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Optimized Permutation Modulation 

Abstruct-Permutation modulation is a class of group codes for the 
Gaussian channel. A group code is a set of vectors obtained by a group 
of orthogonal matrices operating on an initial vector. An important 
problem is to find the initial vector yielding the largest minimum 
Euclidean distance between two vectors. This problem is solved for 
permutation modulation. We have also analyzed the performance of 
such optimized permutation modulation. Compared to binary antipodal 
signals and PSK it requires typically 2.5-4 dB less energy for the same 
minimum distance. 

I. INTRODUCTION 

IGNALS on a channel disturbed by additive white S Gaussian noise (AWGC) are conventionally described 
in a Euclidean vector space [l]. A code for the AWGC is 
a set of M signals, equivalently described as a set of M 
vectors in a Euclidean vector space. The code is invariant 
under multiplication with a group G of orthogonal matri- 
ces. Thus multiplication with G transforms any one of the 
code vectors into a subset of the code vectors. The code is 
defined as a group code for the AWGC [2] if there is a set 
of M matrices in G such that all of the vectors can be 
obtained from a given initial vector by multiplication with 
the set of M matrices. This introduces a symmetry in the 
code. The probability of error, for example, when a maxi- 
mum likelihood detector is used, is independent of the 
sent signal. Most signal sets used in practice can be 
described as group codes for the AWGC, for example all 
linear binary codes, the symbols of which are transmitted 
as antipodal (+ or - 1) signals. 

A special case of group codes for the AWGC is permu- 
tation modulation [3]. Slepian defined two types. In Vari- 
ant 1 the code is the set of vectors obtained by permuting 
the components of a given initial vector in all possible 
ways. In Variant 2 the code is obtained from a given 
initial vector (with nonnegative components) by all dis- 
tinct permutations and sign changes of the components of 
the initial vector. As for general group codes for the 
AWGC an important problem is to find the initial vector 
yielding the largest minimum Euclidean distance between 
two code vectors. This problem was stated by Slepian in 
[2] but no explicit solution has been given so far. The 
problem can be formulated as an integer programming 
problem, as is done in [4]. In [4], also, an algorithm for the 
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calculation of optimal initial vectors is derived. We derive 
explicit formulas for these vectors for permutation modu- 
lation, both Variant 1 and Variant 2. The optimal initial 
vectors turn out to have sampled Gaussian amplitude 
distribution. 

The performance of optimized permutation modulation 
is compared to more conventional modulation forms, such 
as binary antipodal signaling and phase-shift-keying. The 
comparison turns out in favor of permutation modulation 
that requires 2-4 dB less power for the same minimum 
Euclidean distance. 

11. PERMUTATION MODULATION 

The number of components in xo is 
k 

n = mi.  
j = l  

pi are real numbers and since the ordering is not impor- 
tant on the AWGC we order the components in ascend- 
ing order 

PI <p2 <p3 ' "  < p k .  
The code, Variant 1, consists of all the distinct vectors 
obtained by permuting the components of x g .  Hence the 
number of codewords is 

n !  
m , ! m 2 ! .  * m k !  ' 

MI = 

In Variant 2 we also make all possible sign changes of the 
components in xo .  For simplicity we assume that pi 2 0 
for all i. The number of codewords is 

n!  
m , ! m 2 !  . . . m k !  

M ,  = 2h 

where h = n - m ,  if p l = O a n d  h = n  if pl>O. 
One of the nice features of permutation modulation is 

that maximum-likelihood detection is easy. For Variant 1 
the m ,  smallest components of the received vector are 
associated with p i ,  the m 2  next smallest with p,, etc. 
This yields a vector with the same composition as xo .  For 
Variant 2 the same procedure is applied on the magni- 
tudes of the components of the received vector. The 
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components of the estimated vector then get the same 
signs as the components of the received vector. Slepian 
proved in [3] that both detectors are maximum-likelihood 
for the AWGC. 

111. MINIMUM DISTANCE AND SIGNAL ENERGY 

An important performance measure is the minimum 
Euclidean distance, dmi,, between the code vectors. With 
a high signal-to-noise ratio a code with lower minimum 
Euclidean distance yields lower probability of error. For 
Variant 1 we assume that mi > 0 for i = 1 . . . k .  Then the 
minimum distance is 

For Variant 2 the same is true if p ,  = 0. 
If p ,  > 0 then 

I i i < k  

dmi, = min 

To distinguish between the two cases for Variant 2 we use 
the following notation: 

Variant 2a: 

Variant 2b: 

p l  = 0, mi > 0, 

p l  > 0, mi > 0, 

for i = 1, .  . . k ,  

for i = 1, .  . * k .  

The signal energy corresponds to the squared length of 
xo ,  i.e., 

k 
E = m i p ; .  

We are now interested in maximizing ‘dmin with E and 
{m;) fixed, or equivalently, to minimize E with dmin fixed. 
Since E is increasing with lpll it is evidently best to 
choose the same difference p i + l  - p i  for all i. We now 
take 

i = l  

p , + ,  - p i  = 1, 1 si < k ,  

i.e., 

dmin =a. 
For Variant 2b we obtain the same minimal distance and 
minimal energy if 

p1 = l/@> 

which is also postulated. 

IV. OPTIMIZED PERMUTATION MODULATION 

Once dmin is fixed to @, permutation modulation is 
characterized by two parameters. We have the number of 
codewords M and the signal energy E. We have chosen to 
minimize E with fixed M .  Also the dimensionality n is 
fixed. The result is called optimized permutation modula- 
tion. It is shown in the Appendix that the optimal initial 
vector obeys the following relations. 

Variant 1: 
int ~ - ( V + P ? ) / A  

k + l  
p , = i - -  

2 .  
Variant 2a: 

1 
m ,  = int -e - v/A. 

2 
For i > 1: 

m, = int + P L S ) / A  

p , = i - 1 .  

Variant 2b: 
= int e - ( ~ + ~ . 5 ) / ~  

I 

p, = i -1+l/JZ. 

In all these expressions A and 77 are parameters ( A  > 0 
and 7 < 0). Each pair (A,v) represent a particular code 
for optimized permutation modulation. The values of m, 
are calculated from the previous relation and then the 
corresponding values for E and n are found. It is interest- 
ing to note that the optimal codes have quantized sam- 
pled Gaussian amplitude distribution. Such a distribution 
was guessed by Slepian [3, p. 233, comment 411 to be 
optimal. In fact several of Slepian’s codes obey these 
relations (for example no. 18 and 19 in his Table 1 on 
page 232 in [3]). 

The performance of some examples of optimized per- 
mutation modulation is shown in Fig. 1. We have com- 
pared their performance with binary antipodal signals of 
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Fig. 1.  Required energy (in db) as function of rate for optimized 
permutation modulation compared to phase- and amplitude modula- 
tion. Parameter is vector m =(in,; ..,mk). 
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amplitude 1/a, yielding a minimum distance of a, with 
8 phase PSK and with PSK signal V.29, standardized by 
CCITT. All have the same minimum distance and as can 
be seen from Fig. 1, they require 2.5 to 4.0 dB. 

V. CONCLUSION 

Optimized permutation modulation offers better per- 
formance (2.5-4.0 dR less energy for the same minimum 
distance) than binary antipodal signaling or PSK. Still the 
maximum-likelihood detector is in principle more energy, 
a simple ordering operation. This does not require an 
amplitude reference and the detection is thus indepen- 
dent of the attenuation on the channel. 

APPENDIX 

or 
k + l  

2 
p i = I - - .  

The optimal values for mi  may now be inserted in the 
expressions for E and n and we can then solve for A and q.  
Another way to proceed is to regard A and q as parameters. 
Each pair ( A , q )  ( A  > 0, q < 0) then yields an optimal set (mi} 
from which we can calculate E and R. 

Variant 2a: 
n !  2”-*l 1 

n m , ! . . . m , !  
R , ,  = - In 

h 

j = 1  

We form the function 
Our goal here is to minimize the signal energy E with fixed 

number of codewords M i.e., fixed rate R and fixed dimension- 
ality n ,  

f,,(m,; . . , m k )  
k 

k r = I  k 

E = m,pf n = m, 
r = l  1 = l  and proceed as for Variant 1. The result is the following: 
1 

R = - In M .  
n 

Variant 1: 
1 n !  

n 
R , = - I n  

m,!m,! . . . m,! 

pi + A[ In 2 + In ( m1 + I)] + q > 0, 
for i = 1 

+ ~ [ I n 2 + I n m ~ ] + q 1 0 ,  

p; + A In(mi + 1) + q > 0, 

p: + A In mi  + q I 0, 
for i > 1 

We insert w 1  = 0 and obtain the following expressions: 
I n j -  I n j  . 

i = l  j = l  1 
m ,  = int -e - q / A  

2 
j = l  1 k m ’  

We want to minimize E ,  and we use a technique similar to the 
Lagrange multiplier. We form the function m,  = int e - ( ” p ? ) / ~ ,  

Here p I = 0 , 1 , 2 ; . .  for i=1 ,2 ,3; . .  o r p r = i - l .  

for i > 1. 
k k mt k 

1 = l  r = l  ) = I  r = l  
f l ( m l , ~ . ~ , m k ) =  C m , p f + A  C I n j + q  E m , .  

Vuriant 2b: 
1 n !  
n m,! . . .  m,! 

2” Note that the first sum in the expression for R is a constant and 
is thus omitted in the function f l .  

When m, increases, f, is passing through a minimum when 
the following inequalities are satisfied: 

If,( m,; . . , m, + 1;. . , m k )  - fl( m1 ,. . . , m,; . . , m k )  > 0 

R,, = - In 

r = l  ] = I  

\f l(m1;.  . , m ,  -1; .  ~ , m k ) - f l ( m 1 ;  ” ,m,; .  . , m k )  2 0. 
Inserting f l  yields 

p f + A I n ( m ,  + l ) + q >  0 i pf + Alnm, + q I 0. 

These two inequalities can only be satisfied simultaneously if 
A > 0 and q < 0. Dividing by A yields 

m, = int e - ( q  + p f ) / ~ .  

Here int x means “the integer part of x.” 
The amplitude distribution for the components of the signal 

vectors in optimized permutation modulation is thus a quantized 
Gaussian distribution. Since the signal energy (for given 
m,; . . , m k )  is minimized if 

k c mrCLr= 0. 
1 = l  

In [3, (19), p. 231)] we may choose the p values 
p i =  . . . , -  2 , - 1 , 0 , 1 , 2 ; . . ,  forodd k 

p r =  ‘..,---,---,Z,~,..‘, foreven k 
3 1 1 3  

We form the function 
k k In, k 

r = l  r = l  ] = I  r = l  
f 2 , ( m I , . . . , m k ) =  C m , p ? + A  C C I n j + q  E m , .  

This is the same as f l ,  and we thus obtain the same result as 
for Variant 1 as 

= inte-(T+pf)/A. 
I 

Here p r = 1 / ~ , l + 1 / J z , 2 + 1 / ~ ; . . ,  for i=1 ,2 ,3; . .  or 
1 

pi = i - 1 + -. fi 
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