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the assumptions ai >  a, and  a,,, ai >  1.0; then (11-12) becomes 

log [X(w)] =  log [S(w)] +  log [are-j,‘, 

(1 +  uc/u@+‘o) + l/a,ej~‘l) (H-15) 
or 

log [X(w)] =  log [S(W)ule-jOrl] 

+  log (1 +  uO/alej”(tl-‘o) +  l/alejw’l) 

and  application of the same log series will give 

log [X(w)] =  log [s(w)a,e-jwrl] +  aO/ulejw(tl-to) 

+  l/ulejwtl _  uo2/2u12ej2~(~~-W 

_  +u12ej2wfl _  uo,ul 2ejd2tl -to) +  . . . . (H-16) 

The  complex cepstrum is 

F-‘@x [Je41) 
= F-‘{log [S(o)u,e-jwtl I> + % /al art + (tl - r,,l 

+ l/u, s(t +  ti) - Q2/2Ui2 s[t +  2(t, - r,,] 

- *al2 3(t + 2t,) - ao/ulZ cS[t +  (2t, - to)] +  . . . . (H-17) 

Therefore, the complex cepstrum for multiple echoes with am- 
plitudes greater than that of the wavelet consists of the inverse 
transform of the complex logarithm of the transform of the 
echo  with the greatest amplitude, plus delta functions all located 
in either positive or negat ive time, depending upon  whether 
to >  f, or t, >  t,, respectively. It is also apparent  that the cases 
concerned with amnli tudes greater than unitv are maximum 

phase  while those with ampli tudes less than unity are minimum 
phase  situations. 
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Optimum Quantizers and Permutation Codes 
TOBY BERGER, MEMBER, IEEE 

Abstract-Amplitude quantization and  permutat ion encoding are two 
of the many  approaches to efficient digitization of analog data. It is 
shown in this paper  that these seemingly different approaches actually 
are equivalent in the sense that their opt imum rate versus distortion 
performances are identical. Although this equivalence becomes exact 
only when  the quantizer output is perfectly entropy coded and  the 
permutat ion code block length is infinite, it nonetheless has  practical 
consequences  both for quantization and  for permutat ion encoding. In 
particular, this equivalence permits us  to deduce  that permutat ion codes 
provide a  readily implementable block-coding alternative to buffer- 
instrumented variable-length codes.  Moreover,  the abundance  of methods 
in the literature for optimizing quantizers with respect to various criteria 
can be  translated directly into algorithms for generat ing source permuta- 
tion codes that are opt imum for the same purposes.  

Manuscript received January 3, 1972;  revised February 25, 1972.  
The  author is with the School of Electrical Engineering, Cornell 

University, Ithaca, N.Y. 14850.  

The  opt imum performance attainable with quantizers (hence, permuta- 
tion codes)  of a  fixed entropy rate is explored too. The  investigation 
reveals that quantizers with uniformly spaced thresholds are quasi- 
opt imum with considerable generality, and  are truly opt imum in the 
mean-squared sense for data having either an  exponential  or a  Laplacian 
distribution. An attempt is made  to provide some analytical insight into 
why simple uniform quantization is so  good  so generally. 

I. INTRODUCTION AND SYNOPSIS 

LTHOUGH communicat ion and information theorists A have suggested many novel digitization techniques, 
simple quantization continues to be used almost universally 
in practice. The widespread preference for quantization has 
a sound basis. Quantizers are relatively easy to implement 
and, moreover, their encoding performance usually is nearly 
optimum. For example, in the case of minimum-mean- 
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square digitization of a Gaussian sequence, quantizers with struction levels. We shall assume without any loss of 
uniformly spaced levels have entropies that exceed the generality that for all i 
rate-distortion function lower bound by only one fourth of 
a bit [l]. 

The main drawback to quantization is that a variable- 
length code must be employed if one wishes to ensure that 
the actual bit rate only barely exceeds the quantizer entropy. 
Moreover, if very accurate reproduction is required, the 
quantizer must have many levels, some of which are much 
more probable than others.’ This means that certain words 
in the variable-length code have to be much longer than 
others, which leads to difficult buffering problems [2]. 

Permutation codes for sources [3], [4] provide a syn- 
chronous alternative to buffer-instrumented variable-length 
encoding. In this paper we show that, given any quantizer, 
there exists a permutation code whose entropy rate R and 
average distortion D approximate those of the quantizer 
as closely as desired. When D is very small, the block 
length n of the permutation code in question has to be very 
large. Intuition notwithstanding, however, we show that the 
principal task in permutation encoding, that of partially 
ordering the n source outputs, actually becomes easier to 
perform as n gets large. As a result, permutation codes 
become so easy to implement for large n that they offer an 
attractive alternative to buffer-instrumented variable-length 
encoding in those applications in which the associated 
block-coding delay is tolerable. 

The optimum R versus D performance attainable with 
quantizers (hence, permutation codes) is explored too. In 
the case of the squared-error distortion measure, the 
optimum quantizer is specified by a set of simultaneous 
nonlinear equations that can be solved recursively. Inves- 
tigation reveals that quantizers with uniformly spaced 
thresholds perform effectively as well as do the optimum 
quantizers generated by the recursive solution procedure. 
This result holds not only in the limit as D -+ 0, when the 
optimum quantizer itself is known to have threshold 
spacings that tend toward uniformity [5], but also for 
moderate and large values of D. Moreover, if the source 
outputs are governed by either an exponential density or a 
Laplacian density, then the optimum quantizer is shown to 
be characterized by threshold spacings that are exactly 
uniform. Some analytical insight into why uniform quantiza- 
tion is so good so generally is provided by an examination 
of optimum quantizers for piecewise-constant probability 
densities and vth-power distortion measures. 

Let B = {yl;.. ,yN} be a permutation code of block 
length n with parameters {n,} and {cli}, and define 

Theorem I : Given any real n-vector x = (x,, . ’ . ,x,,), the 
codeword y = (yi,. . . ,y,) E B that minimizes 

II. BASIC EQUATIONS OF QUANTIZATION 

Let X denote the real random variable to be digitized 
and let F( .) denote its cumulative distribution function. A 
device with input X and output Y will be called a quantizer 
if ai-l < X I ai implies Y = yi. The ai are called the 
quantization thresholds and the yi are called the recon- 

1 For a broad and interesting class of distortion measures, the 
thresholds of the quantizer whose entropy is minimum for a specified 
average distortion D become uniformly spaced as D -+ 0 (cf. Section 
VII). This phenomenon accounts for the highly nonequiprobable 
nature of the output levels when an accurate reproduction is required. 

pi = F(lq) - F(ai-l) > 0. (1) 

Although in practice there are only finitely many levels 
{ri} and thresholds {a,}, we shall allow for the possibility 
of a countable infinity of levels and thresholds. 

With each quantizer we associate two quantities called 
the entropy rate R and the average distortion D. These are 
defined by 

and 

R = -CpilOgpi (2) 
I 

D = EIY - XI” = c 
iS 

IX - Yjlr dF(X). (3) 
ai- L 

Here, and in all that follows, it is assumed that ElXl* < co.’ 
An optimum quantizer is one that minimizes D for fixed R. 
Optimization of quantizers is discussed in Sections VI 
and VII. 

III. BASIC EQUATIONS OF PERMUTATION CODES 

A permutation code of block length n is a collection of 
real n-vectors, called codewords, with the following struc- 
ture. For some set {n,} of nonnegative3 integers satisfying 

Cni=n 

and some strictly increasing set {pi} of real numbers, the 
code consists of all n-vectors that have n, of their com- 
ponents equal to pi for each i. Clearly, the codewords all 
are permutations of one another and the number of words 
in the code is 

(5) 

Si = C ?lj, 
j5-i 

(6) 

4w) = $,I& - Y!J? r 2 1, (7) 

is obtained by replacing the S,-i + 1 through Si smallest 
components of x by pi for all i. 

Proqf: This is a special case of Theorem 1 of Berger 
et al. [4]. 

Now consider a random n-vector X = (X,, . . .,X,,) with 

2 Although El Y - X/’ can be made to be finite even when EIXI’ 
does not exist by employing an appropriate infinite-level quantizer, 
such cases are of limited interest. 

3 Obviously, at most n of the ni are nonzero. Allowing the ni to be 
zero is notattonally convenient in what follows because it avoids 
explicit reindexing of the ni as n varies; in general, we have countably 
many ni indexed both negatively and positively even for finite n. 
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statistically independent components each of which is dis- 
tributed as the random variable X of Section II. It should be 
clear that, if the permutation code B is used to encode the 
value x assumed by X, then each of the codewords has 
probability l/N of being used. The number of bits per 
component needed to encode X with B (i.e., to specify the 
index of the resulting codeword) therefore is 

R = n-l log, N = n-l 
( 
log, n  ! - T  log, ni !) . (8) 

The average distortion per component that results from 
encoding X with B is 

We  do this in the Appendix by establishing both that the 
limit on the left side of (11) is finite and that the desired 
convergence in fact holds with probability one, namely 

n-l C 2  IX,j - yiIr 
i j=Si-I+1 

f-0: 

xl F  J  -’ Ix - Yilr dF(x)* (12) 
ai- 

These two results together imply the validity of (11), thereby 
completing the proof. 

D = E n-l c 
[ 

2  IX: - pilr , 
I i j=Si-I+1 

where Xni is the jth smallest component of X. 

We see from Theorem 2 that the best permutation code 
(9) is at least as good as the best quantizer in the (R,D) sense. 

Conversely, Theorems 1 and 2 together imply that the 
performance of the best permutation code for r 2  1 is no 

IV. EQUIVALENCE OF QUANTIZERS AND PERMUTATION CODES 

Although quantization and permutation encoding are 
two seemingly different approaches to source digitization, 
the following theorem establishes that they actually are 
equivalent in the sense that their optimum R .versus D 
performances are identical. 

Theorem 2: Let X be a random variable with cumulative 
distribution function F( .), and let {X,} be a sequence of 
independent random variables identically distributed as X. 
Given any quantizer ({a,},{~,}) that encodes X with finite 
rate R and finite distortion D, there exists a sequence of 
permutation codes B, of block length n, n  = 1,2,. . . , that 
encode (X,, + . . ,X,) with respective rates R, and per- 
component average distortions D, that satisfy both 
h-n,, m  R, = R and lim,,, D, = D. 

Proof: For all n  let the parameter set {pi} of the code 
B, equal the set {yi} of output levels of the quantizer. Let 
the other parameter set {n,} of the code B,, vary with n  in 
such a way that 

lim n-‘Si =  F(q) 
n-m 

or equivalently in such a way that 

lim ni/n = lim n-‘(Sj - Si-i) = F(Ui) - F(U,-i) = pi. 
n-tm n-+00 

(lob) 

Since ni grows linearly with n  because pi > 0, we know that 
log, n,! - ni log, ni - ni log, e  + o(n), so from (4), (8), 
(lob), and the fact that R is finite, we have 

R, - log, n  - T  (nj/n) log, ni +  1 - n-l C ni log, e  
i 1 

= C pi log, n  - C (nJn) log, ni + -C pi log pi = R. 
1  I 

Upon comparing (3) and (9), we see that the proof will be 
complete if we can show that 

lim E 
[ 

n-l c  i IX,’ - yiy 
n+m i j=Si-I+1 I 

= EJ Ix - yiy S(x). (11) 
m-1 

better in the limit of infinite block length than is that of the 
best quantizer. Although a proof is lacking, it seems reason- 
able to conjecture that the performance of the optimum 
permutation code of block length n  and rate R or less can 
only improve with increasing n; this indeed has been the 
case in all examples investigated to date. The validity of this 
conjecture would imply that, at least for r 2  1, the best 
quantizer is as good as the best permutation code, too. The 
source coding significance of the intimate relationship 
between quantizers and permutation codes is explored 
further in the next section. 

V. PERMUTATION CODES VERSUS VARIABLE-LENGTH CODES 

Since we now know that the R versus D performance of 
an optimum quantizer and variable-length code is also 
attainable via permutation coding, we must address the 
question of which of the two techniques is better suited to 
a given application. If a  small value of D is required, then 
n  must be made very large in order for the rate of the 
permutation code to approach that of the entropy-coded 
quantizer (cf. [4]). In certain applications the concomitant 
coding delay may become intolerable, in which case buffer- 
instrumented variable-length coding of the quantizer out- 
puts is probably the more desirable alternative. We  say 
“probably” rather than “certainly” because buffer over- 
flows usually occur after 1x1 has assumed large improbable 
values on several successive samples. The average distortion 
incurred per sample lost because of a  buffer overflow is 
therefore inordinately large compared to ElXI’. This means 
that a  very long buffer must be employed in order truly to 
realize a small required value of D. This, in turn, results in 
a large average coding delay, especially if the probability of 
buffer underflow must be kept very small also in order to 
ensure operation at a  rate that only barely exceeds the 
quantizer output entropy. Since detailed analytical investi- 
gation of the average distortion and average coding delay 
associated with buffer-instrumented variable-length en- 
coding of quantizer outputs is lacking at present, it is not 
entirely clear that this technique is superior to permutation 
coding even from the standpoint of coding delay. 

For applications in which large coding delays are toler- 
able, we submit that permutation codes are preferable to 
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variable-length codes. Since permutation codes are a sub- 
class of block codes, they operate synchronously and 
thereby avoid all the buffering problems discussed above. 
Perhaps even more important, and certainly more surprising, 
is the fact that permutation codes become increasingly 
simpler to implement as the block length IZ increases. In 
this regard it has been shown [4] that the effort required 
for (noiseless) channel encoding and decoding of the index 
of the selected permutation grows only linearly with block 
length. The potentially troublesome operation is that of 
partially ordering the source outputs in the manner pre- 
scribed by Theorem 1 in order to effect optimum source 
encoding. A complete ordering would require a number of 
comparisons that grows as n log n [6], but this difficulty 
can be circumvented in the case of the desired partial 
ordering.4 In particular, for large n we can capitalize on 
the law of large numbers as follows. Instead of partially 
ordering the source outputs in the prescribed manner, we 
simply quantize them individually with the quantizer that 
corresponds in the sense of Theorem 2 to the permutation 
code being employed. Although the random number Ni of 
outputs that fall in the ith quantization bin [ui- ,,aJ usually 
will not be exactly ni, INi - n,( will be O(&) in the limit 
of large n with probability 1. Hence, we can closely ap- 
proximate the codeword that corresponds to the desired 
partial ordering simply by replacing the S,-i + 1 through 
Si smallest quantized source outputs by pi. Ties may be 
broken according to any scheme whatever when ordering 
the quantizer outputs, so no additional ordering need be 
done beyond the partial ordering already effected by the 
quantization itself. In other words, we force the desired 
composition {ni} by a procedure, which in effect removes 
certain of the quantized samples from their actual quantiza- 
tion bins and places them in neighboring bins. This results 
in an average distortion D,, that of course exceeds the aver- 
age distortion D between the source outputs and the 
quantizer outputs. However, since the number A4 of quan- 
tized samples that have to be moved out of their bins 
satisfies n- ‘M  --f 0 with probability 1, we have D, --f D  
with probability 1. Asymptotically in n, then, the scheme in 
question circumvents the partial-ordering problem entirely 
with no degradation in performance. For moderately large 
values of n, it may prove advisable to establish guard bands 
(ai - 6, a, + 8) around the quantization thresholds and 
then to move the samples that fall in these bands first when 
breaking ties, thereby yielding a D, somewhat closer to D. 

The preceding discussion strongly suggests that permuta- 
tion coding is a very promising technique for source digitiza- 
tion when large coding delays are tolerable because the 
encoding effort per source output does not increase with 
the block length. Additional light has been shed on the 
intimate relationship between permutation codes and quan- 

4 If the number of nonzero ni remains bounded as n -+ co, which 
corresponds in the sense of Theorem 2 to a finite-level quantizer, then 
effecting the desired partial ordering consists of locating the positions 
of a fixed number of prescribed quantiles in a sample of size n. The 
number of comparisons needed to accomplish this is known to grow 
only linearly with n [I]. 

tizers, with particular emphasis on the sense in which 
permutation coding provides a possible replacement not for 
the quantizer itself, but rather solely for the variable-length 
coding of the quantizer outputs. 

VI. OPTIMUM QUANTIZERS 

Since optimization of a permutation code is tantamount 
to optimization of the quantizer that corresponds to it in 
the sense of Theorem 2, it is of interest to be able to deter- 
mine the parameters of an optimum quantizer. In this 
regard the reconstruction levels {yi} have no effect on the 
entropy rate R, so they always should be chosen to minimize 
D. A simple calculation reveals that the optimum yi is 
specified uniquely in terms of ai- 1, ai, and Y by the require- 
ment 

s yi (yi - x)*-l dF(x) = ai (x - yJ-l c@(x). (13) 
ai- 1 s Yi 

Since it usually is very difficult to solve (13) for yi explicitly 
for general r, we shall specialize to the important case 
Y = 2. In this case (13) reduces to the well-known result 
that yi is the mean of X conditional on the fact that a,- 1 < 
X 5 ai, namely 

Ili Yi = 
s 

x dF(x)/ 
ai- 1 

s* 
at-1 

c-P(x) = (l/Pi) JGi x dF(x). 
ai- I 

(14) 

For Y = 2, then, the task of designing an optimum quantizer 
of rate R reduces to that of choosing the thresholds {a,} so 
as to minimize D of (3) subject to (14) and to the fact that 
-C pi log pi must equal the specified value of R. Toward 
this end we use (14) and (l)-(3) to express the quantity 
J = D + A-‘R solely in terms of the {a,}, and then set 
dJ/dui = 0. This yields a set of simultaneous nonlinear 
equations indexed by i that can be put in the form 

Pi+1 = Pi  ew [A(Yi+l - Yi)(Yi+l + Yi - 2ui)], (15) 

where the Lagrange multiplier /z must be selected to achieve 
the desired value of R. It is very difficult to solve (15) for 
the {ai} because pi and yi are themselves rather complicated 
functions of ai- 1 and a, via (1) and (14), respectively. This 
probably explains why optimum quantizers of a fixed 
entropy rate were not determined long ago. It turns out, 
however, that (15) can be solved recursively as follows. If 
it is assumed that a,- i, ui, and A are known, then pi and 
yi can be computed from (1) and (14). The only unknowns 
that then remain in (15) are pi+l and yi+r, both of which 
are increasing functions of ai+, . It follows that, by gradually 
increasing our guess of the amount by which u,+~ exceeds 
Ui, we eventually reach the value of ui+ i for which the two 
sides of (15) are equal. With a,, 1 now known, the same 
procedure can be used to determine u~+~, and so forth. 

The recursive procedure previously described yields a 
three-parameter family of quantizers that satisfy (15), the 
parameters being a,, a,, and J.. (It should be clear how 
U-l,U-2,‘. . can be determined recursively in a manner 
similar to that just described for determining u2,u3,. . e .) 



BERGER : OPTIMUM QUANTIZERS AND PERMUTATION CODES 763 

b Pi =.P [Ah-r, )(r,+l+r,- 20, B 

I- PrexP[~h-?T) (xtrtx -20, iI 

(a,, 0) (b) 
Fig. 1. Graphical solution of (15). (a) No solution. (b) Two solutions. 

However, since (15) is only a necessary condition for 
optimality, not all the quantizers in this three-parameter 
family are optimum. Thus, it is necessary to determine 
which of the many quantizers in this family that have the 
desired rate R has the least average distortion. Fortunately, 
in many cases of interest the situation is not quite this 
desperate. If, for example, F( .) possesses a density f = F’ 
that is symmetric about its mean, then it is clear that either 
the interval (a,,~,) should be centered about the mean or 
a, should equal the mean. This reduces the problem to 
investigation of a  pair of two-parameter families of quan- 
tizers. If there is a finite number c such that F(x) =  0  for 
x < c and F(x) > 0 for x > c, then it is clear that we may 
take a, = c and need determine the a, only for i positive; 
again, we obtain a two-parameter family of quantizers 
indexed by a, and A. Similarly, if there exists d  such that 
F(x) = 1 for x 2 d  and F(x) < 1 for x < d, then we may 
set a, = d  without loss of generality, thereby obtaining a 
two-parameter family of quantizers {ai, i < 0} indexed by 
a-, and 1. Finally, if both c and d  exist with the above 
properties, then all quantizers of interest have only finitely 
many thresholds of the form c = a, < a, < u2 < . . . < 
uK = d  for some K. It follows that only certain choices of 
the pair (ui,J.) will yield a recursively determined set of 
{ai}, one of which equals d  exactly. Hence, in such an 
instance there are only a finite number of quantizers that 
satisfy (15) for each value of /2, but we have to solve a two- 
point boundary value problem in order to determine them. 

Study of (15), despite the myriad difficulties chronicled 
above, has proved to be rewarding. Perhaps the most 
surprising discovery was that, although (15) produced 
quantizers with rather nonuniform threshold separations 
a, - a,-1, in none of the cases we explored were their 
rates ever found to be more than 0.005 bits lower than those 
of uniform quantizers that achieved the same D. We knew 
that the optimum quantizers would tend toward uniformity 
in the limit of small D (large R), since Gish and Pierce [S] 
already had established that uniform quantizers are asymp- 
totically optimum in this limit for all Y > 0.5 The un- 
expected phenomenon was that, even at moderate and large 
values of D, uniform quantizers had rates that for all 
intents and purposes were as low as those of the non- 
uniform quantizers that actually satisfied (1 5).6 Moreover, 
in the special case of the exponential probability density 
f(x) = a exp (-~lxl), x > 0, and the Laplacian prob- 
ability densityf(x) = (a/2) exp (- CIIXI), the computer solu- 
tion indicated that quantizers with uniformly spaced 
thresholds ui = iA satisfied (15) exactly. An analytical 
check immediately verified this fact. Further analysis then 
yielded the following parametric expression for the R 
versus D performance curve of the optimized quantizers 
in the exponential case: 

R = (1 - 0)-‘[-Q log f3 - (1 - (3) log (1 - @ ] (16a) 

D = cC2[l - 0(1 - 0)-2 log2 O]. (16b) 

As the parameter 0 = CuA runs from 0 to I, D runs from 
a-2 to 0 and R runs from 0 to co. In the Laplacian case, 
R is greater than in the exponential case by log 2, while D 
remains unchanged. It is of interest to note that in the limit 
of small D (i.e., 8  + 1), the asymptotic behavior of (16) is 
R- log (e/J12a2D), whereas the absolute lower limit on 
all source-encoding systems set by the asymptotic behavior 
of the rate-distortion function R(D) - log Je/2nu2~ is 
only log Jne/6 z 0.51 bits lower [9, sect. 4.3.41. 

Some appreciation for why uniform quantization is so 

To make matters worse, the solution of (15) for a,, I in 
terms of ui-i, ui, and A is unique only if F(.) is continuous 
and A is negative, whereas the best quantizers we have been 
able to find in the examples we have studied to date all 
correspond to positive values of /2. For 2 > 0, (15) can have 
several solutions ui+ l(ui- l,ui,,?). Usually, however, one of 
the two situations sketched in Fig. 1  prevails. In Fig. l(a) 
there are no solutions, which means that u,+~ = co, i.e., a, 
is the last finite threshold. In Firr. l(b) there are two solu- 

good so generally can be gleaned from considering the 
following problem. Suppose that F possesses a density 
f = F’ that is piecewise constant, say f(x) = ck for all x 
in the interval Z,, k = 1,2,. . . Further suppose that our 

5  The  Gish-Pierce result implies that uniform quantizers should 
satisfy (15) in the limit as  the interthreshold width 6  +  0. In this 
regard asymptotic analysis reveals that for i =  6/@ the difference 
between the two sides of (15) for a  uniform quantizer with threshold 
spacing 6  vanishes like a5  at all points at which F(.) is twice dif- 
ferentiable. 

v \I 

6  The  near  optimality of uniform quantization for all D had  been  
observed previously by  Wood  [8] in the case of Gaussian signals, but . . . . . the phenomenon  apparent ly prevails quote generally. 

tions, the smaller of which seems to have yielded somewhat 
better quantizers in the examples that we have studied. 
Moreover, it even is not entirely clear at present whether 
the same solution should be used for all i or the smaller 
solution should be used for some values of i and the larger 
one for others. 

VII. UNIFORM QUANTIZERS 
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task is to choose the number Nk of quantization bins to be 
assigned to Z, in such a way as to minimize D = El Y - XI’ 
subject to the requirement that the quantizer entropy may 
not exceed R. Although intuition may suggest that the 
density with which we should pack quantization levels into 
Zk should be an increasing function of ck, the following 
analysis reveals that the same density of levels should be 
used everywhere. Since (15) is satisfied by uniformly spaced 
levels when X is uniformly distributed, the reconstruction 
levels of the bins assigned to Zk should be equally spaced 
within Zk. Hence, if we let L, denote the length of Zk, 

‘+l 

J d D + pR = c ckLk =’ CkLk 

k (r + 1)2*Ni+’ - ’ log x I ’ 

Setting dJ/dNk = 0 yields (Lk/Nk)r+ ’ = 2*~, so the width 
L,/N, of the quantization bins in Zk is independent of k. 
That is, the optimum quantizer has uniformly spaced 
thresholds. Of course, a truly uniform quantizer cannot be 
constructed if the L, are incommensurate and can be con- 
structed only for certain values of R and D if the L, are 
commensurate. In the limit as D -+ 0, however, the thresh- 
olds have to crowd together, so the uniform solution can 
be approximated as closely as desired even if the L, are 
incommensurate. Since any f( .) can be expressed as the 
limit of a sequence of piecewise-constant density functions, 
the present analysis can be extended to provide an alter- 
native derivation of the result of Gish and Pierce [5] that 
uniform quantization is asymptotically optimum as D + 0 
for arbitraryf( .) and arbitrary r > 0. 

APPENDIX 
PROOF OF (11) 

We follow the approach outlined in the discussion embodying 
(12). Since the left side of (11) clearly is nonnegative, we can 
establish its finiteness by bounding it from above. For this 
purpose we employ the inequality [lo] 

Ia + bl’ I C’lUj’ + C’lbJ’, r > 0, 

where Y is the quantized version of X. Since 

ElYI’ I c,EIX]’ + c,EIY - XI’ = c,EIXI* + c,D < co 

the desired finiteness has been established. 
It remains only to establish (12), which is of the form 

n-1 7 jE,s +1 lx2 - Yil* with E[lX -s(X)l’l, (A-1) I 1 probability 1 

where g is the quantizer function g(x) = yi, aiel < x I Ui. 
Toward this end, introduce the empirical cumulative distribution 
functions F,,, n = 1,2,. . . , according to the usual definition 

F,(x) = N(x)/n, (A-2) 

where N(x) is the number of values of j between 1 and II in- 
clusive for which Xj I x. Let Fi and F,,i denote F(q) and 
F,(q), respectively. Also, select the parameters {ni} (equivalently 
{&}) of the permutation code B, according to the prescription 
Si = [nF,], where [y] denotes the integral part of y. Note that 
this choice of the {&} is consistent with (lOa). Next write 

nFr2.i - 1 
-1 

nFr2.i 
=Tl I2 IXnj - y$ + n-l z IX”j - YJ 

j=CnFi-iI+1 j=i~F,,~-~+l 

CnFil 
+ n-l E Ixn’ - Yil’* (A-3) 

j=nF,,i+l 

Since F,,i --f Fi with probability 1 by the Bore1 strong law, the 
number of terms in the first and third sums on the right side of 
(A-3) is o(n) with probability 1 for each i. Were the terms 
bounded, it would follow that both of these terms approach 0 
with probability 1. The potential difficulty stemming from the 
unboundedness of ]Xnj - yilr is circumvented easily, however. 
The third sum, for example, is devoid of terms with probability 1 
ifFi=Oor1.1fO<Fi<1,thenwecanfindafinite6>0 
such that F(q - S) < Fi < F(ai + 6). The Bore1 strong law 
then implies that XpFil E (ai - 6, ui + 6) for II sufficiently 
large with probability 1. It follows therefrom that X,,j E (ui - 6, 
ui + 6) for all j between nF,,i + 1 and [nFi] for all but finitely 
many II with probability 1. Since the number of such j is o(n) 

where c, = 1 if r I 1 and c, = 2’-l if r 2 1. It follows that with- probability 1 and ]Xnj - yilr 2 IUi + 6 - yi[’ < co fo; 

n-l z 2 /Xnj - yiIr 
I 

each of them, the third term approaches 0 with probability 1. 
Similar arguments imply that the first term approaches 0 with 

i j=Siel+l probability 1. The task of establishing (A-l) therefore has been 

5 c,E n-l z 2 /X,jjr + Iyilr 
r i j=Siel+l I 

reduced to showing that 

‘JFt2.i 
n-l z z 

i j=nF,,i-l+l 
lxnj - Yilr with E[IX - dXI’1. (A-4) 

I- n 7 probability 1 

= c,E n-l Z lX,jlr 
j=l 

+ cm-1 F (Si - Si-l>lYil’ 
From the definition of F,,i, we know that X,j E (ai-i,Ui] for 
nFn,i-1 + 1 5 j 5 nF,,i, so an alternative way of expressing 

= c,E n-l i Ixjlr 1 + we’ F nilYilr (A-4) is 
j=l 

= c&IXI’ + C, F (nJn>lYil’. IXnj - dxnj>lr 
i j=t~F,,,~-l+l 

with E[IX - sV-)lrl. 
probability 1 

Now EIXI’ < co by assumption, while (lob) implies that 

F (+ln)IYiI* --t 7 PiIYiI’ = EIYI’, 

(A-5) 

Since each value of j = 1, * * . ,n appears in one and only one of 
the ranges nF,,i-l + 1 I ,j I FzF,,~, (A-5) reduces to 
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with f E[lX - dmlrl 
orobabilitv 1 

[41 
the validity of which is a direct consequence of the pointwise 
ergodic theorem. [51 

HI 

121 

[31 
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On Variable-Length-to-Block Coding 
FREDERICK JELINEK, SENIOR MEMBER, IEEE, 

Abstract-Variable-length-to-block codes are a  general ization of run- 
length codes.  A coding theorem is first proved. When  the codes are used  
to transmit information from fixed-rate sources through fixed-rate 
noiseless channels,  buffer overf low results. The  latter phenomenon  is an  
important considerat ion in the retrieval of compressed data from storage. 
The  probability of buffer overf low decreases exponential ly with buffer 
length and  we determine the relation between rate and  exponent  size for 
memoryless sources. W e  obtain codes that maximize the overf low ex- 
ponent  for any  given transmission rate exceeding the source entropy and  
present asymptotically optimal coding algorithms whose complexity 
grows linearly with codeword length. It turns out that the opt imum error 
exponents  of variable-length-to-block coding are identical with those of 
block-to-variable-length coding and  are related in an  interesting way to 
Renyi’s general ized entropy function. 

I. INTRoExJCTI~N 

E NCODING of variable-length sequences of source 
outputs into codewords of constant length is called 

variable-length-to-block coding. It can be considered a 
generalization of run-length encoding [3] and is a technique 
of data compression that seems especially attractive for 
a  skew source (where the frequency of some output letters 
very much exceeds that of others) or for retrieval situations 
that require block formatting of data. Variable-length-to- 
block coding was recently considered by Tunstall [7] who 
described an encoding construction and proved it optimal 
in a certain sense (see Section III). 

In this paper we will apply variable-length-to-block 
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coding to fixed-rate sources and channels. We  will be con- 
cerned with the problems analyzed by Jelinek [2] for block- 
to-variable-length encoding : buffer overflow, construction 
of optimal codeword sets, and coding theorems. The over- 
flow problem is important in real-time transmission of 
quantized data that are then encoded to minimize the over- 
all rate. Gish and Pierce [9] have shown that when this 
approach is applied to Gaussian data, its performance is 
close to the rate-distortion optimum. 

It will be shown in the Appendix that the fixed-rate source 
and channel concept can also serve as a model of an 
important problem in fast retrieval from storage of encoded 
(compressed) data. Thus, the applicability of buffer overflow 
results is not limited to communication situations. 

Let us begin by considering Fig. 1, which consists of 
three objects; a  constant memoryless source (henceforth 
abbreviated CMS), a fixed-rate noiseless channel (hence- 
forth abbreviated FRC), and a user. The CMS emits digits 
z in the c-ary alphabet J, = (O,l, * . *, c - 1) at the rate of 
one every second. These are independent and identically 
distributed random variables under the common probability 
distribution {Q(Z)}. (The convention will be adopted that 
Q(0) I Q(1) I . . . I Q(c - l).) The FRC can accept 
digits in the d-ary alphabet Jd = (O,l, . * *, d  - 1) at its 
input and transmit them to its output without error. How- 
ever, the channel can only accept digits for transmission at 
the rate of one every (log d)/R seconds. The parameter R 
is called the channel rate. Finaliy, the user is interested in 
learning the outputs of the CMS. 

The task of the communication engineer is to employ the 
FRC as a link by which the user may learn the outputs of 


