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On the Capacity of Constrained Permutation
Codes for Rank Modulation

Sarit Buzaglo, Member, IEEE, and Eitan Yaakobi, Member, IEEE

Abstract— Motivated by the rank modulation scheme, a recent
study by Sala and Dolecek explored the idea of constraint codes
for permutations. The constraint studied by them is inherited
by the inter-cell interference phenomenon in flash memories,
where high-level cells can inadvertently increase the level of low-
level cells. A permutation σ ∈ Sn satisfies the single-neighbor
k-constraint if |σ(i + 1) − σ(i)| ≤ k for all 1 ≤ i ≤ n − 1.
In this paper, this model is extended into two constraints.
A permutation σ ∈ Sn satisfies the two-neighbor k-constraint if
for all 2 ≤ i ≤ n−1, |σ(i)−σ(i−1)| ≤ k or |σ(i + 1)−σ(i)| ≤ k,
and it satisfies the asymmetric two-neighbor k-constraint if for
all 2 ≤ i ≤ n − 1, σ(i − 1) − σ(i) < k or σ(i + 1) − σ(i) < k.
We show that the capacity of the first constraint is (1 + ε)/2 in
case that k = �(nε ) and the capacity of the second constraint
is 1 regardless for any positive k. We also extend our results
and study the capacity of these two constraints combined with
error-correcting codes in the Kendall τ -metric.

Index Terms— Error-correcting codes, constrained codes,
Kendall τ -metric, permutations, multi-permutations.

I. INTRODUCTION

FLASH memories are, by far, the most important type of
non-volatile memory (NVM) in use today. Flash devices

are employed widely in mobile, embedded, and mass-storage
applications, and the growth in this sector continues at a stag-
gering pace. At the high level, flash memories are comprised
of blocks of cells. These cells can have binary values, i.e. they
store a single bit, or can have multiple levels and thus can store
multiple bits in a cell.

One of the main challenges in flash memories is to exactly
program each cell to its designated level. Furthermore, flash
memories suffer from the cell leakage problem, by which
a charge may leak from the cells and thus cause reading
errors [5]. In order to overcome these difficulties, the novel
framework of rank modulation codes was introduced in [11].
Under this setup, the information is represented by permuta-
tions which are derived by the relative charge levels of the
cells, rather than by their absolute levels. Permutation codes
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were originally studied five decades ago in the work of Slepian
for the transmission of bandlimited signals over Gaussian
channels [23] and in the work of Chadwick and Kurz for signal
detection over channels with non-Gaussian noise [6].

Another conspicuous property of flash memory, resulting
from its rapid growth density, is the appearance of inter-
cell interference (ICI). The level of a cell might increase
if its neighbor cells are programmed to significantly higher
levels [15]. The ICI is caused by the parasitic capacitance
between neighboring cells, and in particular, multilevel cell
programming is severely influenced by this effect.

Motivated by the rank modulation scheme and the ICI
phenomenon, a recent research by Sala and Dolecek [20], [21]
proposed the study of constrained codes for permutations.
Under this setup, the constraint is invoked over the
permutation’s symbols. In the model studied in [21], the
authors explored the constraint in which the difference
between consecutive symbols is upper bounded. In the setting
of rank modulation, this constraint prevents the scenario in
which a high-level cell affects its low-level neighbor cell.
Namely, let Sn be the set of all permutations of length n,
then it was said that a permutation σ ∈ Sn satisfies
the single-neighbor k-constraint if |σi − σi+1| ≤ k for
all 1 ≤ i ≤ n − 1. For example, the permutation σ =
[3, 1, 2, 4, 5] satisfies the single-neighbor 2-constraint but not
the single-neighbor 1-constraint. For any positive integers k
and n, if Un,k is the set of permutations that meet the single-
neighbor k-constraint, then the capacity of this constraint
is defined as C1(k) = limn→∞ log |Un,k |

log n! . The main result
from [21] states that if k = �(nε), for some 0 ≤ ε ≤ 1, then
C1(k) = ε (in this paper we only use the base 2 logarithm).

In this work, the single-neighbor constraint is naturally
extended for two neighbors as it better captures the ICI phe-
nomenon. This extension is applied both symmetrically and
asymmetrically. In the symmetric version, as proposed in [21],
a permutation satisfies the constraint if the difference between
a symbol and one of its neighbors is upper bounded by
some prescribed value k. In the asymmetric version, we will
constrain the symbols difference only for patterns of the form
high-low-high. This constraint is a better modulation for the
ICI phenomenon in flash memories since the ICI mainly
affects patterns of the form high-low-high and not the other
ones [2], [24]. Thus, as in the single-neighbor constraint, we
similarly define the capacity of these two constraints and show
that if k = �(nε), for some 0 ≤ ε ≤ 1, then in the symmetric
constraint the capacity is (1 + ε)/2 and in the asymmetric
constraint the capacity equals 1 for any positive k.
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The constraints studied in this paper as well as in [21] are
effective in reducing the errors caused by the ICI. However,
random errors may still happen. While there are several
metrics under which error-correcting codes for permutations
were studied, we choose to focus on the Kendall τ -metric
due to its high applicability to the error behavior in the rank
modulation scheme [12] for flash memory. Hence, we will
study codes with minimum distance according to the Kendall
τ -distance that yet consist of only permutations that satisfy
the constraints studied in the paper.

The rest of the paper is organized as follows. In Section II,
we introduce the notations and formally define the constraints
studied in this paper. Section III studies the capacity of the
symmetric constraint and Section IV studies the capacity of
the asymmetric constraint. In Section V, we extend our results
and study the capacity of these two constraints combined with
error-correction codes in the Kendall τ -metric. We conclude
our results in Section VI.

II. DEFINITIONS AND NOTATIONS

In this section we formally define the constraints studied in
the paper and introduce some of the notations and tools that
we will use to compute their capacity.

A permutation on a finite set X is a bijection σ : X → X .
Denote by [n] the set of n integers {1, 2, . . . , n}. For two
integers a, b, where a < b, denote by [a, b] the set of
b − a + 1 integers {a, a + 1, a + 2, . . . , b}. Let Sn be the
set of all permutations on [n] and let S([a, b]) be the set of
all permutations on [a, b]. We denote a permutation σ ∈ Sn

(σ ∈ S([a, b]), respectively) by σ = [σ(1), σ (2), . . . , σ (n)]
(σ = [σ(a), σ (a +1), . . . , σ (b)], respectively). The inverse of
σ ∈ Sn is denoted by σ−1 = [σ−1(1), σ−1(2), . . . , σ−1(n)],
where σ−1(i) = j if σ( j) = i .

We use permutations of length n in order to represent
the ranking of n flash memory cells in the rank modulation
scheme. In particular, the n flash memory cells are represented
by a permutation σ ∈ Sn , where σ(i) corresponds to the
ranking of the i -th cell in an increasing order. For example, if
σ(i) = 1 then the i -th cell has the lowest charge level while
σ(i) = n implies that the i -th cell stores the highest charge
level. Under this definition of ranking, if σ(i + 1) − σ(i) is
high then the charge level of the (i +1)-st cell is much higher
than the charge level of the i -th cell.

Remark 1: Note that there are two alternatives to represent
the cells’ rankings by a permutation. The first one is the
method we use in this paper where σ(i) corresponds to the
ranking of the i -th cell. In the second approach σ(i) is
the index of the cell with the i -th rank. Hence, the permutation
that represents some n cells according to the second approach
is simply the inverse of the permutation that represents these
cells according to the first approach. While the two represen-
tations are dual to each other, we chose the first one for the
convenience of describing the constraints in our work.

Definition 2: Let n and k be positive integers. A permuta-
tion σ ∈ Sn is said to satisfy the two-neighbor k-constraint
if for all i , 2 ≤ i ≤ n − 1, |σ(i) − σ(i − 1)| ≤ k
or |σ(i + 1) − σ(i)| ≤ k. Denote by An,k the set of all
permutations in Sn that satisfy the two-neighbor k-constraint.

A two-neighbor k-constrained code is a subset of An,k .
Finally, for every function k : N → N, the capacity of the
two-neighbor k-constraint is defined as

C(k) = lim sup
n→∞

log |An,k(n)|
log n! . (1)

Example 3: If the charge levels of seven flash memory
cells are given by (0.2, 1, 2.5, 0.75, 1.5, 1.9, 0.5) then the
representation of these cells is given by the permutation
σ = [1, 4, 7, 3, 5, 6, 2]. The permutation σ satisfies the two-
neighbor 3-constraint but not the two-neighbor 2-constraint.

If k ≥ n − 1 then since the absolute value of the difference
between two distinct elements of [n] is at most n−1, it follows
that An,k = Sn . In fact, An,k = Sn even for k = n − 2.
This property holds since the only two distinct elements that
admit a difference which is higher than k are 1 and n, and
therefore for every 2 ≤ i ≤ n − 1, |σ(i) − σ(i − 1)| ≤ k or
|σ(i + 1)− σ(i)| ≤ k.

The purpose of the two-neighbor constraint is to combat
the ICI problem by eliminating high differences between
the rankings of a cell with both of its neighbors. However,
this constraint does not distinguish between high-low-high
and low-high-low patterns and thus eliminates them both.
A weaker constraint which may fit better to the ICI phenomena
is defined next.

Definition 4: Let n and k be positive integers.
A permutation σ ∈ Sn is said to satisfy the asymmetric
two-neighbor k-constraint if for all i , 2 ≤ i ≤ n − 1,
σ(i − 1) − σ(i) ≤ k or σ(i + 1) − σ(i) ≤ k. The set of
all permutations that satisfy the asymmetric two-neighbor
k-constraint is denoted by Bn,k . An asymmetric two-neighbor
k-constrained code is a subset of Bn,k and for every
function k : N → N, the constraint’s capacity is defined as

˜C(k) = lim sup
n→∞

log |Bn,k(n)|
log n! .

Example 5: The permutation σ = [1, 4, 7, 3, 5, 6, 2] from
Example 3 satisfies the asymmetric two-neighbor 2-constraint
but not the asymmetric two-neighbor 1-constraint.

Remark 6: We restrict our discussion on the capacities of
both constraints only for functions k : N → N such that
k = �(nε), for some 0 ≤ ε ≤ 1. Also, we use in the capacity
definitions the supremum limit versions since the limits do not
necessarily exist. However, we shall later see that if k = �(nε)
then these limits exist.

Note, that every permutation which satisfies the
two-neighbor k-constraint satisfies the asymmetric two-
neighbor k-constraint as well, thus C(k) ≤ ˜C(k).

In the construction of two-neighbor k-constrained codes
we will use multi-permutations, which are natural gener-
alization of permutations. A balanced multi-set M�,m =
{1m, 2m , . . . , �m} is a collection of the elements in [�], each
appears m times. A multi-permutation on M�,m is a function
σ : [�m] → [�] such that |{ j : σ( j) = i}| = m,
for all i ∈ [�]. As for permutations, σ will be represented
by [σ(1), σ (2), . . . , σ (�m)]. The set of all multi-permutations
over M�,m is denoted by P�,m . This definition can be extended
for multi-sets which are not balanced, however we will
not need this generalization for our purposes. For a multi-
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permutation σ ∈ P�,m , we distinguish between appearances of
the same number in σ , by their positions in σ . We consider
the increasing order of these positions. For every i ∈ [�] and
r ∈ [m], we denote by ir the r th appearance of i in σ . By abuse
of notation, we sometimes write for i ∈ [�], r ∈ [m], σ( j) = ir

and j = σ−1(ir ) to indicate that the r -th appearance of i is
in the j -th position of σ .

Example 7: For the multi-set M3,2 = {12, 22, 32}, we have
that σ = [1, 3, 1, 2, 3, 2] is a multi-permutation in P3,2, and
for example σ(3) = 12, and 3 = σ−1(12).

Note, that multi-permutations, besides of being a tool in
our solutions, find interest also in flash memory applications.
The rank modulation scheme was recently generalized such
that multiple cells can hold the same rank and thus represent
a multi-permutation; see e.g. [9], [10]. As a consequence,
error-correction codes for multi-permutations have attracted
attention as well [4], [22]. Hence, the generalization of
the aforementioned constraints and similar ones for multi-
permutations is also very important and interesting, however
is out of the scope of this paper.

III. THE TWO-NEIGHBOR CONSTRAINT

In this section we study the two-neighbor constraint and
in particular find its capacity. This will be done first by
a construction of two-neighbor k-constrained codes which
provides a lower bound on the capacity. The construction is
based upon assigning permutations into a special family of
multi-permutations. Then, we will present an upper bound on
the size of the set An,k which will result with an upper bound
on the capacity that coincides with the lower bound by the
construction.

For a multi-permutation ρ ∈ P�,m and permutations
γ1, γ2, . . . , γ�, such that γi ∈ S([(i −1)m +1, im]) for i ∈ [�],
the assignment of the permutations γ1, γ2, . . . , γ� in the multi-
permutation ρ is the permutation σ = ρ(γ1, γ2, . . . , γ�) ∈ S�m
defined as follows. For all 1 ≤ j ≤ n, if ρ( j) = ir for some
i ∈ [�] and r ∈ [m] then σ( j) = γi ((i − 1)m + r). In other
words, σ is obtained from ρ by replacing the r -th appearance
of i with the r -th element of γi .

Example 8: If ρ = [1, 2, 1, 3, 2, 3] ∈ P3,2, γ1 =
[2, 1], γ2 = [3, 4], and γ3 = [6, 5] then ρ(γ1, γ2, γ3) =
[2, 3, 1, 6, 4, 5].

The following lemma will be useful for the construction of
the two-neighbor k-constrained codes presented in this section.

Lemma 9: Let ρ1, ρ2 ∈ P�,m , γ1, γ2, . . . , γ�, and
δ1, δ2, . . . , δ�, where γi , δi ∈ S([(i − 1)m + 1, im]), for all
i ∈ [�]. For σ = ρ1(γ1, γ2, . . . , γ�) we have that σ ∈ S�m .
Moreover, σ = ρ2(δ1, δ2, . . . , δ�) if and only if ρ1 = ρ2 and
γi = δi , for all i ∈ [�].

Proof: Clearly, the assignment of the permutations
γ1, γ2, . . . , γ� in the multi-permutation ρ1 results in a multi-
permutation of length �m. Since for every i ∈ [�], γi is a
permutation on [(i −1)m+1, im], it follows that every element
in [�m] appears exactly once in σ and thus σ ∈ S�m .

If ρ1 = ρ2 and γi = δi , for all i ∈ [�] then
σ = ρ2(δ1, δ2, . . . , δ�). For the other direction, assume that
σ = ρ2(δ1, δ2, . . . , δ�). Let σ( j) = s for some j ∈ [�m]
and let i be the unique element in [�] for which

(i − 1)m + 1 ≤ s ≤ im. By the definition of σ we have
that ρ1( j) = ρ2( j) = i . Hence, ρ1( j) = ρ2( j) for all j ∈ [n],
and therefore ρ1 = ρ2.

Let r ∈ [m] such that γi ((i − 1)m + r) = s. Then σ( j) =
γi ((i − 1)m + r), and by the definition of ρ1(γ1, γ2, . . . , γ�)
it follows that ρ1( j) = ir . Since ρ1 = ρ2, it follows that
ρ2( j) = ir and by the definition of ρ2(δ1, δ2, . . . , δ�) we have
that σ( j) = δi ((i − 1)m + r) = s. Hence, γi ((i − 1)m + r) =
δi ((i − 1)m + r), for all i ∈ [�] and for all r ∈ [m], and
therefore γi = δi , for all i ∈ [�].

For an even integer m, the set D�,m ⊆ P�,m is defined as
follows. A multi-permutation ρ ∈ P�,m belongs to D�,m if
ρ(2 j − 1) = ρ(2 j) for every j ∈ [�m/2]. Note, that D�,m has

the same size as P�,m/2, i.e. |D�,m | = |P�,m/2| = (�m/2)!
(m/2)!� .

Example 10: The multi-permutation ρ = [1, 1, 2, 2, 2, 2,
3, 3, 1, 1, 3, 3] belongs to D3,4 since ρ(1) = ρ(2),
ρ(3) = ρ(4), and so on.

Next, we present a construction of two-neighbor
k-constrained codes.

Construction 11: Let n = �(k + 1), where k is an odd
positive integer and � is a positive integer. Let Csym

n,k ⊆ Sn

be the code consisting of all the permutations σ ∈ Sn of
the form σ = ρ(γ1, γ2, . . . , γ�), where ρ ∈ D�,k+1 and
γi ∈ S([(i − 1)(k + 1)+ 1, i(k + 1)]), for all i ∈ [�]. That is,

Csym
n,k =

{

ρ(γ1, . . . , γ�) : ρ ∈ D�,k+1,∀i ∈ [�]
γi ∈ S([(i −1)(k+1)+1, i(k+1)])

}

.

The correctness of Construction 11 as well as the code
cardinality are stated in the next lemma.

Lemma 12: Let n, k, � be as specified in Construction 11.
Then, the code Csym

n,k is a two-neighbor k-constrained code and
its cardinality is

|Csym
n,k | =

( n
2

)!(k + 1)!�
( k+1

2

)!� .

Proof: Let σ ∈ Csym
n,k . There exist ρ ∈ D�,k+1 and

γ1, γ2, . . . , γ�, where γi ∈ S([(i − 1)(k + 1)+ 1, i(k + 1)]) for
all i ∈ [�], such that σ = ρ(γ1, γ2, . . . , γ�). Let 2 < j ≤ n−1
be an odd integer and assume that ρ( j) = ir for some
i ∈ [�] and r ∈ [k + 1]. By the definition of D�,k+1, it
follows that ρ( j + 1) = ir+1 and in particular, r ≤ k. Hence,
σ( j) = γi ((i − 1)(k + 1)+ r) ∈ [(i − 1)(k + 1)+ 1, i(k + 1)]
and similarly σ( j + 1) = γi ((i − 1)(k + 1) + r + 1) ∈
[(i−1)(k+1)+1, i(k+1)]. It follows that |σ( j)−σ( j+1)| ≤ k.
The case where j is even is handled similarly with respect to
the symbol in position j−1. Thus, σ satisfies the two-neighbor
k-constraint.

For the computation of the cardinality of Csym
n,k , note that

by Lemma 9 it follows that every choice of ρ ∈ D�,k+1 and
γ1, γ2, . . . , γ�, where γi ∈ S([(i − 1)(k + 1) + 1, i(k + 1)])
for all i ∈ [�], generates a different codeword of the form
ρ(γ1, γ2, . . . , γ�). Therefore,

|Csym
n,k | = |D�,k+1| · (k + 1)!� = ( n

2 )!(k + 1)!�
( k+1

2 )!� .

Note, that the structure of the construction also applies the
existence of efficient encoding and decoding mappings for this
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code. This follows from the observation that we need to encode
and decode over a set of multi-permutations (D�,k+1 which
is equivalent to the set of multi-permutations P�,(k+1)/2) and
over the set of permutations S([(i − 1)(k + 1)+ 1, i(k + 1)]),
for all i ∈ [�]. Encoding and decoding for multi-permutations
and permutations can be conducted efficiently, for example by
using enumerative encoding methods [7], [18].

Even though Construction 11 provides two-neighbor k-
constrained codes only for the case where k is odd, it can
be easily modified for the case that k is even as well. In any
event, we will not need this modification in order to calculate
a lower bound on the capacity, which is stated in the next
theorem.

Theorem 13: If k = �(nε) for some 0 ≤ ε ≤ 1, then
C(k) ≥ 1+ε

2 .

Proof: If k is an odd integer and if n is divisible by k +1
then by Lemma 12 we have

|An,k | ≥
( n

2

)!(k + 1)! n
k+1

( k+1
2

)! n
k+1

and by the bounds (n/e)n ≤ n! ≤ nn , see e.g. [26, p. 54], we
have that

|An,k | ≥
( n

2e

) n
2
( k+1

e

)n

( k+1
2

)
n
2

≥ cn(n(k + 1))
n
2 , (2)

where c is some constant.
Let k = �(nε) and assume w.l.o.g. that k(n) is odd for all

n ∈ N (otherwise, we can define ˜k(n) = k(n) if k(n) is odd
and ˜k(n) = k(n) − 1 if k(n) is even and prove the lemma
for ˜k). We continue the proof by distinguishing between two
cases.

Case 1 (0 ≤ ε < 1): For every n let νn ∈ [n] be the
largest integer which is divisible by (k + 1), that is νn =
(k +1)	n/(k +1)
. Then νn ≥ max{n −k, k}, and since ε < 1,
it follows that νn = n−o(n) and k = �(νn

ε). By (2) it follows
that

|Aνn,k | ≥ cνn
1 νn

(

1+ε
2

)

νn
, (3)

where c1 is a constant. Then

C(k) = lim sup
n→∞

log |An,k|
log n! ≥ lim sup

n→∞
log |Aνn,k |

log νn !
log νn !
log n! , (4)

where the inequality follows from |Aνn,k | ≤ |An,k|. Since
νn = n − o(n) it follows that

lim
n→∞

log νn!
log n! = 1. (5)

By combining (3), (4), and (5) we have

C(k) ≥ lim
n→∞

log

(

cνn
1 νn

(

1+ε
2

)

νn

)

log νn! = 1 + ε

2
.

Case 2: ε = 1. In this case k(n) ≥ n
q for some constant

integer q and for sufficiently large n, and we let μn = qn.

Then k(μn) ≥ n and

C(k) ≥ lim sup
n→∞

log |An,k(n)|
log n! ≥(a) lim sup

n→∞
log |Aμn,k(μn)|

logμn!
≥(b) lim sup

n→∞
log |Aqn,n−1|

log(qn)! ≥(c) lim
n→∞

log(c′nnqn)

log(qn)! = 1,

for some constant c′. Note that inequality (a) follows from
the fact that log |Aμn,k(μn )|/ logμn ! is a subsequence of
log |An,k|/ log n!. Inequality (b) follows from k(μn) ≥ n >
n−1 and the fact that |An,k| is a monotone increasing function
of k. Inequality (c) follows from applying (2) on the size
of Aqn,n−1.

Thus, we showed that C(ε) ≥ 1+ε
2 for all k = �(nε),

0 ≤ ε ≤ 1.
In order to derive an upper bound on the capacity C(k) we

show an upper bound on the size of An,k .
Lemma 14: For all positive integers n, k such that k < n,

|An,k | ≤ 4n−1k
n
2 n

n
2 +1.

Proof: Let ψ : An,k → Z
n be the following mapping. For

a permutation σ ∈ An,k , ψ(σ) = x = (x1, x2, . . . , xn) ∈ Z
n,

where x1 = σ(1) and for each i , 2 ≤ i ≤ n,
xi = σ(i)−σ(i − 1). Clearly, ψ is an injection and therefore,
the size of the set An,k is equal to the size of the image of
ψ , ψ(An,k) = {ψ(σ) : σ ∈ An,k}. We will show an upper
bound on the size of ψ(An,k).

Let x = ψ(σ) for some σ ∈ An,k . For any position j , 2 ≤
j ≤ n−1, either |σ( j)−σ( j−1)| ≤ k or |σ( j+1)−σ( j)| ≤ k.
Therefore, at least

⌊ n−1
2

⌋

of the n − 1 elements x2, x3, . . . , xn

are in the range [−k, k] \ {0}. Let I ⊆ [2, n] be a set with
at least

⌊ n−1
2

⌋

elements and let DI be the set of all vectors
x ∈ ψ(An,k) for which xi ∈ [−k, k] \ {0}, for every i ∈ I and
x j ∈ [−n, n] \ [−k, k], for every j ∈ [2, n] \ I . Then,

|ψ(An,k)| ≤
∑

I⊆[2,n]: |I |≥
⌊

n−1
2

⌋

|DI |. (6)

For each i ∈ I there are 2k choices for xi and for each
j ∈ [2, n] \ I there are at most 2(n − k) < 2n choices for x j .
Finally, there are n choices for x1. Therefore,

|DI | ≤ n · (2k)

⌊

n−1
2

⌋

· (2n)

⌈

n−1
2

⌉

= 2n−1k

⌊

n−1
2

⌋

n

⌈

n−1
2

⌉

+1
.

Since the number of ways to choose the set I is at
most 2n−1, according to (6), the following upper bound on
the cardinality of An,k and ψ(An,k) is derived

|An,k | = |ψ(An,k)| ≤ 2n−1 · 2n−1k

⌊

n−1
2

⌋

n

⌈

n−1
2

⌉

+1

≤ 4n−1k
n
2 n

n
2 +1.

As a result of the last lemma we derive the following
theorem which provides an upper bound on the capacity.

Theorem 15: If k = �(nε) for some 0 ≤ ε ≤ 1, then
C(k) ≤ 1+ε

2 .

Proof: By Lemma 14 it follows that there exists some
constant c such that |An,k| ≤ cnn

(1+ε)n
2 +1 for every sufficiently
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large n, and hence

C(k) = lim sup
n→∞

log |An,k|
log n! ≤ lim

n→∞
log(cnn

(1+ε)n
2 +1)

log n! = 1 + ε

2
.

The following corollary, which is an immediate result of
Theorems 13 and 15, summarizes the discussion of this
section.

Corollary 16: If k = �(nε) for some 0 ≤ ε ≤ 1, then
C(k) = 1+ε

2 .

IV. THE ASYMMETRIC TWO-NEIGHBOR CONSTRAINT

In this section we find the capacity of the asymmetric
two-neighbor constraint. Our main result states that ˜C(k) = 1
for every function k : N → N. Since the capacity is at most 1,
and the capacity is nondecreasing when k increases, we will
need to show that ˜C(1) = 1 (here, 1 corresponds to the
constant function k(n) = 1 for all n ∈ N). This will be done by
a construction of an asymmetric two-neighbor 1-constrained
code that confirms this capacity result.

A position i , 2 ≤ i ≤ n − 1, is called a valley in a
permutation σ ∈ Sn if σ(i−1) > σ(i) and σ(i) < σ(i+1). For
example, in the permutation σ = [4, 7, 5, 6, 1, 2, 3], the third
and fifth positions are valleys. Note, that a permutation satisfies
the asymmetric two-neighbor 1-constraint if and only if for
every valley i of σ either σ(i + 1) = σ(i)+ 1 or σ(i − 1) =
σ(i) + 1. Hence, in order to generate codewords that satisfy
the asymmetric two-neighbor 1-constraint, we first partition
the high value numbers to groups, which we order in runs of
increasing elements followed by runs of decreasing elements.
We then use the low value numbers to separate the groups
by pairs of consecutive elements. In this way for a valley i ,
σ(i) must be a low value number and σ(i + 1) = σ(i)+ 1 or
σ(i − 1) = σ(i)+ 1.

For a nonempty set of integers I , let I ↗, I↘, denote the
ordering of all elements in I according to their increasing,
decreasing order, respectively. For the construction of an
asymmetric two-neighbor 1-constrained code we will need the
code Csym

r,1 , where r is even, from Construction 11. Recall that
a permutation π ∈ Csym

r,1 is of the form

π = ρ(γ1, γ2, . . . , γ r
2
),

where ρ ∈ Pr,2 such that ρ(2i − 1) = ρ(2i) and
γi ∈ S([2i − 1, 2i ]), for all 1 ≤ i ≤ r

2 . In other words,
for every j , 1 ≤ j ≤ r

2 , there exists 1 ≤ i ≤ r
2 such that

{π(2 j − 1), π(2 j)} = {2i − 1, 2i}.
Construction 17: Let n be an even integer and let r be an

integer, 3 ≤ r ≤ n
2 . If r is even, let the code Cr ⊂ Sn be

defined as follows. A permutation σ ∈ Sn belongs to Cr if
there exists a partition of the set [r − 1, n] into r nonempty
sets I1, I2, . . . , Ir , and a permutation π ∈ Csym

r−2,1 such that

σ = [I↗
1 , I↘

2 , π(1), π(2), I↗
3 , I↘

4 , . . . ,

π(r − 3), π(r − 2), I↗
r−1, I↘

r ].
For an odd r , let the code Cr ⊂ Sn be defined in a similar

way. A permutation σ ∈ Sn belongs to Cr if there exists a

partition of the set [r, n] into r nonempty sets I1, I2, . . . , Ir ,
and a permutation π ∈ Csym

r−1,1 such that

σ = [I↗
1 , I↘

2 , π(1), π(2), I↗
3 , I↘

4 , . . . ,

π(r − 2), π(r − 1), I↗
r ].

Finally, let Casym
n ⊂ Sn be the code

Casym
n =

n/2
⋃

r=3

Cr .

Example 18: For n = 14 and r = 5, let I1 = {5, 8, 10},
I2 = {6, 12}, I3 = {7, 15}, I4 = {9, 13}, I5 = {11, 14} be
a partition of [5, 14] into five nonempty sets and let π =
[4, 3, 1, 2]. Note, that π = ρ(γ1, γ2) where ρ = [2, 2, 1, 1],
γ1 = [1, 2] ∈ S([1, 2]), and γ2 = [4, 3] ∈ S([3, 4]),
hence, π is a codeword in Csym

4,1 . The permutation σ ∈ C5 of

the form σ = [I↗
1 , I↘

2 , π(1), π(2), I↗
3 , I↘

4 , π(3), π(4), I↗
5 ]

is σ = [5, 8, 10, 12, 6, 4, 3, 7, 15, 13, 9, 1, 2, 11, 14]. Note,
that σ can also be obtained from other partitions such as
˜I1 = {5, 8, 10, 12}, ˜I2 = {6}, and ˜Ii = Ii , for all 3 ≤ i ≤ 5.

The next lemma will be used in proving the correctness
of Construction 17.

Lemma 19: Let m be an integer, 1 ≤ m ≤ n−4
4 . Then, every

permutation σ ∈ C2m+1 ∪ C2m+2 has exactly m valleys.
Proof: Let σ ∈ C2m+1 ∪ C2m+2. Then σ is formed as

described in Construction 17 by a permutation π ∈ Csym
2m,1

and a partition of the set [2m + 1, n], I1, I2, . . . , Ir , where
r ∈ {2m +1, 2m +2}. If σ(i) ∈ Is for some 2 ≤ i ≤ n −1 and
1 ≤ s ≤ r , then either σ(i − 1) < σ(i) or σ(i + 1) < σ(i),
and hence i cannot be a valley in σ . Therefore, if i is a
valley then σ(i) = π( j) for some 1 ≤ j ≤ 2m. Since for
every v, 1 ≤ v ≤ n

2 , there exists an u, 1 ≤ u ≤ n
2 , such

that {π(2v − 1), π(2v)} = {2u − 1, 2u} and since π(2v − 1)
and π(2v) are adjacent elements in σ , it follows that i is a
valley in σ if and only if π( j) is odd. Hence, every element
in C2m+1 ∪ C2m+2 has exactly m valleys.

The correctness of the construction of the code Casym
n is

proved in the next lemma.
Lemma 20: For all n ≥ 1, the code Casym

n is an asymmetric
two-neighbor 1-constrained code.

Proof: Let σ ∈ Casym
n and let m be the number of valleys

in σ . By Lemma 19 it follows that σ ∈ C2m+1 ∪ C2m+2. Also,
by the proof of Lemma 19 and according to Construction 17
it follows that there exists a permutation π ∈ Csym

2m,1 such that
the valleys of σ are in positions i , where σ(i) = π( j) for
some 1 ≤ j ≤ 2m such that π( j) is odd. It follows that either
σ(i − 1) = σ(i)+ 1 or σ(i + 1) = σ(i)+ 1. Then the valleys
in σ do not violate the asymmetric two-neighbor 1-constraint
and therefore σ satisfies the asymmetric two-neighbor
1-constraint.

Next, we will analyze a lower bound on the cardinalities of
the codes from Construction 17. First, we use the following
observation.

Lemma 21: Let n be an integer such that n ≡ 0 (mod 4),
let σ ∈ Casym

n , and let m be the number of valleys in σ .
Then there exist at most 2m+1 different ways to obtain σ as
described in Construction 17.
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Proof: By Lemma 19 it follows that σ belongs to
C2m+1∪C2m+2. Let i1 < i2 < · · · < i2m be the 2m positions in
which the elements of the set [2m] appear in σ . If π ∈ Csym

2m,1

is a permutation from which σ is obtained as described in
Construction 17 then π = [σ(i1), σ (i2), . . . , σ (i2m)], and
hence π is uniquely determined by σ . If I1, I2, . . . ,
I2m+1, I2m+2 is a partition of the set [2m + 1, n] into either
2m+1 or 2m+2 nonempty sets (we allow only the set I2m+2 to

be empty), then [I↗
1 , I↘

2 ] = [σ(1), σ (2), . . . , σ (i1 − 1)]. Let
j , 1 ≤ j ≤ i1 −1 be the position such that σ( j) ≥ σ(i) for all
1 ≤ i ≤ i1 − 1. If σ( j) ∈ I1 then I1 = {σ(1), σ (2), . . . , σ ( j)}
and I2 = {σ( j +1), σ ( j +2), . . . , σ (i1 −1)], and if σ( j) ∈ I2
then I1 = {σ(1), σ (2), . . . , σ ( j − 1)} and I2 = {σ( j),
σ ( j + 1), . . . , σ (i1 − 1)]. Hence, there are at most two ways
to determine the sets I1 and I2 from σ . Similarly, there
are at most two ways to determine each of the pair of sets
I2i+1, I2i+2, where 1 ≤ i ≤ m.

Thus, there exist at most 2m+1 different ways to obtain σ
as described in Construction 17.

For two positive integers �, r , where r ≤ �, the number of
partitions of � elements into r nonempty sets is denoted by
S(�, r) and is known as the Stirling number of the second
kind [25, Ch. 13].

Lemma 22: Let n be an integer such that n ≡ 0 (mod 4).
Then the cardinality of the code Casym

n satisfies

|Casym
n | ≥

n/2
∑

r=3

1

2
r !S
(

n − 2
⌊r − 1

2

⌋

, r
)⌊r − 1

2

⌋

!.
Proof: For every m, 1 ≤ m ≤ n

4 − 1, we compute a lower
bound on the size of C2m+1 ∪C2m+2. There are r !S(n −2m, r)
choices for the partition I1, I2, . . . , Ir , where r = 2m + 1 or
r = 2m + 2, and there are m! · 2m choices for the permutation
π ∈ Csym

2m,1. The expression

[(2m + 1)!S(n − 2m, 2m + 1)

+ (2m + 2)!S(n − 2m, 2m + 2)]m!2m

counts codewords in C2m+1 ∪ C2m+2 and by Lemma 21, each
codeword in C2m+1 ∪ C2m+2 is counted at most 2m+1 times.
Hence, the size of C2m+1 ∪ C2m+2 is at least

[(2m + 1)!S(n − 2m, 2m + 1)

+ (2m + 2)!S(n − 2m, 2m + 2)]m!
2

=
2m+2
∑

r=2m+1

1

2
r !S
(

n − 2
⌊r − 1

2

⌋

, r
)⌊r − 1

2

⌋

!.

By Lemma 19 it follows that the sets C2m+1 ∪ C2m+2 and
C2m′+1 ∪ C2m′+2 are disjoint if m′ �= m, and therefore

|Casym
n | =

∣

∣

∣

n/2
⋃

r=3

Cr

∣

∣

∣ =
n/4−1
∑

m=3

|C2m+1 ∪ C2m+2|

≥
n/2
∑

r=3

1

2
r !S
(

n − 2
⌊r − 1

2

⌋

, r
)⌊r − 1

2

⌋

!.

In order to show that ˜C(1) = 1, we will need to use the
following lower bound on the Stirling numbers of the second
kind, which is taken from [19].

Lemma 23: For 1 ≤ r ≤ �,

S(�, r) ≥ 1

2
(r2 + r + 2)r�−r−1 − 1.

Finally, the next theorem, which is a direct result of
Lemmas 22 and 23, highlights the main result of this section.

Theorem 24: For any function k : N → N, ˜C(k) = 1.
Proof: Clearly, ˜C(1) ≤ 1. We will show that

lim sup
n→∞

log |Bn,1|
log n! ≥ 1,

by proving that for every 0 < δ < 1
2 ,

lim
n→∞

log |B4n,1|
log(4n)! > 1 − δ.

Let δ be such that 0 < δ < 1
2 and let r = �δ4n�. From

Lemma 22 it follows that

|B4n,1| > 1

2
r !S

(

4n − 2

⌊

r − 1

2

⌋

, r

)⌊

r − 1

2

⌋

!

≥ 1

2
r !S(4n − r, r)

⌊

r − 1

2

⌋

!,

and by Lemma 23

|B4n,1| > 1

4
r !r4n−2r−1

⌊

r − 1

2

⌋

!

≥ 1

4
�δ4n�!(δ4n)4n(1−2δ)−1

⌊

δ4n − 1

2

⌋

!

≥ 1

4
(δ4n/e)δ4n(δ4n)4n(1−2δ)−1

(

δ4n − 2

2e

) δ4n−2
2

= cn(δ4n)4n−δ2n,

where c is some constant. It follows that

lim
n→∞

log |B4n,1|
log(4n)! ≥ lim

n→∞
log cn(δ4n)4n−δ2n

log(4n)! = 1 − δ

2
> 1 − δ.

This shows that ˜C(1) ≥ 1 and consequently it follows that
˜C(k) = 1, for every function k : N → N.

V. THE CAPACITY OF ERROR-CORRECTING

CONSTRAINED CODES

The two-neighbor constraint and the asymmetric two-
neighbor constraint were proposed to combat errors that are
caused by the inter-cell interference in flash memory cells.
However, constrained codes should also be restricted to have
error-correction capabilities, which is the topic of this section.

Given a permutation σ = [σ(1), σ (2), . . . , σ (n)] ∈ Sn ,
an adjacent transposition is an exchange of two adjacent
elements σ(i), σ (i + 1), in σ , for some 1 ≤ i ≤ n − 1.
The result of such an adjacent transposition is the permutation
[σ(1), . . . , σ (i − 1), σ (i + 1), σ (i), σ (i + 2), . . . , σ (n)]. The
Kendall τ -distance [13] between two permutations σ, π ∈ Sn ,
denoted by dK (σ, π), is the minimum number of adjacent
transpositions required to obtain the permutation π from the
permutation σ .
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Example 25: If σ = [3, 1, 2, 4] and π = [1, 3, 4, 2] then
dK (σ, π) = 2, since at least two adjacent transpositions are
required to change the permutation σ to π : [3, 1, 2, 4] →
[1, 3, 2, 4] → [1, 3, 4, 2].

For two permutations σ, π ∈ Sn it is known [12], [14] that
dK (σ, π) can be expressed as

dK (σ, π) = |{(i, j) : σ−1(i) < σ−1( j), π−1(i) > π−1( j)}|.
(7)

For two permutations σ, π ∈ Sn the inversion distance,
denoted by dI (σ, π), between σ and π is the Kendall
τ -distance between their inverses, i.e.

dI (σ, π) = dK (σ
−1, π−1).

From (7) it follows that the Kendall τ -distance, and hence
also the inversion distance, can only take integer values
between 0 and

(n
2

)

. For any permutation σ ∈ Sn , if π =
[σ(n), σ (n − 1), . . . , σ (1)] then dK (σ, π) = (n

2

)

and thus
dI (σ

−1, π−1) = (n
2

)

. Even though this distance was studied
before, see e.g. [8], we are not aware of any formal name
for this metric and thus call it here the inversion distance.
In this section we study the capacity of the constraints in this
paper combined with a requirement on the minimum inversion
distance.

Remark 26: We study the inversion distance and not the
Kendall τ -distance since, according to our representation of
the cells ranking in a permutation, this metric fits better with
the error behavior in flash memory cells. The motivation in
studying codes in the Kendall τ -metric originated from the
observation that cells with adjacent levels may interchange
their rankings [12]. Therefore, codes in the Kendall τ -metric
should be invoked over the inverse of the permutations. How-
ever, in order to study these codes with constrained codes, one
should take the inversion distance applied for the permutations.

Let E(n, k, d) be the maximum size of a code in An,k with
minimum inversion distance d . In this section we assume that
k and d are two functions such that k : N → N and d : N → Z

where 0 ≤ d(n) ≤ (n
2

)

, for all n ∈ N. Let us define the capacity
of two-neighbor k-constrained codes with minimum inversion
distance d by

C(k, d) = lim sup
n→∞

log E(n, k, d)

log n! .

Let ˜E(n, k, d) be the maximum size of a code in Bn,k

with minimum inversion distance d . Define the capacity of
asymmetric two-neighbor k-constrained codes with minimum
inversion distance d by

˜C(k, d) = lim sup
n→∞

log ˜E(n, k, d)

log n! .

Lastly, let F(n, d) be the maximum size of a code in Sn with
minimum inversion distance d . Define the capacity of codes
in Sn with minimum inversion distance d by

Cerr (d) = lim sup
n→∞

log F(n, d)

log n! .

It was proved in [1] that for d = �(nδ),

Cerr (d) =
{

1, 0 ≤ δ ≤ 1,

2 − δ, 1 ≤ δ ≤ 2.

We restrict our discussion only for functions k and d such that
k = �(nε) and d = �(nδ), for some ε and δ, 0 ≤ ε ≤ 1 and
0 ≤ δ ≤ 2. In particular, we will show that ˜C(k, d) = Cerr (d),
for every k. For the computation of C(k, d) we distinguish
between three cases:

1) 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1.
2) 0 ≤ ε ≤ 1 and 1 < δ ≤ 1 + ε.
3) 0 ≤ ε < 1 and 1 + ε < δ ≤ 2.

The computation of the capacity for these three cases is
presented in the three Subsections V-A, V-B, and V-C. The
computation of the capacity for asymmetric two-neighbor
k-constrained error-correcting codes is presented in
Subsection V-D. Similarly to previous sections, the
computation of both capacities C(k, d) and ˜C(k, d) will
be based on finding upper and lower bounds on the size of
E(n, k, d) and ˜E(n, k, d), respectively.

A. The Case 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1

In this subsection we will compute the capacity C(k, d),
where k = �(nε), d = �(nδ), and 0 ≤ ε, δ ≤ 1. To this end,
we will need some definitions and notations.

For σ ∈ Sn , the ball in Sn of radius r centered at σ is
defined by

BI (n, σ, r)
def={π ∈ Sn : dI (σ, π) ≤ r}.

The size of the ball BI (n, σ, r) does not depend on σ and thus
we denote it by bI (n, r). For σ ∈ An,k , the ball in An,k of
radius r centered at σ is defined by

BI (An,k, σ, r)
def={π ∈ An,k : dI (σ, π) ≤ r}.

A code in An,k with minimum inversion distance d can be
constructed by a greedy approach which leads to the following
Gilbert-Varshamov type of lower bound.

Lemma 27: For every 1 ≤ k and 1 ≤ d ≤ (n
2

)

, the following
lower bound on E(n, k, d) holds

E(n, k, d) ≥ |An,k |
bI (n, d − 1)

.

The next theorem is a combination of results
from [1], [16], and [17].

Theorem 28: Let r = �(nδ), where 0 ≤ δ ≤ 2. Then there
exist constants c1 and c2 such that

bI (n, r) ≤
{

c1
n, 0 ≤ δ ≤ 1,

(c2nδ−1)n, 1 < δ ≤ 2.
We are now in a position to compute the capacity C(k, d)

for the first case.
Theorem 29: If k = �(nε) and d = �(nδ), where

0 ≤ ε, δ ≤ 1, then C(k, d) = 1
2 + ε

2 .
Proof: Since E(n, k, d) ⊆ An,k it follows that

C(k, d)= lim sup
n→∞

log E(n, k, d)

log n! ≤ lim sup
n→∞

log |An,k|
log n! = C(k),
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and hence from Corollary 16, C(k, d) ≤ C(k) = 1
2 + ε

2 .
By Lemma 27 and Theorem 28 there exists a constant c

such that
log E(n, k, d)

log n! ≥ log |An,k |
log n! − log cn

log n! .
Since limn→∞ log cn/ log n! = 0 it follows that

C(k, d)= lim sup
n→∞

logE(n, k, d)

log n! ≥ lim sup
n→∞

log |An,k |
log n! = C(k).

Then, C(k, d) ≥ C(k) = 1
2 + ε

2 , and thus C(k, d) = 1
2 + ε

2 .

B. The Case 0 ≤ ε ≤ 1 and 1 < δ ≤ 1 + ε

In this subsection we will compute the capacity C(k, d),
where k = �(nε), d = �(nδ), 0 ≤ ε ≤ 1 and 1 < δ ≤ 1 + ε.
First, let us introduce some more tools that will be used in
solving this case.

Let Hn = {1, 2, . . . , n}n . The definition of the two-neighbor
k-constraint can be trivially extended to Hn. A vector x ∈ Hn

satisfies the two-neighbor k-constraint if |xi − xi−1| ≤ k or

|xi+1 − xi | ≤ k, for all 2 ≤ i ≤ n − 1. Let �An,k be the set
of all vectors of Hn that satisfy the two-neighbor k-constraint.
The next lemma can be proved by following the same lines that
were used to prove Lemma 14, and thus its proof is omitted.

Lemma 30: If 1 ≤ k then

| �An,k | ≤ 4n−1(k + 1)
n
2 n

n
2 +1.

For x, y ∈ Hn, the Manhattan distance between x and y,
dM (x, y), is defined as

dM (x, y)
def=

n
∑

i=1

|xi − yi |.

The next lemma was proved in [8].
Lemma 31: For every σ, π ∈ Sn ,

1

2
dM (σ, π) ≤ dI (σ, π) ≤ dM (σ, π).

For a subset S ⊆ Hn and x ∈ S, the Manhattan ball in S
of radius r centered at x is defined by

BM(S, x, r)
def= {y ∈ S : dM(x, y) ≤ r}.

Combining the previous result along with the sphere pack-
ing upper bound provides us with the following lemma.

Lemma 32: For every 1 ≤ k and 1 ≤ d ≤ (n
2

)

,

E(n, k, d) ≤ | �An,k |
minx∈ �An,k

{|BM( �An,k , x,
⌊ d−1

2

⌋

)|} .
Proof: From Lemma 31 it follows that every code in An,k

with minimum inversion distance d is also a code in �An,k with
minimum Manhattan distance d . Hence, by the sphere packing
bound for codes in �An,k the following upper bound holds

E(n, k, d) ≤ | �An,k |
minx∈ �An,k

{|BM( �An,k , x,
⌊ d−1

2

⌋

)|} .

In order to apply the upper bound on E(n, k, d) from
Lemma 32, we need a lower bound on the size of a Manhattan

ball in �An,k . Next, we will present some tools that will be
useful for finding such a lower bound.

For every three positive integers m, �, t , let Qm,�,t be the
set defined by

Q(m, �, t)=
⎧

⎨

⎩

(y1, . . . , ym) ∈ Z
m :

∑m
i=1 yi ≤ t,

∀1≤ i ≤ m, 0 ≤ yi ≤ �

⎫

⎬

⎭

.

The following lemma was proved in [20].
Lemma 33: If � = �(mε) and t = �(mδ), where δ < 1+ε,

then

|Q(m, �, t)| ≥
(

t

m

)m

,

for sufficiently large m.
For simplicity, we assume in the rest of this section that

all integers divisions result in integer numbers. We note that
this assumption does not affect the forthcoming results, since
otherwise small modifications can be applied.

For positive integers n, k and r such that 2k < n
2 ,

let D1(n, k, r) = Q
( n

3 ,
n
2 − 2k, 3r

20

)

and D2(n, k, r) =
Q
( 2n

3 ,
k
2 ,

r
8

)

, i.e.

D1(n, k, r) =
⎧

⎨

⎩

(y1, . . . , y n
3
) ∈ Z

n
3 :

∑

n
3
i=1 yi ≤ 3r

20 ,
0 ≤ yi ≤ n

2 − 2k,
∀1 ≤ i ≤ n

3

⎫

⎬

⎭

and

D2(n, k, r) =

⎧

⎪

⎨

⎪

⎩

(z1, . . . , z 2n
3
) ∈ Z

2n
3 :

∑

2n
3

i=1 zi ≤ r
8 ,

0 ≤ zi ≤ k
2 ,∀1 ≤ i ≤ 2n
3

⎫

⎪

⎬

⎪

⎭

.

Lemma 34: If k = �(nε) and r = �(nδ), where 0 ≤ ε < 1
and 1 < δ ≤ 1 + ε, then there exists a constant c such that
for n large enough

|D1(n, k, r)| · |D2(n, k, r)| ≥
(

cnδ−1
)n
.

Proof: Since ε < 1 it follows that n
2 − 2k = �(n) and

since δ < 2 it follows from Lemma 33 that

|D1(n, k, r)| =
∣

∣

∣

∣

Q

(

n

3
,

n

2
− 2k,

3r

20

)∣

∣

∣

∣

≥
(

3r
20
n
3

) n
3

≥
(

c1nδ−1
) n

3
,

for some constant c1.
If δ < 1 + ε then by Lemma 33 it follows that

|D2(n, k, r)| ≥
(

r
8

2n
3

) 2n
3

≥
(

c2nδ−1
) 2n

3
,

for some constant c2. Thus, there exists a constant c such that

|D1(n, k, r)| · |D2(n, k, r)| ≥
(

cnδ−1
)n
.

If δ = 1 + ε then there exists some constant c̃1 such that
kn
c̃1

≤ r
8 , for sufficiently large n. Let � = min

{

k
c̃1
, k

2

}

, then

[�] 2n
3 ⊆ D2(n, k, r), and therefore there exists some constant

c̃2 such that |D2(n, k, r)| ≥ (̃c2nε)
2n
3 .
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Thus, there exists a constant c such that

|D1(n, k, r)|·|D2(n, k, r)| ≥ cn
(

nδ−1
) n

3 (
nε
) 2n

3

=(a) cn
(

n
δ−1

3 + 2(δ−1)
3

)n =
(

cnδ−1
)n
,

where equality (a) follows from ε = δ − 1.
Note that Lemma 34 follows from the fact that

D1(n, k, r) = Q(m1, �1, t1) and D2(n, k, r) = Q(m2, �2, t2),
where m1 + m2 = n, �1, �2 = (k), and t1, t2 = (r).
The purpose of the sets D1(n, k, r) and D2(n, k, r) is to

establish a lower bound on |BM ( �An,k, x, r)| in terms of
|D1(n, k, r)| · |D2(n, k, r)| as stated in the next lemma, which
is proved in Appendix A. This is accomplished by introducing
a mapping from D1(n, k, r) × D2(n, k, r) to BM ( �An,k, x, r).
For the design of this mapping it is crucial that m1 and m2
take the values n

3 , and 2n
3 , respectively, whereas the remaining

parameters of D1(n, k, r) and D2(n, k, r) can be chosen in
many ways.

Lemma 35: For every three positive integers n, k, r such
that 2k < n

2 , and for all x ∈ �An,k ,

|BM( �An,k , x, r)| ≥ |D1(n, k, r)| · |D2(n, k, r)|
4

2n
3

.

Corollary 36: Let k = �(nε) and r = �(nδ), where
0 ≤ ε < 1 and 1 < δ ≤ 1 + ε. Then there exists a constant c
such that

min
x∈ �An,k

{|BM ( �An,k, x, r)|} ≥
(

cnδ−1
)n
.

Proof: By Lemmas 34 and 35 it follows that there exists
a constant c such that

|BM ( �An,k, x, r)| ≥
(

cnδ−1
)n
,

for all x ∈ �An,k .
Thus,

min
x∈ �An,k

{|BM( �An,k, x, r)|} ≥
(

cnδ−1
)n
.

We are now ready to compute the capacity for the second
case.

Theorem 37: If k = �(nε) and d = �(nδ), where
0 ≤ ε ≤ 1 and 1 < δ ≤ 1 + ε, then

C(k, d) = 3

2
+ ε

2
− δ.

Proof: By Lemma 27 and Theorem 28 it follows that
there exists a constant c1 such that

log E(n, k, d)

log n! ≥ log |An,k|
log n! − log cn

1 n(δ−1)n

log n! .

Since limn→∞ log cn
1n(δ−1)n/ log n! = δ − 1 and by

Corollary 16 it follows that

C(k, d) ≥ 1

2
+ ε

2
+ 1 − δ = 3

2
+ ε

2
− δ.

If ε = 1 then C(k, d) ≥ 2−δ. On the other hand C(k, d) ≤
Cerr (d) = 2 − δ, and thus C(k, d) = 2 − δ.

If ε < 1 then by the upper bound from Lemma 32 and by
Corollary 36 it follows that

log E(n, k, d)

log n! ≤ log | �An,k |
log n! − log

(

c2nδ−1
)n

log n! ,

for some constant c2. By Lemma 30 it follows that

| �An,k | ≤ 4n−1(k + 1)
n
2 n

n
2 +1,

and hence

lim sup
n→∞

log | �An,k |
log n! ≤ 1

2
+ ε

2
.

Therefore,

C(k, d) ≤ 1

2
+ ε

2
+ 1 − δ.

Thus, C(k, d) = 3
2 + ε

2 − δ.

C. The Case 0 ≤ ε < 1 and 1 + ε < δ ≤ 2

The goal of this subsection is to compute the capacity
C(k, d), where k = �(nε), d = �(nδ), 0 ≤ ε < 1
and 1 + ε < δ ≤ 2.

Lemma 38: For every 1 ≤ k and 1 ≤ d ≤ (n
2

)

,

E(n, k, d) ≥ |An,k |
maxx∈ �An,k

{|BM( �An,k , x, 2d − 1)|} .
Proof: From Lemma 31 it follows that every code in An,k

with minimum Manhattan distance 2d is also a code in An,k

with minimum inversion distance d . Hence,

E(n, k, d) ≥ |An,k |
maxx∈An,k {|BM (An,k, x, 2d − 1)|} ,

and since

max
x∈An,k

{|BM(An,k, x, 2d − 1)|}≤ max
x∈ �An,k

{|BM ( �An,k, x, 2d − 1)|},

we get

E(n, k, d) ≥ |An,k |
maxx∈ �An,k

{|BM( �An,k , x, 2d − 1)|} .

In order to apply the lower bound from Lemma 38 we state
in the following lemma an upper on the size of a Manhattan
ball in �An,k . The proof of this lemma appears in Appendix B.

Lemma 39: Let k = �(nε) and r = �(nδ), where
0 ≤ ε < 1 and 1 ≤ δ < 2. Then, there exists a constant c
such that for n large enough

max
x∈ �An,k

{|BM( �An,k , x, r)|} ≤ cnn(δ−1+ε) n
2 .

Let

�An,k,alt
def={x ∈ Hn : |x2i − x2i−1| ≤ k, for all 1 ≤ i ≤ n

2
}.

Note that if x ∈ �An,k,alt then x satisfies the two-neighbor
k-constraint, and therefore �An,k,alt ⊆ �An,k . We will show how
to find an upper bound on E(n, k, d) by using a sphere packing
bound for codes in �An,k,alt . But, first we need more definitions.
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Define the mapping μ : An,k → {0, 1}n−1, where for every
σ ∈ An,k , μ(σ) = y, y = (y1, y2, . . . , yn−1), is defined as
follows. For every 1 ≤ i ≤ n − 1

yi =
{

1, |yi+1 − yi | ≤ k,

0, |yi+1 − yi | > k.

For every y ∈ {0, 1}n−1, define

An,k,y
def={σ ∈ An,k : μ(σ) = y}

and let E(n, k, d, y) be the maximum size of a code in An,k,y
with minimum inversion distance d .

Lemma 40: For every 1 ≤ k and 1 ≤ d ≤ (n
2

)

,

E(n, k, d) ≤
∑

y∈{0,1}n−1

E(n, k, d, y).

Proof: Let C ⊆ An,k be a code with minimum inversion
distance d and of size E(n, k, d). For every y ∈ {0, 1}n−1, let

Cy = C ∩ An,k,y.

Clearly, Cy is a code in An,k,y with minimum inversion
distance at least d . Then,

E(n, k, d) = |C| =
∑

y∈{0,1}n−1

|Cy| ≤
∑

y∈{0,1}n−1

E(n, k, d, y).

The proof of the next lemma appears in Appendix C.
Lemma 41: If y ∈ {0, 1}n−1, 1 ≤ k, and 1 ≤ d ≤ (n

2

)

, such
that d > (2k/3 + 2)n, then

E(n, k, d, y) ≤ 2nn2| �An,k,alt |
minx∈ �An,k,alt

{|BM( �An,k,alt , x, r)|} ,

where r =
d
2 −
(

k
3 +1

)

n−1

2 .
Combining Lemmas 40 and 41 we conclude with the

following corollary.
Corollary 42: For every 1 ≤ k and 1 ≤ d ≤ (n

2

)

, such that
d > (2k/3 + 2)n,

E(n, k, d) ≤ 4nn2| �An,k,alt |
minx∈ �An,k,alt

{|BM( �An,k,alt , x, r)|} ,

where r =
d
2 −
(

k
3 +1

)

n−1

2 .
In order to apply the upper bound from Corollary 42 we

need a lower bound on the size of a Manhattan ball in �An,k,alt .
This is accomplished by using similar methods to those that
were used in Subsection V-B, to obtain a lower bound on the
size of a Manhattan ball in �An,k .

Let n, k, r be integers such that k < n
2 and let ˜D1(n, k, r) =

Q
( n

2 ,
n
2 − k, r

4

)

and ˜D2(n, k, r) = Q
( n

2 , k, r
2

)

, i.e.

˜D1(n, k, r) =
⎧

⎨

⎩

(y1, y2, . . . , y n
2
) ∈ Z

n
2 :

∑

n
2
i=1 yi ≤ r

4 ,
0 ≤ yi ≤ n

2 − k,
∀1 ≤ i ≤ n

2 ,

⎫

⎬

⎭

,

and

˜D2(n, k, r) =
⎧

⎨

⎩

(z1, z2, . . . , z n
2
) ∈ Z

n
2 :

∑

n
2
i=1 zi ≤ r

2 ,
0 ≤ zi ≤ k,
∀1 ≤ i ≤ n

2

⎫

⎬

⎭

.

Lemma 43: If k = �(nε) and r = �(nδ), where 0 ≤ ε < 1
and 1 + ε < δ < 2, then there exists a constant c such that
for n large enough

|˜D1(n, k, r)| · |˜D2(n, k, r)| ≥
(

cnδ−1+ε)
n
2
.

Proof: Since ε < 1 it follows that n
2 − k = �(n) and

since δ < 2 it follows from Lemma 33 that

|˜D1(n, k, r)| =
∣

∣

∣Q
(n

2
,

n

2
− k,

r

4

)∣

∣

∣ ≥
( r

4
n
2

)
n
2

≥
(

c1nδ−1
) n

2
,

for some constant c1.
Since 1+ ε < δ < 2, it follows that kn ≤ r

4 , for sufficiently
large n. Then [k]m ⊆ ˜D2(n, k, r), and therefore there exists
some constant c2 such that |˜D2(n, k, r)| ≥ (c2nε)

n
2 .

Thus, there exists a constant c such that

|˜D1(n, k, r)× ˜D2(n, k, r)| ≥
(

cnδ−1nε
) n

2 =
(

cnδ−1+ε)
n
2
.

The proof of the following lemma appears in Appendix D.
Lemma 44: For every three positive integers n, k, r such

that 2k < n
2 , and for all x ∈ �An,k,alt

|BM( �An,k,alt , x, r)| ≥ |˜D1(n, k, r)| · |˜D2(n, k, r)|
4

n
2

.

As an immediate consequence of Lemmas 43 and 44 we
derive the following corollary.

Corollary 45: Let k = �(nε) and r = �(nδ), where
0 ≤ ε < 1 and 1 + ε < δ < 2. Then there exists a constant c
such that

min
x∈ �An,k,alt

{|BM( �An,k,alt , x, r)|} ≥
(

cnδ−1+ε)
n
2
.

Theorem 46: If k = �(nε) and d = �(nδ), where
0 ≤ ε < 1 and 1 + ε < δ ≤ 2, then

C(k, d) = 1 − δ

2
.

Proof: For δ < 2 it follows from Lemmas 38 and 39 that

log E(n, k, d)

log n! ≥ log |An,k|
log n! − log(cn

1n(δ−1+ε) n
2 )

log n! ,

for some constant c1. Thus,

C(k, d) ≥ 1

2
+ ε

2
+ 1

2
− δ

2
− ε

2
= 1 − δ

2
.

Note that since δ > 1 + ε, then for n large enough,
d > (2k/3 + 2)n. Hence we can apply Corollary 42 and
together with Corollary 45 we get that

log E(n, k, d)

log n! ≤ log 4nn2| �An,k,alt |
log n! − log

(

c2nδ−1+ε) n
2

log n! ,

for some constant c2. Since | �An,k,alt | ≤ | �An,k | and by
Lemma 30 it follows that

C(k, d) ≤ 1

2
+ ε

2
+ 1

2
− δ

2
− ε

2
= 1 − δ

2
.

Lastly, for δ = 2, recall that the capacity of a code in Sn

with minimum inversion distance d = �(n2), Cerr (d), is equal
to 0 as was proved in [1]. Clearly, 0 ≤ C(k, d) ≤ Cerr (d),
and thus C(k, d) = 0.
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We conclude that if k = �(nε) and d = �(nδ), where
0 ≤ ε ≤ 1 and 1 + ε < δ ≤ 2, then C(k, d) = 1 − δ

2 .
For conclusion, Theorems 29, 37, and 46 are summarized

in the following corollary.
Corollary 47: If k = �(nε) and d = �(nδ), where

0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 2, then

C(k, d) =

⎧

⎪

⎨

⎪

⎩

1
2 + ε

2 , 0 ≤ δ ≤ 1,
3
2 + ε

2 − δ, 1 < δ ≤ 1 + ε,

1 − δ
2 , 1 + ε < δ ≤ 2.

D. Computation of ˜C(k, d)

To compute the capacity of asymmetric two-neighbor
k-constrained codes, ˜C(k, d), we need the following
Gilbert-Varshamov type of lower bound on ˜E(n, k, d).

Lemma 48: For every 1 ≤ k and 1 ≤ d ≤ (n
2

)

,

˜E(n, k, d) ≥ |Bn,k|
bI (n, d − 1)

.

Theorem 49: If k = �(nε) and d = �(nδ), where
0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 2, then

˜C(k, d) = Cerr (d) =
{

1, 0 ≤ δ ≤ 1,

2 − δ, 1 ≤ δ ≤ 2.
Proof: Clearly,

˜C(k, d) ≤ Cerr (d) =
{

1, 0 ≤ δ ≤ 1,

2 − δ, 1 ≤ δ ≤ 2.

From Lemma 48 it follows that

log ˜E(n, k, d)

log n! ≥ log |Bn,k |
n! − log bI (n, d − 1)

log n! ,

and by Theorem 24

˜C(k, d) ≥ 1 − lim sup
n→∞

log bI (n, d − 1)

log n! . (8)

For 0 ≤ δ ≤ 1, it follows from (8) and Theorem 28 that

˜C(k, d) ≥ 1 − lim sup
n→∞

log cn
1

log n! = 1,

where c1 is some constant.
For 1 < δ ≤ 2, it follows from (8) and Theorem 28 that

˜C(k, d) ≥ 1 − lim sup
n→∞

log(c2nδ−1)n

log n! = 2 − δ,

where c2 is some constant.
Thus,

˜C(k, d) =
{

1, 0 ≤ δ ≤ 1,

2 − δ, 1 ≤ δ ≤ 2.

VI. CONCLUSIONS

In this paper we studied constrained codes for permuta-
tions. The motivation for these constraints originates from the
inter-cell interference phenomenon in flash memories, where
cells with high charge can affect neighbor cells with low
charge. We focused on two families of constraints, namely, the
two-neighbor k-constraint and the asymmetric two-neighbor
k-constraint. For each constraint, we first calculated the capac-
ity of the constraint when k is of the form k = �(nε).
Then, we continued to study the capacity of each constraint
when requiring the constrained codes to also have a minimum
inversion distance d , given by d = �(nδ).

APPENDIX A

The purpose of this appendix is to prove Lemma 35 from
Section V, i.e. for every three positive integers n, k, r such
that 2k < n

2 , and for all x ∈ �An,k ,

|BM ( �An,k, x, r)| ≥ |D1(n, k, r)| · |D2(n, k, r)|
4

2n
3

.

Recall, that D1(n, k, r) = Q
( n

3 ,
n
2 − 2k, 3r

20

)

and
D2(n, k, r) = Q

( 2n
3 ,

k
2 ,

r
8

)

, i.e.

D1(n, k, r) =
⎧

⎨

⎩

(y1, . . . , y n
3
) ∈ Z

n
3 :

∑

n
3
i=1 yi ≤ 3r

20 ,
0 ≤ yi ≤ n

2 − 2k,
∀1 ≤ i ≤ n

3

⎫

⎬

⎭

and

D2(n, k, r) =

⎧

⎪

⎨

⎪

⎩

(z1, . . . , z 2n
3
) ∈ Z

2n
3 :

∑

2n
3

i=1 zi ≤ r
8 ,

0 ≤ zi ≤ k
2 ,∀1 ≤ i ≤ 2n
3

⎫

⎪

⎬

⎪

⎭

.

To accomplished our goal we will define a mapping ψx :
D1(n, k, r) × D2(n, k, r) → BM ( �An,k , x, r), for every
x ∈ �An,k , such that

|{(y, z) ∈ D1(n, k, r)× D2(n, k, r) : ψx(y, z) = u}| ≤ 4
2n
3 ,

for every u ∈ BM ( �An,k, x, r). For ease of notation we denote
the set D1(n, k, r) by D1 and the set D2(n, k, r) by D2. The
mapping ψx will be defined by two other mappings ρx and ξw,

where ρx : D1 → BM( �An,k , x, 3r
4 ) and ξw : D2 →

BM ( �An,k,w, r
4 ), for all w ∈ �An,k . We define the sets I1, I2, I3

as follows:

I1 = {i ∈ [n] : i ≡ 1 (mod3)},
I2 = {i ∈ [n] : i ≡ 2 (mod3)},
I3 = {i ∈ [n] : i ≡ 3 (mod3)}.

The goal of the mapping ρx is to invoke high changes on third
of the entries in x that are specified by the set of indices I2,
and accordingly change the remaining entries to preserve the
two-neighbor k-constraint. Then, the mapping ξw changes only
the entries of the indices from I1 ∪ I3 while again preserving
the two-neighbor k-constraint. Clearly, the definition of ρx
(of ξw, respectively) on the i th entry, for i ∈ I1 ∪ I3, should
depend on whether |xi − xi−1| ≤ k or |xi+1 − xi | ≤ k (on
whether |wi − wi−1| ≤ k or |wi+1 − wi | ≤ k, respectively).
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Therefore, we will partition the set I1 ∪ I3 into three sets
J (x), K (x), and L(x), according to the differences between
neighboring entries in x, and define ρx for each of these sets
to preserve the two-neighbor k-constraint. Similarly, we will
partition the set I1 ∪ I3 again into three sets J (w), K (w),
and L(w), according to the differences between neighboring
entries in w, and define ξw for each of these sets to preserve
the two-neighbor k-constraint.

For every x ∈ �An,k , x = (x1, x2, . . . , xn), define
J (x) ⊆ I1 ∪ I3 by

J (x) =
⎧

⎨

⎩

i ∈ I1 ∪ I3 :
i − 1 ∈ I2 ∧ |xi − xi−1| ≤ k

or
i + 1 ∈ I2 ∧ |xi+1 − xi | ≤ k

⎫

⎬

⎭

and let

J1(x) = J (x) ∩ I1 and J3(x) = J (x) ∩ I3.

Note, that if i ∈ J1(x) then i + 1 ∈ I2 and |xi+1 − xi | ≤ k.
Similarly, if i ∈ J3(x) then i − 1 ∈ I2 and |xi − xi−1| ≤ k.
For every x ∈ �An,k , define K (x) ⊆ (I1 ∪ I3) \ J (x) by

K (x) =
⎧

⎨

⎩

i ∈ (I1 ∪ I3) \ J (x) :
i − 1 ∈ J (x)

or
i + 1 ∈ J (x)

⎫

⎬

⎭

and let

K1(x) = K (x) ∩ I1 and K3(x) = K (x) ∩ I3.

Note, that if i ∈ K1(x) then i − 1 ∈ J (x) and i + 1 ∈ I2.
Since i �∈ J (x), it follows that |xi+1 − xi | > k and hence
|xi − xi−1| ≤ k. Similarly, if i ∈ K3(x) then i + 1 ∈ J (x) and
|xi+1 − xi | ≤ k. Finally, for every x ∈ �An,k , define

L(x) = (I1 ∪ I3) \ (J (x) ∪ K (x)),
L1(x) = L(x) ∩ I1, and L3(x) = L(x) ∩ I3.

Note, that if i ∈ L1(x)\{1} then i+1 ∈ I2 and i−1 �∈ I2∪J (x).
Since i �∈ I2 ∪ J (x) it follows that i − 1 �∈ K (x). Thus,
i −1 ∈ L3(x) and |xi − xi−1| ≤ k. Similarly, if i ∈ L3(x)\ {n}
then i + 1 ∈ L1(x) and |xi+1 − xi | ≤ k.

Example 50: If x = (1, 7, 5, 3, 5, 2, 4, 9, 10, 12, 5, 4) ∈
�A12,2 then I2 = {2, 5, 8, 11}, J (x) = {3, 4, 9, 12},

K (x) = {10}, and L(x) = {1, 6, 7}.
We let m be the integer n/3 and we define the mapping

ρx : D1 → BM ( �An,k , x, 3r
4 ) as follows. For every y ∈ D1, y =

(y1, y2, . . . , ym), let ρx(y) = w, where w = (w1, w2, . . . , wn)
is the following vector. For every i ∈ [n], if i ∈ I2 then

wi =
{

xi + y(i+1)/3, xi ≤ n/2,

xi − y(i+1)/3, xi > n/2.

If i ∈ J (x) then

wi =
{

xi − xi+1 +wi+1, i ∈ J1(x),

xi − xi−1 +wi−1, i ∈ J3(x).

If i ∈ K (x) then

wi =
{

xi − xi−1 +wi−1, i ∈ K1(x),

xi − xi+1 +wi+1, i ∈ K3(x).

Lastly, if i ∈ L(x) then wi = xi .

Example 51: If n = 12, k = 2, and r = 40 then

D1 =
⎧

⎨

⎩

(y1, y2, y3, y4) :
∑4

i=1 yi ≤ 6,

∀1 ≤ i ≤ 4, 0 ≤ yi ≤ 2

⎫

⎬

⎭

.

If x = (1, 7, 5, 3, 5, 2, 4, 9, 10, 12, 5, 4) ∈ �A12,2 and y =
(1, 2, 2, 0) ∈ D1 then ρx(y) = w, where wI2 = (w2, w5,
w8, w11) = (6, 7, 7, 5), wJ (x) = (w3, w4, w9, w12) = (4, 5,
8, 4), wK (x) = w10 = 10, and wL(x) = (w1, w6, w7) =
(1, 2, 4). Hence, ρx(y) = (1, 6, 4, 5, 7, 2, 4, 7, 8, 10, 5, 4).

In the next three lemmas we will prove in full details that
the mapping ρx is well defined, i.e. we will show that ρx(y) ∈
BM ( �An,k, x, 3r

4 ) for all x ∈ �An,k and y ∈ D1.
Lemma 52: For any x ∈ �An,k and y ∈ D1, if w = ρx(y),

w = (w1, w2, . . . , wn), then wi ∈ [n], for every 1 ≤ i ≤ n.
Proof: We distinguish between four cases.

Case 1: i ∈ I2. If xi ≤ n/2 then wi = xi + y(i+1)/3, where
1 ≤ xi + y(i+1)/3 ≤ 2n/2−2k ≤ n, and if xi > n/2 then wi =
xi − y(i+1)/3, where n/2 + 1 − (n/2 − 2k) ≤ xi − y(i+1)/3 ≤ n.
Hence, wi ∈ [n].

Case 2: i ∈ J (x). If i ∈ J1(x) then i + 1 ∈ I2 and
|xi+1 − xi | ≤ k. If xi+1 ≤ n/2 then xi ≤ n/2 + k and

wi = xi − xi+1 +wi+1 = xi − xi+1 + xi+1 + y(i+2)/3

= xi + y(i+2)/3.

It follows that 1 ≤ xi + y(i+2)/3 ≤ n/2 + k + n/2 − 2k ≤ n.
If xi+1 > n/2 then xi > n/2 − k and similarly wi = xi −
y(i+2)/3. It follows that n/2 − k + 1 − (n/2 − 2k) ≤ xi −
y(i+2)/3 ≤ n. Hence, wi ∈ [n]. Similarly, if i ∈ J3(x) then
wi ∈ [n].

Case 3: i ∈ K (x). If i ∈ K1(x) then i − 1 ∈ J (x), i − 2 ∈
I2, |xi − xi−1| ≤ k, and |xi−1 − xi−2| ≤ k. By the triangle
inequality, it follows that |xi − xi−2| ≤ 2k. If xi−2 ≤ n/2
then wi = xi + y(i−1)/3 and xi ≤ n/2 + 2k. It follows that
1 ≤ xi + y(i−1)/3 ≤ n/2 + 2k + n/2 − 2k ≤ n. If xi−2 > n/2
then wi = xi − y(i−1)/3 and xi > n/2 − 2k. It follows that
n/2−2k+1−(n/2−2k) ≤ xi −y(i−1)/3 ≤ n. Hence, wi ∈ [n].
Similarly, if i ∈ K3(x) then wi ∈ [n].

Case 4: i ∈ L(x). In this case wi = xi ∈ [n].
Thus, wi ∈ [n], for every i ∈ [n].
Lemma 53: For any x ∈ �An,k and y ∈ D1, if w = ρx(y)

then w ∈ �An,k .
Proof: From Lemma 52, it follows that w ∈ Hn. Hence

we only need to show that |wi −wi−1| ≤ k or |wi+1−wi | ≤ k,
for every 2 ≤ i ≤ n − 1. We distinguish between 4 cases.

Case 1: i ∈ I2. In this case i − 1 ∈ J (x) or i + 1 ∈ J (x).
If i −1 ∈ J (x) then wi−1 = xi−1 −xi +wi and |xi −xi−1| ≤ k.
Therefore, |wi − wi−1| ≤ k. Similarly, if i + 1 ∈ J (x) then
|wi+1 −wi | ≤ k.

Case 2: i ∈ J (x). If i ∈ J1(x) then i + 1 ∈ I2, wi = xi −
xi+1 +wi+1, and |xi − xi+1| ≤ k. Therefore, |wi+1 −wi | ≤ k.
Similarly, if i ∈ J3(x) then |wi −wi−1| ≤ k.

Case 3: i ∈ K (x). If i ∈ K1(x) then i − 1 ∈ J (x), wi =
xi −xi−1 +wi−1, and |xi −xi−1| ≤ k. Hence, |wi −wi−1| ≤ k.
Similarly, if i ∈ K3(x) then |wi+1 −wi | ≤ k.

Case 4: i ∈ L(x). If i ∈ L1(x) then i −1 ∈ L3(x), wi = xi ,
wi−1 = xi−1, and |xi − xi−1| ≤ k. Hence, |wi − wi−1| ≤ k.
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Similarly, if i ∈ L3(x) then |wi+1 −wi | ≤ k.
Thus, |wi − wi−1| ≤ k or |wi+1 − wi | ≤ k, for every

2 ≤ i ≤ n − 1.
Lemma 54: Let y ∈ D1. If w = ρx(y), w =

(w1, w2, . . . , wn), then w ∈ BM( �An,k , x, 3r
4 ).

Proof: By Lemma 53, it follows that w ∈ �An,k .
It remains to show that dM (w, x) ≤ 3r

4 . For i ∈ L(x) we
have that wi = xi and therefore |wi − xi | = 0. For every
i ∈ [n] \ L(x) we have that wi ∈ {xi − ys(i), xi + ys(i)}, where

s(i) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(i + 1)/3, i ∈ I2,

(i + 2)/3, i ∈ J1(x),

i/3, i ∈ J3(x),
(i − 1)/3, i ∈ K1(x),

(i + 3)/3, i ∈ K3(x).

Then,

dM (w, x) =
n
∑

i=1

|wi − xi | =
∑

i∈[n]\L(x)

|wi − xi |

=
∑

i∈[n]\L(x)

ys(i) ≤(a) 5
m
∑

s=1

ys ≤(b) 5
3r

20
≤ 3r

4
,

where inequality (a) follows from the fact that
∑

i∈[n]\L(x) ys(i) counts every ys , 1 ≤ s ≤ m, at most
five times and inequality (b) follows from the definition of
the set D1.

Thus, w ∈ BM ( �An,k , x, 3r
4 ).

We next turn to the definition of the mapping ξw. For every
i ∈ I1 ∪ I3, let f (i) ∈ [2m] be defined as follows.

f (i) =
{

i − s, i = 3s, for some s ∈ [m],
i − s + 1, i = 3s − 2, for some s ∈ [m].

The mapping ξw : D2 → BM ( �A,w, r
4 ), for w ∈ �An,k is

defined as follows. For every z ∈ D2, z = (z1, z2, . . . , z2m),
let ξw(z) = u, where u = (u1, u2, . . . , un) is the following
vector. If i ∈ I2 then ui = wi . If i ∈ J (w) then

ui =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

wi − z f (i), wi ≥ w�,wi > z f (i),

z f (i), wi ≥ w�,wi ≤ z f (i),

wi + z f (i), wi < w�,wi ≤ n − z f (i),

n − z f (i), wi < w�,wi > n − z f (i),

where � ∈ I2, � = i +1 if i ∈ J1(w) and � = i −1 if i ∈ J3(w).
The motivation in this definition is to change the value of each
wi by approximately z f (i) such that it still remains in [n] and
that |ui − u�| ≤ k. The same principle will follow in the
definition of ui for i ∈ K (w).

If i ∈ K (w), then let j ∈ J (x) and � ∈ I2 where j = i − 1
and � = i −2 if i ∈ K1(w) and j = 1+1 and � = i +2 if i ∈
K3(w) . We will define ui according to the four possibilities
of u j . If 0 ≤ w j − w� ≤ k and w j > z f ( j ), and hence
u j = w j − z f ( j ), then

ui =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

wi − z f (i) − z f ( j ), wi ≥ w j , wi > z f (i) + z f ( j ),

z f (i) + 1, wi ≥ w j , wi ≤ z f (i) + z f ( j ),

wi + z f (i), wi < w j , wi ≤ n − z f (i),

n − z f (i), wi < w j , wi > n − z f (i).

If 0 ≤ w j − w� ≤ k and w j ≤ z f ( j ), hence u j = z f ( j ) and
wi ≤ z f ( j ) + k, then

ui =
{

wi − z f (i), wi > z f (i),

z f (i), wi ≤ z f (i).

If −k ≤ w j − w� < 0 and w j ≤ n − z f ( j ), hence
u j = w j + z f ( j ), then

ui =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

wi − z f (i), wi ≥ w j , wi > z f (i),

z f (i), wi ≥ w j , wi ≤ z f (i),

wi + z f (i) + z f ( j ), wi < w j , wi ≤ n − z f (i) − z f ( j ),

n − z f (i) − z f ( j ), wi < w j , wi > n − z f (i) − z f ( j ).

If −k ≤ w j −w� < 0 and w j > n−z f ( j ), hence u j = n−z f ( j )

and wi ≥ n − z f ( j ) − k, then

ui =
{

wi + z f (i) + z f ( j ), wi ≤ n − z f (i) − z f ( j ),

n − z f (i) − z f ( j ), wi > n − z f (i) − z f ( j ).

If i ∈ L1(w) and i �= 1 then i − 1 ∈ L3(w). In this case, if
wi ≤ n − z f (i) then ui = wi + z f (i). If wi−1 ≥ wi , then

ui−1 =
{

wi−1 − z f (i−1), wi−1 > z f (i−1),

z f (i−1), wi−1 ≤ z f (i−1),

and if wi−1 < wi then

ui−1 =
{

wi−1 + z f (i−1) + z f (i), wi−1 ≤ n − z f (i−1) − z f (i),

n − z f (i−1) − z f (i), wi−1 > n − z f (i−1) − z f (i).

If wi > n−z f (i) then ui = n−z f (i). In this case, if wi−1 ≥ wi

then ui−1 = wi−1 − z f (i−1), and if wi−1 < wi then

ui−1 =
{

wi−1 + z f (i−1) + z f (i), wi−1 ≤ n − z f (i−1) − z f (i),

n − z f (i−1) − z f (i), wi−1 > n − z f (i−1) − z f (i).

Lastly, if i ∈ L(w) ∩ {1, n} then

ui =
{

wi + z f (i), wi ≤ n/2,

wi − z f (i), wi > n/2.

Example 55: If n = 12, k = 2, and r = 40, then

D2 =
⎧

⎨

⎩

(z1, z2, . . . , z9) :
∑9

i=1 zi ≤ 5,

∀1 ≤ i ≤ 9, 0 ≤ zi ≤ 1

⎫

⎬

⎭

.

If w = (1, 6, 4, 5, 7, 2, 4, 7, 8, 10, 5, 4) ∈ �A12,2 then
I2 = {2, 5, 8, 11}, J (w) = {3, 4, 9, 12}, K (w) = {10},
and L(w) = (1, 6, 7). If z = (0, 1, 1, 0, 0, 1, 0, 1, 1) then
ξw(z) = u, where uI2 = (u2, u5, u8, u11) = (6, 7, 7, 5),
uJ (x) = (u3, u4, u9, u12) = (5, 6, 7, 5), uK (x) = u10 = 9,
and uL(x) = (u1, u6, u7) = (1, 2, 4). Hence, ξw(z) =
(1, 6, 5, 6, 7, 2, 4, 7, 7, 9, 5, 5).

Next, we show that the mapping ξw is well-defined.
Lemma 56: Let z ∈ D2. If ξw(z) = u, u = (u1,

u2, . . . , un), then u ∈ BM ( �An,k,w, r
4 ).

Proof: It can be readily verified that |ui − ui−1| ≤ k
or |ui+1 − ui | ≤ k, for all 2 ≤ i ≤ n − 1, and ui ∈ [n],
for all 1 ≤ i ≤ n. Thus, u ∈ �An,k . It remains to show that
dM (u,w) ≤ r

4 . For every i ∈ I2 we have that ui = wi , and
therefore |ui −wi | = 0. For every i ∈ J (w) ∪ {1, n} we have
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that wi −z f (i) ≤ ui ≤ wi +z f (i). For every i ∈ K (w)∪L(w)\
{1, n} we have that wi − z f (i)− zg(i) ≤ ui ≤ wi + z f (i)+ zg(i),
where

g(i) =
{

f (i − 1), i ∈ K1(w) ∪ L1(w) \ {1},
f (i + 1), i ∈ K3(w) ∪ L3(w) \ {n}.

Then,

dM (u,w) =
n
∑

i=1

|ui −wi | =
∑

i∈I1∪I3

|ui −wi |

≤
∑

i∈I1∪I3

z f (i) +
∑

i∈K (w)∪L(w)\{1,n}
zg(i)

≤(a) 2
2m
∑

s=1

zs ≤(b) 2
r

8
≤ r

4
,

where inequality (a) follows from the fact that each of
the sums

∑

i∈I1∪I3
z f (i) and

∑

i∈K (w)∪L(w)\{1,n} zg(i) counts

every zs , 1 ≤ s ≤ 2m, at most once. Inequality (b) follows

from the definition of the set D2. Thus, u ∈ BM ( �An,k,w, r
4 ).

Lemma 57: If u ∈ BM ( �An,k ,w, r
4 ) then

|{z ∈ D2 : ξw(z) = u}| ≤ 42m .
Proof: We will show that there exist at most 42m possi-

bilities to determine a vector z ∈ D2, such that u = ξw(z),
assuming that such a vector exists. For i ∈ J (w) ∪ {1, n}
there are at most four possibilities to determine the value
of z f (i), given ui and wi . Once these elements were deter-
mined, then for every i ∈ K (w), there are at most four
possibilities for z f (i), given the vectors u,w, and the set
{z f ( j ) : j ∈ J (w)}.

For i ∈ L1(w) \ {1}, there exist at most two possibilities
to determine the value of z f (i), given ui and wi . Once these
elements are determined then for every i ∈ L3(w) \ {n} there
are at most two possibilities to determine the value of z f (i)

given the vectors u,w, and the set {z f ( j ) : j ∈ L1(w) \ {1}}.
Hence, for every s ∈ [2m] there are at most four possibilities

for zs , and thus there are at most 42m possibilities for the
vector z.

We are now in a position to define the mapping ψx : D1 ×
D2 → BM ( �An,k, x, r). For every y ∈ D1 and z ∈ D2, let
ψx(y, z) = ξρx(y)(z).

Lemma 58: If y ∈ D1 and z ∈ D2 then ψx(y, z) ∈
BM ( �An,k, x, r).

Proof: Let w = ρx(y) and let u = ξw(z). By Lemma 54
it follows that w ∈ BM ( �An,k , x, 3r

4 ) and by Lemma 56 it
follows that u ∈ BM ( �An,k,w, r

4 ). Then u ∈ �An,k and by the
triangle inequality it follows that dM (u, x) ≤ 3r

4 + r
4 ≤ r .

Thus, u ∈ BM ( �An,k , x, r).
Proof of Lemma 35: If u ∈ BM ( �An,k, x, r), u =

(u1, u2, . . . , un), such that there exist y ∈ D1 and z ∈ D2
for which u = ψx(y, z), then u = ξw(z), where w = ρx(y),
w = (w1, w2, . . . , wn). For every i ∈ I2, wi is uniquely
determined from ui and by the definition of ρx(y), the vector
y is uniquely determined from x and the set {wi : i ∈ I2}.
Hence, w is uniquely determined from u and x. By Lemma 57

it follows that there are at most 42m possibilities for the
vector z, given u and w. Hence, there are at most 42m pairs
(y, z) such that u = ψx(y, z). Thus,

|BM ( �An,k, x, r)| ≥ |D1| · |D2|
4

2n
3

.

�

APPENDIX B

The purpose of this appendix is to prove Lemma 39 from
Section V. That is, for k = �(nε) and r = �(nδ), where
0 ≤ ε < 1 and 1 ≤ δ < 2, there exists a constant c such
that

max
x∈ �An,k

{|BM( �An,k , x, r)|} ≤ cnn(δ−1+ε) n
2 .

To this end, we first prove the following lemma.
Lemma 59: If r = �(nδ), where 1 ≤ δ, then there exists

some constant c such that for sufficiently large n
(

n + r

r

)

≤ (cnδ−1)n .

Proof: By the bounds
( n

e

)n ≤ n! ≤ nn+1

en−1 , [26, p. 54], it
follows that

(

n + r

n

)

= (n + r)!
r !n! ≤ n + r

e
· (n + r)n+r

rr nn

= n + r

e
·
( r

n

)n (

1 + n

r

)n+r
.

Hence, there exists some constant c1 such that
(

n + r

n

)

≤ cn
1n(δ−1)n

(

1 + n

r

)n+r
.

There exist some constant c2, c3 such that
(

1 + n

r

)n+r ≤
(

(

1 + c2

nδ−1

)nδ−1)c3n

,

and since
(

1 + c2

nδ−1

)nδ−1

≤ 2ec2,

for sufficiently large n, it follows that there exists some
constant c4 such that

(

1 + n

r

)n+r ≤ cn
4 .

Therefore, there exists some constant c such that
(

n + r

n

)

≤
(

cnδ−1
)n
.

We are now in a position to prove Lemma 39.
Proof of Lemma 39: Let x ∈ �An,k and let m = n

2 .
For every y ∈ BM ( �An,k, x, r), define the vectors (u,b) ∈
{0, 1, . . . , n−1}m×{0, 1}m such that

∑m
i=1 ui ≤ r , and (z, c) ∈

{0, 1, 2, . . . , k}m × {0, 1, 2, 3}m as follows. For 1 ≤ i ≤ m,

(ui , bi ) =
{

(y2i−1 − x2i−1, 0), 0 ≤ y2i−1 − x2i−1,

(x2i−1 − y2i−1, 1), y2i−1 − x2i−1 < 0.
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For 1 ≤ i ≤ m, if |y2i − y2i−1| ≤ k then

(zi , ci ) =
{

(y2i − y2i−1, 0), 0 ≤ y2i − y2i−1 ≤ k,

(y2i−1 − y2i , 1), −k ≤ y2i − y2i−1 < 0.

Otherwise, if |y2i − y2i−1| > k then

(zi , ci ) =
{

(y2i − y2i+1, 2), 0 ≤ y2i − y2i+1 ≤ k,

(y2i+1 − y2i , 3), −k ≤ y2i − y2i+1 < 0.

Note, that y is reconstructible from (u,b), (z, c) and x,
hence the mapping y → ((u,b), (z, c)) is an injection.

It follows that the size of BM ( �An,k, x, r) is at most the number
of different choices of ((u,b), (z, c)) as specified above, and
therefore

|BM( �An,k , x, r)| ≤ 2m
(

m + r

r

)

(4(k + 1))m .

By Lemma 59 it follows that there exists some constant b
such that

(

m + r

r

)

≤ bmm(δ−1)m.

Thus, there exists a constant c such that

|BM ( �An,k, x, r)| ≤ cnn(δ−1+ε) n
2 .

�

APPENDIX C

The purpose of this appendix is to prove Lemma 41 from
Section V. That is, for y ∈ {0, 1}n−1, 1 ≤ k, and 1 ≤ d ≤ (n

2

)

,
such that d > (2k/3 + 2)n, we have

E(n, k, d, y) ≤ 2nn2| �An,k,alt |
minx∈ �An,k,alt

{|BM( �An,k,alt , x, r)|} ,

where r =
d
2 −
(

k
3 +1

)

n−1

2 .
First, we will preset some notations and definitions. For

every y ∈ {0, 1}s and 1 ≤ � ≤ s, let y�1 = (y1, y2, . . . , y�).
Define J (y) ⊆ [s] in the following recursive manner.
J ((0)) = ∅, J ((1)) = {1}, J ((0, 0)) = ∅, J ((1, 0)) = {1},
J ((0, 1)) = {2}, J ((1, 1)) = {2}, and for s ≥ 3, if ys = 1 then
J (y) = {s} ∪ J (ys−2

1 ) and if ys = 0 then J (y) = J (ys−1
1 ).

Notice that if i ∈ J (y) then yi = 1.
Example 60: Let y ∈ {0, 1}6, where y = (1, 1, 0, 1, 1, 0).

Then J (y) = J (y5
1), and

J (y5
1) = {5} ∪ J (y3

1) = {5} ∪ J (y2
1) = {2, 5}.

Lemma 61: If y ∈ {0, 1}s does not have two consecutive
zeros then

1. Either s − 1 ∈ J (y) or s ∈ J (y).
2. For every 2 ≤ i ≤ s − 2, if i �∈ J (y) then i − 1 ∈ J (y)

or i + 1 ∈ J (y).
Proof: If ys = 1 then J (y) = {s} ∪ J (ys−2

1 ) and therefore
s ∈ J (y) and s − 1 �∈ J (y). If ys = 0 then ys−1 = 1 and
J (y) = J (ys−1

1 ). Therefore, s �∈ J (y) and s − 1 ∈ J (y). This
proves the first part of the lemma.

To prove the second part, we consider the two cases for
the value of yi , where i /∈ J (y). If yi = 1 then we have that

yi+1 = 1 and i + 1 ∈ J (y). If yi = 0 then since y does not
have two consecutive zeros, yi−1 = 1 and thus i − 1 ∈ J (y).

Define

I (y)
def={i ∈ [1, s − 2] : i �∈ J (y) and i + 1 �∈ J (y)}.

Note, that if i ∈ I (y) then (yi , yi+1, yi+2) = (0, 1, 1) and
i + 2 ∈ J (y). For a set of integers X , we denote by 1 + X the
set {1 + x : x ∈ X}.

Lemma 62: Let y ∈ {0, 1}s . If y does not have two
consecutive zeros then

J (y) ∪ (1 + J (y)) ∪ (1 + I (y)) ∪ {1, s} = [s].
Proof: For i ∈ [2, n − 1], either i ∈ J (y) or i − 1 ∈ J (y)

or i − 1 ∈ I (y). Hence if i �∈ J (y) then i = 1 + j for some
j ∈ I (y) ∪ J (y).

Recall, that for σ ∈ An,k and y ∈ {0, 1}n , σ ∈ An,k,y if and
only if μ(σ) = y, where (μ(σ))i = 1 if |σ(i +1)−σ(i)| ≤ k,
and (μ(σ))i = 0 otherwise, 1 ≤ i ≤ n − 1. This implies
that An,k,y �= ∅ only if for every 1 ≤ i ≤ n − 2, yi = 1 or
yi+1 = 1, and hence we assume in the rest of this appendix
that y does not have two consecutive zeros. For y ∈ {0, 1}n−1,
let J (y) = { j1, j2, . . . , jn1}, where j1 < j2 < · · · < jn1 ,
and let I (y) = {i1, i2, . . . , in2}, where i1 < i2 < · · · < in2 .
Define the following mapping φ : An,k,y → �An,k,alt . For every
σ ∈ An,k,y, φ(σ) = x, where x = (x1, x2, . . . , xn), is defined
as follows. For every 1 ≤ � ≤ n1, x2�−1 = σ( j�) and x2� =
σ( j� + 1). For every 1 ≤ � ≤ n2,

x2n1+� = |σ(i� + 2)− σ(i� + 1)|.
Finally, for every 2n1 + n2 + 1 ≤ � ≤ n, x� = 1.

Example 63: Let y = (1, 1, 0, 1, 1, 0) and σ = (4, 6, 7,
1, 3, 2, 5) ∈ A7,2,y. According to the previous example,
J (y) = {2, 5} and hence I (y) = {3}. If x = φ(σ),
where x = (x1, x2, . . . , x7), then (x1, x2, x3, x4) =
(σ (2), σ (3), σ (5), σ (6)) = (6, 7, 3, 2), x5 = |σ(5) −
σ(4)| = 2, and x7 = x6 = 1. Thus, x = (6, 7, 3, 2, 2, 1, 1),
which belongs to �A7,2,alt .

Lemma 64: If σ ∈ An,k,y then φ(σ) ∈ �An,k,alt .
Proof: Let φ(σ) = x, where x = (x1, x2, . . . , xn). For

every 1 ≤ � ≤ n1, j� ∈ J (y) which implies that y j� = 1,
and therefore |σ( j�+ 1)−σ( j�)| ≤ k. Hence, |x2�− x2�−1| =
|σ( j�+ 1)− σ( j�)| ≤ k. For every 1 ≤ � ≤ n2, yi�+1 = 1 and
hence

x2n1+� = |σ(i� + 2)− σ(i� + 1)| ∈ [k].
Finally, for 2n1 + n2 + 1 ≤ � ≤ n, x� = 1. Together we
conclude that for all 2n1 + 1 ≤ � ≤ n, x� ∈ [k], and thus,
x ∈ �An,k,alt .

Lemma 65: For every x ∈ �An,k,alt ,

|{σ ∈ An,k,y : φ(σ) = x}| ≤ 2nn2.
Proof: For every i ∈ [2, n − 1], either i − 1 ∈ J (y) or

i ∈ J (y) or i − 1 ∈ I (y). If i − 1 ∈ J (y) then let 1 ≤ � ≤ n1
such that i − 1 = j�. By the definition of φ it follows that
σ(i) = x2�. Similarly, if i ∈ J (y) then σ(i) = x2�−1, for the
unique � such that i = j�. Hence, if i ∈ J (y) or i − 1 ∈ J (y)
then σ(i) is uniquely determined from x.
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If i ∈ [2, n − 1] and i, i − 1 �∈ J (y) then i − 1 ∈ I (y).
From part (2) of Lemma 61 it follows that i + 1 ∈ J (y), and
hence σ(i + 1) can be determined from x. Let 1 ≤ � ≤ n2
such that i − 1 = i�. By the definition of φ it follows that
x2n1+� = |σ(i�+2)−σ(i�+1)| = |σ(i +1)−σ(i)|. Therefore,
there are at most two possibilities to determine the value of
σ(i) from x2n1+� and σ(i + 1).

Hence, for every i ∈ [2, n − 1] there are at most two
possibilities to determine σ(i) from x. There are at most n2

possibilities to determine σ(1) and σ(n). Thus, there are at
most 2nn2 possibilities to determine σ .

Lemma 66: If σ, π ∈ An,k,y such that dI (σ, π) =
d > (2k/3 + 2)n, then dM(φ(σ ), φ(π)) ≥ 2r + 1,

where r =
d
2 −
(

k
3 +1

)

n−1

2 .
Proof: Let x = φ(σ), x = (x1, x2, . . . , xn), and

u = φ(π), u = (u1, u2, . . . , un). By Lemma 31 it follows
that dM (σ, π) ≥ d . Let J (y) = { j1, j2, . . . , jn1} and I (y) =
{i1, i2, . . . , in2}. By the definition of φ, for every 1 ≤ � ≤ n1,
x2�−1 = σ( j�), x2� = σ( j� + 1), u2�−1 = π( j�), and
u2� = π( j� + 1). Then

dM (x,u) ≥
n
∑

i=1

|xi − ui |

≥
n1
∑

�=1

|σ( j�)− π( j�)| + |σ( j� + 1)− π( j� + 1)|.
(C.1)

For every i ∈ [2, n − 1] such that i − 1 ∈ I (y) we have that
yi = 1 and i + 1 ∈ J (y). It follows that |σ(i + 1)−σ(i)| ≤ k,
and |π(i +1)−π(i)| ≤ k. Therefore, by the triangle inequality

|σ(i)− π(i)| ≤ |σ(i + 1)− σ(i)| + |π(i + 1)− π(i)|
+|σ(i + 1)− π(i + 1)|

≤ |σ(i + 1)− π(i + 1)| + 2k. (C.2)

Furthermore, there exists a unique 1 ≤ � ≤ n1 such that
i + 1 = j�. Hence,

dM (σ, π)

≤ |σ(1)− π(1)| + |σ(n)− π(n)| +
n−1
∑

i=2

|σ(i)− π(i)|

≤(a) 2n +
n1
∑

�=1

|σ( j�)− π( j�)| + |σ( j� + 1)− π( j� + 1)|

+
n2
∑

�=1

|σ(i� + 1)− π(i� + 1)|

≤(b) 2n +
n1
∑

�=1

|σ( j�)− π( j�)| + |σ( j� + 1)− π( j� + 1)|

+ 2kn2 +
n1
∑

�=1

|σ( j�)− π( j�)|

≤ 2n + 2kn2

+ 2
n1
∑

�=1

|σ( j�)− π( j�)| + |σ( j� + 1)− π( j� + 1)|

≤(c) 2n(
k

3
+ 1)

+ 2
n1
∑

�=1

|σ( j�)− π( j�)| + |σ( j� + 1)− π( j� + 1)|,

where inequality (a) follows from Lemma 62 and inequality
(b) follows from (C.2) and the fact that i� ∈ I (y) implies that
i� + 2 ∈ J (y). Inequality (c) holds since n2 ≤ n

3 , which is a
straightforward consequence of the inequalities 2n1 + n2 ≤ n
and n2 ≤ n1. By (C.1) we conclude that

dM (σ, π) ≤ 2n + 2kn

3
+ 2dM (x, y),

and since dM (σ, π) ≥ d , it follows that dM (x, y) ≥ d
2 − ( k

3 +
1)n ≥ 2r + 1.

Proof of Lemma 41: Let ˜d = 2r+1 and let C ⊆ An,k,y be a
code with minimum inversion distance d of size E(n, k, d, y).
By Lemmas 64, 65 and 66 it follows that φ(C) is a code
in �An,k,alt with minimum distance at least ˜d and of size at

least |C|
2nn2 . By the sphere packing bound it follows that

|φ(C)| ≤ | �An,k,alt |
minx∈ �An,k,alt

{|BM( �An,k,alt , x, r)|} .

Thus,

E(n, k, d, y) ≤ 2nn2| �An,k,alt |
minx∈ �An,k,alt

{|BM( �An,k,alt , x, r)} .

�

APPENDIX D

In this appendix we prove Lemma 44, that is, we will show
that for every three positive integers n, k, r such that 2k < n

2 ,
and for all x ∈ �An,k,alt

|BM( �An,k,alt , x, r)| ≥ |˜D1(n, k, r)| · |˜D2(n, k, r)|
4

n
2

.

Recall, that ˜D1(n, k, r) = Q
( n

2 ,
n
2 − k, r

4

)

and ˜D2(n, k, r) =
Q
( n

2 , k, r
2

)

, i.e.

˜D1(n, k, r) =
⎧

⎨

⎩

(y1, y2, . . . , y n
2
) ∈ Z

n
2 :

∑

n
2
i=1 yi ≤ r

4 ,
0 ≤ yi ≤ n

2 − k,
∀1 ≤ i ≤ n

2 ,

⎫

⎬

⎭

,

and

˜D2(n, k, r) =
⎧

⎨

⎩

(z1, z2, . . . , z n
2
) ∈ Z

n
2 :

∑

n
2
i=1 zi ≤ r

2 ,
0 ≤ zi ≤ k,
∀1 ≤ i ≤ n

2

⎫

⎬

⎭

.

We will follow similar methods to the ones used in the proof of
Lemma 35. For ease of notation we denote the set ˜D1(n, k, r)
by ˜D1 and the set ˜D2(n, k, r) by ˜D2. We will define a mapping
˜ψx : ˜D1 × ˜D2 → BM ( �An,k,alt , x, r) for all x ∈ �An,k,alt , such
that

|{(y, z) ∈ ˜D1 × ˜D2 : ˜ψx(y, z) = u}| ≤ 4
n
2 ,

for every u ∈ BM ( �An,k,alt , x, r). The mapping ˜ψx

will be defined by two other mappings ρ̃x and ˜ξw,
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where ρ̃x : ˜D1 → BM ( �An,k,alt , x, r
2 ) and ˜ξw : ˜D2 →

BM ( �An,k,alt ,w, r
2 ), for w ∈ �An,k,alt .

Let m be the integer n/2. The definition of the mapping ρ̃x is
similar to the definition of the mapping ρx from Appendix A.
For every y ∈ ˜D1, y = (y1, y2, . . . , ym), let ρ̃x(y) = w,
where w = (w1, w2, . . . , wn) is defined as follows. For
every i ∈ [m],

w2i =
{

x2i + yi , x2i ≤ m,

x2i − yi , x2i > m,

and

w2i−1 = x2i−1 − x2i +w2i .

Example 67: If n = 12, k = 2, and r = 40 then

˜D1 =
⎧

⎨

⎩

(y1, y2, . . . , y6) :
∑6

i=1 yi ≤ 10,

∀1 ≤ i ≤ 6, 0 ≤ yi ≤ 4

⎫

⎬

⎭

.

If x = (1, 3, 5, 3, 5, 5, 4, 6, 10, 12, 5, 4) ∈ �A12,2,alt and
y = (4, 2, 0, 3, 1, 0) ∈ ˜D1 then we get ρ̃x(y) = w, where
w = (5, 7, 7, 5, 5, 5, 7, 9, 9, 11, 5, 4).

Lemma 68: Let y ∈ ˜D1. If w = ρ̃x(y), w = (w1,
w2, . . . , wn), then w ∈ BM( �An,k,alt , x, r

2 ).
Proof: It can be readily verified that w ∈ �An,k,alt .

It remains to show that dM(w, x) ≤ r
2 . For 1 ≤ i ≤ m we have

that w2i ∈ {x2i − yi , x2i + yi }, and therefore |w2i − x2i | = yi .
From the definition of w2i−1, we have |w2i−1 − x2i−1| =
|w2i − x2i | = yi . Hence,

dM (w, x) =
n
∑

j=1

|w j − x j | =
n
∑

j=1

y� j
2 � = 2

m
∑

i=1

yi ≤ 2 · r

4
≤ r

2
.

Thus, w ∈ BM ( �An,k,alt , x, r
2 ).

Next, we define the mapping ˜ξw : ˜D2 → BM ( �An,k,alt ,
w, r

2 ), for w ∈ �An,k,alt . For every z ∈ ˜D2, z =
(z1, z2, . . . , zm), let˜ξw(z) = u, where u = (u1, u2, . . . , un) is
defined as follows. For every i ∈ [m], u2i = w2i and

u2i−1

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

w2i−1 − zi , 0 ≤ w2i−1 − w2i ≤ k, w2i−1 > zi ,

zi , 0 ≤ w2i−1 − w2i ≤ k, w2i−1 ≤ zi ,

w2i−1 + zi , −k ≤ w2i−1 −w2i < 0, w2i−1 ≤ n − zi ,

n − zi , −k ≤ w2i−1 −w2i < 0, w2i−1 > n − zi .

Example 69: If n = 12, k = 2, and r = 40, then

˜D2 =
⎧

⎨

⎩

(z1, z2, . . . , z6) :
∑6

i=1 zi ≤ 20,

∀1 ≤ i ≤ 6, 0 ≤ zi ≤ 2

⎫

⎬

⎭

.

If w = (5, 7, 7, 5, 5, 5, 7, 9, 9, 11, 5, 4) ∈ �A12,2,alt and
z = (2, 1, 2, 2, 2, 1) ∈ ˜D2 then we get ˜ξw(z) = u, where
u = (7, 7, 6, 5, 3, 5, 9, 9, 11, 11, 4, 4).

Lemma 70: Let z ∈ ˜D2. If u = ˜ξw(z), u =
(u1, u2, . . . , un), then u ∈ BM ( �An,k,alt ,w, r

2 ).
Proof: From the definition of the mapping ˜ξw it can be

readily verified that u ∈ �An,k,alt . It remains to show that
dM (u,w) ≤ r

2 .

For every 1 ≤ i ≤ m we have that u2i = w2i , and therefore
|u2i −w2i | = 0. For every 1 ≤ i ≤ m we have that

w2i−1 − zi ≤ u2i−1 ≤ w2i−1 + zi ,

and therefore |u2i−1 −w2i−1| ≤ zi . Hence,

dM (u,w)=
n
∑

j=1

|u j −w j |=
m
∑

i=1

|u2i−1 −w2i−1| ≤
m
∑

i=1

zi ≤ r

2
.

Thus, u ∈ BM ( �An,k,alt ,w, r
2 ).

Lemma 71: For every u ∈ BM ( �An,k,alt ,w, r
2 ),

|{z ∈ ˜D2 : ˜ξw(z) = u}| ≤ 4m .
Proof: Let u = ˜ξw(z), u = (u1, u2, . . . , un), for some

z ∈ ˜D2, z = (z1, z2, . . . , zm). For every 1 ≤ i ≤ m, there
are at most four possibilities to determine zi from u2i−1 and
w2i−1, and therefore, there are at most 4m vectors z ∈ ˜D2 for
which u =˜ξw(z).

We are now in a position to define the mapping ˜ψx : ˜D1 ×
˜D2 → BM ( �An,k,alt , x, r). For every y ∈ ˜D1 and z ∈ ˜D2, let
˜ψx(y, z) = ˜ξρ̃x(y)(z). The proof of the next lemma is similar
to the proof of Lemma 58 and therefore it is omitted.

Lemma 72: If y ∈ ˜D1 and z ∈ ˜D2 then ˜ψx(y, z) ∈
BM ( �An,k,alt , x, r).

Proof of Lemma 44: Let u ∈ BM ( �An,k,alt , x, r) be such
that there exist y ∈ ˜D1 and z ∈ ˜D2 for which u = ˜ψx(y, z).
Then, u = ˜ξw(z), where w = ρ̃x(y). For every 1 ≤ i ≤ m,
w2i is uniquely determined from u2i and by the definition of
ρ̃x(y), the vector y is uniquely determined from x and the set
{w2i : 1 ≤ i ≤ m}. Hence, w is uniquely determined from
u and x. By Lemma 71 it follows that there are at most 4m

possibilities for the vector z, given u and w. Hence, there are
at most 4m pairs (y, z) ∈ ˜D1 × ˜D2 such that u = ˜ψx(y, z).
Thus,

|BM ( �An,k,alt , x, r)| ≥ |˜D1| · |˜D2|
4m

.

�
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