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Optimum Permutation Modulation Codes and Their 
Asymptotic Performance 

EZIO M. BIGLIERI, MEMBER,  IEEE, AND MICHELE ELIA 

Abstract-Permutation modulation codes are a class of group 
codes for the Gaussian channel whose codewords are obtained by 
permuting the components of a given initial vector X in Euclidean 
n-dimensional space. In this paper, the problem of choosing the 
components of X in such a way that the min imum distance between 
any two codewords is maximized is solved. In particular, a closed- 
form expression is obtained for this min imum distance and is used 
to investigate the asymptotic behavior of some selected codes. 

I. TERMINOLOGYANDSTATEMENTOFTHEPROBLEM 

Let b.w2, - - - ,pLs) be a set of distinct real numbers, and (ml, 
. . . ,m,) a set of positive integers with ml + m2  + . . . + m, = n. 
Consider the n-vector 
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If {S) denotes the group of operators that act on X by permuting 
its components, then the set {6)X will include 

fi mi! 
i=l 

distinct n-vectors. The set {6)X is called a variant Ipermutation 
modulation (PM) code [4]-[9]. Clearly, each vector of the set (6)X 
has the same norm, which we choose to be 1, i.e., 

In geometrical terms, the vectors of a  PM code may be thought 
of as points on the surface of a  unit-radius n-dimensional hy- 
persphere centered at the origin. 

The key problem we want to solve is the following: given the 
set (ml,mz, a e. ,m,J, and thus the number M  of vectors in a PM 
code, choose the set (~1, . -a ,y,) so that the minimum distance 
between any two points of (SIX is a maximum. In Section II we 
give a solution to this problem by showing that the optimum X 
has components pi that satisfy the relation 

Pi - pi+1 = x 

where X is a suitable constant. The resultant codes have inter- 
esting geometric features: if we think of the codewords as points 
in Euclidean n-space [l]-[3], every code can be viewed geomet- 
rically as an n-dimensional polytope with vertices at those points. 
Now, in spaces with dimension more than four, there are only 
three regular polytopes [lo]: the hypercube, the cross-polytope, 
and the regular simplex, giving rise to well-known “good” codes 
[3]. The codes to be described in the next section are the 
semiregular polytopes, first observed by Slepian, who analyzed 
them [4], [5]; a  description of their geometrical properties can be 
found in [II], [12]. 

An existence theorem of coding theory shows that it is possible 
to find sequences of codes of M  points in n-space such that, in 
the limit as n approaches m, both the minimum distance between 
codewords and the rate R are bounded below by positive quan- 
tities (see, for instance, [13]). It has been shown by Landau [14] 
that PM codes cannot achieve such strong asymptotic behavior; 
nevertheless, we shall see in Section IV that interesting asymp- 
totic behavior can be obtained through a suitable choice of the 
parameters. 

II. OPTIMUMPMCODES 

We  wish now to find an n-vector X, satisfying the constraint 
(/X]]z = 1, such that 

g(X) = nmfi: I/X - 6X//2 (2) 
n 

is a maximum. Here, 1, is the identity permutation. 
We  first observe that the initial vector X is completely defined, 

for given ml,m2, . . . ,m,, by a set of real numbers c~i,~~z, . . - ,pLs and 
a correspondence between the m  and w. Thus, we can write 

maxg(X) = max 
X T l,l,?.t$ ) dX) s 

where 7 is a one-to-one mapping of the set of integers {1,2, . -a ,s} 
onto itself. Thus, we may take X in this form 

x= (cL1,“‘,~l,~2,“‘1~21”‘,cLs,‘..,cL,~). (3) 
-m,(l)- -h(2)- -mrk- 

We shall approach the problem in two steps: i) find the optimum 
set (pi, . . . ,kcLsJ for a  given T; and ii) find the optimum 7. 

Before proceeding further, we observe from (2), letting X + 
h denote the vector obtained by adding an equal quantity h to 
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all the components of X (i.e., a translation of X), that 

g(X + h) = g(X). 

is a minimum. This problem was first solved by Slepian [4], who 
showed that Q(T) attains its minimum value when T is such 
that 

Moreover, the minimum value of I/X + h 11 is obtained when 

Thus, we shall henceforth impose on PM codes the condition 

2 mdwi = 0. (4) 
i=l 

m,(l) 5 m,(,) 5 m,(2) 5 m,(,-1) 5 - - - . (8) 
Expressed in words, we must choose the pairing of m and p 
in the initial vector in such a way that the least m is paired with 
the least p, the second least m with the largest p, the third least 
m with the second least p, and so on. 

We are now ready to solve our main problem of finding the III. MISCELLANE~USCOMMENTSANDADDITIONAL 
maximum value of g(X) under the constraints (4) and RESULTS 

s 
C %(iPi 

2’1 (5) 
i=l 

where X has the form (3). Suppose that masses m,(l), . . . ,m+) 
are located at points pi ,112, . e . ,p, along the F-axis. Because of (4), 
(5) gives the central moment of inertia. We seek to slide the points 
along the line (without passing each other) to maximize the 
nearest neighbor distance keeping a fixed central moment of 
inertia. 

The optimized minimum distance dopt2 can also be written, 
with the aid of (7), as 

d 2= 
opt 

2/n 
19) 

Suppose the maximization problem is solved by an arrange- 
ment such that pi+1 - pi is not constant, and let A be the smallest 
separation between two adjacent masses in this configuration. 
Now slide all the masses along so that a configuration results with 
every adjacent pair of masses separated by distance A. The ten- 
tral moment of inertia, q2, of this new configuration is smaller 
than 1 since we have packed the masses closer together. Now 
multiply the coordinates of all the masses in this new configu- 
ration by l/a; an equally spaced configuration of masses is ob- 
tained with central moment of inertia 1 and minimum distance 
between points A/q > A. Thus, the original configuration with 
unequal separation was not the best possible. We have proved 
that the optimum X must have components satisfying 

The denominator of (9) can be interpreted as the variance of a 
random variable [that assumes the value 0’ - 1) with probability 
m,&x. Thus we can expect to get higher values of dopt2 when 
the probability distribution of E is somewhat concentrated around 
its mean value. 

Suppose that the m were originally given in increasing order, 
I.e., 

PLp = p1+ b - lb. (6) 
The actual values of fir and w can be computed, using con- 

straints (4) and (5), as 

Then dopt2 can be computed from (8), (9), and the equality 

t m,&(i) = ‘f [mi$(2i - 1) + m,-i+l$(2i)] 
i=l i=l 

which holds for every function +(i) and s even (for s ,odd, a similar 
formula holds) when 7 is defined as in (8). 

The number of nearest neighbors to each codeword (i.e., the 
number of codewords at the minimum distance from any given 
code vector) in the optimum code is given by 

AI 
” = - x’n(A2 - A$ 

w = -PI/AI 

v = mduw2) + m,(2)mT(3) + - - - + m,(,-l)m,b). (10) 
Suppose that we want to maximize (10); it is easily seen that this 
is equivalent to maximizing the quadratic form 

where 

Ai = k ,& m,wti - 1) 
J 

Q”(T) = Ii? IT? m,(i)m,G)ci-j i=l j=l 
with respect to T, where 

A2 = i ,cl m,ti)ti - 02. 
J 

The minimum distance can now be computed as 
ci 

1 

2, i-j=0 

-j = 1, Ii-j1 = 1 
0, Ii-j1 >l 

max g(X) = 2&= 2 We are now in position to use Theorem 371 of [17] to show that 
IIrlt’ * ‘,Wsl 442 - -4:) the arrangement (8) that maximizes the minimum distance also 

and, after some algebra, maximizes the number of nearest neighbors. (The authors con- 

4n 
jecture that this property holds in general, i.e., that maximizing 

max g(X) = (7) 
the number of nearest neighbors is equivalent to maximizing the 

Ifilr’ - ‘,PsLsJ 
k 2 m,(i)m,di -A2 

minimum distance for every group code [20].) 
i=l j=l Given an n-vector X of the form (l), where we now let 

The second step is to find the optimum mapping 7. Since every 
0 I p1 < j.l.2 < * f - < ps, 

one-to-one mapping of a finite set onto itself is equivalent to a we define a variant II PM code as the set of vectors obtained by 
permutation, our problem is to find the permutation r such permuting the components of X in all possible ways and by 
that making all possible assignments of sign to the components of the 

Q(T) = 5 2 m,(gqdi -j)’ 
resulting vectors [5]. The same arguments leading to the optimum 
starting vector for variant I PM codes can be used to solve the 

i=l j=l same problem for variant II PM codes. 
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IV. A~YMPTOTICBEHAVIOROFPMCODES 

To analyze the communication capabilities of the optimum PM 
codes derived in Section III, we must consider, together with their 
distan,ce properties, their information rate R = log M/n. In par- 
ticular, we shall consider the asymptotic behavior of R for se- 
quences of PM codes with increasing n. In what follows, we 
stipulate that these sequences are constructed so that all the 
limits we shall consider exist as n - a. 

Using Stirling’s formula, we can write the number M  of distinct 
n-vectors in the set fS)X as 

log-H+ 9 n 

where H represents the entropy of a  source that emits indepen- 
dent symbols with probabilities miln, i.e., 

ff=-plog3 
i=l n n 

and 

Cp = & .$ log 2?rmi. 
1 1 

Here it has been assumed that n and each mi, i = 1,2,. * .,s, is large. 
It can be seen that H is the relevant quantity in the computation 
of the rate. 

Defining 

a = lim s log n 
n-m n 

one can show: i) If CY = 0, lim R = lim H; moreover, if H %  0, R 
-H. ii) If 0  < a I m, R -H. In other words, the asymptotic be- 
havior of R is the same as that of H, with the only possible ex- 
ception being when H - 0 as n - m. 

It is interesting to observe how some information on the limit 
behavior of the rate can be obtained by simply observing the 
behavior of s as n - 00. For instance, for s > e, we have H 2 s/n; 
moreover, s/n + 0 implies H %  0, s %  m implies H %  00, and so 
on. 

In the following we have collected some examples of the as- 
ymptotic behavior of both rate and distance for some selected PM 
codes. 

Example 1: Lets = 2, ml = n - h, and m2 = h, with h a finite, 
fixed constant. Then R + 0 and 

d 2ln 2 

opta = (h/n) - (n/n)2 - h 

Example 2: Let mi = m, a fixed constant independent of i, so 
that s = . nlm. We find R - ~0; moreover, 

d  24m2 
opt2 = (n _ m) n (n + m)= O(n-9. 

In the special case m  = 1, (11) was first observed by Slepian [18] 
and independently rediscovered by Blake [19]. 

Example 3: Let mi = n/s, with s a fixed constant. Then R - 
log s and 

d 2- 24/n 
opt - 

(s - 1) (s + 1) 
= O(n-*). 

Example 4: Let m, = i; then n = s(s + 1)/2 so that s - 6. 
We  get R - log n, and d,pt2 = O(np2). 

Example 5: Let rni = ai with a an integer exceeding 1; in this 
case n - as+l/(a - 1) and 

R --* a 1% a + (a - 1) log (a - 1) 
a  -1 
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Cooperat ive Bridge Bidding 

ELWYN R. BERLEKAMP, FELLOW, IEEE 

Abstract-A strategy is given for cooperative bidding by the 
players which results in the location of all 52 cards being encoded 
into a valid bridge auction which always terminates with a contract 
of six diamonds. Strategies are also given for encoding the card 
locations into auctions in which “double” and/or “redouble” are 
prohibited bids. 
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