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On Optimal Permutation Codes
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Abstract—Permutation codes are vector quantizers whose  The main contribution of this paper is to exhibit a set of
codewords are related by permutations and, in one variant, permutation codes whose performance cannot be equaled with
sign changes. Asymptotically, as the vector dimension grows, ;cgqy contradicting an assertion in [4]. The result does not

optimal Variant | permutation code design is identical to optimal . . O
entropy-constrained scalar quantizer (ECSQ) design. However, rely on long block lengths in the permutation code; in fact, the

contradicting intuition and previously published assertions, there advantage disappears as the block length approaches infinity.
are finite block length permutation codes that perform better EXxhibiting these codes demonstrates that there are finite block
than the best ones with asymptotically large length; thus, there |ength permutation codes with performance better than the best
are Variant | permutation codes whose performances cannot be asymptotically long permutation codes, which contradicts an as-

matched by any ECSQ. Along similar lines, a new asymptotic tion in I51. Th ¢ | ti f
relation between Variant | and Variant Il permutation codes is sertion in [5]. The counterexamples are quantizers for a memo-

established but again demonstrated to not necessarily predict the ryless uniform source subject to the MSE fidelity criterion. Sev-
performances of short codes. Simple expressions for permuta- eral results and simple expressions describing the performance
tion code performance are found for memoryless uniform and of permutation codes for this source are obtained, along with a
Laplacian sources. The uniform source yields the aforementioned new asymptotic relation between Variant | and Variant Il codes.
counterexamples.
Index Terms—Entropy-constrained scalar quantization, vector Il. PERMUTATION CODES

quantization.
A. Structures

| INTRODUCTION Afixed-rate vector quantizer, or block source code, represents

arandom vectog = (x1, x2, ..., &) in R™ with an element
ERMUTATION codes are an elegant type of structuregf the codeboolc = {y; M., where each codeworg is in

vector quantizer in which the codebook is comprised e, Therate of the vector quantizer is defined by
tirely of permutations of a single starting vector. The structure

of the codebook allows optimal (nearest neighbor) encoding of R=n"tlog, M (bits per scalar sample) (1)
ann-dimensional vector witlD(n log n) operations and(n) .
memory. As a means of vector quantization, permutation cod& Minimize the squared error per component

were introduced by Dunn [1] for memoryless Gaussian sources n
and the mean-squared error (MSE) distortion measure. This was n e -2 =0t (@ — 24)°
a natural dual to Slepian’s modulation codes for additive white i=1

Gaussian noise channels based on permutations [2]. The M " optimal encoder computes the nearest element in the code-
sequent development of permutation codes for more genglal,,

sources and distortion measures is due to Bezgal. [3]-[5].

A key result of Berger [4] is the “equivalence” between en- & = ofz) = argmin ||z — y||.
tropy-constrained scalar quantizers (ECSQs) and permutation yeC
codes. The quotes are to emphasize that while Berger shows t]khaé
the performance of any ECSQ can be approached by a sequence
of permutation codes, he asserts without proof that no permuta- D=n"'E ||z - of@)|?].
tion code can do better than an optimal ECSQ. Assuming equiv-
alence of performance, the primary advantage of a permutationhe complexity of optimal encoding can grow very quickly
code is the generation of a fixed-rate output, eliminating thwith the dimensiom. Without constraints on the codebook; )
need for buffering. is generally implemented with an exhaustive search. Since the

size of the codebook ig"#, the complexity is exponential in

, , , the dimensiom. Other implementations reduce running time
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In permutation codes, the codebook is either all the distinict order of their absolute values; angl; is used, with the sign
permutations of an initial reproduction vectgy (Variant I) chosen to match the component it replaces.
or the distinct permutations combined with all distinct sign
choices (Variant Il). For either variant, the optimal encoder cdh Optimal Codebook Entries
be implemented by sorting, which has complexityn log »). For either variant, the design parameters are the block length
(Allowing approximate sorting, and thus slightly suboptimah, the number of distinct codeword componehtsthe numbers
encoding, lowers the complexity further.) This complexity igf repetltlons{m}Z ., and the codebook entries themselves
similar to the complexities of the best lattice vector quantiz€.,;}/ . Note that ther;’s determine the rate; the;’s affect
encoders [7]. At high rates, good lattice quantizers will certaintynly the distortion.
outperform permutation codes because of their space-fillingThe optimalg;’s, which are determined in this section, can
properties [8]; at low rates their performance is uncertaipe expressed using order statistics means, assuming the other
Regardless of the rate, lattice codes generally should be upaflameters are fixed. The distortion can then be expressed in
in conjunction with variable-rate lossless codes because teems of the remaining parameters, which will be optimized in
codewords have unequal probabilities. For independent asgbsequent sections. Ultimately, we would like to find permuta-
identically distributed (i.i.d.) sources, permutation codes okien codes that minimize distortion for givenand rate at most
viate this need since each permutation has the same probability.
We confine our attention here to i.i.d. sources and to “static” Variant|: Letr be a permutation that puts the random vector
quantizers, i.e., quantizers with codebooks that are designeith decreasing order and I&;, &2, ..., &) = 7(x). The¢;’s
with knowledge of the distribution of the source and nadre calledorder statistic® Using the notation
changed based on a specific realization. i
SO = 0, Sz = Z 7‘Lj7
j=1

Variant I Let j11, po, ..., px denoteK real numbers sat- iell,2, ...
the optimal encoder replacgs with p; for j = 5,1 + 1,

K}
isfying 11 > 2 > - - - > g, and letny, no, ..., nx be positive ’
integers with sum equal te. Define the first codeworg,; of

the permutation code to have components given by

Si_1+2,...,8;. Thus, the distortion incurred by the optimal
il i encoder can be written as
YLj = i if Z ne<Jj< Z M. 2) I s,
=1 =1 D= n_lE Z Z
More simply i=1 j=5;, 141
Yi = (Bl ooy BoLs 102y ooy 125 ooy JoRy <oy i) () It is shown in [3] that for any givedin; }/£ ,, the distortion is
. minimized with
where eachu; appears:; times. .
The Variant | code specified bfj:; } <, and{n;}/<, has a o Z El¢)] )
codebook consisting of all the dlstmct permutat|onyprh|s pi =" I
code has =i
o This can be interpreted as follows. The numb&"r,s}f;SHH
=% (4) are together quantized to a single vajlye so to minimize the
IT »:! distortion z; should be the mean of this collection. Withy's
=1

codewords. Optimal encoding with this codebook is accom-

plished with a very simple procedure [3]. Replacethdargest
components ok with p1, the nextn, largest components af

given by (5), the MSE is

D:n—1< [llz/1?] me).

(6)

with 112, and so on. The index into the codebook can be basedrhe distortion can be expressed in another, perhaps more en-

on any enumeration of the permutations.

Variant I1:
wordy, is given by (2) or (3) as before, but the's are required
to be nonnegative, $0; > pi2 > - - - > i > 0.

The codebook now consists not only of distinct permutatiogs= 1, 2, . ..

Variant Il codes are very similar. The initial code-. .. =

lightening way. To begin with, assuni€¢ = n andn; = n, =
ny = 1. This is the highest rate and (with optimafl's)
lowest distortion Variant | permutation code. According to (5),
each sorted component is reconstructed to its meas: F'[¢;],
, n. The distortion is then the average of the vari-

of y,, but in addition has all distinct sign choices for each comances of the order statistics
ponent. There are two sign choices for each nonzero component

of ¢,, so the number of codewords is

!
M=o
K

=1

whereh = n if pg > 0andh =n — ni if pg = 0.

—1 §
mln =n |:

This component of the dlstortlon decreases.dscreases be-
cause the density of each order statistic becomes more peaked,
i.e., has lower variance. Note also that it lower-bounds the total

Bl @)

20rder statistics are usually sorted smallest-to-largest, but we use the reverse

Optlmal encodlng is agaln eXtremer S|mple [3] There a'zﬁdenng for consistency with earlier papers on permutation codes. Many prop-

two differences from Variant I: the componentsaofire taken

erties of order statistics are given in [9].
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distortion so it can be used to lower-bound the block lengthThe distortion (8) is simplified by noting thad,,;, — 0 as
needed to achieve a given distortion. n — oo.® Furthermore, the deterministic quantities[¢;]}7_,
Increasing any; increases the distortion because at least oaee “distributed” identically to a generic source variableince
order statistic is reconstructed to a value other than its mean. .
Since #UIEE] < o} ~ F(x) (11)
n

E[&-0o? =E [(g"i - E[&]ﬂ +(c— E[&)? whereF(z) is the cumulative distribution function (cdf) ef
With these observations, establishing a connection between
for any constant, the:th group of coefficients contributes anpermutation codes and ECSQ is straightforward. The rate (10)
additional is the entropy of the output of a quantizer with bin probabilities
{p:}£,. The distortion (8) can be written as

S;
n Tty (- EG) Ko 1 &
i=Si 141 D=~ # - > (- B

i=1 v =5, 141
to the distortion. The overall distortion is thus « ‘
¢ .
1 i

K s , =d pi|- > (m-EED|. (12
D =Dy + n_l Z Z (NZ - E[SJ]) . (8) i=1 b =81t

=1 j=S5;_1+1 .
= ! The bracketed term is the meanof squared errors and, be-

Variant Il: The optimization of the:;’s for Variant Il codes cause of (11), is like the squared error in a quantizer that maps

is very similar. Letr be a permutation that puts| in decreasing Si1 41 s

order and letry, 72, ..., n,) = o(|z|). Then;’s are the order T € <F_1 <74> , Pt <—7>)

statistics oflz|. They;’s that minimize the distortion are given " "

by to u;. Thus, the permutation code is like an ECSQ with code-

book{; } £, and thresholds selected such that the entries have

L respective probabilitiegp; }/<, .
po =" Z Eln] ©) It is shown in [4, Theorem 2] that the performance of any
J=Simatl ECSQ can be approached by a sequence of Variant | permu-

tation codes of increasing block length. This result is estab-

lished by identifying the ECSQ codebook with te's and

by choosingr;’s so that each; /n approaches the probability
lll. A SYMPTOTIC ANALYSIS AND OPTIMIZATION of theith ECSQ codebook entry. Through this construction, an

Optimization of permutation codes requires the selection 6SQ gives a (long) permutation code, so optimal permutation
parameters, K, {n; }/<,, and{y; }/ . For Variant | codes, the codes are at least as good as optimal ECSQ. We can say more,
1i's affect only the distortion—not the rate—so they naturallfowever. The rate (10) and distortion (12) show that, asymptoti-
should be chosen to minimize the distortion as in (5). Almost tt&lly, the design problems for ECSQ and permutation codes are
same thing can be said for Variant Il codes except that whetti@gntical. Sdong permutation codes are no better than ECSQ.
or oty is zero affects the rate by /n. In either case, the op- This analysis does not tell us anything about short permutation
timization is inherently difficult because the parameter choic€§des.
are discrete.

Whennislargep;, =n;/n,i =1, 2, ..., K, canbe consi
ered a set of continuous parameters. This makes many analyfor Variant Il codes, Stirling’s formula can again be applied
ical computations and optimizations easier, though one shotddapproximate the rate, yielding
remember that only asymptotic conclusions can be drawn. Sec-

and again yield distortion (6) [3].

d- B- Relation Between Variant | and Variant Il Codes

K
tion lll-A reviews an equivalence from [4], with some additional : .

. . ' . R~1-— ; logs, v, for Variant Il with ux #0 (13
explanation of why optimal ECSQs and long permutation codes ; Pi f082 P pre 70 (13)
are so similar. A new asymptotic equivalence is presented in ok
Section I1I-B. R~ 1—pK—Z Pi 1Og2 Pis for Variant Il with pr = 0.

=1
A. Equivalence of Variant | Codes and ECSQs (14)

Whenn and eachn; are large, the multinomial expressio
(4) that determines the rate can be approximated with Stirlin
formula (see, for example, [10, p. 530]):

r}ylanipulations of the distortion are similar to those in the pre-
Yous section and yield expressions analogous to ECS@| of
These are omitted.

K ] 30ne can show that for most sources with invertible cumulative distribution
R~ — Z pilog, p; for Variant I. (10) functions (cdfs), the sum of variances in (7) approaches a constant or grows very
i—1 slowly asn — oo (see [9, p. 80])D...;» thus decays roughly as—*.
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The following theorem establishes that, asymptotically, 0.09

Variant | codes are at least as good as Variant Il codes. Note the .08
asymptotic nature of the result; for fixed Variant Il codes are

. . 0.071
superior at certain rates.

0.06- Variant I1

Theorem 1: For a source with a density that is symmetric 3}
about zero and an arbitrary distortion measure, any rate and dis.2 o.05}
tortion pair asymptotically achievable by a Variant Il code can
also asymptotically be achieved by a Variant | code. For a sourc
which is not symmetric about zero, the distortion asymptotically  o.03}
achievable by a Variant Il code at a given rate can be asymptot-
ically achieved by a Variant | code at a lower rate.

Proof: Suppose that{u;};, and {n;}X, specify 001}
a Variant Il code with K distinct components. We will . . . .
construct a Variant | code with the same distortion. For % 0.2 0.4 0.6 0.8 1
i€{l,2, ..., K—1},letr; denote the probability that a com- Rate
ponent of the original source random vectoreplaced byu;  Fig. 1. The performances of the best Variant | and Variant Il permutation
in the permutation code is positive. In the case of a source tl§ages, asymptotically for large.

el
§ Vari I
2 0.04F ariant
en

0.02f

is symmetric about the origim; = %L e{l,2,..., K—1}.

Case 1: Ifux = 0, the corresponding Variant | code has The converse of Theorem 1 is not true even for sources that
K' = 2K — 1 components. Le{;/}2*~! and {n/}2X~' are symmetric about zero; i.e., asymptotically there are Variant
specify the code. We choose | codes that cannot be matched by Variant Il codes. An example

is for uniform sources at low rates. One can show that optimal
= {um iedl, ..., K} Variant | and Variant Il codes witl® < 1 haveK = 2. Further-

! —H2K —i; ie{K+1,...,2K -1} more, it is clear from (13) and (14) that Variant 1l codes must

[rini], ie{l,... K—-1} _have/u( = 0 to attain tr_]is low rate. By sv_veepi_ng over the
, ni, i= K !nterval (0, 1), one obtains the rate and distortion pairs shown
n; = Nk —; in Fig. 1.

—[ro—inex—i], 1€{K+1,...,2K —1}.

By the choice ofr;, the per-symbol distortion of both codesIV' PERMUTATION CODES FORUNIFORM RANDOM VARIABLES

are the same. The rate of the new cdtfeasymptotically ap-  The remainder of the paper concerns analyses and optimiza-

proaches tions which do not rely on asymptotic approximations. In this
y ’ section, we assume an information source emitting a sequence
, X n, . (n] Kl n; of i.i.d. random variable$zx;, £ = 1, 2, ...}, each uniformly
Rx=-), log, g Z n [L = A(ri)] distributed over the intervdl-3, 3]. With this source, we are
=t =t able to not only obtain simple distortion expressions, but also to
where exhibit codes that contradict some previous general statements

about permutation codes.
h(z) = —zlogyz — (1 — x)logy(1 — x)
A. Variant |
First assumer and {n;}£ | are fixed. Analytical distortion
computations are facilitated by the simplicity of order statistic
Fneans and variances for a uniformly distributed source. The
means of the order statistics are

is the binary entropy function. F@r < z < 1, we have the
inequality~(z) < 1 with equality only atr = 1.

Case 2: Ifux # 0, the corresponding Variant | code ha
K’ = 2K components. Lefy/}2X and {n/}?X specify the
code. We choose

n+1-2j .
. El&l=—— 7=12 ..., n.
N’:{N“ 16{1,...,K} [5}] 2(7’L+1) ) J PR ,n
i — K1 s ie{K+1,..., 2K _ . o
2K 1~ e K+ Y substituted in (5), this yields
|—7’i7’Li-|, 'Le{l,,K} ”_Si_Si—l )
71;: n?[&'—l—l—i uzzw, 'L:l7 2,...7K.
—[rogy1—inzk41—i|, € {K+1,...,2K}. _ o
The variances of the order statistics are
Because of the choice af, the per-symbol distortion is the j(n—j+1)
same for both Variant | and Variant Il. The rate of the Variant F |:(£j — E[@])Q} = i=12 ..., n
(n+1)2(n+2)

code asymptotically approaches
. Averaging these variances gives the minimum distortion
+$

nh nh LI
R=y %o (M) 2 k-3 2 =il O A
2w )= " T
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0.07-
Dar
0.06- (5‘1)

0.05r

Distortion

Distortion
B
S
S

0.04r

.
83 (3’3’” (3,1,1,1)
.

. . 1‘ 1)
2.22) @211 5,1 b (ny —1,nj +1)
R R RARR RN

0.01F R Rp Ra Ro
Rate

0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 015? . 1 1.2 1.4 1.6 Fig. 3. Operating points used in the proof of Proposition 2.
ate

Fig. 2. The performances of all Variant | permutation codes for a unifor¥ith (_”ia n;) replace.d Wit_h(”/i/a ni) = (”z - 17 n; + 1)-4_
source with = 6 and optimale,’s. Each point is labeled by its vectorof's.  We will show that Point4 lies above a straight line connecting

For this source, the order of the's affects neither the rate nor the distortion. Point B and PointC by comparing the slopes @A and AC
(see Fig. 3).
The changes in rates and distortions can be computed from

o : (4) and (15):
and simplifying (8) then gives

_ R = . J
. i H(RB RA) 10g2 p——
<Ii 3) 20t 3o +1
2oni)—n n®+n+ 3 n; ) o
D = Dy + =1 =1 . (15) 7’L(R~1 RC) = 1082 p

12n(n+1)2  12n(n+1)2
4n(n + 1)2(DB —Dy)=(n; + 7’LJ)(7‘LZ —n; + 1)

The distortion expression (15) shows that for a uniform  47(n +1)*(Da — De) = (ni +ny)(ni —nj — 1).
source, the order of the;'s does not affect the distortion. (Of
course, the order of the;’s never affects the rate.) Below,
specific permutation codes are denoted by listing outrtfie Dp—Dsy _Da—-Dc
in nonincreasing order. Rp— Ry R4, — Rce

For a given value of block length and maximal raték, we
would ideally like to selectX” and {n;}/<; to minimize D.
For example, all the operating points obtained with- 6 are
shqwn in Flg. 2. The following choices ef;'s are optimal at (ni —n; + 1) log, > (n; —n; — 1) log, )
their respective rate$1,1,1,1,1,1),(2,1,1,1,1),(2,2,1,1), n; n; +1
(2,2,2), (3,2,1), (3’3)'_(4’ 2), (571)’ (6). (Only (3’1’1’_1_) After further rearrangement, this can be transformed to
and (4,1,1) are not optimal choices.) We have no efficient
method for generating this set of optimal parameter values; n +1\™ 1
in general, the exact solution seems to require an exhaustive2 [( n; ) n;(n; + 1)}
search of the possibilities. However, with a more restrictive n,+1\" 1
sense of optimality—seeking points on the lower convex hull of < log, [( : : ) (i, + 1)
(R, D) pairs—we can greatly restrict the candidate parameters. A
Forn = 6, Fig. 2 shows that3,2,1), (4,2), and(5,1) codes foralln; > n; +1 > 0.

We would like to show

which by substitution and cancellation of like factors is equiva-
lent to

7‘Lj+1

|«

nj

do not give points on the convex hull @R, D) pairs. To establish (16), it is sufficient to show that
Proposition 2: Consider the set of Variant | permutation z+1\" 1
codes for a uniform source with fixed block length A code fz)=1n K 2 ) 2(z + 1)}

specified by{n;}£, and optimal;'s cannot lie on the convex
hull of poss_ible operating points if there exisind;j such that —.In <Z + 1) —In(2(z+ 1))
n; andn; differ by more than one. 4
Proof: Choosei_an_dj such thatn; > nj + 1 That the “In the case that; = 1, there is an abuse of notation in havimy = 0. We
(R, D) operating point is not on the convex hull is establishedean thatx is replaced byk’ = K — 1, n; is replaced byn! = n; + 1,

by considering the operating points associated with three p@rpd the repetition count; is removed. However, it is easy to verify that the
expressions for codebook size (4) and distortion (15) hold witharggual to

mutation ches: A) the given code; B) the code With, ;)  ,ero. Thus, all the computations in this proof hold without modification for the
replaced with(n;, n;) = (n; + 1, n; — 1); and C) the code n; = 1 case.
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is a strictly decreasing function fare [1, oc). Observe that 0.08f
Fley=mm (2TL) o et 007 BesQ
z 2(z+1)
0.06[
satisfieslim. .., f'(z) = 0 and that n=2-
n=3
0.05F
) =222+ 1)72(222 + 2+ 1) z )
3 "=
is strictly positive. Thusf’(z) must be negative. O g o.04
Proposition 2 indicates that, after taking into account the in- %% K=z "\ ]
sensitivity to permutation of the;’s, there is one€andidatefor .02k
giving an operating point on the convex hull for each valu&of
We conjecture these candidate points are always on the conve: 001r
hull.

Conjecture 3: There are precisely parameter choices that
give operating points on the convex hull, one for edthe
{1, 2, ..., n}. For a givenK, a point on the convex hull is
obtained withn;’s given by

0.02F

0.018F
([n/K1, [n/K], ..., [n/K], [n/K], [n/K], ..., [n/K]) 008l
where the number of repetitions of each ma@é1 ng = n. 0.014}
Explicitly, [n/K is repeatedk” + n — K[n/K]| times and £ o012k
|n/K| is repeated{[n/K]| — n times. B
S 0.01r
Returning to thes = 6 example, Proposition 2 indicates that 7 0008k
(17 17 17 17 17 1)7 (27 17 17 17 1)7 (27 27 17 1)7 0.006
(27 27 2)7 (37 3)7 (6) 0.004
are the only candidates for giving operating points on the op- 0.002}
timal convex hull. Conjecture 3 is true fer= 6, as these oper- 0 ‘ ‘ ‘
ating points are all on the convex hull. Arguments in support of ! "2 4 e P '8 2
the conjecture for general appear in the Appendix. ()

.Con]eCture 3 S!J.ggeStS that the. point .On the convex h% 4. Comparisons between Variant | permutation codes and ECSQ for
W_|th smallest positive rate is obtained within/2], [n/2]).  uniform source. In both graphs, the connected curve is the performance of
Fig. 4(a) shows the performances(¢fi/2], |n/2]) codes for optimal ECSQ. (a) Operating points wit1, n2) = ([n/2], [n/2]) are
n=1,2 ...,100.(Then = 1 pointis atR = 0, D = 1/12.) marked. For all. > 1, these operating points are better than optimal ECSQ.

. . . . Operating points ofn /3, n/3, n/3) and(n/4, n/4, n/4, n/4) codes
The curve given for comparison is the performance of optimgli, 2ppmp?i.§e roung;;g) fgu/< %0) (n/4, n/4, /4, nf4)

ECSQ. ForR < 1, an optimal ECSQ is regular and has two

output points. It can be shown that Performance beating ECSQ is not limited to rates under 1
1 1 bit per sample. As shown in I_:ig. 4(b0n/2_5, n/3, n/3_) and
Rrosq =M 3~ 24/ Drcsq — = (n/4, n/4, n/4, n/4) codes (with appropriate rounding) also
give infinitely many codes better than ECSQ. Hor= 3, the

whereh is the binary entropy function. Note that for alt> 1, codes withn > 26 are better than ECSQ fdr390 < R <

the ([n/2], [n/2]) permutation code is superior to the bedbg, 3 = 1.585. Also, codes withX' = 4 andn > 96 beat

ECSQ at the same rate or distortion. This contradicts BergeE€SQ at rate$.897 < R < 2.

“equivalence” between permutation codes and ECSQ. Limiting attention to the convex hull of achievable operating
As n — oo, the performance of th€n /2], |n/2]) permu- points does not allow us to find optimal permutation codes at

tation codes approachdd = 1 andD = 1/48. (This is an arbitrary rates. As discussed in Section IlI-A, we can formulate

operating point also attainable with ECSQ.) However, for adln optimization problem to generate optinag permutation

n > 5, the(R, D) points for the permutation codes lie below a&odes. For the uniform source, this optimization reveals that the

straight line connectingo, 1/12) and(1, 1/48). Using Propo- optimal K is [2%]. Furthermore{n; /n}; should asymptoti-

sition 2, all permutation codes with largewill have operating cally take only two values.

points on or above this line. Therefore, we have constructed fi-Remarks on the Definition of RatéA fixed-length binary in-

nite-length permutation codes with performance better than thexing of M/ codewords requireBog, M| bits. Thus, one ap-

best possible in the limit of large block length; this contradictsropriate definition of the rate of anrdimensional vector quan-

an assertion of Berger [5]. If Conjecture 3 holds, the operatitiger with M codewords isk’ = n~![log, M. In this corre-

points shown in Fig. 4(a) indicate that the best convex hull pespondence, the rate definition (1), without a ceiling operation,

formance at low rates is obtained with= 14. has been used. Obviousl' exceedsk by at mostn—! bits.
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ECsSQ

0.045F

0.041

Distortion
Distortion

0.035F

0.031

0.025F

05 0.6 0.7 0.8 0.9 0.5
Rate

Fig. 5. Portion of Fig. 4(a) shown by circles added to show increases in rate
from using R’ = n~!'[log, M. With the ceiling operation, the Variant |

permutation codes witkny, n2) = ([n/2], [»/2]) give operating points
better than ECSQ for = 2 andn > 9.

0.08[

0.07f

Even for fixedn, the rateR can be approached by jointly in-
dexing consecutive quantizer outputs. For example, binary in-
dexing of pairs of quantizer outputs requi(@s) ~* [log, M?]
bits per scalar sample, which excedilby at most(2n)~! bits.
This is a trivial block entropy code that requires no storage.
The effect of the ceiling operation on the results in Fig. 4(a)
is shown in Fig. 5. Operating points obtained with the original
rate R (shown by dots) are connected to new points obtained
with the modified rateR?’ (shown by circles). Block indexing
would give intermediate rates.

Distortion

Variant I

Variant I1

0.5 1.5 2 25 3.5
Rate

(b)

(a) Comparison between Variant Il permutation codes with 200
SQ for uniform source. (b) Comparison between the best Variant |

| is another uniform random variable, this time disand Variant Il codes wit = 20. Operating points are connected with line
segments to distinguish the two variants. The intermediate points are not

B. Variant II

. . .. Fig. 6.
The absolute value of arandom variable uniformly d|str|butq§,gd EC

on[-3, 3
tributed on]0, %]. Thus, especially for uniform random vari—attaimjIble
ables, Variant Il codes are very similar to Variant | codes. The '
means of the order statistics are simply translated and scalec{N

: L ith ug # 0, the relative performance of permutation codes
and the variances of the order statistics are reduced by a fa%t% ECSQ for Variant Il is very similar to that of Variant |. For

of 4. The on!y complicating factor is to pay careful attention t%xample,([n/ﬂ, In/2]) codes are better than ECSQ for all
whetheryu is zero. n > 11 and as: — oo they have(R, D) — (2, 1/192), which
To minimize the distortion without regard to raje, should - y ’ ’ '

is attainable with ECSQ.

T e e o g PN s bt ECSQ e mor ey atin
9 P y ith 25 = 0. In the range) < R < 1, codes with(n, nz) =

(15). This is intuitive because the rate is increased by 1 bit pﬁt n — 1) are better than ECSQ for > 8. Many codes better
than ECSQ can be obtained with< R < log, 3; in particular,

sample.
The reason to forcg - = 0 even though this is not the mean(n_ 1, 1)forn > 2, (n—2, 2)forn > 3,(n—3, 3) forn > 4,
and(n — 4, 4) for n > 5. Many of the best operating points

of the relevant order statistics is to reduce the rate pyn bits

per sample. The distortion obtained in this way is

K—-1

i=1

202 + 2n + 2np (203 + 3ng + 1) + (nf —1)

D=

5 .
48n(n + 1) @

with n < 200 are gathered and compared to ECSQ in Fig. 6(a).
This plot includes operating points obtained with = 0 and
[237¢ ?é 0.

For fixedn, Variant Il codes are superior to Variant | codes
at certain rates. In particular, th2,.;, component is lower for
Variant Il codes by a factor of, thus the high-rate performance

Up to a multiplicative factor off, the dependence of the distor-s always better. A comparison far= 20 is made in Fig. 6(b).

tion on{n,; }1*7
2 holds for{n;

K-1
=1

! is unchanged. Thus, the analog of Propositiolm this graph, we also see the emergence of the low-rate superi-

ority of Variant | codes, as discussed following Theorem 1.
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V. PERMUTATION CODES FORLAPLACIAN RANDOM The harmonic sum diverges slowly, with
VARIABLES
Now assume an information source emitting i.i.d. random 14+ lloan < Zi—l < 1+ log,n
variables with the Laplacian distributiofi(z) = %e~l®l. 2 =

Though this is more difficult to handle than a uniform source,

some analytical computations are still possible. Numericgi1l- Thus,
results facilitate some final qualitative observations. 1
1+ 5 logyn <D < 1+logsn
A. Variant | n - = n

Givenn and{n; }/%,, the optimal.;'s can be computed with explaining the dependence of the high-rate performaneeion
(5), where the mean of thgh-order statistic is (see [9]) [12, Fig. 1] and in Fig. 7.

Substituting (18) in (8) gives overall distortion

n—j n—i n @
. n _ n _
El¢)]=2 Z(i)Zﬁ - () 2, K
i=0 N =g i=n—j+l N/ f=n—j+1 D=Duym+n"> > (- Ey)?
Assumingj < (n + 1)/2, this can be simplified further to =1 j=5i_1+1
n—j n n—max(%, j) n K S; n 2
E[Sj]:2_nz <L> Z L _ <n—1z 1) +n—1z Z Nz‘_z %
= = =1 i=1 j=S;_1+1 =j

The remaining means can be computed by symméify;] = ’
—E,—j41]- This form is useful in deducing the best candidateq far ;.

We have not found a mechanism for easily determining of# contrast to the case of a uniform source, the order of the
timal n;’s. One possibility is to use the algorithm of [3, App;i's does affect the distortion. The strictly decreasing nature of
I1], which finds good—but not necessarily optimal—parametdhe increments E[n;] — E[n;41]} /=" implies that{n,;}/7*
choices. An exhaustive search is simplified by noting that tiséould be a nondecreasing sequence. In addition, one should
incrementE[¢;] — E[¢;41] is decreasing fot < j <n/2and havenyx > nx-1 if ux # 0. We have generated all of
increasing fom/2 < j < n. Thus, we should have; < n;,; the Variant Il codes satisfying the necessary condition for
for all i such thatS;;; < n/2; similarly, n; > n;y; for all 4 optimality forn = 10, 20, 30, 40, and50.
such thatS; > n/2. More detailed arguments along these lines The performances of the best codes are shown in Fig. 7

are given for Variant II. along with the estimated performance of optimal ECSThis
_ graph allows us to summarize some of our findings. Because of
B. Variant Il asymptotic equivalence, Variant | permutation codes perform

For our Laplacian source, Variant Il codes are somewhgifnilarly to ECSQ for sufficiently large:. Though we have
easier to analyze and design than Variant | codes. The absoR# Proved a converse, it seems that except at low rates Variant
value of the source is an exponential random variable withcodes also perform similarly to ECSQ for symmetric sources.

meanl. Using the order statistic means For any fixedn, the performances of permutation codes and
N ECSQ separate for high rates, with the separation occurring at
Eln;] = Zi_l’ i=1,2....n a lower rate for smaller values ef The separation must occur

because the distortion of a permutation code is lower-bounded
by D, Which is a function ofn but not of R. Though not
shown as dramatically as for the uniform source, performance

i=j

in (9), the optimal nonzero codebook entries are

5 S; " doesnot strictly improve as is increased.
pi=nt > Eml=at > > 7 Berger, Jelinek, and Wolf [3] attribute the poor performance
J=S;_141 J=Si_141 l=j of permutation codes at high rates (for fixedl to the close

i=1,2,..., K. clustering of theE[¢;]'s (or E[n;]'s). They suggest that closely
clustered order statistic means must be quantized to a single
Salue to avoid a large increase in rate with only a small de-
tcc,)rease in distortion. This explanation is accurate, but we would
like to complement it with another. Viewed in spherical coor-
dinates, a permutation code allocates all the rate to the angular
components, with no rate to the radial component. With the

As always with Variant Il codes;x may be chosen as abov
to minimize distortion without regard to rate, or set to zero
reduce the rate.

The variances of the order statistics are given by

n
E[(m—E[m])ﬂ:Zz 2 71=12 ..., n.
i=j SThe curve labeled “Optimum Quantizer” in [12, Fig. 1] is incorrect. This

is partly explained by Berger in the discussion of [5, Fig. 4], where it is noted
Averaging these gives that at some rates optimal ECSQs have codewords at zero. Berger [5] uses the
envelope of several parametric curves to suggest the performance of optimal

e -~ _ ~ 1 ECSQ. We have used an iterative design algorithm that minimizes a weighted
Dpin=mn ! Z Z i =nt Z - (18) sum of distortion and output entropy [8]. The algorithm is easy to implement
i=1 t because all needed integrations can be computed in closed form.

n n

j=1 i=j
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Distortion

I, n =10

II, n = 20

II, n = 30

1 II, n = 40

ECSQ

0 1 2 3 4 5
Rate

Fig. 7. Operating points of the best Variant | and Variant Il codes for the Laplacian source. Operating points are connected with line segmegisstio ttisti
three values of:. The intermediate points are not attainable. Note the logarithmic scale for distortion.

rate fixed and very large, this is reasonable because the typ-a) Suppose that:/(j + 1)] < K < |n/j] — 1 for some
ical set approaches a spherical shell. However, for any givpasitive integerj. Then the difference between the code with
n, there is a rate above which it becomes critical to allocaf€ codeword components and the code wifh+ 1 codeword
positive rate to the radial component. Finally, one should natemponents is that values of{n;} , that are settg + 1 in
that the performance of ECSQ is attained in an actual implése former are converted to+ 1 values that are set tpin the
mentation only when lossless coding at the entropy boundladter. Hence,

achieved. s 5 )
U =G4+ GO+ D)(25+1)
Drg—Dgi = B 5 = 2
APPENDIX n(n+1) 12n(n+1)
PLAUSIBILITY ARGUMENT FORCONJECTURE3 1 (G411 1 (G+1)
Let Dy and R denote the per-symbol distortion and the Ry =R =7 logy < [j1]7+ ) = log, < 3! ) :

rate associated with the code haviligdistinct codeword com-

ponents. Conjecture 3 could be established by showing that thehe next subcase, we will demonstrate that
slope magnitude$Dy — Dy 41)/(Rr41 — Ri) are nonin-

creasing ag( increases from ton — 1. We rigorously demon- iG+DE+1)

strate in Case 1 below that the slope magnitudes are nonin- log, (<H1>")

gt
creasing fork' > /n+ 1 — 1. Later, in Case 2, we provide
heuristic arguments that the slope magnitudes are nonincreasinigcreasing withy. Hence (D — Dg1)/(Rx+1 — Ri) is

for smaller values off. nonincreasing withk for these cases.
Case 1: Suppose b) For the remaining subcase, there is an intgger 2 and
nonnegative integess, /3, v, andé such that
[n/K]| < |[n/(K+1)] +2. « the code withK distinct codeword components has= j

for «« components and; = j + 1 for 5 components, and

It is easy to verify that this condition holds for &l such that « the code withK + 1 distinct codeword components has
K(K + 1) > n. We will break this case into two subcases. n; = j forv components and;, = j—1 for § components.
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We have the relationships

a+p3=K
y+o6=K+1
a-j+p-j+1)=Kji+p=n
vt (G-l =(K+1Dj-b=n.
Hence,
B+6=
a+y=2K+1-.
It follows that
1271(71+1)2(DK—DK+1)
=aj’+A(j+1)*=j* =é(i—1)°
= (2K +1-j-7);"+(=6)(7+1)*—i®—6(i-1)°
=3j(2%+3j+1-66).
For the rate increment, we have that

— Rk
n!

! 1
10 ‘2 70
¢ <[j!]”[ -

R
1

n

n!

)

)2l
G-I ) G [GDY
L log <[ﬂ]”"+”2” G+ w’)
NG+ - DY

n
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Now it follows from (21) and (22) that

1\ (G125 41
(L)Y [ 3 (o )3eT/Be AU (4 1)

(1+1)6(1+1) 2
g (6m)%c7/%ec712 <0.2. (23)
By (23) and (20), we have that
q 2,’2 q 1—
dig 7252+ 35+1-66) <0 (4

12(n + 1)% log, (“ﬁl”

(%))
as desired. Therefore, if we substitite= 0 andé = j into
(19), we find that
JU+DE+1)  G-Di2i-1)
log, (V5) losa ()

Hence, ifK and K + 1 both belong to subcase a), then it follows
that

(Dr —

Dry1)/(Rr41 — Bi)
> (Dr41— Dry2)/(Riy2 — Ricq1).
If either
» K fallsinto subcase a) andd + 1 falls into subcase b); or

» K falls into subcase b) anll + 1 falls into subcase a);
then (19)—(24) imply that

_1 log G+ (N
n 27 J! Jj+1 ' (Dk — Dr41)/(Ri+1 — Ri)

Hence, > (Dk41— Diy2)/(Ri 42 — Ricq1)-
Di — Dry1 (272 +35+1—66) Case 2:.Inthe case_wherén/fﬂ > Ln_/(K+1)J + 3, our
Rrrr— Rre YRGS (19) argument is less precise. For eah defineax € [0, (K —

12(n + 1)2log, <J,! (m) ) 1)/K] by
We would like to show that the right-hand side of (19) decreases ap = {%1 - %

asé increases frond to j. We have that
d 252+3j+1-66

ds (Y
log, <(ﬂ/—.l) (m> )
(14~ 1) UHDEAD (1)1

B log, ( G+1)FGTD

(s 6)))

For all positive integerg, (1 + 5 1)7 < e. Hence,
) (G+D(25+1)

(

1

(1+3

J
1

14—
J

1

>j>%+l<<1+j

1

)j>2<1+j

that

i+

1)j+1

G+ D! < e 2n(5+1) <

) . (20)

< §62j+3.
-2

(21)

Sincej > 2, it follows from Stirling’s formula (see [10, p. 530])

(22)

Then
12n(n +1)2 Dy

=20 +n+K(1—ax) {%13 + Kax L%Jg

RK%I"&(((AU J)>

We will assume thafn /K| ~ [n/K| ~ n/K to make further
calculations. As: grows, the supremum of the error in the ap-
proximation to(Dx — Dk 41)/(Rk+1 — Ri ) approaches zero
with increasingk . We will approximateD . by

1 < 3

o F 17 o)

n!
IS(l OéK) (L

D[(% 271 +7’L+ﬁ

To approximatel? g, we will use Stirling’s formula

-1
log,(27n).

T

z! 27rx(
e

to obtain

K
RK ~ <1+ %) 1Og2K—
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With these approximations, we have

12(n+1)2 Dy —Dgq1
n? R4 — Ry
N 2K + 1
K2(K+1)2 (1+£) log, (BH)+ 4+

(25)

logy (32))
We will sketch how to demonstrate that the right-hand side of[1]
(25) is decreasing with increasitdg. Its derivative with respect

to Kis (YIln2)/Z, where 4
[3]
KK+ 1)(2K+1) K+1
Y =2K+1-— on In K [4]
— (6K* +6K +2) 1y By (B o
om ) K [6]
1 K+1
—1
+2nn<27rn ))’ (7
K K+1
3 3
— = - - 8
Z=K>(K+1) <<1—|—2n>1n< e ) [8]
2
+iln<K+1>> ' [10]
2n 2mn [11]
Itis possible to show that the terms with in the denominator ;5
provide a positive contribution t&". The magnitude of these
terms is maximized by selectingas small as possible subject 13

to the constrainK (K + 1) < n. Finally, when this value of.
is incorporated intd”, the derivative is negative.
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