i < p − un, vn ≤
j < min((v + 1)n, p)}. Clearly, Su,v ⊆ S0,0τ−un,vn for all u, v (0 ≤ u, v ≤ 5), with
equality unlessp ≡ −1 (mod 6) and eitheru = 5 or v = 5. We refer to these subsets
as ‘squares’, even though this is slightly inaccurate ifp ≡ −1 (mod 6). In this case, the
squares partitionP .

If p ≡ 1 (mod 6), we define the ‘vertical lines’ Vu = {(0, j ) | un ≤ j < (u + 1)n}
and the ‘horizontal lines’Hu = {(i , p − 1) | p − (u + 1)n ≤ i < p − un} for 0 ≤ u ≤ 5.
We refer to (0, p − 1) as the ‘top point’. It is easily seen that, whenp ≡ 1 (mod 6), P is
partitioned by the squares, the horizontal and vertical lines and the top point.

Let X = {τ−un,vn | 0 ≤ u, v ≤ 5}. We will show thatY = {τ−1 | τ ∈ X} is a 2-PD-set
for C if p ≡ −1 (mod 6) andY ∪ {τ1,1} is a 2-PD-set forC if p ≡ 1 (mod 6).
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We consider first the casep ≡ −1 (mod 6). Let A = {(a, b) | 0 ≤ a, b ≤ 3, a + b ≤
3}. Then Cu,v contains every square of the formSu+a,v+b with (a, b) ∈ A, reducing
subscripts modulo 6. Thus,Su,v is contained inCu−a,v−b if (a, b) ∈ A. Hence, Su,v and
Su−a+c,v−b+d are contained inCτ for someτ ∈ X if (a, b), (c, d) ∈ A. Computing the
differences(c, d) − (a, b) in Z

2
6 for all (a, b), (c, d) ∈ A, we see that the only pairs of

squares unaccounted for are those of the formSu,v andSu+2,v+2.
To deal with such pairs, we notice that if 2≤ u ≤ 5 thenCu,v containsSu+4,v, if

2 ≤ v ≤ 5 thenCu,v containsSu,v+4, and if eitheru or v is in {4, 5} thenCu,v contains
Su+2,v+2.

Consider the pairSu,v andSu+2,v+2 and letu′ andv′ be chosen so that 0≤ u′, v′ ≤ 5,
u′ = u+2 andv′ = v +2. If u < u′ andv < v′ thenboth squares are inCu,v′, sincev′ ≥ 2
and henceCu,v′ contains bothSu+2,v′+0 andSu+0,v′+4. Similarly, if u < u′ andv′ < v then
both squares are inCu′,v , if u′ < u andv < v′ thenboth squares are inCu,v′ , and ifu′ < u
andv′ < v thenboth squares are inCu′,v′ .

Since we have now shown that every pair fromP is contained inCτ , for someτ ∈ X,
it follows thatY is a 2-PD-set forC if p ≡ −1 (mod 6).

We now turn to the casep ≡ 1 (mod 6). Let B = A ∪ {(4, 0), (0, 4)}. ThenCu,v

contains every square of the formSu+a,v+b with (a, b) ∈ B, reducing subscripts modulo 6.
Arguing as above, we see thatpairs of squares of the formSu,v and Su−a+c,v−b+d are
contained inCτ for someτ ∈ X if (a, b), (c, d) ∈ B. Computing the differences
(c, d)−(a, b) in Z

2
6 for all (a, b), (c, d) ∈ B, we find thatevery pair of squares is contained

in someCτ for someτ ∈ X.
Next, we observe that the vertical lineVu is contained inCa+2,u+b+3 for all (a, b) ∈ E,

whereE = D ∪ {(5, 3)} and D = {(a, b) | 0 ≤ a, b ≤ 3, a + b ≥ 3}. Thus,Vu and
Sa+2+c,u+b+3+d are contained inCτ for someτ ∈ X if (a, b) ∈ E and (c, d) ∈ B.
Computing the sums(a, b) + (c, d) in Z

2
6 for all (a, b) ∈ E and(c, d) ∈ B, we find that

every pair consisting of a square and vertical line is contained in someCτ for someτ ∈ X.
A similar argument applies to pairs consisting of a square and horizontal line.
The top point is contained inCa+2,b+2 for every(a, b) ∈ D. Thus, the top point and

Sa+2+c,b+2+d are contained inCτ for someτ ∈ X if (a, b) ∈ D and (c, d) ∈ B.
Computing the sums(a, b) + (c, d) in Z

2
6 for all (a, b) ∈ D and (c, d) ∈ B, we find

that every pair consisting of a square and the toppoint is contained in someCτ for some
τ ∈ X, except for the squareS1,1. However, it iseasily seen that the top point andS1,1 are
contained inCτ−1,−1.

Let 0 ≤ v < v′ ≤ 5. EitherC5,v or C5,v′ will contain bothVv andVv′ . Also, eitherC5,v

or C5,5 will contain bothVv and the top point.
Similar arguments apply to the horizontal lines and the top point.
Finally, consider the two linesVv and Hu where 0≤ u, v ≤ 5. The vertical lineVv

is contained inCa+2,v+b+3 for all (a, b) ∈ E and the horizontal lineHu is contained
in Cu+c+3,d+2 for all (c, d) ∈ F , whereF = D ∪ {(3, 5)}. Computing the differences
(a, b) − (c, d) in Z

2
6 for all (a, b) ∈ E and(c, d) ∈ F , we find thatevery pair consisting

of a horizontal line and vertical line is contained in someCτ for someτ ∈ X.
This completes the argument thatY ∪ {τ1,1} is a 2-PD-set forC if p ≡ 1 (mod 6).
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That(Y ∪ {τ1,1})δ is a 2-PD-set forC⊥ in all cases now follows immediately, since the
mappingδ interchanges the first and second coordinate.�

We now obtain an analogue for the desarguesian projective planes of prime order. First
we defineA = {(1, i , j ) | 0 ≤ i , j ≤ p − 1}, A1 = {(1, i , j ) | 0 ≤ i ≤ j ≤ p − 1},
L = {(0, 1, i ) | 0 ≤ i ≤ p − 1} andP = (0, 0, 1) explicitly, and setA2 = A − A1. Then
we can take for an information setIΠ for Cp(PG2(Fp)) the set

IΠ = {(1, i , j ) | 0 ≤ i ≤ j ≤ p − 1} ∪ {(0, 0, 1)} = A1 ∪ {P}, (6)

and the corresponding check set will then be

CΠ = {(1, i , j ) | p − 1 ≥ i > j ≥ 0} ∪ {(0, 1, i ) | 0 ≤ i ≤ p − 1} = A2 ∪ L. (7)

We write the element of PGL3(Fq) corresponding to the translationτa,b as

τ̂a,b =

 1 a b

0 1 0
0 0 1


 . (8)

Proposition 4.4. LetΠ = PG2(Fp) where p≥ 5 is a prime, and let Cbe its p-ary code.
If n = �(p + 1)/6�, let

Ŷ = {τ̂un,−vn | 0 ≤ u, v ≤ 5},
Ŷ0 = {τ̂0,0, τ̂0,−(p−ε)/2, τ̂−(p+ε)/2,−(p−ε)/2, τ̂−(p−ε)/2,−p+ε},

whereε ∈ {−1, 1} and p≡ ε (mod 6), and

σ0 =

 1 0 0

0 0 1
0 1 0


 , σ1 =


 1 0 0

0 1 1
0 1 0


 , σ2 =


 0 1 0

1 0 0
0 0 1


 ,

σ3 =

 1 0 0

0 −1 0
0 0 −1


 , σ4 =


 0 1 0

0 0 1
1 0 0


 .

Then, using the information setIΠ of Eq.(6), C has a 2-PD-set̂Y ∪ Ŷ0 ∪ σ0Ŷ0 ∪ {σ1} in
the case p≡ −1 (mod 6) andŶ ∪ Ŷ0 ∪ σ0Ŷ0 ∪ {σ1, τ̂1,1} in the case p≡ 1 (mod 6), of
size 42and 43, respectively.

Furthermore, using the information setCΠ of Eq.(7), the set

(Ŷ ∪ {τ̂1,1})σ0 ∪ {ι, σ2, σ3, τ̂1,1σ3, τ̂1,1σ4, τ̂−1,1σ4, σ4, σ4σ3, τ̂1,0σ4}
(whereι is the identity map) of size 46 is a 2-PD-set for C⊥.

Proof. LetCΠ be the check set corresponding toIΠ . Note that the intersection ofIΠ with
thepoint set{(1, i , j ) | 0 ≤ i , j ≤ p−1}, which isthepoint set of the affine plane AG2(Fp)

obtained by removing the line{(0, 1, i ) | 0 ≤ i ≤ p − 1} ∪ {(0, 0, 1)}, corresponds to the
information set inProposition 4.3. The translationτa,b for that affine plane corresponds to
the collineationτ̂a,b of Π , as given in Eq. (8). Let Ŷ = {τ̂−1 | τ ∈ X}, whereX is as in
Proposition 4.3. Then anypair of affine points may be mapped intoCΠ by an element of
Ŷ if p ≡ −1 (mod 6) and ofŶ ∪ {τ̂1,1} if p ≡ 1 (mod 6).
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Now consider the setX0 = {τ0,0, τ0,(p−ε)/2, τ(p+ε)/2,(p−ε)/2, τ(p−ε)/2,p−ε} of
translations, whereε ∈ {−1, 1} and p ≡ ε (mod 6). The union

⋃
τ∈X0

CΠ τ is the
set of points of the affine plane. Moreover, only one element ofX0 is not in X. Let
Ŷ0 = {τ̂−1 | τ ∈ X0}. Then, any pair of points ofΠ , one an affine point and the other in
{(0, 1, i ) | 0 ≤ i ≤ p − 1}, may be mapped into the setCΠ by an element of̂Y0.

The collineationσ0 of Π moves (0, 0, 1) to the check point (0, 1, 0). Since all elements
of Ŷ0 fix each of the non-affine points,a pair of points ofΠ consisting of (0, 0, 1) and an
affine point may be mapped into the setCΠ by an element ofσ0Ŷ0.

Finally, we must consider pairs of non-affine points. Those which do not contain
(0, 0, 1) are already inCΠ . Pairs of the form {(0, 1, i ), (0, 0, 1)}, with i �= 0, may
be mapped into the setCΠ by σ0. For the pair{(0, 1, 0), (0, 0, 1)}, we may use the
collineationσ1.

Hence, we get a 2-PD-setŶ ∪ Ŷ0 ∪ σ0Ŷ0 ∪ {σ1} in the casep ≡ −1 (mod 6) and
Ŷ ∪ Ŷ0 ∪ σ0Ŷ0 ∪ {σ1, τ̂1,1} in the casep ≡ 1 (mod 6). Thesesets have sizes 42 and 43,
respectively.

The proof for the dual code follows from the proof forC, with CΠ as information set:
two points in the check set,IΠ , are dealt with byι; two affinepoints by(Ŷ ∪ {τ̂1,1})σ0;
two onL orP and one onL by σ2; one inA2 andP by {σ3, τ̂1,1σ3}; one affine and one on
L by {σ4, σ4σ3, τ̂1,1σ4, τ̂−1,1σ4, τ̂1,0σ4}. �

Note. The size of the set we have given in the dual case is larger than necessary as we can
in fact get a set of size 41, and the actual bound is very likely lower. We include the 46-set
for simplification of the argument.

We now look for specific 3-PD-sets in the affine case. Fora ∈ Fp anda �= 0, define
collineations of AG2(Fp):

ā : (x, y) 
→ (ax, ay), (9)

δ : (x, y) 
→ (y, x) (10)

for (x, y) ∈ AG2(Fp). Let Z = {ā | a ∈ F
×
p } andT = {τa,b | 0 ≤ a, b ≤ p − 1}, the

translation group of AG2(Fp).

Proposition 4.5. Letπ = AG2(Fp) where p is a prime, and let T be its translation group,
Z andδ as defined above and in Eq.(10). For p ≥ 7, T Z ∪ T Zδ is a 3-PD-set for the
code C ofπ using the information set of Eq.(3), and for p≥ 5, T is a minimal 3-PD-set
for the dual code C⊥ of π , using the information set of Eq.(4).

Proof. First deal with the dual code: the check set isC = {(i , j ) | 0 ≤ i ≤ j ≤
p − 1}. We may map an arbitrary triple of points in the affine plane to one of the form
(0, 0), (i1, j1), (i2, j2) where 0≤ i1 ≤ i2 ≤ p − 1 and 0≤ j1, j2 ≤ p − 1.

It is easy to translate such a triple intoC if i1 = 0 or i1 = i2 or j1 = 0 or j2 = 0 or
j1 = j2. We will now assume that none of these equalities hold. We distinguish two cases:
j1 < j2 and j2 < j1.

Case1. j1 < j2. We can translate the triple to(0, p − 1 − j2), (i1, p − 1 − j2 + j1),
(i2, p − 1). This triple is inC if p − 1 − j2 + j1 ≥ i1.
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Wecan also translate the triple to(0, 0), (i2 − i1, j2 − j1), (p − i1, p − j1), whichalso
belongs to this case. This can be translated intoC if p− 1− (p− j1)+ ( j2− j1) ≥ i2 − i1.
That is, j2 − 1 ≥ i2 − i1.

If p−1− j2+ j1 < i1 and j2−1 < i2− i1, thenp−1+ j1 < i2. But this is impossible,
since j1 > 0.

Case2. j2 < j1. Wecan translate the triple to(0, p−1− j2), (i1, j1 − j2−1), (i2, p−1).
This triple is inC if −i1 + j1 − j2 ≥ 1.

Wecan also translate the triple to(0, 0), (i2−i1, p+ j2− j1), (p−i1, p− j1), whichalso
belongs to this case. This can be translated intoC if −(i2−i1)+(p+ j2− j1)−(p− j1) ≥ 1.
That is,i1 − i2 + j2 ≥ 1.

Wecan also translate the triple to(0, 0), (p−i2, p− j2), (p+i1−i2, j1− j2), whichalso
belongs to this case. This can be translated intoC if −(p− i2) + (p− j2) − ( j1 − j2) ≥ 1.
That is,− j1 + i2 ≥ 1.

Assuming that these three inequalities fail, we get the inequalities−i1 + j1 − j2 <

1, i1 − i2 + j2 < 1,− j1 + i2 < 1 and, taking these in pairs,j1 − i2 < 2,−i1 + i2 − j2 <

2, i1 − j1+ j2 < 2. Hence,j1 − i2 = 0 or 1,−i1 + i2 − j2 = 0 or 1 andi1 − j1+ j2 = 0 or
1. Combining these equations in pairs, we see that the only possible case is that in which
the three right-hand sides are all 0. This givesi2 = j1, so thatj1 > i1, and j2 = j1 − i1.

We can translate the triple(0, 0), (i1, j1), ( j1, j1 − i1), with i1 < j1, to each of the
triples to(0, p − 1 − j1), (i1, p − 1), ( j1, p − 1 − i1), and(0, i1 − 1), ( j1 − i1, p − 1),
(p− i1, p− 1− j1 + i1) and(0, j1 − i1 − 1), (p− j1, p− 1), (p− j1 + i1, j1 − 1). These
triples are inC if the following inequalities hold respectively:i1+ j1 ≤ p−1, 2i1− j1 ≥ 1,
and 2j1 − i1 ≥ p + 1.

Assume now that all three inequalities fail. Then−i1 − j1 < −p + 1, 2i1 − j1 < 1,
and 2j1 − i1 < p + 1. Combining these inequalities in pairs, we get the inequalities
i1 − 2 j1 < −p + 2,−2i1 + j1 < 2, andi1 + j1 < p + 2. Hence,i1 − 2 j1 = −p or
−p + 1,−2i1 + j1 = 0 or 1, andi1 + j1 = p or p + 1. The only case possible is when
these expressions take the values−p, 0 andp, respectively, giving j1 = 2i1 and 3i1 = p.
Thusp = 3 contrary to hypothesis.

This concludes the proof thatT is a 3-PD-set forC⊥.
To show thatit is minimal, we will exhibit a triple inC all of whose translates by non-

trivial elements ofT are not inC. In referring to translationsτi, j below,we will assume
that 0≤ i , j ≤ p − 1. We may write p = 3k + 1 + ε whereε ∈ {0, 1}. We show that the
triple (0, k), (k, 3k + ε), (2k + ε, 2k + ε) has the desired property.

The translationτi, j maps(0, k) into C if i ≤ k and eitherj ≤ 2k + ε or j > 2k + i + ε

or if i > k andi − k ≤ j ≤ 2k+ ε and not otherwise. The translationτi, j maps(k, 3k+ ε)

into C if j = 0 or if i ≤ 2k + ε and j > i + k or if i > 2k + ε and j > i − 2k − 1− ε and
not otherwise. The translationτi, j maps(2k + ε, 2k + ε) into C if i ≤ k andi ≤ j ≤ k or
if i > k and eitherj ≤ k or j ≥ i . It is a tedious, but essentially elementary, exercise to
show that the only translation mapping all three points of the triple intoC is τ0,0.

Wegivean illustration inFig. 2, A, B and C, of the translations which move each of the
points of the triple into the check set, whenp = 23, by highlighting with heavier dots the
images of the origin (0, 0) in these cases. Thecheck set in this case consists of the points
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Fig. 2. Illustration of the images of the origin under translations mapping the given points into the check set for
C⊥ in casep = 23.

contained within the large triangle and the points of the triple are enclosed in small square
boxes.

Now consider the codeC, where the check set isC = {(i , j ) | p − 1 ≥ i > j ≥ 0}.
We need to show that any three points can be mapped intoC by T Z ∪ T Zδ. All cases in
which any two of the three points are ‘horizontal’ or ‘vertical’ or lie on the line ‘y = x’
can be easily translated intoC. From the firstpart of the proof, any remaining triple can
be translated into{(i , j ) | 0 ≤ i ≤ j ≤ p − 1}. Moreover, unless the triple has the form
{(i ,−1), (0, j ), (k, k)}, with i , j andk distinct, we can map it by afurther translation andδ
into C. If 2i �= −1, we can apply the map̄2δ to the triple, follow it by a suitable translation
and then byδ to map the triple intoC. Finally, if 2 i = −1, we first apply the translation
(i , j ) 
→ (i , j + 1) and then proceed as above.

SinceT is a normal subgroup of the full automorphism group of AG2(Fp), T Z ∪ T Zδ

is a 3-PD-set forC. �
Note. A similar argument yields 3-PD-sets for theprojective case, for both the code and
its dual. Since the arguments are so similar to those in the propositions, and since the sets
obtained are not of optimal size (of the order ofp3 andp2 respectively), we omit the result.
The sets can be constructed, in a fairly obvious manner, from our results.

5. Computational results for small planes

Table 1 shows the size of some PD-sets for correcting various numbers of errors using
p-ary codes of desarguesian planes of orderq a power ofp, and theirduals, that we have
obtained by computation using Magma [3] or GAP [7]. In the table,D denotes the design,
n is the length of the code,k (respectivelyk⊥) the dimension ofC (respectivelyC⊥), d
(respectivelyd⊥) the minimum weight,t is the number of errors corrected for at-PD-set
S of size |S|, andG denotes the group spanned byS, whereT denotes the translation
group (in the affine case),S a Singer group andN the normalizer of a Singer group (in
the projective case),A the automorphism group,T Z = {τ ā | τ ∈ T, a ∈ F

×
p } (see

Eq. (9)), and a number in that column denotes the order of the group. The Hall and Hughes
non-desarguesian projective planes of order 9 are included. Some of the computations were
done using the basis ofResult 2.6. Related results can be found in Limbupasiriporn [13].
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Table 1
Size oft-PD-sets found by computation

C C⊥

D n k d t |S| G k⊥ d⊥ t |S| G

AG2(F5) 25 15 5 2 19 T 10 10 3 25 T
4 55 A

AG2(F7) 49 28 7 2 18 T 21 14 3 49 T
3 95 A 4 109 A

5 227 A
6 542 A

AG2(F11) 121 66 11 2 20 T 55 22 2 17 T
3 119 T Z 3 121 T
4 358 A 4 164 A

AG2(F13) 169 91 13 2 19 T 78 26 2 21 T
3 107 T Z 3 169 T

AG2(F17) 289 153 17 3 127 T Z 136 34 3 289 T
AG2(F19) 361 190 19 3 126 T Z 171 38 3 361 T
PG2(F5) 31 16 6 2 14 S 15 10 4 93 N
PG2(F7) 57 29 8 2 17 A 28 14 4 158 A

3 40 S 5 463 A
6 949 A

PG2(F8) 73 28 9 4 70 A 45 10 4 472 A
PG2(F9) 91 37 10 4 109 A 54 15 5 1367 A
PG2(F11) 133 67 12 5 556 A 66 22 5 526 A
Hall9 91 41 10 2 15 3840 54 15

3 47 A
4 123 A

Hughes9 91 41 10 2 21 324 54 14
3 82 2592
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Appendix

In Tables 2and3 we compare the order of the automorphism group of a desarguesian
projective plane of orderq with the lower bound ofResult 2.4for the size of a PD-set
correcting up to the full error-capability of the code. The rows up to the entry 103 are for
q prime; the next, up to 4096, are forq = 2e; then 3e up to 729, 5e up to 625, 7e up to 343,
11e up to 121, 13e up to 169. The cut-off value for each of these cases indicates that for
higher primes in the first, and higher prime-powers in the others, the required lower bound
is greater than the group order and thus a PD-set for full error-correction cannot exist.
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Table 2
Codes of desarguesian projective planes: ratio of lowerbound of PD-set size to the total number of automorphisms

q C t r b b/|G|
2 [7, 4, 3] 1 3 3 1.78571e−02
3 [13, 7, 4] 1 6 3 5.34188e−04
5 [31, 16, 6] 2 15 7 1.88172e−05
7 [57, 29, 8] 3 28 15 2.66397e−06

11 [133, 67, 12] 5 66 63 2.96572e−07
13 [183, 92, 14] 6 91 127 1.56687e−07
17 [307, 154, 18] 8 153 518 7.45302e−08
19 [381, 191, 20] 9 190 1045 6.17100e−08
23 [553, 277, 24] 11 276 4224 5.40454e−08
29 [871, 436, 30] 14 435 34336 6.87227e−08
31 [993, 497, 32] 15 496 68926 8.09014e−08
37 [1407, 704, 38] 18 703 557499 1.58839e−07
41 [1723, 862, 42] 20 861 2239792 2.80674e−07
43 [1893, 947, 44] 21 946 4493130 3.84629e−07
47 [2257, 1129, 48] 23 1128 18003387 7.56436e−07
53 [2863, 1432, 54] 26 1431 143767340 2.30999e−06
59 [3541, 1771, 60] 29 1770 1156730820 7.88031e−06
61 [3783, 1892, 62] 30 1891 2317889060 1.20941e−05
67 [4557, 2279, 68] 33 2278 18583724854 4.57754e−05
71 [5113, 2557, 72] 35 2556 74519110992 1.15422e−04
73 [5403, 2702, 74] 36 2701 149270503098 1.85129e−04
79 [6321, 3161, 80] 39 3160 1198153834565 7.89889e−04
83 [6973, 3487, 84] 41 3486 4798704980282 2.13090e−03
89 [8011, 4006, 90] 44 4005 38506833445257 9.78303e−03
97 [9507, 4754, 98] 48 4753 618058116423527 7.88682e−02

101 [10303, 5152, 102] 50 5151 2476638579630420 2.28736e−01
103 [10713, 5357, 104] 51 5356 4957694448681818 3.91402e−01

4 [21, 10, 5] 2 11 4 3.30688e−05
8 [73, 28, 9] 4 45 12 2.42677e−07

16 [273, 82, 17] 8 191 38 2.22111e−09
32 [1057, 244, 33] 16 813 180 3.27748e−11
64 [4161, 730, 65] 32 3431 1623 9.61247e−13

128 [16513, 2188, 129] 64 14325 40696 8.06865e−14
256 [65793, 6562, 257] 128 59231 3965945 2.68747e−14
512 [262657, 19684, 513] 256 242973 3625171287 8.52959e−14

1024 [1049601, 59050, 1025] 512 990551 77798319579394 6.43533e−12
2048 [4196353, 177148, 2049] 1024 4019205 206845429457074447107 6.07594e−08
4096 [16781313, 531442, 4097] 2048 16249871 756341245794444596829562914213 7.95531e−01

9 [91, 37, 10] 4 54 12 1.41320e−07
27 [757, 217, 28] 13 540 190 2.24564e−10
81 [6643, 1297, 82] 40 5346 17757 2.39605e−12

243 [59293, 7777, 244] 121 51516 116800246 1.92146e−12
729 [532171, 46657, 730] 364 485514 2143596829819560 4.47891e−09

25 [651, 226, 26] 12 425 364 1.19474e−09
125 [15751, 3376, 126] 62 12375 10329361 5.77697e−11
625 [391251, 50626, 626] 312 340625 28294726192048575446 3.03813e−04
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Table 2 (continued)

q C t r b b/|G|
49 [2451, 785, 50] 24 1666 20419 3.07341e−10

343 [117993, 21953, 344] 171 96040 6641985336739627 1.15565e−05

121 [14763, 4357, 122] 60 10406 3132513775 3.40887e−08

169 [28731, 8282, 170] 84 20449 6132177579328 4.60794e−06

Table 3
Dual codes of desarguesian projective planes: ratioof lower bound of PD-set size to the total number of
automorphisms

q C t r b b/|G|
2 [7, 3, 4] 1 4 2 1.19048e−02
3 [13, 6, 6] 2 7 4 7.12251e−04
5 [31, 15, 10] 4 16 28 7.52688e−05
7 [57, 28, 14] 6 29 122 2.16670e−05

11 [133, 66, 22] 10 67 2252 1.06013e−05
13 [183, 91, 26] 12 92 9322 1.15010e−05
17 [307, 153, 34] 16 154 160470 2.30885e−05
19 [381, 190, 38] 18 191 660742 3.90186e−05
23 [553, 276, 46] 22 277 10556212 1.35065e−04
29 [871, 435, 58] 28 436 711041773 1.42313e−03
31 [993, 496, 62] 30 497 2884912687 3.38615e−03
37 [1407, 703, 74] 36 704 189533056602 5.40004e−02
41 [1723, 861, 82] 40 862 3092795496552 3.87565e−01

4 [21, 11, 6] 2 10 7 5.78704e−05
8 [73, 45, 10] 4 28 63 1.27405e−06

16 [273, 191, 18] 8 82 23715 1.38615e−06
32 [1057, 813, 34] 16 244 25331267483 4.61238e−03

9 [91, 54, 15] 7 37 992 1.16824e−05
27 [757, 540, 38] ≥18 217 11028091675 1.30343e−02

25 [651, 425, 45] 22 226 36052751125 1.18335e−01

The columns ofTable 2are labelled as follows:q, theorder of the field;C, the code;t , the
error-correction capability;r , the redundancy;b, the lower bound fromResult 2.4; b/|G|,
whereG is the automorphism group of the code.

Table 3 is the corresponding set forC⊥ noting that we do not actually know the
minimum weight ofC⊥ in general in the odd non-prime case, except forq = 9 andq = 25.
We used the known bounds, as referenced inSection 2: see Eq. (1) and the subsequent
paragraph.
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