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Abstract Motivated by a research on self-dual extended group codes, we consider per-
mutation codes obtained from submodules of a permutation module of a finite group of odd
order over a finite field, and demonstrate that the condition “the extension degree of the finite
field extended by n’th roots of unity is odd” is sufficient but not necessary for the existence
of self-dual extended transitive permutation codes of length n + 1. It exhibits that the per-
mutation code is a proper generalization of the group code, and has more delicate structure
than the group code.

Keywords Group code · Permutation code · Self-dual code · Self-dual module ·
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1 Introduction

Let F be a finite field of order q which is a power of a prime integer, and let X be a finite
set with cardinality n. By F X we denote the F-vector space with the basis X , and with the
usual scalar product as its standard inner product. Any subspace C of F X is just the usual
linear code over F of length n, and the orthogonal subspace C⊥ of C is called the dual code
of C . A linear code C is said to be self-orthogonal if C ⊆ C⊥, and C is said to be self-dual
if C = C⊥.
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20 Y. Fan, G. Zhang

Further, if X is a multiplicative group, then F X is an algebra with multiplication induced
by the multiplication of the group X , and any left ideal C of the algebra F X , i.e. any
F X -submodule of the regular F X -module, is called a group code of the group X over the
field F . The study on group codes has been there since many years, e.g. [2]. In recent years it
has attracted attentions to explore the conditions for the existence of self-dual group codes.

In [9], finite abelian groups were considered and some results on the non-existence of
self-dual group codes were shown. For the direct product of a finite 2-group and a finite
2′-group, reference [5] showed a condition for the nonexistence of self-dual group codes.
With the help of the representation theory of finite groups, Willems in [10] gave a necessary
and sufficient condition for the existence of self-dual group codes; in particular, it follows that
there are no self-dual group codes for finite groups of odd order. One obvious obstruction for
the existence of the self-dual group codes of the finite groups of odd order is that the length
of the codes is odd.

Thus, Martinez-Pérez and Willems in [7] considered the so-called extended group codes.
Assume that X is a finite group of odd order, and extend the set X to X̂ which is the union
set of X and a single point set, then the vector space F X̂ is a module over the algebra F X
with the additional single point corresponding to a trivial submodule of dimension 1, and any
submodule C of F X̂ is called an extended group code of the group X . When the characteristic
of F is even, Martinez-Pérez and Willems in [7] showed that any one of the following two
conditions is necessary and sufficient for the existence of self-dual extended group codes.

(C1). Every self-dual (in module-theoretical sense) composition factor of the F X -module
F X̂ has even multiplicity.

(C2). The extension field of F generated by n’th roots of unity has odd degree over F .

Further, they in [8] demonstrated that, for odd characteristic, the existence of self-dual
extended group codes is equivalent to the condition (C2) with an additional condition “−n
is a square element in F”.

Extending group codes, Y. Fan and Y. Yuan in [3] discussed the so-called permutation
codes of finite groups. Let G be any finite group and X be any finite G-set. Then F X is an
FG-module, called a permutation module; any FG-submodule C of F X is said to be a per-
mutation code of the G-set X over F . If X is a transitive G-set, then the permutation codes are
said to be transitive. Group codes are obviously permutation codes since the base set of the
group G is a left regular G-set. Some important codes, for example multiple-cyclic code, are
permutation codes in a natural way but may not be group codes; see [3] for details. Moreover,
the research of permutation codes is interesting in a perspective to automorphism groups of
linear codes, for: any permutation automorphism of a linear code is just a permutation of the
standard basis of the linear code. In [3] some conditions were obtained for the non-existence
of the self-dual transitive permutation codes. And, it is also an easy consequence that, for a
transitive G-set X with odd length, there is no self-dual transitive permutation codes. Thus,
similar to what did in [7], it is reasonable to consider the extended transitive permutation
codes of X , i.e. the permutation codes of the extended G-set X̂ which is the union set of X
and a single point set.

Motivated by the research in [7], we are interested in the performance of the two condi-
tions (C1) and (C2) mentioned above for the permutation codes. In an early version of this
work we obtained that, when q is even, there exists a self-dual permutation code C of a G-set
X over F if and only if every self-dual composition factor of the permutation FG-module
F X has even multiplicity. Thanks are given to an anonymous reviewer who suggested that
this result has been published in [4, Theorem 2.1], and also suggested us to pay attention to
the reference [8].
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On the existence of self-dual permutation codes 21

The performance of the condition (C2) for permutation codes is not so straightforward.
In this paper we exhibit its peculiar role for the existence of self-dual extended transitive
permutation codes. The outline is as follows.

In Sect. 2 we explain our notation precisely and state some related known results as our
preliminaries.

The main purpose of Sect. 3 is to prove that, for a group G of odd order and a transitive
G-set X with length n coprime to the order q of F , the condition (C2), and with the additional
condition “−n is a square element of F” if q is odd, is sufficient for the existence of self-dual
extended transitive permutation codes. This is a generalization of the sufficiency part of the
corresponding result for group codes in the references [7,8], but our argument is different
from that in [7,8]. An analysis of idempotents takes an important part in [7,8], but it is not
applicable to our case.

In Sect. 4 we present some examples to show that the condition (C2) is not necessary for
the existence of self-dual extended transitive permutation codes.

The peculiar behavior of the condition (C2) for permutation codes exhibits that the notion
of permutation codes is a deeply extensive generalization of the group codes, and the structure
of permutation codes is more delicate than that of group codes.

2 Preliminaries

In this section we explain the necessary notation and state some related known results as a
preparation.

Let X be a finite set and n := |X |, the cardinality of the set X . Let F X be the vector space
over F with basis X . Any vector w = ∑

x∈X wx x with wx ∈ F of F X is also called a word
of length n over F . The standard inner product on F X with respect to the basis X is defined
as follows:

〈
w, w′〉 =

∑

x∈X

wxw
′
x , ∀ w =

∑

x∈X

wx x, w′ =
∑

x∈X

w′
x x ∈ F X.

In the following we assume that G is a finite group and there is a group homomorphism
G → Sym(X), where Sym(X) denotes the group consisting of all permutations of X ; in
that case, X is called a G-set. Then any g ∈ G is mapped to a permutation of X , denoted
by g again in short. With the linear extension of the G-action on X , the F-vector space F X
becomes an FG-module, called a permutation FG-module with permutation basis X ; see
[1, §12].

We say that C is a permutation code of the G-set X over F , or a permutation code of
F X in short, if C is an FG-submodule of the permutation FG-module F X ; in that case
we denote C ≤ F X . Further, if X is a transitive G-set, then any C ≤ F X is said to be a
transitive permutation code.

Moreover, the standard inner product on the vector space F X is G-invariant, since it is
easy to check that

〈
g(w), g(w′)

〉 = 〈w, w′〉, ∀ g ∈ G, ∀ w, w′ ∈ F X;
or equivalently,

〈
g(w), w′〉 = 〈w, g−1(w′)〉, ∀ g ∈ G, ∀ w, w′ ∈ F X.

As a consequence, the dual code C⊥ := {w ∈ F X | 〈c, w〉 = 0, ∀ c ∈ C} of the permutation
code C is G-invariant hence a permutation code too.
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22 Y. Fan, G. Zhang

Remark 2.1 As a diversion, we recall some notation from the module theory over the algebra
FG, and emphasize that the words “dual”, “self-dual” have different explanations in module
theory.

(i) A bilinear form f (u, v) on an FG-module V is said to be G-invariant if f (gu, gv) =
f (u, v),∀u, v ∈ V,∀g ∈ G. Any pair (V, f ) of an FG-module V and a G-invariant
non-degenerate bilinear form f on V is called a metric FG-module; further, (V, f )

is called a symmetric FG-module if f is symmetric. A map α between two metric
FG-modules (V, f ) and (V ′, f ′) is said to be an isometry if α is an FG-isomorphism
and f ′(αu, αv) = f (u, v),∀u, v ∈ V .

(ii) For any FG-module V , the dual space V ∗ := HomF (V, F), which denotes the
F-space of all linear forms on V , becomes an FG-module in a natural way: for
g ∈ G and λ ∈ V ∗, the gλ ∈ V ∗ is defined by (gλ)(v) = λ(g−1v) for all v ∈ V ; the
FG-module V ∗ is called the dual module of V . If the FG-module V is isomorphic
to its dual module V ∗, then we say that V is a self-dual module. It is known that an
FG-module V is self-dual if and only if V can become a metric FG-module (V, f );
see [6, Chap. VII, §8] for details.

(iii) Let (V, f ) be a symmetric FG-module and U be a submodule of V . From the
G-invariance of f , it follows that the orthogonal subspace U⊥ := {v ∈ V | f (u, v) =
0,∀ u ∈ U } is a submodule too. If U ∩ U⊥ = 0 (equivalently, the restriction of f
on U is non-degenerate) then we say that U is a non-degenerate submodule; in that
case we have an orthogonal direct sum V = U ⊕ U⊥. On the other hand, if U ⊆ U⊥
(equivalently, the restriction of f on U is zero) then we say that U is an isotropic
submodule. If U = U⊥ then we say that U is a hyperbolic submodule. If V has a
hyperbolic submodule then we say that V is a hyperbolic FG-module. We mention
two related known conclusions.

Proposition 2.1 Let (V, f ) be a symmetric FG-module.

(i) If any composition factor of V is not self-dual, then V is hyperbolic.
(ii) Assume that q = |F | is even. Then V is hyperbolic if and only if any self-dual com-

position factor of V has even multiplicity.

A key idea for the proof is that for any submodule W of V we have the following exact
sequence of FG-homomorphisms

0 −→ W ⊥ −→ V −→ W ∗ −→ 0,

where the third arrow maps v ∈ V to the linear form f (−, v) in W ∗. The above conclusion
(i) follows from it by taking W to be an irreducible submodule of V and by induction on the
composition length. The conclusion (ii) is proved as the same as [4, Theorem 2.1], i.e. it can
be shown that an isotropic irreducible submodule W exists, and then the same argument for
(i) works well.

Return to the permutation codes of the G-set X over F . The following is just [4, Theo-
rem 2.1].

Corollary 2.1 Assume that q = |F | is even. Then there exists a self-dual permutation code
of F X if and only if any self-dual composition factor of the FG-module F X has even mul-
tiplicity.

Next, we always denote ξn a primitive n’th root of unity, and denote F(ξn) the extension
over F generated by ξn . We restate [8, Theorem 3.9] (which covers the even characteristic
version [7, Theorem 3.3]) as follows.
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On the existence of self-dual permutation codes 23

Proposition 2.2 Assume that the order n := |G| is odd and coprime to q = |F |. Then there
exists a self-dual extended group code of G over F if and only if the degree |F(ξn) : F | is
odd and −n is a square element in F.

Remark 2.2 (i) When the integer n is odd and coprime to q , the extension degree |F(ξn) :
F | is just the order of q in (Z/nZ)×, which denotes the multiplicative group con-
sisting of the reduced residue classes of the integer ring Z modulo n; from Chinese
Remainder Theorem it is easy to check that |F(ξn) : F | is odd if and only if for any
prime factor p of n the order of q in (Z/pZ)× is odd. There are related discussions
in [7].

(ii) Assume that r is the prime such that q = rl , i.e. the integer residual ring Z/rZ mod-
ulo r is the unique minimal subfield of F . It follows from Galois theory that −n is a
square element in F if and only if either −n is a square residue in Z/rZ or the degree
|F : (Z/rZ)| is even. See [8, Lemma 3.6]. In particular, this condition is trivial (i.e.
always holds) if r = 2.

We will cite two special conclusions for group codes.

Lemma 2.1 Let G be an abelian p-group where p is a prime coprime to q.

(i) If |F(ξp) : F | is even, then any irreducible FG-module is self-dual.
(ii) If |F(ξp) : F | is odd, then any non-trivial irreducible FG-module is not self-dual.

Proof The conclusions are essentially included in [8]. One can also check them straightfor-
wardly from the following two points:

• Any non-trivial irreducible representation of G over F can be realized as a homomor-
phism from a cyclic quotient group G/H = 〈gH〉 to an extension field F(ξ�), where
� = |G/H |, by mapping the generator gH of the cyclic quotient group to ξ�.

• This representation is self-dual if and only if |F(ξ�) : F | is even; in that case, the unique
Galois transformation of order 2 of F(ξ�) over F induces the isomorphism between the
representation and its dual representation. ��

3 Self-dual extended transitive permutation codes

In this section we show a sufficient condition for the existence of self-dual extended transitive
permutation codes. We need a general elementary result on induced permutation codes.

Let G be any finite group and H be a subgroup of G, and let Y be a finite H -set. Then
FY is a permutation F H -module. We have the induced FG-module

IndG
H (FY ) = FG

⊗

F H

FY =
⊕

t∈T

t ⊗ FY,

where T is a representative set of the left cosets of G over H , and IndG
H (FY ) is a vector

space with basis

X := IndG
H (Y ) =

⋃

t∈T

t ⊗ Y =
⋃

t∈T

{t ⊗ y | y ∈ Y },

which is a G-set with G-action as follows:

g(t ⊗ y) = tg ⊗ t−1
g gty, ∀ g ∈ G, t ∈ T, y ∈ Y,
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24 Y. Fan, G. Zhang

where tg is the representative of the unique left coset tg H such that gt ∈ tg H , or equivalently
t−1
g gt ∈ H . We say that IndG

H (FY ) is the induced permutation FG-module with the induced

G-set IndG
H (Y ).

Lemma 3.1 Notation as above, and let D be any permutation code of the F H-permutation
module FY . Then

IndG
H (D)⊥ = IndG

H (D⊥).

Proof It is obvious that the induced module C := IndG
H (D) is a submodule of IndG

H (FY ) =⊕
t∈T t ⊗ FY , and we have a direct decomposition of F-spaces:

IndG
H (D) =

⊕

t∈T

t ⊗ D,

with each t ⊗ D being an F-subspace of t ⊗ FY . Each t ⊗ FY is an F-space with bases
t ⊗ Y , hence with the standard inner product:

〈
∑

y∈Y

ay(t ⊗ y),
∑

y∈Y

by(t ⊗ y)

〉

=
∑

y∈Y

ayby,

and

FY −→ t ⊗ FY,
∑

y∈Y

ay y �−→
∑

y∈Y

ay(t ⊗ y),

is an isometric F-isomorphism. With respect to the isometries, it is clear that (t ⊗ D)⊥ =
t ⊗ D⊥; hence

IndG
H (D)⊥ =

⊕

t∈T

(t ⊗ D)⊥ =
⊕

t∈T

t ⊗ D⊥ = IndG
H (D⊥).

��
Remark 3.1 By the same argument, we can get that, if (U, f ) is a metric F H -module, then
V := IndG

H (U ) is a metric FG-module with the “induced metric” f̃ (t⊗u, t ′⊗u′) = f (u, u′)
if t = t ′, and = 0 otherwise. In particular, the induced module of a self-dual module is self-
dual too.

Next, we convert the question on self-dual extended transitive permutation codes into a
question on transitive permutation codes itself.

Let G be any finite group, and let X be a transitive G-set with length n := |X | coprime
to q . In the permutation module F X , the element eX := ∑

x∈X x is G-fixed and non-isotro-
pic, hence the subspace FeX is a non-degenerate trivial FG-submodule; so the orthogonal
subspace (FeX )⊥ is a non-degenerate FG-submodule, and we have an orthogonal direct sum
F X = (FeX ) ⊕ (FeX )⊥.

Remark 3.2 For any transitive G-set X , it is known that

HomFG(F X, F) ∼= F, (1)

where F denotes the trivial FG-module and HomFG(F X, F) denotes the F-space of all
FG-homomorphisms from F X to F . Noting that F X may be not semisimple, we sketch a
proof for reference. Let H be the stabilizer in G of x1 ∈ X ; then the permutation module
F X ∼= FG ⊗F H F and

HomFG (FG ⊗F H F, F) ∼= HomF H (F, HomFG(FG, F)) ;
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On the existence of self-dual permutation codes 25

further, HomFG(FG, F) ∼= F since F appears in FG/J (FG) exactly once, where J (FG)

denotes the radical of FG; thus we get the formula (1).
Return to our case where n := |X | is coprime to q , we have that

HomFG

(
(FeX )⊥, F

)
= 0. (2)

Further, let X̂ = X ∪ {x0} be the extended G-set, where x0 /∈ X and x0 is G-fixed. At these
contexts, F X is a non-degenerate submodule of F X̂ , and the above notation (FeX )⊥ should
be replaced by AnnF X (FeX ), which denotes the subspace of all the vectors in F X (with the
vectors outside F X excluded) which are orthogonal to FeX .

Lemma 3.2 Let notation be as above. The following two are equivalent:

(i) There is a permutation code C of F X such that C⊥ = C ⊕ FeX and −n is a square
element of F.

(ii) There is a self-dual permutation code Ĉ of F X̂ .

Proof Note that we have an orthogonal direct sum:

F X̂ = AnnF X (FeX ) ⊕ FeX ⊕ Fx0.

(i) ⇒ (ii) It is clear that C ⊆ AnnF X (FeX ). By [8, Lemma 3.5] there is an isotropic
element e0 ∈ FeX ⊕ Fx0, hence C ⊕ Fe0 is a self-dual permutation code of F X̂ ; cf. the
proof in [8, Theorem 3.9].

(ii) ⇒ (i) Set C = Ĉ ∩ AnnF X (FeX ). By the formula (2) we have

Ĉ = Ĉ ∩ (AnnF X (FeX ) ⊕ (FeX ⊕ Fx0)) = C ⊕
(

Ĉ ∩ (FeX ⊕ Fx0)
)
.

So C is a hyperbolic submodule of AnnF X (FeX ), hence AnnF X (C) = C ⊕ FeX ; and
Ĉ ∩ (FeX ⊕ Fx0) is a hyperbolic submodule of FeX ⊕ Fx0, hence −n is a square element
of F (see [8, Lemma 3.5]). ��

As mentioned in Introduction, the permutation code Ĉ is called an extended permutation
code of X over F.

We come to the main result of this section.

Theorem 3.1 Let G be a finite group of odd order, and let X be a transitive G-set with
length n coprime to q = |F |. If the extension degree |F(ξn) : F | is odd, then there exists a
permutation code C of F X such that C⊥ = C ⊕ FeX .

Proof We prove it by induction on the order of G. It is trivial for |G| = 1. Assume |G| > 1.
Let x1 ∈ X and H be the stabilizer of x1 in G. Then H is a subgroup and F X = IndG

H (F).
Since G is solvable by Feit-Thompson Odd Order Theorem, a minimal normal subgroup A
of G is an elementary abelian p-group, where p is a prime. Since A is normal, the product
AH is a subgroup of G. There are three cases.

Case 1: AH = H . Then A ⊆ H , and hence A is contained in every conjugate of H .
Thus A acts trivially on X , and X is a G/A-set and F X is a permutation module over G/A.
Since |G/A| < |G|, the conclusion follows by induction.
Case 2: AH = G. Since A ∩ H is both normal in H and in A, we have that A ∩ H is normal
in AH = G; but A is a minimal normal subgroup of G, so either A ∩ H = A or A ∩ H = 1.
If A ∩ H = A, then H ⊆ A and F X ∼= F(A/H) is a regular module of the group algebra
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26 Y. Fan, G. Zhang

F(A/H), the conclusion is known in [8] (one can also deduce it by Lemma 2.1 directly).
Thus we assume that A ∩ H = 1. Then we have a bijection

β : A −→ X, a �−→ a(x1).

Let A act on A by left translation, and let H act on A by conjugation, hence G = AH is
mapped into the group Sym(A) of all permutations of A:

(bh)(a) = bhah−1, ∀ a, b ∈ A, h ∈ H.

Noting that H stabilizes x1, we have that

β ((bh)(a)) = (bhah−1)(x1) = bha(x1) = (bh)β(a).

Thus, mapping bh ∈ G to the permutation a �→ bhah−1 of A is an action of G on A, and β is
an isomorphism of G-sets. Then n = |A| hence p|n, so p is coprime to q . By Lemma 2.1(ii),
the regular F A-module

F A = F ⊕ W1 ⊕ · · · ⊕ Wm,

where W1, . . . , Wm are non-self-dual irreducible F A-modules. Then taking dual W j �→ W ∗
j

is a permutation of W1, . . . , Wm . The action of H on F A permutes the irreducible sum-
mands of F A, and any H -orbit {Wi1 , . . . , Wik } forms exactly an irreducible FG-submodule
Wi1 + · · · + Wik , which is self-dual if and only if {W ∗

i1
, . . . , W ∗

ik
} = {Wi1 , . . . , Wik }, in par-

ticular, k is even. However, H has odd order, hence the length k of the H -orbit is odd. In
conclusion, F X is a direct sum of irreducible FG-submodules and any irreducible FG-sum-
mand other than F is not self-dual; hence, by Proposition 2.1(i), there is an FG-submodule
C of F X such that C⊥ = C ⊕ F .
Case 3: H � AH � G. In this case,

F X ∼= IndG
H (F) = IndG

AH IndAH
H (F).

Let Y = {gx1 | g ∈ AH}, then Y is an AH -set and the permutation F(AH)-module
FY ∼= IndAH

H (F). By induction, there is a code D ≤ FY such that D⊥ = D ⊕ FeY where
eY = ∑

y∈Y y. Turn to the permutation module F X = IndG
AH (FY ), by Lemma 3.1, we have

IndG
AH (D)⊥ = IndG

AH (D⊥) = IndG
AH (D ⊕ FeY ) = IndG

AH (D) ⊕ IndG
AH (FeY ).

Noting that FeY is a trivial F(AH)-module, by induction again, there is a code E ≤
IndG

AH (FeY ) such that

AnnIndG
AH (FeY )(E) = E ⊕ FeX ,

where eX = ∑
x∈X x . So we can write IndG

AH (FeY ) = E ′ ⊕ E ⊕ FeX and

IndG
AH (D)⊥ = IndG

AH (D) ⊕ IndG
AH (FeY ) = IndG

AH (D) ⊕ E ′ ⊕ E ⊕ FeX .

Let

C = IndG
AH (D) ⊕ E .
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On the existence of self-dual permutation codes 27

Then C is a permutation code of F X and

C⊥ = IndG
AH (D)⊥

⋂
E⊥ = AnnF X

(
IndG

AH (D)
) ⋂

AnnF X (E)

=
(

IndG
AH (D) ⊕ E ′ ⊕ E ⊕ FeX

)⋂
AnnIndG

AH (D)⊕E ′⊕E⊕FeX
(E)

=
(

IndG
AH (D) ⊕ E ′ ⊕ E ⊕ FeX

)⋂ (
IndG

AH (D) ⊕ E ⊕ FeX

)

= IndG
AH (D) ⊕ E ⊕ FeX

= C ⊕ FeX .

��
As a consequence of Theorem 3.1 and Lemma 3.2, we have the following at once.

Corollary 3.1 Let notation be as in Theorem 3.1. If |F(ξn) : F | is odd and −n is a square
element of F, then there is a self-dual extended transitive permutation code of X over F. ��

Taking X to be the regular G-set, we get the sufficiency part of [8, Theorem 3.9] again.
If q = |F | is even, by Remark 2.2(ii) we have the following consequence.

Corollary 3.2 Let notation be as in Theorem 3.1; further assume that q = |F | is even.
If |F(ξn) : F | is odd, then there is a self-dual extended transitive permutation code of X
over F. ��

Taking X to be the regular G-set, we get the sufficiency part of [7, Theorem 3.3] again.

4 Examples

In this section, we present some examples to show that the condition “|F(ξn) : F | is odd” in
Theorem 3.1 is not necessary for the existence of self-dual extended transitive permutation
codes. It exhibits that the notion of permutation codes is a deeply extensive generalization of
the group codes, and the structure of permutation codes is more delicate than that of group
codes.

Example 4.1 Let F = F2 := Z/2Z be the binary field and P be the elementary abelian
5-group of order 53, hence P can be viewed as a 3-dimensional vector space over F5 := Z/5Z
(the finite field of order 5). Since 53 − 1 = 124 = 4 · 31, the extension F5(ξ31) generated
by a primitive 31’st root of unity has degree 3 over F5; hence F5(ξ31) ∼= P as F5-vector
spaces. Multiplying by ξ31, we get an F5-linear automorphism of order 31 of the F5-vector
space F5(ξ31); correspondingly, we have an automorphism σ of order 31 of the elementary
5-group P , and there is no proper subspace which is σ -invariant; cf. the proof of Lemma 2.1.
Let S = 〈σ 〉 be the cyclic group generated by σ , and let G = P � S be the semidirect
product. Take a subgroup H of order 5 of P , and let X be the set of all left cosets of G over
H . Then we have that |S| = 31, |G| = 53 · 31 and X is a transitive G-set of length 52 · 31.
Consider permutation codes of the transitive G-set X over the binary field F2. It is clear that
|F2(ξ5) : F2| = 4 is even, consequently, |F2(ξ52·31) : F2| is even (see Remark 2.2); but we
have the orthogonal direct sum F2 X = (F2eX )⊥ ⊕ F2eX , where eX := ∑

x∈X x as before,
and we can show that

(∗) any self-dual composition factor of (F2eX )⊥ has even multiplicity.
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By Proposition 2.1 and Lemma 3.2, this implies that there is a self-dual extended transitive
permutation code of X over F2.

Proof of the conclusion (∗) Since the number of maximal subgroups (i.e. the subgroups of
order 52) of P is (53 − 1)/(5 − 1) = 31 and the stabilizer in S of any maximal subgroup of
P is trivial, we see that all the maximal subgroups form exactly one S-orbit. For the given
subgroup H of order 5, the number of the maximal subgroups of P which contain H is
(52 − 1)/(5 − 1) = 6; by Mi , 1 ≤ i ≤ 6, we denote the 6 maximal subgroups. Then for any
1 ≤ i, j ≤ 6 there is an element of S which permutes Mi by conjugation to M j .

Note that F2 X is isomorphic to the induced module:

F2 X ∼= IndG
H (F2) = IndG

P

(
IndP

H (F2)
)
,

and IndP
H (F2) is just the regular module of the algebra F2(P/H); hence each Mi , 1 ≤ i ≤ 6,

contributes to IndP
H (F2) the direct summand F2(P/Mi ) = F2 ⊕Wi with Wi being a self-dual

irreducible factor (recall that |F2(ξ5) : F2| = 4 is even and Wi is corresponding to the repre-
sentation by mapping a generator of the cyclic group P/Wi of order 5 to the 5’th root ξ5 of
unity in F2(ξ5), see Lemma 2.1 and its proof). So we get IndP

H (F2) = F2
⊕( ⊕6

i=1 Wi
)
, and

F2 X ∼= IndG
P (F2)

⊕
(

6⊕

i=1

IndG
P (Wi )

)

.

Since the stabilizer in S of Wi is trivial, IndG
P (Wi ) is an irreducible F2G-module. Since Wi

is self-dual (see Lemma 2.1(i)), IndG
P (Wi ) is self-dual (see Remark 3.1). And, since Mi for

1 ≤ i ≤ 6 are conjugate to each other by S, we conclude that IndG
P (Wi ) for 1 ≤ i ≤ 6

are isomorphic to each other. Finally, IndG
P (F2) is isomorphic to the regular module of the

algebra F2(G/P) ∼= F2S, and the degree |F2(ξ31) : F2| = 5 is odd, by Lemma 2.1 (ii),
IndG

P (F2) = F2 ⊕ U and any composition factor of U is not self-dual. ��
In fact, by a similar argument we can obtain a collection of examples, including the odd

characteristic case. We state it and sketch a proof.

Example 4.2 Take three positive integers q, p, k satisfying the following three conditions:

(i) q is a power of a prime, and p is an odd prime coprime to q;
(ii) s := (pk − 1)/(p − 1) is an odd prime coprime to q (so k must be odd);

(iii) q has even order modulo p, while has odd order modulo s.

Let F = Fq be the finite field with q elements, P be an elementary abelian p-group of order
pk , and S be a Sylow s-subgroup of the automorphism group of P . Let G = P � S be the
semidirect product of P by S, let H be a subgroup of P of order p, and let X be the set of
all left cosets of G over H . Then G is a finite group of odd order, X is a transitive G-set with
length |X | = pk−1s which is odd, and |F(ξp) : F | is even (while |F(ξs) : F | is odd); but we
have that

(∗∗) any non-trivial self-dual composition factor of the permutation FG-module F X has
even multiplicity.

Proof of the conclusion (∗∗) Since s is a prime, s does not divide p j −1 for any j < k; hence
S = 〈σ 〉 is a cyclic group of order s, where σ is constructed similarly to that in Example 4.1;
and S acts on P irreducibly and permutes all maximal subgroups of P transitively.
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The number of the maximal subgroups of P which contain H is m = pk−1−1
p−1 ; by Mi , 1 ≤

i ≤ m, we denote the m maximal subgroups. Since k − 1 is even, m is even too. Since
|F(ξp) : F | is even, F(P/M1) = F

⊕( ⊕l
j=1 W1 j

)
with any W1 j being a self-dual irre-

ducible module, see Lemma 2.1(i). For any Mi with 1 ≤ i ≤ m there is a σi ∈ S such that
Mi = σi (M1), thus the module F(P/Mi ) = F

⊕( ⊕l
j=1 Wi j

)
with Wi j = σi (W1 j ).

Therefore IndP
H (F) = F

⊕( ⊕m
i=1

⊕l
j=1 Wi j

)
, and

F X ∼= IndG
H (F) = IndG

P (F)
⊕

⎛

⎝
l⊕

j=1

m⊕

i=1

IndG
P (Wi j )

⎞

⎠.

Similar to Example 4.1, any non-trivial composition factor of IndG
P (F) is not self-dual, while

any IndG
P (Wi j ) is a self-dual irreducible module; and for any j , the factors IndG

P (W1 j ), . . . ,

IndG
P (Wmj ) are isomorphic to each other.
However, W1 j ′ is not S-conjugate to W1 j for 1 ≤ j ′ �= j ≤ l; otherwise σ ′(W1 j ′) ∼= W1 j

for a non-identity σ ′ ∈ S and, considering the kernel of σ ′(W1 j ′) which is σ ′(M1), we get
an impossible equality σ ′(M1) = M1. Thus, IndG

P (Wi j ′) is not isomorphic to IndG
P (Wi j )

provided j ′ �= j (this is the only key point which does not appear in Example 4.1).
To sum up, any non-trivial self-dual composition factor of the permutation FG-module

F X has multiplicity m which is even. ��
Example 4.1 is just one member of the collection of Example 4.2 for q = 2, p = 5, k = 3

(hence s = 31). Also, we can take q = 53, p = 3, k = 3 (hence s = 13), that is an example
for odd characteristic.

Acknowledgments The authors are grateful to Professor Ping Jin from Shanxi University for many useful
discussions. Many thanks are given to the anonymous reviewers for their valuable comments which have
helped us to renew and improve this paper. This work is supported by Natural Science Foundation of China,
Grant No. 10871079.

References

1. Alperin J.L., Bell R.B.: Groups and representations, GTM 13. Springer-Verlag, Berlin (1995).
2. Bernhardt F., Landrock P., Manz O.: The extended Golay codes considered as ideals. J. Comb. Theory

Ser. A 55(2), 235–246 (1990).
3. Fan Y., Yuan Y.: On self-dual permutation codes. Acta Math. Sci. 28B 3, 633–638 (2008).
4. Günther A., Gabriele N.: Automorphisms of doubly even self-dual codes. Bull. Lond. Math. Soc. 41,

769–778 (2009).
5. Hughes G.: Structure theorems for group ring codes with an application to self-dual codes. Des. Codes

Cryptogr. 24, 5–14 (2001).
6. Huppert B., Blackburn N.: Finite Groups II. Springer-Verlag, Berlin (1982).
7. Martinez-Pérez C., Willems W.: Self-dual codes and modules for finite groups in characteristic two. IEEE

Trans. Inform. Theory 50(8), 1798–1803 (2004).
8. Martinez-Pérez C., Willems W.: Self-dual extended cyclic codes. Appl. Algebra Eng. Com. Comp. 17,

1–16 (2006).
9. Rajan B.S., Siddiqi M.U.: A generalized DFT for abelian codes over Zm . IEEE Trans. Inform. Theory

40, 2082–2090 (1994).
10. Willems W.: A note on self-dual group codes. IEEE Trans. Inform. Theory 48, 3107–3109 (2002).

123


	On the existence of self-dual permutation codes of finite groups
	Abstract
	1 Introduction
	2 Preliminaries
	3 Self-dual extended transitive permutation codes
	4 Examples
	Acknowledgments
	References


