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PERFECT CODES IN THE LEE METRIC AND THE
PACKING OF POLYOMINOES*

SOLOMON W. GOLOMB AND LLOYD R. WELCH"

1. The geometry of Shannon’s five-phase code. In [4] Shannon considered
the problem of coding to completely eliminate errors in a channel using a 5-symbol
alphabet, with the error pattern as shown in Fig. 1. The alphabet may be regarded
as the integers modulo 5. When the integer r is sent, either r or r + 1 is received,
with respective probabilities p and q. If one forms a "code" consisting of sending
each symbol m times to represent the fact that it occurred once in the message,
then there is still a probability of qm that an error will occur. However, there exists
a code using only two code symbols per message symbol which eliminates errors
entirely (see Fig. 2). In this code, if (a, b) is a codeword, then it may be received as
either (a, b) or (a + 1, b) or (a, b + 1) or (a + 1, b + 1). However, we can associate
all four of these received messages uniquely with (a, b) when we use the code of
Fig. 2. This is most readily seen via the geometric presentation in Fig. 3. The 25
possible codewords (a, b) are represented by the 25 cells, with coordinates (a, b).
The codewords of Fig. 2 correspond to the cells with dots in them. Each dot is
in the lower left-hand corner of its "ambiguity square." (The entire 5 5 array
is to be regarded as a torus.) Since these ambiguity squares are nonoverlapping,
any received message can be uniquely interpreted.

0 0

2 2

3 3

4 4

FIG. 1. Shannon’s 5-phase channel

o (o, o)

(1,2)

2 (2, 4)

3=(3,1)

4 (4, 3)

FIG. 2. An error eliminating codefor the channel in Fig.
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PERFECT CODES 303

The packing of five 2 2 squares into the 5 5 torus shown in Fig. 3 is
reasonably efficient, but the resulting code is not close-packed. In particular,
there are 5 unused cells in Fig. 3. For the channel described by the error statistics
of Fig. 1, no further improvement is possible. However, if other errors are remotely
possible, then it is advantageous to assign the 5 unused squares to the ambiguity
regions of the 5 codewords. This can be done as in Fig. 4, where the error which
occurs when (a, b) is received as (a 1, b) will also be corrected. Since there are
no open spaces in Fig. 4, this code is "close-packed" and corresponds geometrically
to a tiling of the 5 5 torus with P-pentominoes.

3

FIG. 3. Geometric representation of the code in Fig. 2

FIG. 4. A close-packed P-pentomino code

In general, any tiling of an n n torus by translations of a given polyomino
shape corresponds to a close-packed code, using word length 2 over the n symbol
alphabet. However, the error patterns corrected by such a code are likely to be
unnatural or infrequent ones, unless the shape of the polyomino is constrained in
various ways. We shall next consider a class of polyominoes which satisfy the
appropriate constraints.

2. Two-dimensional codes in the Lee metric. In Fig. 5, we see the polyomino
generated by taking the codeword (a, b) and displacing either component by
1 unit, either up or down. The resulting figure, an X-pentomino, is accordingly
a "sphere of radius one" with center at (a, b) in the metric (called the Lee metric)
which computes the sum of the least absolute differences of the corresponding
coordinates of two points. (For our purposes, the underlying alphabet is the
integers modulo m, and the "least absolute difference" between and j in this
alphabet is the smaller of j (rood m) and j (rood m).)
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304 SOLOMON W. GOLOMB AND LLOYD R. WELCH

In general, a Lee sphere of radius r, in two dimensions, consists of q r2

+ (r + 1)2 2r2 + 2r + 1 cells. The first few cases appear in Fig. 6. The obvious
closed-packed codes to look for are close-packed codes of Lee radius r, with word
length 2, over the q symbol alphabet, where q 2r2 + 2r + 1.

Such a code would correspond to a tiling of the q q torus with polyominoes
which are Lee spheres of radius r. The main result of this section is that such codes
exist for all positive integers r.

(a 1, b)

(a,b + 1)

(a,b)

(a,b- 1)

(a + 1, b)

FIG. 5. The X-pentomino as a Lee sphere of radius

THEOREM 1. For every positive integer r, there is a close-packed r-error-
correcting dictionary in the Lee metric of codewords of length 2, over the q symbol
alphabet, q 2r2 + 2r + 1.

Note. Geometrically, this theorem asserts that q Lee spheres of radius r,
in two dimensions, can be used to tile the q x q torus.

Proof. As codewords, we use the set {(a, (2r + 1)a)} with a 0, 1, 2, ..., q 1,
regarding all integers as modulo q. Since these codewords form a group under
componentwise addition modulo q, the minimum distance between two codewords
equals the minimum weight of any nonzero codeword, and the code is r-error-
correcting if this minimum weight is at least 2r + 1.

Consider a 0 (mod q). If Ila / (2r + 1)al =< 2r + 1, then at least one
of the two components contributes =<r. If 1 =< a =< r, we have (2r + 1)a < q,
so that the distance can be written

Ila + 1(2r + 1)a a + min [(2r + 1)a, 2r2 + 2r + 1 (2r + 1)a]

=min[(2r+2)a,2r(r+ l-a)+ 1] >=2r+ 1,

as required. It is not necessary to consider separately the case that the second
component is =< r, since (a, (2r + 1)a) can be rewritten (- (2r + 1)b, b) where
b (2r + 1)amod q and a -(2r + 1)b -(2r + 1)2amod q. (-(2r + 1)b,b)
of course has the same weight as (b, (2r + 1)b).

Since there are q nonoverlapping spheres with q points each, the q q torus
is covered and the code is close-packed.

For r 1, the close-packing of the 5 5 torus with five X-pentominoes
(spheres of Lee radius 1) is shown in Fig. 7. Note that the codewords (the centers
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PERFECT CODES 305

r=2
q=13

r=3
q= 25

r=5

r=4 q=61

a=41
FIG. 6. Two-dimensional Lee spheres of radius for <= <= 5

A (0, O)
B (1,2)
C (2, 4)
D (3,1)
E (4, 3)

FIG. 7. A close-packed codefor the Lee metric, using X-pentominoes
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306 SOLOMON W. GOLOMB AND LLOYD R. WELCH

of the X’s) are at the same positions as the codewords in Figs. 3 and 4. For r 2,
the close-packing of the 13 13 torus with thirteen triskaidekominoes (spheres
of radius 2) is shown in Fig. 8.

FIG. 8. A close-packed double-Lee-error-correcting code

3. Single-error-correcting codes in n dimensions. A point in n-space has 2n
other points within a Lee distance 1 of it. Geometrically, we may visualize a
Lee sphere of radius 1 in n dimensions as a central hypercube, which has 2n
hyperfaces, to which another hypercube has been affixed to each of its hyperfaces.
The X-pentomino (Fig. 5) is the two-dimensional sphere of radius 1. The three-
dimensional sphere of radius 1 is the heptacube shown in Fig. 9. We can prove the
following theorem directly.

THEOREM 2. 49 of the heptacubes of Fig. 9 can be used to close-pack the
7 7 7 hypertorus.

FIG. 9. The 3-dimensional Lee sphere of radius
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PERFECT CODES 307

Proof. Specifically, we look at a typical 7 7 cross section of the solution,
shown in Fig. 10. The cross sections of our heptacube will be either X-pentominoes
or single squares. In the cross section shown in Fig. 10, we see seven X-pentominoes,
as well as seven squares labeled A and seven squares labeled B. The A’s are bottoms
of heptacubes whose centers are in the plane above, and the B’s are tops of hepta-
cubes protruding upward from the plane below. Since the seven A’s are systemat-
ically translated (1 unit to the northwest) from the centers of the X-pentominoes,
we are assured that in the next cross section above the one we are examining, the
X-pentomino sections fit together properly. Similarly the seven B’s are systemat-
ically translated (1 unit to the southeast) from the centers of the seven X-pentom-
inoes and are therefore consistent as tops of heptacubes from the layer below.
Finally, since 7 is a prime, it is easy to see that these translations must lead to a
periodicity of 7 in the third dimension.

\B

B

A

\ A\
\ \
B

0\_ A B

A

FIG. 10. A cross section of the close-packed 7 x 7 7 hypertorus

A much more general result is true. Basically, it asserts that close-packed
single error-correcting codes for the Lee metric exist in n dimensions, for all n,
as follows.

THEOREM 3. In n dimensions, the spheres of Lee radius 1 can be used to close-
pack the hypertorus which is q q q q", where q 2n + 1.

Proof As centers of the spheres, we use the set S of all points (al, a2, "", an)
of the hypertorus which satisfy

iai O (mod 2n + 1).
i=1

The number of solutions to this congruence is clearly qn-1, since any choice of
a2, a3, a may be made, and then there is a unique value of a l, modulo q,
to satisfy the congruence. Also, every point of the hypertorus is within a Lee
distance of 1 from some point in this set. For if B (bl, b2, "", bn) is any point
of the hypertorus, we compute

ibi =- k (mod 2n + 1),
i=1
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308 SOLOMON W. GOLOMB AND LLOYD R. WELCH

where n =< k =< + n. If k 0, then B is a member of the set S. If k > 0, we change
bk to bk 1 to go from B to a member of S at Lee distance 1 away. If k < 0, we
change blk to blk -+- 1 to go from B to a member of S at Lee distance 1 away.

Each point S has only 2n neighbors at a distance of 1 away. Thus the spheres
around these points can account for at most q"- 1(2n + 1) q" points if the spheres
are all disjoint. However, since every point of the hypertorus is within distance
from some point of S, the spheres must be disjoint and fill up the space. Thus,
the code is close-packed.

According to Theorem 1, for every positive integer r, the Lee sphere S2,r tiles
2-dimensional space. By Theorem 3, for every positive integer n, the Lee sphere
S,,1 tiles n-dimensional space. It is also trivially true that for every positive integer r,
the Lee sphere S,r, which is merely a line segment of length 2r + 1, tiles 1-dimen-
sional space. These are the only cases for which tilings have been found, and we
conjecture that no other cases exist. Partial results in support of this conjecture
are contained in the last two sections of this paper.

4. Some special constructions. When q 2n + is a perfect power, it may be
possible to construct a close-packed single-error-correcting code in the Lee
metric, in n dimensions, with an alphabet size less than q. For example, when
n 4 and q 9, rather than tiling the 9 9 x 9 x 9 hypertorus with the spheres
of radius 1 composed of 9 tesseracts, as guaranteed by Theorem 3, we may attempt
to tile the 3 3 3 3 hypertorus with such spheres.

A successful attempt at close-packing 9 ofthese spheres into the 3 x 3 3 x 3
hypertorus is shown in Fig. 11. The centers of the spheres are indicated by the
boldface letters A through I. The other points of the sphere are indicated by the

Codewords
A (0, 0, 0, 0)
B (0, 1, 1, 1)
C (0,2,2,2)
D (1,0, 1,2)
E (1, 1,2,0)
F (1,2,0, 1)
G (2,0,2, 1)
H (2, 1,0,2)
/~ (2,2,1,0)

0

0 A

0 A

2 A

0 1 2
2

A A F

B D

G C

0 2 0

A B H A

B B B

E B C C

0 A

1 D

F D E

D D E

2 E G D E

0 A G

2 G

2 G G

F H F

B D

E E E

H H H H

D I B H

G E G H

F F

F D

F C

I F H

I

I G C

FIG. 11. Close-packedfour-dimensional code, single-error-correcting in both Hamming and Lee metrics
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PERFECT CODES 309

same letter as the center, but in fainter type. The four coordinates of a point are
its (a) superrow, (b) supercolumn, (c) subrow and (d) subcolumn.

Over the ternary alphabet, a single error in the Lee metric is the same as
a single error in the Hamming metric. (If one component is in error, this is a single
Hamming error, regardless of the magnitude of the error. For the cyclic ternary
alphabet, the error in a component is necessarily by _+ 1 modulo 3.) Thus, Fig. 11
is also a close-packed single-Hamming-error-correcting code! In fact, this code
was obtained in [1] by the method of orthogonal Latin squares. Two orthogonal
Latin squares of order n always lead to a single-Hamming-error-correcting code
for word length 4 over the n symbol alphabet as follows"

We label the rows of the squares from 0 to n 1, the columns from 0 to n 1,
and the entries are named 0 to n 1. Then we form the set of all quadruples

(r, c, e e2),

where r is the row index, c is the column index, el is the entry at the (r, c) position
in the first square, and e2 is the entry at the (r, c) position in the second square.
It is easy to show that if (r, c, el, e2) and (r’, c’, el, e) agree in any two of their

(r, c, e, e2)

0 2 0 2 (0, 0, 0, 0)
(0,1,1,1)

0 2 0 2 (0,2,2,2)
(1,0,1,2)

2 0 2 0 (1,1,2,0)
(1,2,0,1)

2 0 2 0 (2,0,2,1)
(2,1,0,2)
(2,2,1,0)

FIG. 12. From orthogonal Latin squares to a distance 3 code

(a,b)

FIG. 13. The rook domain of the square (a, b)
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310 SOLOMON W. GOLOMB AND LLOYD R. WELCH

components, then they must agree in all four. Hence, the set of all n2 "points"
(r, c, el, e2) has a minimum Hamming distance of 3 between any two members
and is therefore single-error-correcting.

The case n 3 is illustrated in Fig. 12. The code obtained is the same as in
Fig. 11.

In the Hamming metric, a "sphere of radius r" looks even less "round" than a
sphere in the Lee metric. In [1], these Hamming-metric "spheres" are designated
as rook domains. Specifically, in two dimensions, the single Hamming errors from
the point (a, b) correspond to those squares to which a rook, located on the square
(a, b), could go in a single move (see Fig. 13). In 2 dimensions, rook domains do not
pack efficiently, but in higher dimensions they may. Besides the theory of rook-
domain packing in [1], there is also a fundamental outstanding conjecture [2].

5. Sphere-packing constraints. If we denote by V(n, r) the number of points
contained in the n-dimensionsional sphere of Lee-radius r, it is rather easily
established (see the proof of Theorem 4 below) that

V(n, r) 2k

k>_O

It is a curious fact that V(n, r) is symmetric in n and r. The effective upper limit ofthe
summation is at k min (n, r). By the usual sphere-packing argument, we obtain
the following "sphere-packing bound."

THEOREM 4. The number of codewords in an r-error-correcting code dictionary,
Jbr word length n and alphabet size q, where errors are measured in the Lee metric,
cannot exceed

Proof. The codewords must be surrounded by disjoint spheres of radius r.
There are q" points in the sphere, and each codeword uses up V(n, r) ofthem, so that
there can be at most q"/V(n, r) codewords.

To establish the identity

V(n, r) Z 2k
k>O

we regard the n components ofa codeword as "boxes," and we have r "error balls"
to distribute among these boxes. For any k __< r, we consider the problem of

distributingupto rerrorballsinto exactlykboxes. Thereare() ways to choose k

of the n boxes to contain all the balls; each of these k boxes must be designated as
either containing a positive or negative deviation, for a factor of 2*; and there are

ways to distribute up  nto boxes such awaythat no box isem ty.

Multiplying these three factors together, and then summing over k, leads directly to
the formula for V(n, r).
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PERFECT CODES 311

A close-packed code is one which attains the sphere-packing bound. Clearly, a
necessary condition for a close-packed code to exist, for given n, r and q, is that
V(n, r) divide q". This necessary condition is met, in particular, when q V(n, r).
However, as we shall see, q V(n, r) is both unnecessary and insufficient for a
close-packed code to exist.

The underlying geometric problem is this For what values of n and r does the
n-dimensional sphere S,,r of radius r tile n-dimensional space? If the sphere is
incapable of tiling the space, then no close-packed code can exist. If the sphere does
tile the space, then any q such that the tiling is periodic with period q in each direc-
tion is an acceptable alphabet size.

The spheres S l,r and S2,r all succeed in filling their respective spaces, since
$1, is simply a line segment of length 2r + 1, which fills up one-dimensional space
periodically with a period of q 2r + 1 and $2,, is the two-dimensional sphere of
Theorem 1, which fills the plane periodically with a period of q 2r2 + 2r + 1.

Also, the spheres S,, fill up n-dimensional space, according to Theorem 3,
with a periodicity of q 2n + 1. A smaller q (specifically, a factor of 2n + 1 con-
taining all the distinct prime factors of 2n + 1) may sometimes be possible, as
illustrated for n 4, q 3 in Fig. 11.

Not all spheres S,,, are capable oftiling n-dimensional space. The first counter-
example is the following.

THEOREM 5. The sphere $3,2, illustrated in Fig,. 14 and made up of 25 unit cubes,
is unable to tile 3-space.

FI. 14. The Lee sphere $3,2, composed of25 unit cubes

Proof Let S(a, b, c) be the Lee sphere of radius 2, dimension 3 and center
(a, b, c). Assume that E3 can be tiled and let

{S(ai, bi, ci)li O, 1,2, ...}

be a tiling. We may also assume (ao, bo, Co) (0, 0, 0).
Let S(a, b, e) be the sphere containing (2, 1, 0), so that

lal 21 + Iba 11 + Ical 2.
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312 SOLOMON W. GOLOMB AND LLOYD R. WELCH

Since S(al, bl, c 1) and S(0, 0, 0) are disjoint,

However, by the triangle inequality,

lall +lbll +[cll =<1al-21 +2+[bl- 1[ + 1 +1cll =<2+3= 5,

with equality holding ifand only if al >= 2, b >= 1. It follows that a >_- 2 and b >_- 1
and al + bl + Icll 5.

If al >- 3, then

la 31 + [bxl + Icxl al 3 + bl + Icxl 2

and (3, 0, 0) S(al,
The point (2, 1, 0) is outside So and $1 and therefore in a third sphere $2. An

argument similar to the one above shows that a2 => 2, and if a2 ->_ 3 then (3, 0, 0)
$2. Since $1 and $2 are disjoint, either a 2 or a2 2. Using a symmetry of E3,

we may assume a 2 and cl _>- 0, and consider the three cases:
(a) (al, bl, cl) (2, 3, 0),
(b) (a,, bl, c,) (2, 2, 1),
(c) (al, b 1, cl) (2, 1, 2).

Again a symmetry ofE3 can be used to reduce case (c) to case (b).
Case (a). So S(0, 0, 0) and $1 S(2, 3, 0) are members of a tiling. Since the

point (1, 1, 1) is not in So or $1 ,it must be in another S, say S(a2, b2, c2). We have

la=l / Ib2l / Ic21->_ 5,

(1) la2 21 + Ib2 31 + ICEI >_- 5,

la2- II + Ib2- 11 + Ic2- 11 2.

The only solution to these inequalities is

(a2, b2, cz) (1,1,3).

Next, consider the point (1, 2, 1) and the isometric linear transformation of E3

qg(x, y, z) (2 x, 3 y, z). This maps (1, 2, 1) into (1, 1, 1) and interchanges So
and $1. Therefore the center of the sphere $3 containing (1,2, 1) is qg-1(1, 1, 3)

(1, 2, 3). $2 and $3 are neither disjoint nor identical, contrary to the initial hypo-
thesis.

Case (b). So S(0, 0, 0) and $1 S(2, 2, 1) are members of a tiling. Consider
the point (1, 1, 1). Using an argument similar to Case (a) we have

(2)

la21 + Ib21 + Ic21 5,

la2 21 + Ib2 21 + Ic2- 11 >= 5,

la2- 11 + Ib2- 11 + Ic2 + iI-< 2.

The only solution to these inequalities is

(a2, b2, C2) (1, 1, 3).
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The point (1, 2, 1) is not in So, S1 or S2 and therefore in some S3 We obtain
the inequalities

[a31 + Ib3l / 1c31-> 5,

1a3-2[ +[b3-2[ +[c3- 1[ _>_ 5,
(3)

]a3- 1[ + [b3- 1[ + [c3 + 31 _>- 5,

[a3- 11 4-163-21/1c3 / 11 =<2.

The second and fourth inequalities imply

a3 < 1 3 < -1

while the third and fourth imply

b3 _>_ 2, 3 >_- -1 and la3l + b3 2 + Ic3 4- 31 5.

With this information, the first and fourth then imply the unique solution

(a3, b3, C3) (1,4, 1).

Next, let q be the mapping of E3 where qg(x, y, z) (z + 3, y 1, x 1). The
tiling produced by applying q9 to the hypothesized tiling has, as members, q9S2

S(0, 0, 0) and q9S3 S(2, 3, 0). But this is Case (a) which has already been shown
to yield a contradiction.

6. The equivalent tessellation with cross-polytopes. A general proof of the
inability of S,,r to tile n-dimensional space, for large classes of n and r, can be based
on the approximation of S.,r by the n-dimensional cross-polytope.

DEFINITION. For every Lee sphere S,,r, we define the conscribed cross-polytope
to be the smallest convex figure containing the 2" center points of its (n 1)-
dimensional extremal hyperfaces.

In Fig. 15, the conscribed cross-polytopes are illustrated in 2 and 3 dimensions.
In 2 dimensions the figure is a square, and in 3 dimensions, a regular octahedron. In

FIG. 15. Examples of the conscribed cross-polytopes in 2 and 3 dimensions
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314 SOLOMON W. GOLOMB AND LLOYD R. WELCH

n dimensions, it is the regular cross-polytope, of n-dimensional hypervolume

d" (2r + 1)"
Vcp(n, r)

n! n!

where d 2r + 1 is the Euclidean diameter of S,,r.
The significant fact about these figures is that any packing of n-dimensional

space with the spheres S,,r induces a (less efficient) packing with the conscribed
cross-polytopes. In general, the relative efficiency factor is

Vce(n, r)
V(n, r)

which is less than unity whenever n > 1.
In Fig. 16 we see a tiling of the plane with the X-pentomino (82,1) and the

induced tessellation with conscribed squares. The efficiency of this square tiling is

Vce(2, 1) 9/2
909/o

V(2, 1) 5

FIG. 16. The conscribed square tiling induced by the $2,1 tiling

and we observe that for each square ofarea 9/2 conscribed in a pentomino, there is a
left-over square of area 1/2.

We use this type of argument to prove the following two theorems.
THEOREM 6. The sphere $3, cannot tile 3-space for any r > ro.
Proof. If $3,, tiles 3-space, it induces a packing of 3-space with (conscribed)

regular octahedra, with a packing efficiency of

Vce(3, r) (2r + 1)3/6 (2r + 1)3
E3(r)=

V(3,r) =(8r3+ 12r2 +16r+6)/6=(2r+ 1)3 +5(2r+ 1)
1

1 + 5/(2r + 1)2.

Now it is known [3] that equal regular octahedra are not capable of completely
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filling 3-dimensional space. It can be shown (see the Appendix) that if a figure does
not fill space with a packing efficiency of unity, then there is an upper bound ct to
the packing density, with < 1. (For the octahedron, there is an obvious construc-
tion with a packing efficiency of 2/3; and we have now located a reference 5] for
the best possible .) As soon as E3 exceeds , the Lee sphere packing induces an
octahedral packing which exceeds the limit on octahedral packing density. Since
E3(r 1 as r oo, E3(r) > 0 for r > ro.

This is readily generalized in the following theorem.
THEOREM 7. For n > 4 and r > p,, the sphere S,,r cannot tile n-space.

Proof. In n-dimensional Euclidean space, for n > 4, it is known [3] that the
regular cross-polytope does not tile the space. Again, there is a maximum packing
density ,, which would be exceeded by the conscribed spheres, for r > p,, if the
Lee sphere packing existed. This depends only on the fact that

Vcp(n, r)
E,(r)= l asroo.

V(n, r)
Here, references to limiting packing densities for the cross-polytopes have not been
found. For n 3, however, 18/19, by [5].

7. Summary. The Lee spheres S., are found to tile n-dimensional Euclidean
space, in closed-packed fashion, when

(a) n 1 for all r,
(b) n 2 for all r,
(c) r 1 for all n.

It is conjectured that these are the only cases for which a close-packing exists. The
close-packing has been proved not to exist when

(a) n=3, r-2,
(b) n > 4, r > p,, where p, depends on the limit to packing efficiency of the

cross-polytope in n -dimensional Euclidean space.

Appendix. The proof of Theorem 6 used the fact that there exists a tiling
whose packing efficiency is the supremum of all packing efficiencies. A general form
of this fact is now proved.

Let A1, "’", Ak be bounded measurable sets in R", the n-dimensional vector
space over the reals. A sequence of ordered pairs,

T {(Pi, ki):i 1,...}

is a tiling provided the Pi are points of R", the ki are positive integers less than or
equal to k, and the sets

Ak + Pi

are pairwise disjoint to within measure zero.
Let Cr by the hypercube of side 2r and center at the origin. Let AT be the union

of all tiles in T, that is,

AT= U {Ak + p :(p, k) e T},

D
ow

nl
oa

de
d 

01
/0

1/
13

 to
 1

52
.3

.1
02

.2
42

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



316 SOLOMON W. GOLOMB AND LLOYD R. WELCH

and let

#(Av f-/ C.)
v lim sup

(c)

where/ is Lebesque measure in R".
THEOREM. There exists a tiling To with

(ZTo sup (Z T
T

Proof. Let A r,r be the union of all tiles in Twhich are completely in Cr, that is,

A T,, U {Ak + P’(p, k) T, lt[ f] (Ak + P)] 0}.
Because of the boundedness of the A,

(AT,)
aT lim sup

(c)

The construction of To is as follows. For each positive imeger there exists a filing
such that

(sup eT) 2-i.
T

From the definition of lim sup, there exists a sequence of numbers ri such that

and

/(AT,, ri)
> OT 2-i

ri > 2i(ri-1 + B),

where B is a bound on the maximum distance ofthe points ofthe A from the origin.
Finally define To as the sequence which, for each i, contains those tiles A + x of T
which are entirely in C,, Cr,_ ,, that is, which satisfy

/[(A + x) f’) ,] 0,

[(A + x) f3 c,,_,) o.

It can be shown that To is a tiling and that

/(A To.r,) -> #(A T,,r,) #(C.,_ ,+

It follows that

and

1 1 1/(ATo,,) > (sup T)
2 2 2,(c,)

To lim sup
la(A To,r) > sup aT.

-oo (r)D
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