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PERFECT CODES FROM PGL(2,5) IN STAR GRAPHS

I.YU.MOGILNYKH

Abstract. The Star graph Sn is the Cayley graph of the symmetric

group Sym
n

with the generating set {(1 i) : 2 ≤ i ≤ n}. Arumugam and

Kala proved that {π ∈ Sym
n
: π(1) = 1} is a perfect code in Sn for any

n, n ≥ 3. In this note we show that for any n, n ≥ 6 the Star graph Sn

contains a perfect code which is a union of cosets of the embedding of

PGL(2, 5) into Sym
6
.

Keywords: perfect code, efficient dominating set, Cayley graph, Star

graph, projective linear group, symmetric group.

1. Introduction

Let G be a group with an inverse-closed generating set H that does not contain
the identity. The Cayley graph Γ(G,H) is the graph whose vertices are the elements
of G and the edge set is {(hg, g) : g ∈ G, h ∈ H}. The symmetric group of degree n
is denoted by Symn. The stabilizer of an element i ∈ {1, . . . , n} by Symn is denoted
by Stabi(Symn). The Star graph Sn is Γ(Symn, {(1 i) : 2 ≤ i ≤ n}).

A code in a graph G is a subset of its vertices. The size of C is |C|. The minimum
distance of a code is d = minx,y∈C,x 6=yd(x, y), where d(x, y) is the length of a
shortest path connecting x and y. A code C is perfect (also known as efficient
dominating set) in a k-regular graph Γ with vertex set V if it has minimum distance
3 and the size of C attains the Hamming upper bound, i.e. |C| = |V |/(k + 1). We
say that two codes in a graph Γ are isomorphic if there is an automorphism of the
graph Γ that maps one code into another.

Let T0, T1 be distinct subsets of vertices of a graph Γ. The ordered pair (T0, T1) is
called a perfect bitrade, if for any vertex x, the set consisting of x and its neighbors
in Γ meets T0 and T1 in the same number of vertices that is zero or one. The size
of |T0| is called the volume of the bitrade. In particular, if C and C′ are perfect
codes in Γ, then (C \ C′, C′ \ C) is a perfect bitrade. In this case the bitrade
(C \ C′, C′ \ C) is called embeddable into a perfect code. In general, bitrades (non
necessarily perfect) are often associated with classical combinatorial objects such
as perfect codes, Steiner triple and quadruple systems and latin squares (e.g. see a
survey [10]). Bitrades are used in constuctions of the parent combinatorial objects
or for obtaining upper bounds on their number.

The first well-known error-correcting code was the binary Hamming code. This
code is a perfect code in the Hamming graph, which is a Cayley graph of the group
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. Later in [14] Vasiliev showed that there are perfect codes that are nonisomorphic

to the Hamming codes. A somewhat similar fact holds for the Star graph as in
Section 3 we show that there are perfect codes nonisomorphic to the first series of
perfect codes in the Star graph from [3].

Generally speaking, the permutation codes are subsets of Symn with respect to
a certain metric. These codes are of practical interest for their various applications
in areas such as flash memory storage [13] and interconnection networks [1]. The
permutation codes with the Kendall τ -metric (i.e. codes in the bubble-sort graph
Γ(Symn, {(i i+1) : 1 ≤ i ≤ n−1})) were considered by Etzion and Buzaglo in [11].
They showed that no perfect codes in these graphs exist when n is prime or 4 ≤ n ≤
10. In [12] the nonexistence of the perfect codes in the Cayley graphs Γ(Symn, H)
was established, where H are transpositions that form a tree of diameter 3.

The spectral graph theory is important from the point of view of coding theory.
In particular, according to the famous Lloyd’s theorem the existence of a perfect
code in a regular graph necessarily implies that −1 is an eigenvalue of the graph.
The integrity of the spectra of several classes of Cayley graphs of the symmetric
and the alternating groups was proven in [7]. The eigenvalues of Sn are all integers
i,−(n−1) ≤ i ≤ (n−1) that follows from the spectra of the Jucys-Murphy elements
[8]. The multiplicities of the eigenvalues of Sn were studied in [2] and the second
largest eigenvalue n − 2 was shown to have multiplicity (n − 1)(n − 2). In [5] an
explicit basis for the eigenspace with eigenvalue n−2 was found and a reconstruction
property for eigenvectors by its partial values was proven. Later in [6] it is shown
that the basis consists of eigenvectors with minimum support.

For l, r ∈ Symn define the following mapping on the vertices of Sn: λl,r(g) = lgr,
g in Symn.

Theorem 1. [9] The automorphism group of Sn is {λl,r : l ∈ Stab1(Symn), r ∈
Symn}.

In [3] Arumugam and Kala showed that Stab1(Symn) is a perfect code in Sn, for
any n ≥ 3 . Consider the isomorphism class of Stab1(Symn) in Sn. By Theorem 1 the
only left multiplication automorphisms are those by the elements from Stab1(Symn).
Therefore we have the following result.

Corollary 1. The isomorphism class of Stab1(Symn)in Sn is the set of its right
cosets in Symn.

In Section 2 we prove that the projective linear group PGL(2, 5) is a perfect code,
which is isomorphic to {π ∈ Sym

6
: π(1) = 1} as a group via an outer automorphism

of Sym
6
, but is nonisomorphic to it with respect to the automorphism group of the

Star graph. We continue the study in Section 3 where we construct a new series of
perfect codes in Star graphs Sn, n ≥ 7 using cosets of PGL(2, 5). Also we obtain
the classification of the isomorphism classes of perfect codes and perfect bitrades
in Star graphs Sn, n ≤ 6 by linear programming.

2. Perfect codes from PGL(2, 5) in S6

The action of a group G on a set M is regular if it is transitive and |G| = |M |,
i.e. for any x, y ∈ M there is exactly one element of G sending x to y.

Let PGL(n, q) be the projective linear group induced by the action of GL(n, q)
on the 1-dimensional subspaces (projective points) of a n-dimensional space over
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the field of order q. It is well known that PGL(n, q) acts transitively on the ordered
pairs of distinct projective points for n ≥ 3 and regularly on the ordered triples
of pairwise distinct projective points when n = 2, see e.g. [4][Exercises 2.8.2 and
2.8.7].

Proposition 1. The group PGL(2, q) acts regularly on the ordered triples of distinct
projective points.

In throughout what follows we enumerate the projective points by the elements
of {1, . . . , 6}, so PGL(2, 5) is embedded in Symn, n ≥ 6. An element of Symn is a
cycle of length m, if it permutes i1, . . . , im ∈ {1, . . . , n} in the cyclic order and fixes
every element of {1, . . . , n} \ {i1, . . . , im}.

Corollary 2. The group PGL(2, 5) does not contain cycles of length 2 or 3.

Proof. By Proposition 1 the group PGL(2, 5) is regular on the triples of the elements
of {1, . . . , 6}. In particular, any permutation of PGL(2, 5) that has at least three
fixed projective points is the identity. We conclude that there are no cycles of length
2 or 3 in PGL(2, 5) since they have three fixed points. �

Lemma 1. Let π be a permutation from Symn, n ≥ 6. Then πPGL(2, 5) is a code
in Sn with the minimum distance 3.

Proof. Suppose that ππ′ and ππ′′ are adjacent in Sn, π′, π′′ ∈ PGL(2, 5). Then by
the definition of the Star graph Sn there is x, 2 ≤ x ≤ n such that (1 x)ππ′ = ππ′′,
so π−1(1 x)π = π′′(π′)−1 is in PGL(2, 5). This contradicts Corollary 2 because
π−1(1x)π is a transposition. If ππ′ and ππ′′ are at distance 2 in Sn, then there
are x and y, 2 ≤ x, y ≤ n, x 6= y such that π−1(1 x)(1 y)π is in PGL(2, 5). So,
π−1(1 x)(1 y)π is a cycle of length 3, which contradicts Corollary 2.

�

Theorem 2. The group PGL(2, 5) is a perfect code in S6 and the partitions of
Sym

6
into the left and into the right cosets by PGL(2, 5) are partitions of the Star

graph S6 into perfect codes.

Proof. The order of PGL(2, 5) is 5!, which is the size of a perfect code in S6 by
the Hamming bound. Lemma 1 implies that PGL(2, 5) as well as any left coset of
PGL(2, 5) is a perfect code. Since the right multiplication by any element of Sn

is an automorphism of Sn by Theorem 1, every right coset of PGL(2, 5) is also
a perfect code. The partitions into the left and right cosets are different because
PGL(2, 5) is not a normal subgroup in Sym

6
.

�

3. Recursive construction for perfect codes in the Star graphs from

PGL(2, 5)

Let C be a code in Sn. For a permutation σ from Sym(n) denote by σC = {σπ :
π ∈ C}. If σ fixes 1 by Theorem 1 the left multiplication by σ is an automorphism of
Sn and therefore the set of distances between any two permutations of C coincides
with that of σC. In this section we show that a code in the Star graph Sn−1 with
minimum distance three could be embedded into a code in the Star graph Sn with
minimum distance three by taking (n−1) left multiplications of C by transpositions.
In particular, we obtain a new infinite series of perfect codes in the Star graphs Sn

from PGL(2, 5) for any n, n ≥ 6.
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Theorem 3. Let C be a code with minimum distance 3 in Sn−1. Then the code

Cn = C ∪
⋃

2≤i≤n−1

(i n)C

is a code of size |C|(n− 1) with minimum distance 3.

Proof. We introduce an auxilary notation and prove a technical result. Let Γi denote
the subgraph of Sn induced by the set of vertices (i n)Symn−1

, i ∈ 1, . . . , n− 1, Γn

denote the subgraph of Sn induced by the vertices from Symn−1
. Note that in [5]

(see also [6][Section 6]) a similar partition was considered for constructing a basis
for eigenspace of Sn corresponding to eigenvalue n− 2.

Lemma 2. 1. For any i, 2 ≤ i ≤ n, Γi is an isometric subgraph of Sn that is
isomorphic to Sn−1. The set of vertices of Γ1 is a perfect code in Sn.

2. Let π be a permutation from Symn−1
. Then for any i, 2 ≤ i ≤ n − 1 the

vertex (i n)π of Γi has exactly one neighbor in Sn outside of Γi and it is the vertex
(1 n)(1 i) of Γ1. The only neighbor of π in Sn outside Γn is (1 n)π.

Proof. 1. Obviously, the vertices of Symn−1
induce an isometric subgraph of Sn

which is isomorphic to Sn−1. By Theorem 1 the left multiplication by (i n) is an
automorphism of Sn for any i ∈ {2, . . . , n}. We conclude that Γi are isomorphic
copies of Sn−1 for any i ∈ {2, . . . , n}. By Corollary 1 we have that (Stab1(Symn))(1 n) =
(1 n)Symn−1

is a perfect code in Sn. Since this set is exactly the vertices of Γ1, we
obtain the required.

2. Since Γi is isomorphic to Sn−1, it is (n− 2)-regular for i ∈ {2, . . . , n− 1}. The
remaining neighbor of (i n)π outside Γi is the vertex (1 i)(i n)π = (1 n)(1 i)π of
Γ1. �

Obviously, the size of Cn is (n−1)|C|. We now show that the minimum distance
of Cn is three. We see that each of the graphs Γi contains the copy (i n)C of
the code C, for any i ∈ {2, . . . , n − 1} and Γn contains C. The distances between
vertices from (i n)C are the same as those of C in Sn−1. Therefore, it remains to
show that the distances between the vertices of (i n)C and (k n)C and the distances
between the vertices of (i n)C and C are at least 3, for any distinct i, k such that
2 ≤ i, k ≤ n− 1. By the second statement of Lemma 2, these distances are at least
2.

Let (i n)π and (k n)π′ be at distance 2, π, π′ ∈ C. Then by the second statement
of Lemma 2 they both have a common neighbor in Γ1, which is (1 n)(1 i)π =
(1 n)(1 k)π′. This implies that (1 i)(1 k)π′ = π for 1 ≤ i, k ≤ n− 1, or equivalently
π and π′ are at distance 2 in Sn−1. This contradicts the minimum distance of C.

Let (i n)π and π′ be at distance 2, π, π′ ∈ C. By the second statement of Lemma
2 the only neighbor of (i π) outside of Γi is (1 n)(1 i)π and the only neighbor of π′

outside Γn is (1 n)π′. So we see that (1 n)(1 i)π = (1 n)π′, which contradicts the
minimum distance of C.

�

Corollary 3. For any n ≥ 6 there is a perfect code in Sn which is not isomorphic
to Stab1(Symn).

Proof. Consider the code D which is obtained by iteratively applying construction
from Theorem 3 (n− 6) times to the code PGL(2, 5). By the construction, the code
PGL(2, 5) is a subcode of D. Proposition 1 implies that there are permutations



148 I.YU.MOGILNYKH

π, π′ in PGL(2, 5) such that π(1) 6= π′(1). By Corollary 1 the isomorphism class
of Stab1(Symn) in Sn consists of its right cosets. Since we have that π(1) = π′(1)
for any π and π′ from a right coset of Stab1(Symn), we conclude that D is not
isomorphic to Stab1(Symn). �

We proceed with the following computational results for small Star graphs.

Proposition 2. 1. The isomorphism class of Stab1(Symn) is the only isomorphism
class of the perfect codes in Sn for n=3,4,5.
2. The isomorphism classes of Stab1(Sym6) and PGL(2, 5) are the only isomorphism
classes of the perfect codes in S6.

Proof. For n = 3 and 4 the uniqueness of perfect code in Sn could be shown by hand.
In case when n = 5 and 6 the result was obtained by binary linear programming.
Because Sn is a transitive graph, without restriction of generality, we can consider
the perfect codes containing the identity permutation. In case n = 5 there is one
solution to the binary linear programming problem, which is Stab1(Symn).

Let n be six. We consider any transposition that preserves 1, say (2 3). By the
definition of the Star graph, (2 3) is at distance three from the identity permutation.
Now we split the set of all codes as follows: the codes that contain the permutation
(2 3) and those that do not. We then solve two linear programming problems
separately for these cases. There are 6 solutions (perfect codes) that does not contain
(2 3). These are PGL(2, 5) and its five conjugations. When (2 3) is in the code, the
returns with the only solution which is Stab1(Symn).

�

Proposition 3. All perfect bitrades in Sn are embeddable for 3 ≤ n ≤ 6. For
n ∈ {3, 4, 5} their volumes are equal to (n− 1)!. For n = 6 the volumes of bitrades
are 120, 100 and 96.

Proof. The statement is obvious for n = 3. Using linear programming approach
by PC we found that for n = 4, 5, 6 all bitrades are embeddable and have the
corresponding volumes. When n is 6, a perfect bitrade (C \C′, C′ \C) has volume
120 if C and C′ are disjoint perfect codes, e.g. Stab1(Sym6

) and Stab1(Sym6
)(1 6).

By Proposition 1 the group PGL(2, 5) acts transitively on the set {1, . . . , 6}, so
there are exactly 20 permutations from PGL(2, 5) that fix 1. So we see that a perfect
bitrade (C \ C′, C′ \ C) is of volume 100 if C is Stab1(Sym6

) and C′ is PGL(2, 5).
Finally, (C \ C′, C′ \ C) is a perfect bitrade of volume 96 if C is PGL(2, 5) and C′

is one of its nontrivial conjugations. Indeed, PGL(2, 5) is isomorphic to Sym
5

via
an outer automorphism of Sym

6
. Therefore the intersection of PGL(2, 5) and its

conjugation is a subgroup which is isomorphic to the intersection Sym
5

and some of
its conjugation Stabi(Sym6

), i ∈ {1, . . . , 5}. Since the latter intersection is of order
4!=24, the proposition is true.

�
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