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Abstract
One of the questions of current interest in coding theory is the following: given a finite
non-solvable permutation groupG acting transitively on a set�, underwhat conditions
on G are self-dual codes invariant under G existent or nonexistent? In this paper, this
problem is investigated under the hypothesis that the group G is an imprimitive rank
3 permutation group. It is proven that if G is an imprimitive rank 3 permutation group
acting transitively on the coordinate positions of a self-dual binary code C then G is
one of M11 of degree 22; Aut(M12) of degree 24; PSL(2, q) of degree 2(q + 1) for
q≡ 1(mod 4); PSL(m, q) of degree 2 × qm−1

q−1 for m ≥ 3 odd and q an odd prime;

PSL(m, q) of degree 2 × qm−1
q−1 for m ≥ 4 even and q an odd prime, and PSL(3, 2)

of degree 14. When combined with a result on the classification of binary self-dual
codes invariant under primitive rank 3 permutation groups of almost simple type this
yields a result on the non-existence of extremal binary self-dual codes invariant under
quasiprimitive rank 3 permutation groups of almost simple type.

Keywords Imprimitive rank 3 groups · Binary self-dual codes · Automorphism
groups

Mathematics Subject Classification 20D45 · 94B05
1 Introduction

It is a fundamental problem in coding theory to classify self-dual codes of moderate
lengths.

An approach that is often considered in addressing the problem of whether a self-
dual code C of given length n exists is to assume the invariance of C under some
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non-trivial automorphism group and then try either to construct such a code or to prove
its non-existence (see [13,14]). In order to find examples of binary self-dual codes of
large length n a non-trivial automorphism group might be useful.

Under the assumption that G is a sporadic almost simple group, a number of self-
dual codes of length n ≤ 1000 were determined by Chigira, Harada and Kitazume in
[3]. Further, the authors give a construction of a binary code C(G,�) as the dual of a
code spannedbyfixedpoints of involutions of a permutation groupG on a set�. In fact,
they showed that any binary self-dual code C satisfies C(G,�)⊥ ⊆ C ⊆ C(G,�).

Recently, Mukwembi, Rodrigues and Shumba in [16] (see also [22]) extended the
results of [3] to length n ≤ 4095 and found several examples of binary self-dual
codes invariant under sporadic groups of almost simple type. The said paper also
examined the question of existence of extremal binary self-dual codes invariant under
the prescribed type of groups, and showed that the only binary extremal self-dual codes
invariant under a finite almost simple group with a sporadic socle are the extended
binary Golay code admitting M12:2 in its imprimitive action of degree 24, and a
[44, 22, 8]2 singly-even self-dual code of length 44 admitting M22:2.

The rank of a permutation group G transitive on a set � is the number of orbits
of Gω, where ω is a point of �, in �. Hence, a transitive group G has rank 2 on the
set � if and only if G is 2-transitive on �. In a related study, under the assumption
that G acts 2-transitively on the coordinate positions of an extremal code, Malevich
and Willems [14] gave a classification of extremal self-dual doubly-even codes C
invariant under G, stopping short of showing the non-existence of a putative binary
extremal self-dual doubly-even code of length 1024 on which a group T � SL(2, 25)
acts as an automorphism group. Notice that T is an elementary abelian group of order
1024. In [4] Chigira, Harada and Kitazume completed the characterisation by showing
that there does not exist a binary extremal self-dual doubly-even code of length 1024
on which T � SL(2, 25) acts as a permutation group of automorphisms. Malevich
and Willems, and later Chigira et al, have thus answered the question of existence of
extremal binary self-dual codes when the group G has rank 2.

A transitive groupG acting on a set� has rank 3 if and only if for every pointω in�,
Gω has two orbits besides {ω}. Rank 3 groups can be either primitive or imprimitive.
Under the assumption that G is a rank 3 group, it seems natural to ask: which binary
self-dual codes have rank 3 permutation groups acting on them? Further, it is of interest
to examine which of these binary self-dual codes (singly-even or doubly-even), if any
exist, are extremal?

The above questions have been addressed for some of the different types of primitive
rank 3 groups. In [20] we classified all G-invariant binary self-dual codes admitting
G a primitive rank 3 permutation group of almost simple type. Those admitting G a
primitive rank 3 permutation group of grid type are examined in [21]. The question
of existence (respectively non-existence) of binary self-dual codes invariant under the
primitive rank 3 permutation groups of affine type remains open.

In [22, Theorem 4.5] a partial statement of results relatedwith the existence (respec-
tively non-existence) of binary self-dual codes invariant under an imprimitive rank 3
permutation group G was given. In this paper we complete and improve on the results
given in [22, Theorem 4.5]. In doing so we determine up to equivalence allG-invariant
binary self-dual codes on which G acts transitively on the coordinate positions, where
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G is a prescribed finite imprimitive rank 3 permutation group. The other purposes of
the paper are to examine whether these binary self-dual codes invariant under G are
doubly-even (respectively singly-even) and to investigate if any of them are extremal.

As a consequence we prove the following main results.

Theorem 1.1 Let G ≤ Sn be an imprimitive rank 3 permutation group. Then there
exists a self-dual code C ≤ F

n
2 with G ≤ Aut(C) if and only if G and C are as follows:

(a) G ∼= M11 of degree 22 and C = [22, 11, 2]2.
(b) G ∼= Aut(M12) of degree 24 and C = [24, 12, 8]2.
(c) G ∼= PSL(2, q) of degree 2(q + 1) and C = [2(q + 1), q + 1, 2]2 with q =

p2t≡ 1(mod 4),
t ≥ 1, p≡ 3(mod 4) and p a prime.

(d) G ∼= PSL(m, q) of degree 2 × qm−1
q−1 and

C =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[2 × qm−1
q−1 ,

qm−1
q−1 , 2]

2
, for m ≥ 3 odd and qan odd prime;

[2 × qm−1
q−1 ,

qm−1
q−1 , 2]

2
, for m ≥ 4 even, q = p2≡ 1(mod 4) and p a prime;

[2 × qm−1
q−1 ,

qm−1
q−1 , 4]

2
, for m ≥ 4 even, q = p2≡ 1(mod 4) and p a prime;

[2 × qm−1
q−1 ,

qm−1
q−1 , 4]

2
, for m ≥ 4 even and q≡ 1(mod 4);

[2 × qm−1
q−1 ,

qm−1
q−1 , 2]

2
, for m ≥ 4 even and q≡ 1(mod 4).

(e) G ∼= PSL(3, 2) of degree 14 and C is a [14, 7, 2]2 code.

Theorem 1.2 Let G ≤ Sn be an imprimitive rank 3 permutation group. Then C ≤ F
n
2

with G ≤ Aut(C) is a binary self-dual doubly-even code of length n if and only if the
following holds:

(a) G ∼= Aut(M12) and C = [24, 12, 8]2 is isomorphic to the extended binary Golay
code.

(b) G ∼= PSL(m, q) and C = [2 × qm−1
q−1 ,

qm−1
q−1 , 4]2 where m ≥ 4 is even, q =

p2≡ 1(mod 4) and p a prime.

Theorem 1.3 Let C be an extremal doubly-even binary self-dual code admitting an
imprimitive rank 3 permutation automorphism group G. Then C is isomorphic to the
extended binary Golay code and G is isomorphic to Aut(M12).

The paper is organized as follows: in Sect. 2 we give a brief description of the
terminology and background to be used in the paper; in Sect. 3 following a series of
propositionswegive the proof ofTheorem1.1.Theproof for the individual examples of
imprimitive rank 3 groups as well as that for the infinite families of type PSL follows
by a case-by-case analysis in the same section. In Sect. 4 we prove Theorem 1.2.
Finally, in Sect. 5 we discuss the question of existence (respectively non-existence)
of extremal binary self-dual codes admitting an imprimitive rank 3 group and prove
Theorem 1.3.
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2 Background and definitions

In this section, we state some useful facts in coding theory and finite group theory.
The notation for the structure of groups is as given in the ATLAS [6]. We denote by
Cp the cyclic group of order p.

Throughout the paper we assume κ = F2, and G is a finite permutation group
acting on a finite non-empty set �, i.e. there is a G-action on �, namely, a map
· :G × � −→ � given by (g, x) 	→ g · x, satisfying (g · h) · x = g · (h · x) for all
g, h ∈ G and all x ∈ �, and that 1 · x = x for all x ∈ �.

Then κ� = {∑x∈� gx x | gx ∈ κ} is a vector space over κ with basis �. Extending
the G-action on � linearly, κ� becomes a κG-module, called a κG-permutation
module with permutation basis �.

The κ-vector space κ� is equipped with a non-degenerate symmetric bilinear form

〈
∑

x∈�

gx x,
∑

x∈�

hx x

〉

=
∑

x∈�

gxhx , ∀g =
∑

x∈�

gx x and h =
∑

x∈�

hx x ∈ κ�

called the standard inner product on κ�. For any a ∈ G and any g and h as given
above, we have

〈a(g), a(h)〉 =
〈

a

(
∑

x∈�

gx x

)

, a

(
∑

x∈�

hx x

)〉

=
〈
∑

x∈�

gxax,
∑

x∈�

hxax

〉

=
∑

x∈�

gxhx

= 〈g,h〉.

So, the standard inner product on the vector space κ� isG-invariant in the following
sense:

〈a(g), a(h)〉 = 〈g,h〉, ∀a ∈ G,∀g,h ∈ κ�.

We define the dual code C⊥ by C⊥ = {v ∈ κn | 〈v, c〉 = 0, for all c ∈ C}. If
C ⊆ C⊥ we call C self-orthogonal. If C = C⊥ we say that the code C is self-dual.

ForU a right G-module its dual moduleU∗ = HomF2(U , F2) is a right G-module
via ( f g)(u) = f (ug−1), for f ∈ U∗, g ∈ G, and u ∈ U . If U ∼= U∗ then U is said
to be self-dual.

If C is a κG-submodule of κ�, then for any a ∈ G and u′ ∈ C⊥, and for any
u ∈ C, by the G-invariance of the inner product we have

〈au′,u〉 = 〈au′, aa−1u〉 = 〈u′, a−1u〉 = 0,

so au′ ∈ C⊥, i.e., C⊥ is G-invariant. Hence, C⊥ is a κG-submodule.
Two linear codes are isomorphic if they can be obtained from one another by per-

muting the coordinate positions. For a linear code C of length n over κ, a permutation
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of the components of a codeword of length n is said to be a permutation automor-
phism of C if the permutation maps codewords to codewords. By Aut(C) we denote
the automorphism group of C consisting of all the permutation automorphisms of C .
With this we have that G acts on C and thus G ≤ Aut(C) so that the code C becomes
a κG-submodule of the permutation module κ�, and so is C∗.

Clearly, the two duals C∗ and C⊥ are not the same object. However, there is a
connection between these two notions of duality, i.e., if C is a code of length n over κ

and G ≤ Aut(C), thenC∗ ∼= κn/C⊥ (as κG-modules, in particular, as vector spaces).
Naturally, for self-dual codes we have C∗ ∼= κn/C .

A binary code C is doubly-even if all codewords of C have weight divisible by 4.
The weight distribution of a code C is the sequence {Ai |i = 0, 1, . . . , n}, where Ai is
the number of codewords of weight i . The polynomialWC (x, y) = ∑n

i=0 Ai xn−i yi is
called the weight enumerator of C . The weight enumerator of a code C and its dual
C⊥ are related via MacWilliams identity.

In an attempt to make the paper self-contained we collect some relevant facts on the
finite rank 3 groups. The study of rank 3 permutation groups dates back to the paper
[12] of Donald Higman. Rank 3 groups can be either primitive or imprimitive.

A subset B of � is a block for G if for all g ∈ G either

Bg = B or Bg ∩ B = ∅.

If G is a permutation group on a set �, then a partition B of � is said to be G-
invariant if the elements of G permute the blocks of B blockwise, i.e., for B ∈ B
and g ∈ G, the set Bg is also a block of B. The blocks of a G-invariant partition
are called blocks of imprimitivity for G. If G is transitive on � then all blocks of a
G-invariant partition B of � have the same cardinality and G acts transitively on B.

When G is transitive, a G-invariant partition of � is called a system of imprimitivity
or a block system for G. Furthermore, every permutation group G on � preserves
the two partitions {�} and {{α} | α ∈ �}; these are called trivial partitions of �, and
their blocks, � and {α} for α ∈ �, are called trivial blocks or trivial systems of
imprimitivity. All other partitions of � are called non-trivial. A permutation group G
is said to be primitive on � if G is transitive on � and the only G-invariant partitions
of � are the trivial ones. Also G is said to be imprimitive on � if G is transitive on �

and G preserves some non-trivial partition of �.
A permutation group is called quasiprimitive if every non-trivial normal subgroup

is transitive. All quasiprimitive permutation groups of rank 3 are known. They are
either primitive or imprimitive and almost simple, see [7, Corollary 1.3].

If G is a primitive rank 3 permutation group of finite degree n then one of the
following holds:

(a) Almost simple type: S � G ≤ Aut(S), where S = soc(G) is a nonabelian simple
group;

(b) Grid type: S × S � G ≤ S0 � Z2, where S0 is a 2-transitive group of degree n0,
with S � S0 ≤ Aut(S), S nonabelian simple, and n = n02;

(c) Affine type: G = SG0, where S is an elementary abelian p-group acting regularly
on a vector space V ,G0 is an irreducible subgroup ofGL(m, p) andG0 has exactly
2 orbits on the nonzero vectors of V .
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A primitive rank 3 group G has a unique minimal normal subgroup S, called its
socle, and S can be a non-abelian simple group, a direct product of two isomorphic
non-abelian simple groups, or elementary abelian. When S is elementary abelian, G
is said to be of affine type; and when S is a direct product of two non-abelian simple
groups, G is said to be of product action type.

In what follows we give a brief but complete overview of what is known on the
classification of finite imprimitive rank 3 permutation groups. The relevant details and
results related with the said classification can be found in [7] from where most of the
material was drawn.

Suppose that G is a transitive imprimitive permutation group acting on a set �,
and suppose that G preserves a non-trivial block-system B on �. Referring to the
Embedding Theorem for imprimitive groups (see [1]) in [7] the authors consider a
block, say B ∈ B and identify � with the set B × {1, . . . , n}, where n = |B| so
that G is viewed as a subgroup of the wreath product K � Y where GB ∼= Y ≤ Sn
and K := GB

B is the component of G. Here GB, the subgroup of the symmetric
group SB induced by G is transitive and GB

B the subgroup of the symmetric group SB
induced by the setwise stabiliser GB is also transitive. The partition B is identified
with {B × {i} | i ∈ {1, . . . , n}}. In this way, if G has rank 3, then GB

B and GB are
2-transitive and B is the unique system of imprimitivity, and conversely if K ≤ SB
and Y ≤ Sn are both 2-transitive then K � Y has rank 3.

In essence, there are two infinite families of imprimitive rank 3 groups, namely
PSL(2, q) and PSL(m, q) with some additional conditions, and a finite number of
individual imprimitive examples. Below we collect the pertinent results from [7]:

Result 1 (Devillers et al. [7, Theorem 1.1]) Suppose G is an imprimitive group acting
on a set � = B × {1, . . . , n} with
(i) GB

B a 2-transitive almost simple group with socle S;
(ii) GB ≤ Sn a 2-transitive group.

Then G has rank 3 if and only if one of the following holds:
(1) Sn ≤ G;
(2) G is quasiprimitive and rank 3 on �;
(3) n = 2 and G = M10, PGL(2, 9) or Aut(A6) acting on 12 points;
(4) n = 2 and G = Aut(M12) acting on 24 points.

Wenote the following resultwhich is given in general for quasiprimitive imprimitive
rank 3 permutation groups but we state it for the restricted class of quasiprimitive
imprimitive rank 3 permutation groups of even degree, since our interest is to examine
binary self-dual codes and these must be of even length. Recall that we take the length
of the code to be the degree of the imprimitive permutation representation.

Result 2 (Devillers et al. [7, Theorem 1.2]) Let G be a transitive imprimitive permuta-
tion group of rank 3 acting on a set�. Let n be the number of blocks andm be the size of
the blocks. Then G is quasiprimitive of even degree if and only if G, n = |B|,m = |B|
and GB

B are in one of the lines of Table 1.

By Result 2 the quasiprimitive and imprimitive rank 3 groups of almost simple type
that occur with even degree are listed in Table 1.
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The following two remarks are relevant for Line 2 and Line 3 of Table 1

Remark 1 ([7, Remark 6]) The following details are relevant for the three cases given
in Line 2 of Table 1. Let S = PSL(2, q) ≤ G ≤ P0L(2, q) = A with A acting on B
of size q + 1 where q = p f ≥ 4 with p a prime and f ≥ 1, and let B ∈ B. Then
G(B) = ((Q � 〈δ〉) � 〈α〉) ∩G where Q is an elementary abelian group of order q, δ

of order q − 1 and α is of order f and G(B) denotes the setwise stabilizer of B. Let
i = |G/G ∩ PGL(2, q)| then i divides f .

Remark 2 According to [7, Theorem 1.4] a group G in Line 2 and Line 3 of Table 1 is
almost simple and block faithful if and only if the following conditions on G, n = |B|
and |B| are satisfied:
(a) Line 2: G � PSL(2, q), n = q + 1, |B| = 2 and q≡ 1(mod 4), or q≡ 3(mod 4)

and G � PGL(2, q) or i = |G/(G ∩ PGL(2, q))| is even.
(b) Line 3: G � PSL(m, q), n = qm−1

q−1 , |B| = s and s is prime, ord(pi mod s) =
s − 1, ds|(q − 1), ds|(r + λd)

q−1
pi−1

for some λ ∈ [0, s − 1], where d|r (q−1)
(pi−1)

,

and gcd(sd, s) = d. See Sect. 3.2 for explanations on d, r and i .

For the convenience of the reader, we list results concerning the existence of binary
self-dual codes invariant under permutation groups which will be used frequently
throughout the paper.

Result 3 (Günther and Nebe. [11, Theorem 2.1]) Let G ≤ Sn . Then there exists a self-
dual code C ⊆ F

n
2 with G ≤ Aut(C) if and only if every self-dual simple F2G-module

U occurs in the F2G-module F
n
2 with even multiplicity.

The next result deals with the existence of binary self-dual doubly-even codes
invariant under permutation groups.

Result 4 (Günther and Nebe. [11, Theorem 5.2]) Let G ≤ Sn . Then there is a self-dual
doubly-even code C = C⊥ ⊆ F

n
2 with G ≤ Aut(C) if and only if the following three

conditions are fulfilled:

(i) 8 | n;
(ii) every self-dual composition factor of the F2G-module F

n
2 occurs with even multi-

plicity;
(iii) G ≤ An .

2.1 Outline of the proof of the theorems

In order to determine whether a group G given in Result 1 and in Table 1 occurs as an
automorphism group of a binary self-dual code C of length n we exploit the structure
ofC and its ambient space F

n
2 as a F2G-module. Notice that in Result 1 the length n of

the code is the degree of G while in Table 1 the length n = |B||B|. In particular, note
that C ≤ F2

n is of dimension n
2 . Moreover, for each group G in the above-mentioned

list we construct all n
2 -dimensional κG-submodules C and verify whether C is self-

dual as a code. This is done withMagma [2] using Result 3. We then apply Result 4
to those codes C which are self-dual to verify whether they are doubly-even.
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3 Proof of the theorems

We prove the theorem by a series of propositions considering the permutation modules
associated with the imprimitive rank 3 action of G as described above. We start by
considering G as in Result 1.

3.1 G an imprimitive rank 3 group

LetG be as in part (1) ofResult 1. Then, it can be inferred from the proof ofTheorem1.1
of [7, p. 656–657] that if G is block-faithful then G is quasiprimitive. This implies
that G is as in part (2) of Result 1. Otherwise, if G is not quasiprimitive and Sn � G
then G is as in parts (3) and (4), respectively of Result 1 and the proof follows below.

Next, letG be as in part (2) of Result 1. HereG is a quasiprimitive group, and soG is
either primitive or imprimitive and almost simple. The binary self-dual codes of length
n admitting G a primitive rank 3 group of almost simple type have been examined in
[20]. Those admitting G a primitive rank 3 group of grid type are addressed in [21].
The classification of binary self-dual codes invariant under a primitive rank 3 group
of affine type remains open. The codes admitting a quasiprimitive imprimitive rank 3
permutation group of almost simple type will be examined in Sect. 3.2 (the possible
groups under which they are invariant are those described in Table 1).

Let G be as in part (3). Then G ∼= M10, PGL(2, 9) or Aut(A6) in their imprimitive
rank 3 representation of degree 12. For G ∼= M10,PGL(2, 9) the action is that of
G on the cosets of a subgroup isomorphic to the alternating group A5 while for
G ∼= Aut(A6), G acts on the cosets of a subgroup isomorphic to the symmetric group
S5. For any choice ofG we have an imprimitive rank 3 representation with subdegrees
1, 5 and 6 respectively. Computations withMagma show that in all cases there are no
G-invariant submodules of dimension 6.

In ending this section, let G be as in part (4). Then n = 2 and G = Aut(M12)

acting on 24 points. An examination of the maximal subgroups of M12, see ATLAS

[6, p. 33] or [17, Section 4.4.2] shows that there exists H ≤ M12 such that H ∼= M11.
Also, there is just one G-conjugacy class of such subgroups. Moreover, H is transitive
by conjugation on the 12 subgroups M11 which form one of the two M12-conjugacy
classes of such subgroups. Furthermore, this is an imprimitive rank 3 representation,
with subdegrees 1, 11, 12. Through computations with Magma we constructed the
associated permutation module F2� of degree 24, obtaining in it only one submod-
ule of dimension 12. Since this submodule satisfies Result 3, it is a binary self-dual
code. Let C(M12:2, 24) denote this self-dual code. Since the minimum distance of
C(M12:2, 24) equals 8, then C(M12:2, 24) is a [24, 12, 8]2-code. Now, a binary self-
dual code with the same parameters as those of C(M12:2, 24) and invariant under
a subgroup of M24 must be isomorphic to the extended binary Golay code. By the
uniqueness of the extended binary Golay code, we establish the following result:

Proposition 3.1 Let G = M12:2 in its imprimitive rank 3 action on the cosets ofM11.
Let F2� be the permutation module of G of dimension 24 and C(M12:2, 24) ⊂ F2�

denote a submodule of dimension 12. Then C(M12:2, 24) is a self-dual code of length
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24 which admits G as permutation group of automorphisms. Further, C(M12:2, 24)
is isomorphic to the extended binary Golay code.

Notice that Proposition 3.1 also follows by [3, Example 2.5].

3.2 G quasiprimitive imprimitive rank 3 of almost simple type

In this sectionwe examine the existence of binary self-dual codes admitting quasiprim-
itive imprimitive rank 3 permutation groups of almost simple type. As noted earlier if
these codes exist they will be invariant under the groups listed in Table 1.
We start by considering G as in Line 1 of Table 1. Then G ∼= M11 in its imprimitive
representation of degree 22. It follows from [17, Section 4.2.2, p. 34] thatG acts rank 3
with subdegrees 1, 1, 20. The point stabilizer is a subgroup isomorphic to M10. Using
Magma we determined the 2-modular structure of the F2G-permutation module of
degree 22 and found a unique submodule of dimension 11. Since this submodule
satisfies Result 3, it is a self-dual code over F2. Thus we have

Proposition 3.2 Let G = M11 in its imprimitive rank 3 action on the cosets of M10.
Let C2(M11, 22) be the submodule of dimension 11 of the permutation module F2G of
degree 22 invariant under G. Then C2(M11, 22) = [22, 11, 2]2 is the unique self-dual
code of length 22 invariant underG.Moreover,Aut(C2(M11, 22)) ∼= 2�S11 = 211:S11.
Proof The uniqueness of the codeC2(M11, 22) could be shown using [3, Lemma 2.3].
To show that the structure of the automorphism is as claimed we observe that G acts
primitively on 11 = 22

2 points, so that Aut(C(G, 11)) = S11. Hence applying [22,
Theorem 3.1 (ii), part (a)] we deduce that Aut(C2(M11, 22)) ∼= 2 � S11. ��

The next results will deal with the infinite families of quasiprimitive imprimitive
rank 3 permutation groups. For this consider G as in Line 2 of Table 1. Then G is an
almost simple group with socle PSL(2, q).

We give a brief overview of the projective groups PSL(2, q) ≤ G ≤ P�L(2, q),
referring the reader to [9] for the definitions of PSL(2, q) and PGL(2, q). Since
we are dealing with finite classical groups we assume that the field of the group
is a finite field of order q where q = p f ≥ 4 and p is a prime and f ≥ 1. We
denote the automorphism group of PSL(2, q) by P�L(2, q). It is obtained by adjoin-
ing field automorphisms to the transformations of PGL(2, q). Adjoining the field
automorphisms to PSL(2, q) yields a subgroup of P�L(2, q) denoted by P	L(2, q)

and P	L(2, q) = PSL(2, q) � Gal(Fq). Moreover |PSL(2, q)| = q(q2−1)
gcd(2,q−1) ,

|PGL(2, q)| = q(q2 − 1), |P�L(2, q)| = f q(q2 − 1) and |P	L(2, q)| = f q(q2−1)
gcd(2,q−1) .

It is a well-known fact that P�L(2, q)/PSL(2, q) ∼= C f when p = 2 and
P�L(2, q)/PSL(2, q) ∼= C f × C2 when p �= 2.

Here, we use [7, Proposition 4.10] as an aid in the description of the examples of
rank 3 groups with socle PSL(2, q). Note that these groups are of almost simple type,
i.e,

PSL(2, q) � G ≤ Aut(PSL(2, q)) = P�L(2, q),
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and satisfy the conditions stated in part (a) of Remark 2.Moreover,G has degree 2(q+
1), with a block stabilizer isomorphic to the cyclic group C2. By [7, Proposition 4.10]
we have that an almost simple group G listed in Line 2 of Table 1 acts rank 3 if and
only if the follwing three conditions hold simultaneously: (1): q≡ 1(mod 4), (2):
G = 〈PSL(2, q), αiδ〉 where i divides f , f /i is even and either pi≡ 3(mod 4), or
pi≡ 1(mod 4) and f /i≡ 0(mod 4), (3):G(B) = Q�〈δ4, αiδt 〉with t = 1 or 3, where
i = |G/(G ∩ PGL(2, q))| is even. These consitions are described in Remark 2(a).
Furthermore, the two actions for t = 1 or 3 are not isomorphic.

Note that conditions (1), (2), and (3) given above and the fact that G strictly con-
tains PSL(2, q) exclude the possibility of G = PSL(2, q), PGL(2, q),P	L(2, q) or
P�L(2, q) being a rank 3 group of degree 2(q + 1). Consider f = 2l for an integer
l ≥ 1. By condition (2), i |2l and since 2l/i is even we must have i = 1 or i = l. Direct
calculations show that the examples of rank 3 quasiprimitive imprimitiveG with socle
PSL(2, q) of degree 2(q + 1) are G = PSL(2, q) · C2l , the non-split extension of
PSL(2, q) by C2l where q = p2l for some l ≥ 1 and p≡ 3(mod 4). A description of
these groups can be found in [5, Section 3.2].

Recall that G has two non-isomorphic rank 3 actions of degree 2(q + 1) with
subdegrees 1, 1, and 2q2l for l ≥ 1. These rank 3 actions give rise to two inequiv-
alent imprimitive rank 3 permutation modules of dimension 2(q + 1) each of which
containing a unique submodule of dimension q + 1.

In Fig. 2 below we depict the diagram of the submodule structure (the composition
factors can be derived from this) of the permutation module F2� associated to one of
the two imprimitive rank 3 permutation representations of PSL(2, q) · C2l of degree
2(q + 1). The other imprimitive rank 3 representation can be described in a similar
way. Notice that the vector space dimension is given in parentheses.

Let Pq+1 = F2�q+1 denote the permutation module of dimension q + 1. It is
well-known that G acts 2-transitively on �q+1. Consequently the dimension of the
EndF2G(Pq+1) = 2. A basis for EndF2G is given by

ε1 = id(Pq+1);

ε2 =
⎛

⎝u 	→
∑

v∈�q+1

v for all u

⎞

⎠ .

The permutation module has structure as given in Fig. 1.
Now, let P2(q+1) = F2�2(q+1) denote the permutation module for G of degree

2(q + 1). Then by Result 2 and Table 1 we have that this representation has q + 1
blocks of imprimitivity of length 2 which are permuted 2-transitively. We establish a
natural relation between Pq+1 and P2(q+1) in the following way:

ϕ : F2�2(q+1) −→ F2�q+1, given by u 	→ u + u′ (1)

where {u, u′} is the block containing u.

We see that ϕ is an F2G endomorphism of P2(q+1) and Im(ϕ) ∼= Pq+1 by
identification of blocks. By the isomorphism theorem for modules we observe that
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Fig. 1 Submodule lattice for the
F2PSL(2, q)-module of
dimension (q + 1)

0 ⊥

1 ⊥

1

0

(q + 1)

(q)

(1)

(0)

Fig. 2 Submodule structure of
the imprimitive rank 3
permutation module of
F2PSL(2, q) · C2l of dimension
2(q + 1)

F2Ω

1 ⊥

X⊥

C = C⊥

X

1

0

(2(q + 1))

(2q + 1)

(q + 2)

(q + 1)

(q)

(1)

(0)

P2(q+1)/Ker(ϕ) ∼= Im(ϕ) ∼= Pq+1. Thus Ker(ϕ) = Im(ϕ) and so we obtain a com-
position series from which we obtain the complete lattice of submodules as depicted
in Fig. 2. Note that in Fig. 2 the vector space dimension is given in parentheses.

Let X = C(G,�) denote the code of dimension q and X⊥ its dual code of dimen-
sion q+2. Then, it follows from Fig. 2 that between X and X⊥ are the submodules: X ,
C = C⊥ and X⊥, with dim(X) = q and dim(C) = dim(C⊥) = q+1. Further, notice
that the composition factors are κ (4 times) and L ∼= 〈1〉⊥/X⊥ ∼= X/〈1〉 (dually).

We deduce the following

Proposition 3.3 The submodules given in Fig. 2 are all the F2G-submodules of
F2�2(q+1).

Notice from Fig. 2 that there is only one submodule of dimension q + 1 invariant
under G. Applying Result 3 we obtain that this module is a binary self-dual code. In
the next result we state the pertinent properties of the code.

Proposition 3.4 Let G = PSL(2, q) · C2l be the non-split extension of PSL(2, q) by
C2l in its imprimitive rank 3 representation of degree 2(q+1). If C is a binary self-dual
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code of length 2(q + 1) invariant under G, then C is a [2(q + 1), q + 1, 2]2 code.
Moreover, C has q + 1 words of weight 2 and Aut(C) ∼= 2 � Sq+1. The codewords of
weight 2 are stabilized by a maximal subgroup of Aut(C) of index q + 1.

Proof The length and dimension of the codes follow from Table 1 and from the above
discussion. Using [3, Proposition 2.15] it can be shown that the minimum weight of
C is 2. ��

The smallest example of a PSL(2, q)-invariant quasiprimitive imprimitive rank 3
permutation representation occurs when G = M10 ∼= PSL(2, 9) · 2 of degree 20 with
socle PSL(2, 9). As alluded to above, there are two inequivalent rank 3 permutation
representations of degree 20 in G each with stabilizer H isomorphic to 3:S3 · 2 and
subdegrees 1, 1, and 18. Furthermore, each of these representations produces a unique
submodule of dimension 10 which can be proven to be a self-dual code using Result 3.
By using [3, Lemma 2.3] one can show that these codes are equivalent. The following
example illustrates the situation at hand

Example 1 Let G = M10 ∼= PSL(2, 9) · 2 be the non-split extension of PSL(2, 9)
by C2. Let F2� be the permutation module of dimension 20 associated with the
imprimitive rank 3 permutation representation of G of degree 20. Let C ⊂ F2� be a
binary self-dual code of length 20 invariant under G. Then C is a [20, 10, 2]2 code.
Further, Aut(C) ∼= 2 � S10.
The weight distribution of the code is:

A0 = A20 = 1, A2 = A18 = 10, A4 = A16 = 45,

A6 = A14 = 120, A8 = A12 = 210, A10 = 252.

Since the normalizer NG(I (H)) ∼= C2
4

� H , where I (H) denotes the set of
involutions of H ,we conclude by using [3, Proposition 2.15] that theminimumweight
of C is 2.

Now, let G be as in Line 3 of Table 1, i.e. G ∼= PSL(m, q). Recall that the field
of the group is the finite field of q elements and that q = p f and f ≥ 1. By [7,
Proposition 4.12 (1)] G is rank 3 if and only if G satisfies the conditions given in part
(b) of Remark 2.Moreover, [7, Remark 7] establishes thatG ≤ PGL(m, q)�〈αi 〉with
α the Frobenius automorphism and i divides f .Here, d = min{ j > 0 : ω j ∈ F},with
F ≤ GF(q)∗ andω a primitive element ofGF(q).Moreover, d divides gcd(m, q−1),
F = 〈ωd〉 and H = G∩PGL(m, q), and [PGL(m, q):H ] = d with r = [0, . . . , d−1].

We distinguish two cases depending on the parity of m, i.e, m ≥ 3 and q an odd
prime, and m ≥ 4 even and q an odd prime, respectively.

Here we deal with m ≥ 3 and odd. The case where m ≥ 4 is even and q is an
odd prime follows immediately afterwards. To this end assume that s = 2 with d =
1, r = 0 and λ = 0 in Remark 2 (b). Recall from [7, Proposition 4.12 (1)] that under
the above assumptions G = PSL(m, q) produces two inequivalent quasiprimitive
imprimitive rank 3 representations of degree 2 × qm−1

q−1 . These have subdegrees 1, 1,

and 2( q
m−q
q−1 ), respectively.Without loss of generalitywe choose thefirst representation

of that degree, and in Fig. 3 belowwe give a description of the F2G-submodule lattice.
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F2Ω

1 ⊥

X⊥

U1 U2 U3

X

1

{0}

(2( qm−1
q−1 ))

(2( qm−1
q−1 ) − 1)

( qm+q−2
q−1 )

( qm−1
q−1 () qm−1

q−1 )

( q(qm−1−1)
q−1 )

(1)

(0) m ≥ 3 odd.

Fig. 3 Submodule lattice of the quasiprimitive imprimitive rank 3 permutation module of PSL(m, q) for
m ≥ 3 odd

Now, let X = C(G,�) denote the code of dimension qm−1
q−1 −1 and X⊥ its dual code

with dimension qm−1
q−1 +1. Then, it follows from Fig. 3 that between X and X⊥ are the

submodules: X , U1, U2, U3 and X⊥, with dim(U1) = dim(U2) = dim(U3) = qm−1
q−1 .

We note that a similar analysis yields the same results for the other rank 3 repre-
sentation of this degree. In fact, it can be proven that the binary codes of these two
representations are equivalent.

Thus we deduce the following result for the submodules of the F2G-module F2�

of dimension 2 × qm−1
q−1 where m ≥ 3 is odd and q is an odd prime.

Proposition 3.5 The submodules given inFig.3areallF2G-submodules ofF2�2× qm−1
q−1

.

Applying Result 3 to U1,U2 and U3 we found that only one of these submodules
is a self-dual code. Below in Proposition 3.6 we state some of the relevant properties
of the unique self-dual code of this representation.

Proposition 3.6 Let G = PSL(m, q) for m ≥ 3 and q ≥ 3 both odd, in its imprimitive
rank 3 permutation representation of degree 2× qm−1

q−1 . If C is a binary self-dual code

of length 2× qm−1
q−1 invariant under G then C is a [2× qm−1

q−1 ,
qm−1
q−1 , 2]2 code. Further,

Aut(C) ∼= 2 � Sqm−1
q−1

and C contains qm−1
q−1 words of weight 2.

Proof The proof follows virtually the same argument given in the proof of Proposi-
tion 3.4. So we omit it. ��
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Remark 3 Notice from Proposition 3.6 that the code C contains qm−1
q−1 words of mini-

mum weight 2. In fact, these codewords span the code.

The smallest example of a PSL(m, q)-invariant quasiprimitive imprimitive rank
3 representation occurs when (m, q) = (3, 3), i.e. for G = PSL(3, 3) of degree
26. Recall that in this case we expect to have two equivalent rank 3 representations
of degree 26 in G. The point stabilizer is a subgroup isomorphic to 3:S3 · 2 with
subdegrees 1, 1, and 24. By the above discussion we obtain a unique self-dual code of
dimension 13. Thus we have

Example 2 ForG = PSL(3, 3) of degree 26 there exists a unique self-dual binary code
C = [26, 13, 2]2. Further Aut(C) ∼= 2 � S13.
The weight distribution of the code is:

A0 = A26 = 1, A2 = A24 = 13, A4 = A22 = 78, A6 = A20 = 286,

A8 = A18 = 715, A10 = A16 = 1287, A12 = A14 = 1716.

Notice that there are 13 codewords of minimum weight 2 in C . These form a basis
for C .

Now consider G = PSL(m, q) and m ≥ 4 and even. As in the preceding case set
s = 2, d = 1, r = 0 and λ = 0. We distinguish two cases, namely m = 2u and u
even, and m = 2u and u odd, respectively.

Ifm = 2u and u is even, PSL(m, q) has two isomorphic imprimitive rank 3 actions
of degree 2 × qm−1

q−1 when q = p2 and q≡ 1(mod 4), and if m = 2u and u is odd the
imprimitive rank 3 actions occur for q ≥ 5 and q≡ 1(mod 4). The modulo 2 structure
of the permutation module F2� as well as its complete F2G-submodule lattice are
depicted in Fig. 4, where as in the previous cases the dimension of the vector space is
in parenthesis.

Note from Fig. 4 that there are three submodules of dimension qm−1
q−1 invariant under

G. It can be shown by applying Result 3 that all three submodules are self-dual codes.
In the result below we state the main obvious properties of these codes. The proof of
the result can be obtained by a thorough inspection of the submodule structure of the
codes. Observe that for the case when m = 2u and u even, the length is divisible by
eight and two of these codes are equivalent doubly-evenwhile the other is a singly-even
code.

Proposition 3.7 Let G = PSL(m, q) with m ≥ 4 even in its imprimitive rank 3
representation of degree 2 × qm−1

q−1 .

(1) Let m = 2k, k an even integer and q = p2≡ 1(mod 4), p a prime. If C is a binary
self-dual code of length 2 × qm−1

q−1 invariant under G, then

(a) C is [2× qm−1
q−1 ,

qm−1
q−1 , 2]2 code. Moreover,Aut(C) ∼= 2 �Sqm−1

q−1
and C contains

qm−1
q−1 words of weight 2 or

(b) C is a [2 × qm−1
q−1 ,

qm−1
q−1 , 4]2 doubly-even code.
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F2Ω

1 ⊥

X⊥

U1 U2 U3

X

1

{0}

(2( qm−1
q−1 ))

(2( qm−1
q−1 ) − 1)

( qm+q−2
q−1 )

( qm−1
q−1 ) ( qm−1

q−1 ) ( qm−1
q−1 )

( q(qm−1−1)
q−1 )

(1)

(0) m ≥ 4 even

Fig. 4 Submodule lattice of the quasiprimitive imprimitive rank 3 permutation module of PSL(m, q) for
m ≥ 4 even

(2) Let m = 2k, k an odd integer and q≡ 1(mod 4). If C is a binary self-dual code of
length 2 × qm−1

q−1 invariant under G, then

(a) C is a [2 × qm−1
q−1 ,

qm−1
q−1 , 4]2 code, or

(b) C is [2× qm−1
q−1 ,

qm−1
q−1 , 2]2 code. Moreover,Aut(C) ∼= 2 �Sqm−1

q−1
and C contains

qm−1
q−1 words of weight 2.

For m = 2u, u an even integer and q2≡ 1(mod 4), the smallest example of a
PSL(m, q)-invariant quasiprimitive imprimitive rank 3 representation occurs for G =
PSL(4, 32)of degree 1640.The action is that of PSL(4, 9)on the cosets of PSL(3, 9):36
with subdegrees 1, 1, 1638. Applying Result 3 to the permutation module F2� of
degree 1640 defined by the above imprimitive rank 3 action we obtain 3 submodules
of dimension 820, all of which being self-dual as codes. Two of these binary self-dual
codes are equivalent and doubly-even and the third is singly-even.

Below in Table 2 we display the submodule lattice of F2� where |�| = 1640
obtained through computations with Magma. Since the table is symmetric about the
diagonal we omit the lower half for clarity. In addition, we place a 1 or . in the table
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Table 2 Incidence matrix of the
poset of submodules of
F2

1640×1

dim 0 1 819 820 820 820 821 1639 1640

0 1 1 1 1 1 1 1 1 1

1 . 1 1 1 1 1 1 1 1

819 . . 1 1 1 1 1 1 1

820 . . . 1 . . 1 1 1

820 . . . . 1 . 1 1 1

820 . . . . . 1 1 1 1

821 . . . . . . 1 1 1

1639 . . . . . . . 1 1

1640 . . . . . . . . 1

according to whether or not a submodule is contained in a given module (sometimes
itself).

The parameters of the self-dual codes listed in Table 2 are given in

Example 3 Let G = PSL(4, 9) of degree 1640 and let C be a binary self-dual code of
length 1640 invariant under G. Then C is either a [1640, 820, 4]2 doubly-even code
with 335790 words of weight 4 or C is a [1640, 820, 2]2 singly-even code with 820
words of weight 2.

Proof LetC = [1640, 820, 4]2 be a PSL(4, 9)-invariant self-dual code. Via direct enu-
meration withMagma we find that C contains 335790 words of weight 4. Similarly,
for C = [1640, 820, 2]2 we obtain 820 words of weight 2. Hence the result. ��

For m = 2u, u an odd integer and q≡ 1(mod 4), the smallest example of
a PSL(m, q)-invariant quasiprimitive imprimitive rank 3 representation occurs for
G = PSL(6, 5) of degree 7812. The action is that of PSL(6, 5) on the cosets of
PSL(5, 5):55 with subdegrees 1, 1, 7810. Applying Result 3 to the permutation mod-
ule of PSL(6, 5) overF2 defined by the above imprimitive rank 3 action constructed by
computations with Magma we found 3 submodules of dimension 3906, all of which
self-dual as codes. Observe that none of these codes is doubly-even since 8 � 7812.

Below in Table 3 we display the submodule lattice of F2� where |�| = 7812
obtained through computations withMagma.

The parameters of the self-dual codes are given in

Example 4 Let G = PSL(6, 5) of degree 7812. If C denotes a binary self-dual code of
length 7812 invariant under G then C is either a [7812, 3906, 4]2 with 7626465 code-
words of weight 4 or C is a [7812, 3906, 2]2 singly-even code with 3906 codewords
of weight 2.

Now, letG be as in Line 4 of Table 1, ie,G = PGL(3, 4). There are two inequivalent
rank 3 representations of degree 126 in G. Using Magma we found two self-dual
modules of dimension 63 for each representation. Since neither submodule satisfies
Result 3 we deduce that there are no self-dual codes of length 126 invariant under G.

Let G = P�L(3, 4). There are four pairwise equivalent representations of degree
126 inG. Two of these representations act rank 12, and are thus excluded. The remain-
ing two are rank 3 on 126 points with subdegrees 1, 5 and 120, respectively. Using

123



B. G. Rodrigues

Table 3 Incidence matrix of the poset of submodules of F2
7812×1

dim 0 1 3905 3906 3906 3906 3907 7811 7812

0 1 1 1 1 1 1 1 1 1

1 . 1 1 1 1 1 1 1 1

3905 . . 1 1 1 1 1 1 1

3906 . . . 1 . . 1 1 1

3906 . . . . 1 . 1 1 1

3906 . . . . . 1 1 1 1

3907 . . . . . . 1 1 1

7811 . . . . . . . 1 1

7812 . . . . . . . . 1

Magma we constructed the permutation module F2� of dimension 126 and obtained
two submodules of dimension 63 for each representation. Here too, there are no G-
invariant self-dual codes of length 126 since neither submodule satisfies Result 3.

Next, consider G = PSL(5, 2). There are two inequivalent rank 3 representations
of degree 248 in G. Through computations withMagma we found no submodules of
dimension 124 in the associated permutation modules.

Let G = P�L(3, 8). There are two inequivalent rank 3 representations of degree
2044 in G. For each of the two representations we searched for existence of self-dual
codes invariant under G. We found 16 submodules of dimension 1022, but none of
these is a self-dual code.

Finally, let G = PSL(3, 2) of degree 14. There are two inequivalent imprimitive
rank 3 representations of degree 14 in G with stabilizer of a point isomorphic to the
alternating group A4. There are two conjugacy classes of A4 in PSL(3, 2) each with
subdegrees 1, 1, 12. The reason is because the automorphism group of PSL(2, 7) ∼=
PSL(3, 2) is PGL(2, 7) and these two conjugacy classes fuse together in PGL(2, 7).

The associated F2G permutation modules give three submodules of dimension 7
each, see Table 4. For the reader’s convenience, in Table 4we give the fullF2G-module
structure of the permutation module F2PSL(3, 2) = F

14
2 of dimension 14 computed

using Magma.
We verified with Magma that for each permutation module, only one of its 7-

dimensional submodule satisfies Result 3. The said submodule is thus a self-dual
code. The weight enumerator of the code is

A0 = A14 = 1, A2 = A12 = 7, A4 = A10 = 21, A6 = A8 = 35.

We now have

Proposition 3.8 Up to isomorphism there is a unique self-dual codeC2(PSL(3, 2), 14)
= [14, 7, 2]2 invariant under PSL(3, 2). Further, Aut(C2(PSL(3, 2), 14)) ∼= 2 � S7.
Proof To prove the uniqueness one can appeal to [3, Lemma 2.3], and for the structure
of the automorphism we observe that G acts primitively on 7 = 14

2 points, so that
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Table 4 Incidence matrix of the poset of submodules of F2
14×1

dim 0 1 3 4 4 4 5 6 7 7 7 8 9 10 10 10 11 13 14

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 . 1 . . 1 . 1 . . 1 . 1 . . 1 . 1 1 1

3 . . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 . . . 1 . . 1 . 1 . . 1 . 1 . . 1 . 1

4 . . . . 1 . 1 . . 1 . 1 . . 1 . 1 1 1

4 . . . . . 1 1 . . . 1 1 . . . 1 1 . 1

5 . . . . . . 1 . . . . 1 . . . . 1 . 1

6 . . . . . . . 1 1 1 1 1 1 1 1 1 1 1 1

7 . . . . . . . . 1 . . 1 . 1 . . 1 . 1

7 . . . . . . . . . 1 . 1 . . 1 . 1 1 1

7 . . . . . . . . . . 1 1 . . . 1 1 . 1

8 . . . . . . . . . . . 1 . . . . 1 . 1

9 . . . . . . . . . . . . 1 1 1 1 1 1 1

10 . . . . . . . . . . . . . 1 . . 1 . 1

10 . . . . . . . . . . . . . . 1 . 1 1 1

10 . . . . . . . . . . . . . . . 1 1 . 1

11 . . . . . . . . . . . . . . . . 1 . 1

13 . . . . . . . . . . . . . . . . . 1 1

14 . . . . . . . . . . . . . . . . . . 1

Aut(C2(G, 7)) = S7. Hence by using [16, Theorem 3(ii) part (a)] we deduce that
Aut(C2(G, 14)) ∼= 2 � S7 = 27:S7. ��

The preceding propositions give the proof of Theorem 1.1 stated in Sect. 1.

Remark 4 The general problem of description of the submodule structure for the cross
characteristic, and for the defining characteristic of the permutation modules defined
by the imprimitive rank 3 groups remains open. In particular, it would be of interest
to determine the modulo 2 structure of the rank 3 permutation module of PSL(m, q)

of degree s × qm−1
q−1 where s is a prime.

4 Self-dual doubly-even codes

From the examples of self dual codes constructed in this paper we note that the clas-
sification of binary self-dual doubly-even codes invariant under an imprimitive rank 3
permutation groupG is reduced to determining those binary self dual codes that satisfy
Result 4. In view of this, using results of Sect. 3 we observe that there are possibilities
of existence of self-dual doubly-even codes invariant under imprimitive rank 3 per-
mutation groups in the following cases: Aut(M12) of degree 24 (see Proposition 3.1)
and G = PSL(m, q) of degree 2 × qm−1

q−1 for m ≥ 4 even and q = p2≡ 1(mod 4),
where p is a prime (see part 1. (b) of Proposition 3.7).
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Thus, the classification of binary self-dual doubly-even codes invariant under an
imprimitive rank 3 permutation group G is given as follows:

Proposition 4.1 Let C be a binary self-dual doubly-even code with G ≤ Aut(C)

an imprimitive rank 3 permutation group. Then C is isomorphic to either a code
with parameters [2 × qm−1

q−1 ,
qm−1
q−1 , 4]2, for G = PSL(m, q) of degree 2 × qm−1

q−1 and

q = p2≡ 1(mod 4) with p a prime or C is isomorphic to the extended binary Golay
code and G ∼= Aut(M12) of degree 24.

5 Self-dual extremal codes

In this section we classify extremal binary self-dual codes admitting finite imprimitive
rank 3 groups as permutation automorphism groups.

Due to Mallows-Sloane [19] and Rains [15] a binary self-dual code C of length n
and minimum distance d satisfies

d ≤
{
4� n

24� + 4, if n �≡ 22(mod 24)
4� n

24� + 6, if n≡ 22(mod 24).
(2)

A code C is called extremal if equality holds in (2). By Result 4(i) (see also [10]),
the length n of a self-dual doubly-even code is a multiple of 8. If C is an extremal
doubly-even code then d ≤ 4� n

24� + 4 (see [15]) and n ≤ 3928, by a result of Zhang
[23]. The bound for the length of singly-even extremal self-dual codes is still open.
However, the existence of extremal doubly-even codes is known only for small values
of n; the largest being 136. Thus, there is a large gap between the bound on the length
of doubly-even extremal codes and what we can really construct.

A simple check of the minimum distance of the self-dual codes obtained shows
that there are no singly-even extremal codes, while there are possibilities of existence
of binary self-dual extremal doubly-even codes in the following cases: Aut(M12) of
degree 24, and PSL(4, 9) of degree 1640. Thus, the classification of extremal codes
invariant under an imprimitive rank 3 permutation group G is reduced to determining
whether the doubly-even codes of lengths 24, and 1640, respectively are extremal.

For PSL(4, 9) of degree 1640 we have by Example 3 that C is a [1640, 820, 4]2
code. One can easily verify that C does not satisfy (2) with equality and so it is not
extremal. Then it follows by Proposition 3.1 that C is isomorphic to the extended
binary Golay code and thus extremal.

With this discussion we have shown that if C is an extremal self-dual doubly-
even code and C is invariant under an imprimitive rank 3 permutation group acting
transitively on its coordinate positions, then C is isomorphic to the extended binary
Golay code. Thus we have

Theorem 5.1 Let C be an extremal binary self-dual doubly-even code admitting an
imprimitive rank 3 permutation groupG as an permutation automorphismgroup. Then
C is isomorphic to the extended binary Golay code and G is isomorphic toAut(M12).
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Remark 5 In [20] it was proved that there is no extremal binary self-dual code invariant
under a primitive rank 3 group of almost simple type. Combining this information with
the results obtained in Sect. 3.2 regarding existence (respectively non-existence) of
binary self-dual codes invariant under quasiprimitive imprimitive rank 3 groups of
almost simple type we deduce the result given a continuation.

Theorem 5.2 There is no extremal binary self-dual doubly-even code admitting a
quasiprimitive rank 3 group G of almost simple type as a permutation automorphism
group.

6 Conclusion

In this paper we gave a classification of binary self-dual codes admitting an imprim-
itive rank 3 permutation group. As a by-product we determined all binary extremal
self-dual codes which admit an imprimitive rank 3 group as a permutation group of
automorphisms acting transitively on their coordinate positions.

We found that only one known binary extremal self-dual code seems to enjoy the
property that a non-solvable group of automorphisms acts rank 3 and transitively on
its coordinate positions.
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