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Partial permutation decoding for codes from affine geometry designs

J. D. Key∗, T. P. McDonough and V. C. Mavron

Abstract. We find explicit PD-sets for partial permutation decoding of the generalized Reed-Muller codes
RFp

(2(p − 1), 3) from the affine geometry designs AG3,1(Fp) of points and lines in dimension 3 over the
prime field of order p, using the information sets found in [8].
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1. Introduction

In [7] we found s-PD-sets (see Definition 1) for s = 2 and 3 for partial permutation decoding
for the p-ary codes of affine planes of prime order p; this was extended to projective
planes. Since PD-sets are dependent on specific information sets for the codes, we were
able to deal with the plane case by using information sets deduced from the bases found
by Moorhouse [12]. Using new information sets found in [8], we extended these results to
the codes from the designs of points and hyperplanes of affine and projective geometries
of prime order, obtaining 2-PD-sets. We now use these information sets to find s-PD-sets
for s = 2 and 3 for the p-ary codes of the affine geometry designs AG3,1(Fp) of points
and lines in 3-dimensional affine space AG3(Fp) over the field Fp. We prove the following
theorem:

THEOREM 1. Let D be the 2-(p3, p, 1) design AG3,1(Fp) of points and lines in the affine
space AG3(Fp), where p is a prime, and let C = RFp (2(p − 1), 3) be the p-ary code of

D. Then C is a [p3, 1
6p(5p2 + 1), p]p code with information set

I = {(i1, i2, i3) | ik ∈ Fp, 1 ≤ k ≤ 3,

3∑

k=1

ik ≤ 2(p − 1)}. (1)

Let T be the translation group of AG3(Fp), let D be the group of invertible diagonal 3 × 3
matrices, and let Z be the group of scalar matrices. For each d ∈ Fp with d �= 0, let µ(d)

be the associated dilatation. Corresponding to the information set I, the code C has a
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2-PD-set of the form T ∪ T µ(d) of size 2p3 for p ≥ 5 and for some d ∈ F
∗
p, and the group

T D is a 3-PD-set for C of size p3(p − 1)3 for p ≥ 7. (In fact, for the 2-PD-set, we can
choose d = (p − 1)/2.)

It should be noted that, when elements of Fp occur in an inequality, they are being treated
as integers in the interval [0, p − 1].

The proof of the theorem will follow in Section 3, after a section on some basic results,
definitions and background. In Section 4 we obtain a new 3-PD-set for the p-ary code
AG2,1(Fp) of points and lines in the affine plane AG2(Fp) over the field Fp.

2. Background

An incidence structure D = (P, B, I), with point set P , block set B and incidence I is a
t-(v, k, λ) design, if |P| = v, every block B ∈ B is incident with precisely k points, and
every t distinct points are together incident with precisely λ blocks. The code Cp(D) of D
over the finite field Fp, is the space spanned by the incidence vectors of the blocks over Fp,
and is thus a subspace of F

P
p , the full vector space of functions from P to Fp.

The notation [n, k, d]q will denote a linear code C of length n, dimension k, and minimum
weight d, over the field Fq . A generator matrix for the code is a k × n matrix made up of a
basis for C. The dual code C⊥ is the orthogonal subspace under the standard inner product
(, ), i.e. C⊥ = {v ∈ F

n
q |(v, c) = 0 for all c ∈ C}. A check matrix for C is a generator

matrix H for C⊥; the syndrome of a vector y ∈ F
n
q is HyT . Two linear codes of the same

length and over the same field are isomorphic if they can be obtained from one another by
permuting the coordinate positions. (See Huffman [6] for related, more general, concepts of
isomorphisms of codes.) Any linear code is isomorphic to a code with generator matrix in
so-called standard form, i.e. the form [Ik | A]; a check matrix then is given by [−AT | In−k].
The first k coordinates are the information symbols (or set) and denoted by I, and the last
n − k coordinates are the check symbols, denoted by C. An automorphism of a code C is
an isomorphism from C to C. The automorphism group will be denoted by Aut(C).

For any finite field Fq of order q, the set of points and r-dimensional subspaces of an
m-dimensional projective geometry forms a 2-design which we will denote by PGm,r(Fq).
Similarly, the set of points and r-dimensional flats of an m-dimensional affine geometry
forms a 2-design, AGm,r(Fq). The automorphism groups of these designs (and codes)
are the full projective or affine semi-linear groups, PΓ Lm+1(Fq) or AΓ Lm(Fq), and are
always 2-transitive on points. If q = pe where p is a prime, the codes of these designs are
over Fp and are subfield subcodes of the generalized Reed-Muller codes: see [1, Chapter 5]
for a full treatment. The dimension and minimum weight is known in each case: see [1,
Theorem 5.7.9].
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Permutation decoding was first developed by MacWilliams [10] and involves finding a set
of automorphisms of a code called a PD-set. The method is described fully in MacWilliams
and Sloane [11, Chapter 15] and Huffman [6, Section 8]. We extend the concept of PD-sets
to s-PD-sets for s-error-correction in [7], as in the following definition. This coincides with
the use of the term s-PD-set in Kroll and Vincenti [9].

DEFINITION 1. If C is a t-error-correcting code with information set I and check set C,
then a PD-set for C is a set S of automorphisms of C which is such that every t-set of
coordinate positions is moved by at least one member of S into C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that every s-set of
coordinate positions is moved by at least one member of S into C.

That a PD-set will fully use the error-correction potential of the code follows easily and is
proved in Huffman [6, Theorem 8.1], and that an s-PD-set will correct s errors follows in
a similar manner. The algorithm for permutation decoding is given in [6, 11] or see [7].
Such sets might not exist at all, and the property of having a PD-set will not, in general, be
invariant under isomorphism of codes, i.e. it depends on the choice of I and C. Furthermore,
there is a bound on the minimum size of S (see [5], [13], or [6]). This bound can be adapted
to one for s-PD-sets by replacing in the formula for the bound, the variable t , that denotes
full error-correction, by s < t for correction of s errors.

To obtain PD-sets, a generator matrix for the code needs to be in standard form, and thus
the question of what points to take as information symbols arises.

We use the notation of [1, Chapter 5] or [2] for generalized Reed-Muller codes: (see
[1, Definition 5.4.1]):

DEFINITION 2. Let V = F
m
q be the vector space of m-tuples, for m ≥ 1, over Fq , where

q = pt and p is a prime. For any ρ such that 0 ≤ ρ ≤ m(q − 1), the ρth-order generalized
Reed-Muller code RFq (ρ, m) is the subspace of F

V
q (with basis the characteristic functions

of vectors in V ) of all m-variable polynomial functions (reduced modulo x
q
i −xi) of degree

at most ρ. Thus

RFq (ρ, m) = 〈xi1
1 x

i2
2 · · · xim

m | 0 ≤ ik ≤ q − 1, f or1 ≤ k ≤ m,

m∑

k=1

ik ≤ ρ〉.

These codes are thus codes of length qm and the codewords are obtained by evaluating the
m-variable polynomials in the subspace at all the points of the vector space V = F

m
q .

The code RFp ((m−1)(p−1), m) is the p-ary code of the affine geometry design AGm,1(Fp)

of points and lines in affine space AGm(Fp): see [1, Theorem 5.7.9]. Here we take m = 3,
in which case RFp (2(p − 1), 3) is a [p3, 1

6p(5p2 + 1), p]p code over Fp.
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The information set we will be using was found in [8, Theorem 1, Corollary 2]:

RESULT 1. If p is a prime, the code RFp (ν, m) has information set

I = {(i1, . . . , im) | ik ∈ Fp, 1 ≤ k ≤ m,

m∑

k=1

ik ≤ ν}. (2)

3. Proof of theorem

Before proving the theorem, we establish some notation. We will use τ with an appropriate
argument to denote translations in Fp and AG3(Fp). Thus, τ(w) : v 
→ v + w. If
w = (w1, w2, w3), where w1, w2, w3 ∈ Fp, we will also write τ(w) as τ(w1, w2, w3).
For d1, d2, d3 ∈ Fp\{0}, let δ(d1) denote the mapping v1 
→ d1v1, for v1 ∈ Fp and let
δ(d1, d2, d3) denote the mapping (v1, v2, v3) 
→ (d1v1, d2v2, d3v3), for v1, v2, v3 ∈ Fp.

We begin the proof of Theorem 1 by establishing that there is a 2-PD-set of the stated form.
Let C denote the check set of C corresponding to the information set I, where

I = {(i1, i2, i3) | ik ∈ Fp, 1 ≤ k ≤ 3,

3∑

k=1

ik ≤ 2(p − 1)}

as in Equation (1). Let P ′ and Q′ be two points. By a translation τ ′, we can take Q′ to
Q = (0, 0, 0) and P ′ to P = (a, b, c).

If a, b ≤ (p − 3)/2, let w = (p − 1 − a, p − 1 − b, e) where e = p − 1 or p − 2 according
as c �= 1 or c = 1. Clearly, Pτ(w) = (p − 1, p − 1, c + e) ∈ C as c + e �= 0. Also,
p − 1 − a + p − 1 − b ≥ p + 1 and e ≥ p − 2. So, Qτ(w) ∈ C.

If a, b ≥ (p + 3)/2, let w = (p − 1, p − 1, e) where e = p − 1 − c or p − 2 − c according
as c �= p − 1 or c = p − 1. Then, Qτ(w) = (p − 1, p − 1, e) ∈ C as e �= 0. Since
Pτ(w) = (a − 1, b − 1, c + e) and a + b − 2 ≥ p + 1 and c + e ≥ p − 2, Pτ(w) ∈ C.

If a ≤ (p−3)/2, b ≥ (p−1)/2, and c = (p−1)/2, let w = (p−1−a, p−1, (p−1)/2).
Clearly, Qτ(w) ∈ C. Also, Pτ(w) = (p − 1, b − 1, p − 1) ∈ C.

If a ≤ (p + 1)/2, b ≥ (p + 3)/2, and c = (p + 1)/2, let w = (p − 1 − a, p − 1, p − 1).
Clearly, Qτ(w) ∈ C. Also, Pτ(w) = (p − 1, b − 1, (p − 1)/2). Since b − 1 ≥ (p + 1)/2,
Pτ(w) ∈ C.

If a ≥ (p + 5)/2 and b = c = (p − 1)/2 let w = (p − 1, p − 1, p + 2 − a). Clearly,
Qτ(w) ∈ C. Also, Pτ(w) = (a − 1, (p − 3)/2, 3(p + 1)/2 − a) ∈ C.

If a ≤ (p − 5)/2 and b = c = (p + 1)/2 let w = ((p + 3)/2, (p − 3)/2, p − 1). Clearly,
Qτ(w) ∈ C. Also, Pτ(w) = (a+(p+3)/2, p−1, (p−1)/2). Since (p+3)/2 ≤ a ≤ p−1,
Pτ(w) ∈ C.
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These arguments can be applied to any permutation of the coordinates. So, in these cases,
we can find a translation τ ′′ so that P ′τ ′τ ′′, Q′τ ′τ ′′ ∈ C. Hence, the only cases that remain
are when at least two of a, b and c are in {(p − 1)/2, (p + 1)/2} and, if there is a remaining
one, it is in {(p − 3)/2, (p + 3)/2}.
If p > 7, then none of 2a, 2b and 2c are in {(p − 3)/2, (p − 1)/2, (p + 1)/2, (p + 3)/2}.
The preceding arguments show the existence of a translation τ ′′ for which P ′τ ′δ(2)τ ′′ and
Q′τ ′δ(2)τ ′′ are in C. If p = 5 or p = 7, we can apply the same argument to a(p − 1)/2,
b(p − 1)/2, and c(p − 1)/2, even though the sets {a(p − 1)/2, b(p − 1)/2, c(p − 1)/2}
and {(p − 3)/2, (p − 1)/2, (p + 1)/2, (p + 3)/2} overlap. Hence, in these cases, there is
a translation τ ′′ for which P ′τ ′δ((p − 1)/2)τ ′′, Q′τ ′δ((p − 1)/2)τ ′′ ∈ C.

Since the translations form a normal subgroup of the automorphism group of AG3(Fp), we
can write τ ′δ(d)τ ′′ = τδ(d), for some translation τ . Hence, we have shown that T ∪T δ(d)

is a 2-PD-set for C with d chosen as in the preceding paragraph. In fact, we could take
d = (p − 1)/2 in all cases; the details are straightforward but would lengthen the proof.
This completes the proof of the first part of the theorem.

Next, we show that T D, the group generated by T and D, where D = {δ(d1, d2, d3) |
d1, d2, d3 ∈ Fp\{0}}, is a 3-PD-set for C.

A translation can take any three points to the triple X = (0, 0, 0), P = (a, b, c),
Q = (d, e, f ) where not all of a, b, c, d, e, f are 0 and (a, b, c) �= (d, e, f ). A point
(a, b, c) is in the check set C if, and only if, a + b + c ≥ 2p − 1. The theme of the proof is
to show that, by a non-zero multiplication and an addition on each coordinate position, the
three entries (either [0, a, d], [0, b, e] or [0, c, f ]) in that position can be moved to three
elements of Fp corresponding to integers in the interval [(2p − 1)/3, p − 1]. If, in the i-th
coordinate position, the multiplication is by di and the addition is wi , then this mapping
as effected by an element δ(d1, d2, d3)τ (w1, w2, w3) of DT (= T D) necessarily maps the
triple X, P and Q into C.

This approach needs to be modified for p = 13 and fails to work for p = 7. In the case
p = 7, we have checked the result with simple computer programs using Magma [3] and
GAP [4].

We deal first with some easy cases. If all three entries are 0, then τ(p − 1) has the desired
effect; that is, τ(p − 1) acting on the entries maps [0, 0, 0] to [p − 1, p − 1, p − 1]. If two
entries are 0 and one is nonzero, say [0, 0, d], then δ(d−1)τ (p − 2) has the desired effect.
Thus, we need only consider triples with one 0 and two nonzero elements. These may be
mapped, by a suitable nonzero multiplication, to [0, 1, g], where 1 ≤ g ≤ p − 1.

We now subdivide the proof into two cases, according as p ≡ 1 (mod 6) or p ≡ 5 (mod 6).
We write p = 6m + 1 in the former case and p = 6m + 5 in the latter. Note that m ≥ 1 in
both cases, since p ≥ 7.
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Case 1: p = 6m + 1. In this case, (2p − 1)/3 < 4m + 1. Since we do not consider p = 7
here, m ≥ 2.

If 1 ≤ g ≤ 2m − 1, [0, 1, g]τ(4m + 1) = [4m + 1, 4m + 2, 4m + 1 + g] and 4m + 1
< 4m + 1 + g ≤ 6m. If 4m + 3 ≤ g ≤ 6m, [0, 1, g]τ(6m − 1) = [6m − 1, 6m, g − 2] and
4m + 1 ≤ g − 2 ≤ 6m − 2.

If 2m+2 ≤ g ≤ 3m, [0, 1, g]δ(2)τ (6m−2) = [6m−2, 6m, 2g −3] and 4m+1 ≤ 2g −3
≤ 6m − 3. If 3m + 1 ≤ g ≤ 4m, [0, 1, g]δ(2)τ (4m + 1) = [4m + 1, 4m + 3, 2g − 2m]
and 4m + 2 ≤ 2g − 2m ≤ 6m.

This leaves just four values of g to consider, viz. g = 2m, 2m + 1, 4m + 1, 4m + 2. Noting
that 4m + 4 ≤ 6m, for g = 2m + 1, [0, 1, g]δ(3)τ (4m + 1) = [4m + 1, 4m + 4, 4m + 3]
and for g = 4m + 1, [0, 1, g]δ(3)τ (4m + 1) = [4m + 1, 4m + 4, 4m + 2]. For the other
two values of g, we require 6m − 4 ≥ 4m + 1; that is, m ≥ 3, i.e. p ≥ 19. If g = 2m,
[0, 1, g]δ(3)τ (6m − 3) = [6m − 3, 6m, 6m − 4]. If g = 4m + 2, [0, 1, g]δ(3)τ (6m − 4)

= [6m − 4, 6m − 1, 6m].

We now deal with the last two values of g when p = 13 (m = 2). For g = 4,
note that [0, 1, 4]τ(8) = [8, 9, 12], [0, 1, 4]δ(9)τ (12) = [12, 8, 9] and [0, 1, 4]δ(3)τ (8)

= [9, 12, 8]. For any coordinate column of this type, we can choose a mapping in which
one of the entries is 8 (= 4m) while the others are ≥ 4m + 1. Moreover, the 4m entry
can be made to appear in the image of any one of our triple of points X, P and Q. Sim-
ilarly, for g = 10, [0, 1, 10]δ(3)τ (8) = [8, 11, 12], [0, 1, 10]δ(12)τ (9) = [9, 8, 12] and
[0, 1, 10]τ(11) = [11, 12, 8].

We can thus arrange that the image of each of the points X, P and Q has at most one entry
equal to 4m while the others are ≥ 4m + 1. Hence, these images lie in C. This completes
the proof of Case 1.

Case 2: p = 6m + 5. In this case, (2p − 1)/3 = 4m + 3 and m ≥ 1.

If 1 ≤ g ≤ 2m + 1, [0, 1, g]τ(4m + 3) = [4m + 3, 4m + 4, 4m + 3 + g] and 4m + 3
< 4m+3+g ≤ 6m+4. If 4m+5 ≤ g ≤ 6m+4, [0, 1, g]τ(6m+3) = [6m+3, 6m+4, g−2]
and 4m + 3 ≤ g − 2 ≤ 6m + 2.

If 2m + 3 ≤ g ≤ 3m + 2, [0, 1, g]δ(2)τ (6m + 2) = [6m + 2, 6m + 4, 2g − 3] and
4m + 3 ≤ 2g − 3 ≤ 6m + 1. If 3m + 3 ≤ g ≤ 4m + 3, [0, 1, g]δ(2)τ (4m + 3)

= [4m + 3, 4m + 5, 2g − 2m − 2] and 4m + 4 ≤ 2g − 2m − 2 ≤ 6m + 4.

This leaves just two values of g to consider. If g = 2m + 2, [0, 1, g]δ(3)τ (4m + 3)

= [4m + 3, 4m + 6, 4m + 4]. If g = 4m + 4, [0, 1, g]δ(3)τ (4m + 3) = [4m + 3, 4m +
6, 4m + 5]. This completes the proof of Case 2 and the proof of the theorem. �

We illustrate the method of proof for the 3-PD-sets with an example for p = 19 = 6m + 1
where m = 3 and 4m+1 = 13. Suppose our three points have been mapped by a translation
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τ ′ to the points (0, 0, 0), (2, 11, 5), (3, 10, 7). For the first coordinate triple [0, 2, 3], the
map δ(10) takes this to the standard form [0, 1, 11] and the map δ(2)τ (13) takes this to
the triple [13, 15, 16]. For the second coordinate triple [0, 11, 10], the map δ(7) takes it to
[0, 1, 13] and the map δ(3)τ (13) takes this to the triple [13, 16, 14]. For the third coordinate
triple [0, 5, 7], the map δ(4) takes this to [0, 1, 9] and the map δ(2)τ (16) takes this to the
triple [16, 18, 15]. Note that δ(10)δ(2) = δ(1), δ(7)δ(3) = δ(2) and δ(4)δ(2) = δ(8).
Thus, the element τ ′δ(1, 2, 8)τ (13, 13, 16) of T D will take our original three points to the
points (13, 13, 16), (15, 16, 18), (16, 14, 15), all of which are in the check set C.

Note: These codes have high rate ≥ .83. The worst-case time-complexity for the decoding
algorithm using an s-PD-set of size z on a code of length n and dimension k is O(nkz), as
a simple counting argument shows.

4. Affine planes

In [7, Proposition 4.5] we found 3-PD-sets of size 2p2(p − 1) for the codes from the
affine planes AG2,1(Fp), using an information set different from the one we have used in
Theorem 1. We show that this can be improved to p2(p − 1) using the set I of Equation 1.
This further leads to (m + 1)-PD-sets for the codes of the designs AGm,m−1(Fp), using
[8, Proposition 4]

PROPOSITION 1. Let p be a prime. Let D be the design AG2,1(Fp) of points and lines
in the affine plane AG2(Fp) and let C = RFp (p − 1, 2) be the p-ary code of D. With
information set

I = {(i1, i2) | ik ∈ Fp, 1 ≤ k ≤ 2,

2∑

k=1

ik ≤ p − 1},

the group T Z, where T is the translation group and Z is the group of scalar matrices, is a
3-PD-set for C for p ≥ 7, of size p2(p − 1).

Proof. We extend our notation τ and µ for translations and dilatations, as used in Theorem 1,
to affine planes. Thus Z = {µ(a) | a ∈ Fp, a �= 0}. Let H = T Z.

Any three distinct points may be mapped by a translation to a triple of the form X = (0, 0),
P = (q, r), Q = (s, t) where (q, r) �= (0, 0), (s, t) �= (0, 0) and (q, r) �= (s, t); in
particular, q �= s or r �= t . We may assume that q �= s. The case r �= t may be dealt with
in a similar manner. We will show how to find maps in T Z that move such triples into the
check set C.

Since q �= s, some element of Z will fix X and map P and Q into a pair P ′ and Q′ of the
form (a, b), (a +1, d), for some a, b, d, where 0 ≤ a ≤ p −2. If a ≥ (p +1)/2, µ(p −1)
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will fix X and map (a, b) to (p − a, p − b) and (a + 1, d) to (p − a − 1, p − d); that is,
to a similar triple with a ≤ (p − 3)/2. Hence, we may assume that a ≤ (p − 1)/2.

In this case, p − a − 2 ≥ (p − 3)/2. The mapping τ(p − a − 2, u) maps X, P ′ and Q′ to
(p − a − 2, u), (p − 2, u + b) and (p − 1, u + d), which are in C if a + 2 ≤ u ≤ p − 1
and u �∈ {p − b, p − b + 1, p − d}. Since a + 2 ≤ (p + 3)/2, there are at least (p − 3)/2
integers in the interval [a +2, p −1] of which at most 3 must be excluded. If p ≥ 11, there
is at least one value of u meeting these constraints.

The only case that remains is p = 7. We can apply the argument of the preceding paragraph
if a = 0 or a = 1. We are left with a = 2 and a = 3.

The triple X, P ′ and Q′ is mapped by τ(5 − a, 6) into C if b �= 1 or 2 and d �= 1. If
d = 1, τ(5 − a, 5) or τ(6, 4) maps the triple into C according as b �= 2 or b = 2. If b = 1,
τ(5 − a, 5), τ(3, 4) or τ(6, 4) maps the triple into C according as d �= 2, d = 2 and a = 2
or d = 2 and a = 3. If b = 2 and a = 2, τ(3, 4) or µ(6)τ (1, 6) maps the triple into C
according as d �= 3 or d = 3. If b = 2 and a = 3, µ(3)τ (1, 6) or µ(3)τ (3, 5) maps the
triple into C according as d �= 5 or d = 5.

This completes the proof of the proposition. �

Note: 1. We exclude p = 5 since the code is only 2-error-correcting.
2. Using [8, Proposition 4], we can now construct (m + 1)-PD-sets of size pm(p − 1) for
AGm,m−1(Fp), the design of points and hyperplanes in AGm(Fp), for m ≥ 2, p prime.

Acknowledgement

J. D. Key thanks the Institute of Mathematical and Physical Sciences at the University
of Wales at Aberystwyth for their hospitality, and the London Mathematical Society for
financial support.

References

[1] E.F. Assmus, Jr and J.D. Key, Designs and their Codes, Cambridge University Press, Cambridge, 1992,
Cambridge Tracts in Mathematics, Vol. 103 (Second printing with corrections, 1993).

[2] E.F. Assmus, Jr and J.D. Key, Polynomial codes and finite geometries, in Handbook of Coding Theory, V.S.
Pless and W.C. Huffman, Eds., Volume 2, Part 2, Chapter 16, Elsevier, Amsterdam, 1998. pp. 1269–1343.

[3] W. Bosma and J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of
Sydney, November 1994, http://magma.maths.usyd.edu.au/magma/.

[4] GAP. Groups, Algorithms and Programming, Version 4. The GAP Group, Lehrstuhl D für Mathematik,
RWTH Aachen, Germany and School of Mathematical and Computational Sciences, University of St.
Andrews, Scotland. http://www-gap.dcs.st-and.ac.uk/ gap/.

[5] D.M. Gordon, Minimal permutation sets for decoding the binary Golay codes, IEEE Trans. Inform. Theory
28 (1982) 541–543.

[6] W.C. Huffman, Codes and groups, in: Handbook of Coding Theory, V.S. Pless and W.C. Huffman, Eds.,
Volume 2, Part 2, Chapter 17, Elsevier, Amsterdam, 1998, pp. 1345–1440.



Vol. 88, 2008 Partial permutation decoding for codes 109

[7] J.D. Key, T.P. McDonough and V.C. Mavron, Partial permutation decoding of codes from finite planes,
European J. Combin. 26 (2005) 665–682.

[8] J.D. Key, T.P. McDonough and V.C. Mavron, Information sets and partial permutation decoding of codes
from finite geometries, Finite Fields Appl. 12 (2006) 232–247.

[9] H.-J. Kroll and R. Vincenti, PD-sets related to the codes of some classical varieties, Discrete Math.
301 (2005) 89–105.

[10] F.J. MacWilliams, Permutation decoding of systematic codes, Bell System Tech. J. 43 (1964) 485–505.
[11] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam,

1983.
[12] G.Eric Moorhouse, Bruck nets, codes, and characters of loops, Des. Codes Cryptogr. 1 (1991) 7–29.
[13] J.Schönheim, On coverings, Pacific J. Math. 14 (1964) 1405–1411.

J. D. Key T. P. McDonough and V. C. Mavron
Department of Mathematical Sciences Institute of Mathematical and
Clemson University Physical Sciences
Clemson SC 29634 University of Wales, Aberystwyth
U.S.A. Ceredigion SY23 3BZ
e-mail: keyj@ces.clemson.edu U.K.

Received 12 January 2006


