PERFECT CODES FROM PGL(2,5) IN STAR GRAPHS

I.YU.MOGILNYKH

ABSTRACT. The Star graph S_n is the Cayley graph of the symmetric group Sym_n with the generating set $\{(1\ i): 2 \le i \le n\}$. Arumugam and Kala proved that $\{\pi \in \text{Sym}_n : \pi(1) = 1\}$ is a perfect code in S_n for any $n, n \geq 3$. In this note we show that for any $n, n \geq 6$ the Star graph S_n contains a perfect code which is a union of cosets of the embedding of $PGL(2,5)$ into Sym_6 .

Keywords: perfect code, efficient dominating set, Cayley graph, Star graph, projective linear group, symmetric group.

1. INTRODUCTION

Let G be a group with an inverse-closed generating set H that does not contain the identity. The Cayley graph $\Gamma(G, H)$ is the graph whose vertices are the elements of G and the edge set is $\{(hg, g) : g \in G, h \in H\}$. The symmetric group of degree n is denoted by Sym_n . The stabilizer of an element $i \in \{1, \ldots, n\}$ by Sym_n is denoted by $Stab_i(Sym_n)$. The Star graph S_n is $\Gamma(Sym_n, \{(1\ i): 2 \le i \le n\})$.

A code in a graph G is a subset of its vertices. The size of C is $|C|$. The minimum distance of a code is $d = min_{x,y \in C, x \neq y} d(x, y)$, where $d(x, y)$ is the length of a shortest path connecting x and y. A code C is perfect (also known as efficient dominating set) in a k-regular graph Γ with vertex set V if it has minimum distance 3 and the size of C attains the Hamming upper bound, i.e. $|C| = |V|/(k+1)$. We say that two codes in a graph Γ are *isomorphic* if there is an automorphism of the $graph \Gamma$ that maps one code into another.

Let T_0, T_1 be distinct subsets of vertices of a graph Γ. The ordered pair (T_0, T_1) is called a *perfect bitrade*, if for any vertex x , the set consisting of x and its neighbors in Γ meets T_0 and T_1 in the same number of vertices that is zero or one. The size of $|T_0|$ is called the *volume* of the bitrade. In particular, if C and C' are perfect codes in Γ, then $(C \setminus C', C' \setminus C)$ is a perfect bitrade. In this case the bitrade $(C \setminus C', C' \setminus C)$ is called *embeddable* into a perfect code. In general, bitrades (non necessarily perfect) are often associated with classical combinatorial objects such as perfect codes, Steiner triple and quadruple systems and latin squares (e.g. see a survey [\[10\]](#page-5-0)). Bitrades are used in constuctions of the parent combinatorial objects or for obtaining upper bounds on their number.

The first well-known error-correcting code was the binary Hamming code. This code is a perfect code in the Hamming graph, which is a Cayley graph of the group

MOGILNYKH, I. YU., PERFECT CODES FROM $PGL(2,5)$ in Star graphs. C 2019 MOGILNYKH I.YU.

This work was partially supported by the Grant RFBR 18-01-00353A.

Received January, 1, 2015, published March, 1, 2015.

 Z_2^n . Later in [\[14\]](#page-5-1) Vasiliev showed that there are perfect codes that are nonisomorphic to the Hamming codes. A somewhat similar fact holds for the Star graph as in Section 3 we show that there are perfect codes nonisomorphic to the first series of perfect codes in the Star graph from [\[3\]](#page-5-2).

Generally speaking, the permutation codes are subsets of Sym_n with respect to a certain metric. These codes are of practical interest for their various applications in areas such as flash memory storage [\[13\]](#page-5-3) and interconnection networks [\[1\]](#page-4-0). The permutation codes with the Kendall τ -metric (i.e. codes in the *bubble-sort graph* $\Gamma(\mathrm{Sym}_n, \{(i \; i+1): 1 \leq i \leq n-1\}))$ were considered by Etzion and Buzaglo in [\[11\]](#page-5-4). They showed that no perfect codes in these graphs exist when n is prime or $4 \leq n \leq$ 10. In [\[12\]](#page-5-5) the nonexistence of the perfect codes in the Cayley graphs $\Gamma(\mathrm{Sym}_n, H)$ was established, where H are transpositions that form a tree of diameter 3.

The spectral graph theory is important from the point of view of coding theory. In particular, according to the famous Lloyd's theorem the existence of a perfect code in a regular graph necessarily implies that -1 is an eigenvalue of the graph. The integrity of the spectra of several classes of Cayley graphs of the symmetric and the alternating groups was proven in [\[7\]](#page-5-6). The eigenvalues of S_n are all integers $i, -(n-1) \leq i \leq (n-1)$ that follows from the spectra of the Jucys-Murphy elements [\[8\]](#page-5-7). The multiplicities of the eigenvalues of S_n were studied in [\[2\]](#page-5-8) and the second largest eigenvalue $n-2$ was shown to have multiplicity $(n-1)(n-2)$. In [\[5\]](#page-5-9) an explicit basis for the eigenspace with eigenvalue $n-2$ was found and a reconstruction property for eigenvectors by its partial values was proven. Later in [\[6\]](#page-5-10) it is shown that the basis consists of eigenvectors with minimum support.

For $l, r \in \text{Sym}_n$ define the following mapping on the vertices of $S_n: \lambda_{l,r}(g) = lgr$, g in Sym_n .

Theorem 1. [\[9\]](#page-5-11) The automorphism group of S_n is $\{\lambda_{l,r} : l \in Stab_1(\mathrm{Sym}_n), r \in$ Sym_n }.

In [\[3\]](#page-5-2) Arumugam and Kala showed that $Stab_1(\mathrm{Sym}_n)$ is a perfect code in S_n , for any $n \geq 3$. Consider the isomorphism class of $Stab_1(\mathrm{Sym}_n)$ in S_n . By Theorem [1](#page-1-0) the only left multiplication automorphisms are those by the elements from $Stab_1(Sym_n)$. Therefore we have the following result.

Corollary 1. The isomorphism class of $Stab_1(Sym_n)$ in S_n is the set of its right $cosets$ in Sym_n .

In Section 2 we prove that the projective linear group $PGL(2, 5)$ is a perfect code, which is isomorphic to $\{\pi \in \text{Sym}_6 : \pi(1) = 1\}$ as a group via an outer automorphism of Sym_6 , but is nonisomorphic to it with respect to the automorphism group of the Star graph. We continue the study in Section 3 where we construct a new series of perfect codes in Star graphs S_n , $n \geq 7$ using cosets of PGL(2,5). Also we obtain the classification of the isomorphism classes of perfect codes and perfect bitrades in Star graphs S_n , $n \leq 6$ by linear programming.

2. PERFECT CODES FROM $PGL(2, 5)$ in S_6

The action of a group G on a set M is regular if it is transitive and $|G| = |M|$, i.e. for any $x, y \in M$ there is exactly one element of G sending x to y.

Let $PGL(n, q)$ be the projective linear group induced by the action of $GL(n, q)$ on the 1-dimensional subspaces (projective points) of a n-dimensional space over the field of order q. It is well known that $PGL(n, q)$ acts transitively on the ordered pairs of distinct projective points for $n \geq 3$ and regularly on the ordered triples of pairwise distinct projective points when $n = 2$, see e.g. [\[4\]](#page-5-12)[Exercises 2.8.2 and 2.8.7].

Proposition 1. The group $PGL(2, q)$ acts regularly on the ordered triples of distinct projective points.

In throughout what follows we enumerate the projective points by the elements of $\{1,\ldots,6\}$, so PGL $(2,5)$ is embedded in Sym_n, $n \geq 6$. An element of Sym_n is a cycle of length m, if it permutes $i_1, \ldots, i_m \in \{1, \ldots, n\}$ in the cyclic order and fixes every element of $\{1, \ldots, n\} \setminus \{i_1, \ldots, i_m\}.$

Corollary 2. The group $PGL(2, 5)$ does not contain cycles of length 2 or 3.

Proof. By Proposition [1](#page-2-0) the group $PGL(2, 5)$ is regular on the triples of the elements of $\{1,\ldots,6\}$. In particular, any permutation of $PGL(2,5)$ that has at least three fixed projective points is the identity. We conclude that there are no cycles of length 2 or 3 in PGL $(2, 5)$ since they have three fixed points.

Lemma 1. Let π be a permutation from Sym_n , $n \geq 6$. Then $\pi \text{PGL}(2,5)$ is a code in S_n with the minimum distance 3.

Proof. Suppose that $\pi \pi'$ and $\pi \pi''$ are adjacent in S_n , π' , $\pi'' \in \text{PGL}(2, 5)$. Then by the definition of the Star graph S_n there is $x, 2 \le x \le n$ such that $(1 x)\pi\pi' = \pi\pi''$, so $\pi^{-1}(1\ x)\pi = \pi''(\pi')^{-1}$ is in PGL(2,5). This contradicts Corollary [2](#page-2-1) because $\pi^{-1}(1x)\pi$ is a transposition. If $\pi\pi'$ and $\pi\pi''$ are at distance 2 in S_n , then there are x and $y, 2 \le x, y \le n, x \ne y$ such that $\pi^{-1}(1 x)(1 y)\pi$ is in PGL(2,5). So, $\pi^{-1}(1\ x)(1\ y)\pi$ is a cycle of length 3, which contradicts Corollary [2.](#page-2-1)

 \Box

Theorem 2. The group PGL(2,5) is a perfect code in S_6 and the partitions of Sym_6 into the left and into the right cosets by $PGL(2,5)$ are partitions of the Star graph S_6 into perfect codes.

Proof. The order of $PGL(2, 5)$ is 5!, which is the size of a perfect code in S_6 by the Hamming bound. Lemma 1 implies that $PGL(2, 5)$ as well as any left coset of $PGL(2, 5)$ is a perfect code. Since the right multiplication by any element of S_n is an automorphism of S_n by Theorem [1,](#page-1-0) every right coset of $PGL(2,5)$ is also a perfect code. The partitions into the left and right cosets are different because $PGL(2, 5)$ is not a normal subgroup in Sym₆.

 \Box

3. Recursive construction for perfect codes in the Star graphs from $PGL(2,5)$

Let C be a code in S_n . For a permutation σ from $Sym(n)$ denote by $\sigma C = {\sigma \pi :}$ $\pi \in C$. If σ fixes [1](#page-1-0) by Theorem 1 the left multiplication by σ is an automorphism of S_n and therefore the set of distances between any two permutations of C coincides with that of σC . In this section we show that a code in the Star graph S_{n-1} with minimum distance three could be embedded into a code in the Star graph S_n with minimum distance three by taking $(n-1)$ left multiplications of C by transpositions. In particular, we obtain a new infinite series of perfect codes in the Star graphs S_n from PGL $(2, 5)$ for any $n, n \geq 6$.

$$
C^n = C \cup \bigcup_{2 \le i \le n-1} (i \ n)C
$$

is a code of size $|C|(n-1)$ with minimum distance 3.

Proof. We introduce an auxilary notation and prove a technical result. Let Γ_i denote the subgraph of S_n induced by the set of vertices $(i\ n)Sym_{n-1}, i \in 1, \ldots, n-1, \Gamma_n$ denote the subgraph of S_n induced by the vertices from Sym_{n-1} . Note that in [\[5\]](#page-5-9) (see also [\[6\]](#page-5-10)[Section 6]) a similar partition was considered for constructing a basis for eigenspace of S_n corresponding to eigenvalue $n-2$.

Lemma 2. 1. For any $i, 2 \leq i \leq n$, Γ_i is an isometric subgraph of S_n that is isomorphic to S_{n-1} . The set of vertices of Γ_1 is a perfect code in S_n .

2. Let π be a permutation from Sym_{n-1} . Then for any $i, 2 \le i \le n-1$ the vertex $(i\ n)\pi\ of\ \Gamma_i$ has exactly one neighbor in S_n outside of Γ_i and it is the vertex $(1\ n)(1\ i)\ of\ \Gamma_1$. The only neighbor of π in S_n outside Γ_n is $(1\ n)\pi$.

Proof. 1. Obviously, the vertices of Sym_{n-1} induce an isometric subgraph of S_n which is isomorphic to S_{n-1} . By Theorem [1](#page-1-0) the left multiplication by $(i n)$ is an automorphism of S_n for any $i \in \{2, ..., n\}$. We conclude that Γ_i are isomorphic copies of S_{n-1} for any $i \in \{2,\ldots,n\}$. By Corollary [1](#page-1-1) we have that $(Stab_1(Sym_n))(1\ n)$ $(1 n) \text{Sym}_{n-1}$ is a perfect code in S_n . Since this set is exactly the vertices of Γ_1 , we obtain the required.

2. Since Γ_i is isomorphic to S_{n-1} , it is $(n-2)$ -regular for $i \in \{2, \ldots, n-1\}$. The remaining neighbor of $(i n)\pi$ outside Γ_i is the vertex $(1 i)(i n)\pi = (1 n)(1 i)\pi$ of Γ_1 .

Obviously, the size of C^n is $(n-1)|C|$. We now show that the minimum distance of C^n is three. We see that each of the graphs Γ_i contains the copy $(i n)C$ of the code C, for any $i \in \{2, ..., n-1\}$ and Γ_n contains C. The distances between vertices from $(i\ n)C$ are the same as those of C in S_{n-1} . Therefore, it remains to show that the distances between the vertices of $(i n)C$ and $(k n)C$ and the distances between the vertices of $(i n)C$ and C are at least 3, for any distinct i, k such that $2 \leq i, k \leq n-1$. By the second statement of Lemma [2,](#page-3-0) these distances are at least 2.

Let $(i\ n)\pi$ and $(k\ n)\pi'$ be at distance $2, \pi, \pi' \in C$. Then by the second statement of Lemma [2](#page-3-0) they both have a common neighbor in Γ_1 , which is $(1 n)(1 i)\pi =$ $(1 n)(1 k) \pi'$. This implies that $(1 i)(1 k) \pi' = \pi$ for $1 \le i, k \le n-1$, or equivalently π and π' are at distance 2 in S_{n-1} . This contradicts the minimum distance of C.

Let $(i\ n)\pi$ and π' be at distance $2, \pi, \pi' \in C$. By the second statement of Lemma [2](#page-3-0) the only neighbor of $(i \pi)$ outside of Γ_i is $(1 \ n)(1 \ i)\pi$ and the only neighbor of π' outside Γ_n is $(1\ n)\pi'$. So we see that $(1\ n)(1\ i)\pi = (1\ n)\pi'$, which contradicts the minimum distance of C.

 \Box

Corollary 3. For any $n \geq 6$ there is a perfect code in S_n which is not isomorphic to $Stab_1(Sym_n)$.

Proof. Consider the code D which is obtained by iteratively applying construction from Theorem [3](#page-3-1) $(n-6)$ times to the code PGL $(2, 5)$. By the construction, the code $PGL(2, 5)$ is a subcode of D. Proposition [1](#page-2-0) implies that there are permutations

 π, π' in PGL(2,5) such that $\pi(1) \neq \pi'(1)$. By Corollary [1](#page-1-1) the isomorphism class of $Stab_1(Sym_n)$ in S_n consists of its right cosets. Since we have that $\pi(1) = \pi'(1)$ for any π and π' from a right coset of $Stab_1(Sym_n)$, we conclude that D is not isomorphic to $Stab_1(Sym_n)$.

We proceed with the following computational results for small Star graphs.

Proposition 2. 1. The isomorphism class of $Stab_1(Sym_n)$ is the only isomorphism class of the perfect codes in S_n for $n=3,4,5$.

2. The isomorphism classes of $Stab_1(Sym_6)$ and $PGL(2, 5)$ are the only isomorphism classes of the perfect codes in S_6 .

Proof. For $n = 3$ and 4 the uniqueness of perfect code in S_n could be shown by hand. In case when $n = 5$ and 6 the result was obtained by binary linear programming. Because S_n is a transitive graph, without restriction of generality, we can consider the perfect codes containing the identity permutation. In case $n = 5$ there is one solution to the binary linear programming problem, which is $Stab_1(Sym_n)$.

Let n be six. We consider any transposition that preserves 1, say $(2\ 3)$. By the definition of the Star graph, (2 3) is at distance three from the identity permutation. Now we split the set of all codes as follows: the codes that contain the permutation (2 3) and those that do not. We then solve two linear programming problems separately for these cases. There are 6 solutions (perfect codes) that does not contain $(2\ 3)$. These are PGL $(2,5)$ and its five conjugations. When $(2\ 3)$ is in the code, the returns with the only solution which is $Stab_1(Sym_n)$.

 \Box

Proposition 3. All perfect bitrades in S_n are embeddable for $3 \leq n \leq 6$. For $n \in \{3, 4, 5\}$ their volumes are equal to $(n - 1)!$. For $n = 6$ the volumes of bitrades are 120, 100 and 96.

Proof. The statement is obvious for $n = 3$. Using linear programming approach by PC we found that for $n = 4, 5, 6$ all bitrades are embeddable and have the corresponding volumes. When n is 6, a perfect bitrade $(C \setminus C', C' \setminus C)$ has volume 120 if C and C' are disjoint perfect codes, e.g. $Stab_1(\mathrm{Sym}_6)$ and $Stab_1(\mathrm{Sym}_6)(1\;6)$. By Proposition [1](#page-2-0) the group $PGL(2, 5)$ acts transitively on the set $\{1, \ldots, 6\}$, so there are exactly 20 permutations from $PGL(2, 5)$ that fix 1. So we see that a perfect bitrade $(C \setminus C', C' \setminus C)$ is of volume 100 if C is $Stab_1(\text{Sym}_6)$ and C' is PGL $(2, 5)$. Finally, $(C \setminus C', C' \setminus C)$ is a perfect bitrade of volume 96 if C is PGL $(2, 5)$ and C' is one of its nontrivial conjugations. Indeed, $PGL(2, 5)$ is isomorphic to Sym₅ via an outer automorphism of Sym_6 . Therefore the intersection of $PGL(2,5)$ and its conjugation is a subgroup which is isomorphic to the intersection $Sym₅$ and some of its conjugation $Stab_i(\mathrm{Sym}_6)$, $i \in \{1, \ldots, 5\}$. Since the latter intersection is of order $4! = 24$, the proposition is true.

 \Box

Acknowledgements The author gradually thanks Sergey Avgustinovich for introducing the problem and stimulating discussions.

REFERENCES

[1] S. Akers, B. Krishnamurthy, A group theoretic model for symmetric interconnection networks.Proceedings of the International Conference on Parallel Processing, (1986), 216–223.

- [2] S. V. Avgustinovich, E. N. Khomyakova, E. V. Konstantinova, Multiplicities of eigenvalues of the Star graph. Siberian Electronic Mathematical Reports, 13 (2016), 1258–1270.
- [3] S. Arumugam, R. Kala, Domination parameters of star graphs. Ars. Combin., 44 (1996), 93–96.
- [4] J. D. Dixon, B. Mortimer, Permutation Groups, Springer-Verlag, New York-Berlin-Heidelberg, 1996.
- [5] S. Goryainov, V. V. Kabanov, E. Konstantinova, L. Shalaginov, A. Valyuzhenich, PIeigenfunctions of the Star graphs. February 2018, [arXiv:1802.06611](http://arxiv.org/abs/1802.06611)
- [6] V. V. Kabanov, E. Konstantinova, L. Shalaginov, A. Valyuzhenich, Minimum supports of eigenfunctions with the second largest eigenvalue of the Star graph. October 2019, [arXiv:1910.01374](http://arxiv.org/abs/1910.01374)
- [7] W. Guo, D. V. Lytkina, V. D. Mazurov, D. O. Revin, Spectra of Cayley graphs. August 2018, [arXiv:1808.01391](http://arxiv.org/abs/1808.01391)
- [8] G. Chapuy, V. Feray, A note on a Cayley graph of Sym(n). February 2012, [arXiv:1202.4976v](http://arxiv.org/abs/1202.4976)2.
- [9] Y.-Q Feng, Automorphism groups of Cayley graphs on symmetric groups with generating transposition sets. J. Combin. Theory Ser. B, 96 (2006), 67–72.
- [10] D. S. Krotov, Trades in the combinatorial configurations. XII International Seminar Discrete Mathematics and its Applications, Moscow, 20–25 June (2016), 84–96 (in Russian).
- [11] T. Etzion, S. Buzaglo, Bounds on the Size of Permutation Codes With the Kendall tau-Metric. IEEE Trans. Inform. Theory, 61(6) (2015), 3241–3250.
- [12] I. J. Dejter, O. Tomaiconza, Nonexistence of efficient dominating sets in the Cayley graphs generated by transposition trees of diameter 3. Discrete Applied Mathematics, 232 (2017), 116–124.
- [13] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, Rank modulation for flash memories. IEEE Trans. on Inform. Theory, 55 (2009), 2659–2673.
- [14] Yu. L. Vasil'ev, On Nongroup Closely Packed Codes. Probl. Kibern., 8 (1962), 337–339.

Ivan Yurevich Mogilnykh NOVOSIBIRSK STATE UNIVERSITY, PIROGOVA ST., 1, 630090, Novosibirsk, Russia SOBOLEV INSTITUTE OF MATHEMATICS, pr. Koptyuga, 4, 630090, Novosibirsk, Russia E-mail address: ivmog84@gmail.com