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Abstract—Permutation codes are vector quantizers whose
codewords are related by permutations and, in one variant,
sign changes. Asymptotically, as the vector dimension grows,
optimal Variant I permutation code design is identical to optimal
entropy-constrained scalar quantizer (ECSQ) design. However,
contradicting intuition and previously published assertions, there
are finite block length permutation codes that perform better
than the best ones with asymptotically large length; thus, there
are Variant I permutation codes whose performances cannot be
matched by any ECSQ. Along similar lines, a new asymptotic
relation between Variant I and Variant II permutation codes is
established but again demonstrated to not necessarily predict the
performances of short codes. Simple expressions for permuta-
tion code performance are found for memoryless uniform and
Laplacian sources. The uniform source yields the aforementioned
counterexamples.

Index Terms—Entropy-constrained scalar quantization, vector
quantization.

I. INTRODUCTION

PERMUTATION codes are an elegant type of structured
vector quantizer in which the codebook is comprised en-

tirely of permutations of a single starting vector. The structure
of the codebook allows optimal (nearest neighbor) encoding of
an -dimensional vector with operations and
memory. As a means of vector quantization, permutation codes
were introduced by Dunn [1] for memoryless Gaussian sources
and the mean-squared error (MSE) distortion measure. This was
a natural dual to Slepian’s modulation codes for additive white
Gaussian noise channels based on permutations [2]. The sub-
sequent development of permutation codes for more general
sources and distortion measures is due to Bergeret al. [3]–[5].

A key result of Berger [4] is the “equivalence” between en-
tropy-constrained scalar quantizers (ECSQs) and permutation
codes. The quotes are to emphasize that while Berger shows that
the performance of any ECSQ can be approached by a sequence
of permutation codes, he asserts without proof that no permuta-
tion code can do better than an optimal ECSQ. Assuming equiv-
alence of performance, the primary advantage of a permutation
code is the generation of a fixed-rate output, eliminating the
need for buffering.
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The main contribution of this paper is to exhibit a set of
permutation codes whose performance cannot be equaled with
ECSQ, contradicting an assertion in [4]. The result does not
rely on long block lengths in the permutation code; in fact, the
advantage disappears as the block length approaches infinity.
Exhibiting these codes demonstrates that there are finite block
length permutation codes with performance better than the best
asymptotically long permutation codes, which contradicts an as-
sertion in [5]. The counterexamples are quantizers for a memo-
ryless uniform source subject to the MSE fidelity criterion. Sev-
eral results and simple expressions describing the performance
of permutation codes for this source are obtained, along with a
new asymptotic relation between Variant I and Variant II codes.

II. PERMUTATION CODES

A. Structures

A fixed-rate vector quantizer, or block source code, represents
a random vector in with an element
of the codebook , where each codeword is in

. Therate of the vector quantizer is defined by1

(bits per scalar sample) (1)

To minimize the squared error per component

the optimal encoder computes the nearest element in the code-
book

The resulting per-sample distortion is given by

The complexity of optimal encoding can grow very quickly
with the dimension . Without constraints on the codebook,
is generally implemented with an exhaustive search. Since the
size of the codebook is , the complexity is exponential in
the dimension . Other implementations reduce running time
while increasing memory usage [6]. To reduce complexity, it is
common to either constrain the codebook so that searching for
the nearest codeword is much simpler or use a search technique
that does not necessarily find the nearest codeword. The former
is more popular.

1A fixed-length indexing of the codewords may require slightly more bits:
n dlog Me. The definition of rate above, consistent with [3]–[5], is main-
tained because it can easily be approached with block indexing of a sequence of
codewords. The effect of the ceiling operation is discussed in Section IV-A1.
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In permutation codes, the codebook is either all the distinct
permutations of an initial reproduction vector (Variant I)
or the distinct permutations combined with all distinct sign
choices (Variant II). For either variant, the optimal encoder can
be implemented by sorting, which has complexity .
(Allowing approximate sorting, and thus slightly suboptimal
encoding, lowers the complexity further.) This complexity is
similar to the complexities of the best lattice vector quantizer
encoders [7]. At high rates, good lattice quantizers will certainly
outperform permutation codes because of their space-filling
properties [8]; at low rates their performance is uncertain.
Regardless of the rate, lattice codes generally should be used
in conjunction with variable-rate lossless codes because the
codewords have unequal probabilities. For independent and
identically distributed (i.i.d.) sources, permutation codes ob-
viate this need since each permutation has the same probability.
We confine our attention here to i.i.d. sources and to “static”
quantizers, i.e., quantizers with codebooks that are designed
with knowledge of the distribution of the source and not
changed based on a specific realization.

Variant I: Let denote real numbers sat-
isfying , and let be positive
integers with sum equal to. Define the first codeword of
the permutation code to have components given by

if (2)

More simply

(3)

where each appears times.
The Variant I code specified by and has a

codebook consisting of all the distinct permutations of. This
code has

(4)

codewords. Optimal encoding with this codebook is accom-
plished with a very simple procedure [3]. Replace thelargest
components of with , the next largest components of
with , and so on. The index into the codebook can be based
on any enumeration of the permutations.

Variant II: Variant II codes are very similar. The initial code-
word is given by (2) or (3) as before, but the’s are required
to be nonnegative, so .

The codebook now consists not only of distinct permutations
of , but in addition has all distinct sign choices for each com-
ponent. There are two sign choices for each nonzero component
of , so the number of codewords is

where if and if .
Optimal encoding is again extremely simple [3]. There are

two differences from Variant I: the components ofare taken

in order of their absolute values; and is used, with the sign
chosen to match the component it replaces.

B. Optimal Codebook Entries

For either variant, the design parameters are the block length
, the number of distinct codeword components, the numbers

of repetitions , and the codebook entries themselves
. Note that the ’s determine the rate; the ’s affect

only the distortion.
The optimal ’s, which are determined in this section, can

be expressed using order statistics means, assuming the other
parameters are fixed. The distortion can then be expressed in
terms of the remaining parameters, which will be optimized in
subsequent sections. Ultimately, we would like to find permuta-
tion codes that minimize distortion for givenand rate at most

.
Variant I: Let be a permutation that puts the random vector
in decreasing order and let . The ’s

are calledorder statistics.2 Using the notation

the optimal encoder replaces with for ,
. Thus, the distortion incurred by the optimal

encoder can be written as

It is shown in [3] that for any given , the distortion is
minimized with

(5)

This can be interpreted as follows. The numbers
are together quantized to a single value, so to minimize the
distortion should be the mean of this collection. With’s
given by (5), the MSE is

(6)

The distortion can be expressed in another, perhaps more en-
lightening way. To begin with, assume and

. This is the highest rate and (with optimal’s)
lowest distortion Variant I permutation code. According to (5),
each sorted component is reconstructed to its mean: ,

. The distortion is then the average of the vari-
ances of the order statistics

(7)

This component of the distortion decreases asincreases be-
cause the density of each order statistic becomes more peaked,
i.e., has lower variance. Note also that it lower-bounds the total

2Order statistics are usually sorted smallest-to-largest, but we use the reverse
ordering for consistency with earlier papers on permutation codes. Many prop-
erties of order statistics are given in [9].
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distortion so it can be used to lower-bound the block length
needed to achieve a given distortion.

Increasing any increases the distortion because at least one
order statistic is reconstructed to a value other than its mean.
Since

for any constant , the th group of coefficients contributes an
additional

to the distortion. The overall distortion is thus

(8)

Variant II: The optimization of the ’s for Variant II codes
is very similar. Let be a permutation that puts in decreasing
order and let . The ’s are the order
statistics of . The ’s that minimize the distortion are given
by

(9)

and again yield distortion (6) [3].

III. A SYMPTOTIC ANALYSIS AND OPTIMIZATION

Optimization of permutation codes requires the selection of
parameters , , , and . For Variant I codes, the

’s affect only the distortion—not the rate—so they naturally
should be chosen to minimize the distortion as in (5). Almost the
same thing can be said for Variant II codes except that whether
or not is zero affects the rate by . In either case, the op-
timization is inherently difficult because the parameter choices
are discrete.

When is large, , , can be consid-
ered a set of continuous parameters. This makes many analyt-
ical computations and optimizations easier, though one should
remember that only asymptotic conclusions can be drawn. Sec-
tion III-A reviews an equivalence from [4], with some additional
explanation of why optimal ECSQs and long permutation codes
are so similar. A new asymptotic equivalence is presented in
Section III-B.

A. Equivalence of Variant I Codes and ECSQs

When and each are large, the multinomial expression
(4) that determines the rate can be approximated with Stirling’s
formula (see, for example, [10, p. 530]):

for Variant I (10)

The distortion (8) is simplified by noting that as
.3 Furthermore, the deterministic quantities

are “distributed” identically to a generic source variablesince

(11)

where is the cumulative distribution function (cdf) of.
With these observations, establishing a connection between

permutation codes and ECSQ is straightforward. The rate (10)
is the entropy of the output of a quantizer with bin probabilities

. The distortion (8) can be written as

(12)

The bracketed term is the mean of squared errors and, be-
cause of (11), is like the squared error in a quantizer that maps

to . Thus, the permutation code is like an ECSQ with code-
book and thresholds selected such that the entries have
respective probabilities .

It is shown in [4, Theorem 2] that the performance of any
ECSQ can be approached by a sequence of Variant I permu-
tation codes of increasing block length. This result is estab-
lished by identifying the ECSQ codebook with the’s and
by choosing ’s so that each approaches the probability
of the th ECSQ codebook entry. Through this construction, an
ECSQ gives a (long) permutation code, so optimal permutation
codes are at least as good as optimal ECSQ. We can say more,
however. The rate (10) and distortion (12) show that, asymptoti-
cally, the design problems for ECSQ and permutation codes are
identical. Solong permutation codes are no better than ECSQ.
This analysis does not tell us anything about short permutation
codes.

B. Relation Between Variant I and Variant II Codes

For Variant II codes, Stirling’s formula can again be applied
to approximate the rate, yielding

for Variant II with (13)

for Variant II with

(14)

Manipulations of the distortion are similar to those in the pre-
vious section and yield expressions analogous to ECSQ of.
These are omitted.

3One can show that for most sources with invertible cumulative distribution
functions (cdfs), the sum of variances in (7) approaches a constant or grows very
slowly asn!1 (see [9, p. 80]).D thus decays roughly asn .
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The following theorem establishes that, asymptotically,
Variant I codes are at least as good as Variant II codes. Note the
asymptotic nature of the result; for fixed, Variant II codes are
superior at certain rates.

Theorem 1: For a source with a density that is symmetric
about zero and an arbitrary distortion measure, any rate and dis-
tortion pair asymptotically achievable by a Variant II code can
also asymptotically be achieved by a Variant I code. For a source
which is not symmetric about zero, the distortion asymptotically
achievable by a Variant II code at a given rate can be asymptot-
ically achieved by a Variant I code at a lower rate.

Proof: Suppose that and specify
a Variant II code with distinct components. We will
construct a Variant I code with the same distortion. For

, let denote the probability that a com-
ponent of the original source random vectorreplaced by
in the permutation code is positive. In the case of a source that
is symmetric about the origin, , .

Case 1: If , the corresponding Variant I code has
components. Let and

specify the code. We choose

By the choice of , the per-symbol distortion of both codes
are the same. The rate of the new codeasymptotically ap-
proaches

where

is the binary entropy function. For , we have the
inequality with equality only at .

Case 2: If , the corresponding Variant I code has
components. Let and specify the

code. We choose

.

Because of the choice of , the per-symbol distortion is the
same for both Variant I and Variant II. The rate of the Variant I
code asymptotically approaches

Fig. 1. The performances of the best Variant I and Variant II permutation
codes, asymptotically for largen.

The converse of Theorem 1 is not true even for sources that
are symmetric about zero; i.e., asymptotically there are Variant
I codes that cannot be matched by Variant II codes. An example
is for uniform sources at low rates. One can show that optimal
Variant I and Variant II codes with have . Further-
more, it is clear from (13) and (14) that Variant II codes must
have to attain this low rate. By sweeping over the
interval , one obtains the rate and distortion pairs shown
in Fig. 1.

IV. PERMUTATION CODES FORUNIFORM RANDOM VARIABLES

The remainder of the paper concerns analyses and optimiza-
tions which do not rely on asymptotic approximations. In this
section, we assume an information source emitting a sequence
of i.i.d. random variables each uniformly
distributed over the interval . With this source, we are
able to not only obtain simple distortion expressions, but also to
exhibit codes that contradict some previous general statements
about permutation codes.

A. Variant I

First assume and are fixed. Analytical distortion
computations are facilitated by the simplicity of order statistic
means and variances for a uniformly distributed source. The
means of the order statistics are

Substituted in (5), this yields

The variances of the order statistics are

Averaging these variances gives the minimum distortion
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Fig. 2. The performances of all Variant I permutation codes for a uniform
source withn = 6 and optimal� ’s. Each point is labeled by its vector ofn ’s.
For this source, the order of then ’s affects neither the rate nor the distortion.

and simplifying (8) then gives

(15)

The distortion expression (15) shows that for a uniform
source, the order of the ’s does not affect the distortion. (Of
course, the order of the ’s never affects the rate.) Below,
specific permutation codes are denoted by listing out the’s
in nonincreasing order.

For a given value of block length and maximal rate , we
would ideally like to select and to minimize .
For example, all the operating points obtained with are
shown in Fig. 2. The following choices of ’s are optimal at
their respective rates: , , ,

, , , , , (6). (Only
and are not optimal choices.) We have no efficient
method for generating this set of optimal parameter values;
in general, the exact solution seems to require an exhaustive
search of the possibilities. However, with a more restrictive
sense of optimality—seeking points on the lower convex hull of

pairs—we can greatly restrict the candidate parameters.
For , Fig. 2 shows that , , and codes
do not give points on the convex hull of pairs.

Proposition 2: Consider the set of Variant I permutation
codes for a uniform source with fixed block length. A code
specified by and optimal ’s cannot lie on the convex
hull of possible operating points if there existand such that

and differ by more than one.
Proof: Choose and such that . That the

operating point is not on the convex hull is established
by considering the operating points associated with three per-
mutation codes: A) the given code; B) the code with
replaced with ; and C) the code

Fig. 3. Operating points used in the proof of Proposition 2.

with replaced with .4

We will show that Point lies above a straight line connecting
Point and Point by comparing the slopes of and
(see Fig. 3).

The changes in rates and distortions can be computed from
(4) and (15):

We would like to show

which by substitution and cancellation of like factors is equiva-
lent to

After further rearrangement, this can be transformed to

(16)

for all .
To establish (16), it is sufficient to show that

4In the case thatn = 1, there is an abuse of notation in havingn = 0. We
mean thatK is replaced byK = K � 1, n is replaced byn = n + 1,
and the repetition countn is removed. However, it is easy to verify that the
expressions for codebook size (4) and distortion (15) hold with anyn equal to
zero. Thus, all the computations in this proof hold without modification for the
n = 1 case.
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is a strictly decreasing function for . Observe that

satisfies and that

is strictly positive. Thus, must be negative.

Proposition 2 indicates that, after taking into account the in-
sensitivity to permutation of the ’s, there is onecandidatefor
giving an operating point on the convex hull for each value of.
We conjecture these candidate points are always on the convex
hull.

Conjecture 3: There are precisely parameter choices that
give operating points on the convex hull, one for each

. For a given , a point on the convex hull is
obtained with ’s given by

where the number of repetitions of each makes .
Explicitly, is repeated times and

is repeated times.

Returning to the example, Proposition 2 indicates that

are the only candidates for giving operating points on the op-
timal convex hull. Conjecture 3 is true for , as these oper-
ating points are all on the convex hull. Arguments in support of
the conjecture for generalappear in the Appendix.

Conjecture 3 suggests that the point on the convex hull
with smallest positive rate is obtained with .
Fig. 4(a) shows the performances of codes for

. (The point is at , .)
The curve given for comparison is the performance of optimal
ECSQ. For , an optimal ECSQ is regular and has two
output points. It can be shown that

where is the binary entropy function. Note that for all
the permutation code is superior to the best
ECSQ at the same rate or distortion. This contradicts Berger’s
“equivalence” between permutation codes and ECSQ.

As , the performance of the permu-
tation codes approaches and . (This is an
operating point also attainable with ECSQ.) However, for all

, the points for the permutation codes lie below a
straight line connecting and . Using Propo-
sition 2, all permutation codes with largewill have operating
points on or above this line. Therefore, we have constructed fi-
nite-length permutation codes with performance better than the
best possible in the limit of large block length; this contradicts
an assertion of Berger [5]. If Conjecture 3 holds, the operating
points shown in Fig. 4(a) indicate that the best convex hull per-
formance at low rates is obtained with .

(a)

(b)

Fig. 4. Comparisons between Variant I permutation codes and ECSQ for
uniform source. In both graphs, the connected curve is the performance of
optimal ECSQ. (a) Operating points with(n ; n ) = (dn=2e; bn=2c) are
marked. For alln > 1, these operating points are better than optimal ECSQ.
(b) Operating points of(n=3; n=3; n=3) and (n=4; n=4; n=4; n=4) codes
(with appropriate rounding) forn < 200.

Performance beating ECSQ is not limited to rates under 1
bit per sample. As shown in Fig. 4(b), and

codes (with appropriate rounding) also
give infinitely many codes better than ECSQ. For , the
codes with are better than ECSQ for

. Also, codes with and beat
ECSQ at rates .

Limiting attention to the convex hull of achievable operating
points does not allow us to find optimal permutation codes at
arbitrary rates. As discussed in Section III-A, we can formulate
an optimization problem to generate optimallong permutation
codes. For the uniform source, this optimization reveals that the
optimal is . Furthermore, should asymptoti-
cally take only two values.

Remarks on the Definition of Rate:A fixed-length binary in-
dexing of codewords requires bits. Thus, one ap-
propriate definition of the rate of an-dimensional vector quan-
tizer with codewords is . In this corre-
spondence, the rate definition (1), without a ceiling operation,
has been used. Obviously, exceeds by at most bits.
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Fig. 5. Portion of Fig. 4(a) shown by circles added to show increases in rate
from usingR = n dlog Me. With the ceiling operation, the Variant I
permutation codes with(n ; n ) = (dn=2e; bn=2c) give operating points
better than ECSQ forn = 2 andn � 9.

Even for fixed , the rate can be approached by jointly in-
dexing consecutive quantizer outputs. For example, binary in-
dexing of pairs of quantizer outputs requires
bits per scalar sample, which exceedsby at most bits.
This is a trivial block entropy code that requires no storage.

The effect of the ceiling operation on the results in Fig. 4(a)
is shown in Fig. 5. Operating points obtained with the original
rate (shown by dots) are connected to new points obtained
with the modified rate (shown by circles). Block indexing
would give intermediate rates.

B. Variant II

The absolute value of a random variable uniformly distributed
on is another uniform random variable, this time dis-
tributed on . Thus, especially for uniform random vari-
ables, Variant II codes are very similar to Variant I codes. The
means of the order statistics are simply translated and scaled,
and the variances of the order statistics are reduced by a factor
of . The only complicating factor is to pay careful attention to
whether is zero.

To minimize the distortion without regard to rate, should
be chosen according to (9), which always gives a nonzero value.
The resulting distortion is precisely one-fourth the distortion of
(15). This is intuitive because the rate is increased by 1 bit per
sample.

The reason to force even though this is not the mean
of the relevant order statistics is to reduce the rate by bits
per sample. The distortion obtained in this way is

(17)

Up to a multiplicative factor of , the dependence of the distor-
tion on is unchanged. Thus, the analog of Proposition
2 holds for .

(a)

(b)

Fig. 6. (a) Comparison between Variant II permutation codes withn � 200
and ECSQ for uniform source. (b) Comparison between the best Variant I
and Variant II codes withn = 20. Operating points are connected with line
segments to distinguish the two variants. The intermediate points are not
attainable.

With , the relative performance of permutation codes
and ECSQ for Variant II is very similar to that of Variant I. For
example, codes are better than ECSQ for all

and as they have , which
is attainable with ECSQ.

Operating points better than ECSQ are more readily attained
with . In the range , codes with

are better than ECSQ for . Many codes better
than ECSQ can be obtained with ; in particular,

for , for , for ,
and for . Many of the best operating points
with are gathered and compared to ECSQ in Fig. 6(a).
This plot includes operating points obtained with and

.
For fixed , Variant II codes are superior to Variant I codes

at certain rates. In particular, the component is lower for
Variant II codes by a factor of, thus the high-rate performance
is always better. A comparison for is made in Fig. 6(b).
In this graph, we also see the emergence of the low-rate superi-
ority of Variant I codes, as discussed following Theorem 1.
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V. PERMUTATION CODES FORLAPLACIAN RANDOM

VARIABLES

Now assume an information source emitting i.i.d. random
variables with the Laplacian distribution .
Though this is more difficult to handle than a uniform source,
some analytical computations are still possible. Numerical
results facilitate some final qualitative observations.

A. Variant I

Given and , the optimal ’s can be computed with
(5), where the mean of theth-order statistic is (see [9])

Assuming , this can be simplified further to

The remaining means can be computed by symmetry:
.

We have not found a mechanism for easily determining op-
timal ’s. One possibility is to use the algorithm of [3, App.
II], which finds good—but not necessarily optimal—parameter
choices. An exhaustive search is simplified by noting that the
increment is decreasing for and
increasing for . Thus, we should have
for all such that ; similarly, for all
such that . More detailed arguments along these lines
are given for Variant II.

B. Variant II

For our Laplacian source, Variant II codes are somewhat
easier to analyze and design than Variant I codes. The absolute
value of the source is an exponential random variable with
mean . Using the order statistic means

in (9), the optimal nonzero codebook entries are

As always with Variant II codes, may be chosen as above
to minimize distortion without regard to rate, or set to zero to
reduce the rate.

The variances of the order statistics are given by

Averaging these gives

(18)

The harmonic sum diverges slowly, with

[11]. Thus,

explaining the dependence of the high-rate performance onin
[12, Fig. 1] and in Fig. 7.

Substituting (18) in (8) gives overall distortion

This form is useful in deducing the best candidates for .
In contrast to the case of a uniform source, the order of the

’s does affect the distortion. The strictly decreasing nature of
the increments implies that
should be a nondecreasing sequence. In addition, one should
have if . We have generated all of
the Variant II codes satisfying the necessary condition for
optimality for and .

The performances of the best codes are shown in Fig. 7
along with the estimated performance of optimal ECSQ.5 This
graph allows us to summarize some of our findings. Because of
asymptotic equivalence, Variant I permutation codes perform
similarly to ECSQ for sufficiently large . Though we have
only proved a converse, it seems that except at low rates Variant
II codes also perform similarly to ECSQ for symmetric sources.
For any fixed , the performances of permutation codes and
ECSQ separate for high rates, with the separation occurring at
a lower rate for smaller values of. The separation must occur
because the distortion of a permutation code is lower-bounded
by , which is a function of but not of . Though not
shown as dramatically as for the uniform source, performance
doesnot strictly improve as is increased.

Berger, Jelinek, and Wolf [3] attribute the poor performance
of permutation codes at high rates (for fixed) to the close
clustering of the ’s (or ’s). They suggest that closely
clustered order statistic means must be quantized to a single
value to avoid a large increase in rate with only a small de-
crease in distortion. This explanation is accurate, but we would
like to complement it with another. Viewed in spherical coor-
dinates, a permutation code allocates all the rate to the angular
components, with no rate to the radial component. With the

5The curve labeled “Optimum Quantizer” in [12, Fig. 1] is incorrect. This
is partly explained by Berger in the discussion of [5, Fig. 4], where it is noted
that at some rates optimal ECSQs have codewords at zero. Berger [5] uses the
envelope of several parametric curves to suggest the performance of optimal
ECSQ. We have used an iterative design algorithm that minimizes a weighted
sum of distortion and output entropy [8]. The algorithm is easy to implement
because all needed integrations can be computed in closed form.
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Fig. 7. Operating points of the best Variant I and Variant II codes for the Laplacian source. Operating points are connected with line segments to distinguish the
three values ofn. The intermediate points are not attainable. Note the logarithmic scale for distortion.

rate fixed and very large, this is reasonable because the typ-
ical set approaches a spherical shell. However, for any given

, there is a rate above which it becomes critical to allocate
positive rate to the radial component. Finally, one should note
that the performance of ECSQ is attained in an actual imple-
mentation only when lossless coding at the entropy bound is
achieved.

APPENDIX

PLAUSIBILITY ARGUMENT FORCONJECTURE3

Let and denote the per-symbol distortion and the
rate associated with the code havingdistinct codeword com-
ponents. Conjecture 3 could be established by showing that the
slope magnitudes are nonin-
creasing as increases from to . We rigorously demon-
strate in Case 1 below that the slope magnitudes are nonin-

creasing for . Later, in Case 2, we provide
heuristic arguments that the slope magnitudes are nonincreasing
for smaller values of .

Case 1: Suppose

It is easy to verify that this condition holds for all such that
. We will break this case into two subcases.

a) Suppose that for some
positive integer . Then the difference between the code with

codeword components and the code with codeword
components is that values of that are set to in
the former are converted to values that are set toin the
latter. Hence,

In the next subcase, we will demonstrate that

is increasing with . Hence, is
nonincreasing with for these cases.

b) For the remaining subcase, there is an integer and
nonnegative integers, , , and such that

• the code with distinct codeword components has
for components and for components, and

• the code with distinct codeword components has
for components and for components.
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We have the relationships

Hence,

It follows that

For the rate increment, we have that

Hence,

(19)

We would like to show that the right-hand side of (19) decreases
as increases from to . We have that

(20)

For all positive integers, . Hence,

(21)

Since , it follows from Stirling’s formula (see [10, p. 530])
that

(22)

Now it follows from (21) and (22) that

(23)

By (23) and (20), we have that

(24)

as desired. Therefore, if we substitute and into
(19), we find that

Hence, if and both belong to subcase a), then it follows
that

If either

• falls into subcase a) and falls into subcase b); or

• falls into subcase b) and falls into subcase a);

then (19)–(24) imply that

Case 2: In the case where , our
argument is less precise. For each, define

by

Then

We will assume that to make further
calculations. As grows, the supremum of the error in the ap-
proximation to approaches zero
with increasing . We will approximate by

To approximate , we will use Stirling’s formula

to obtain
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With these approximations, we have

(25)

We will sketch how to demonstrate that the right-hand side of
(25) is decreasing with increasing. Its derivative with respect
to is , where

It is possible to show that the terms with in the denominator
provide a positive contribution to . The magnitude of these
terms is maximized by selectingas small as possible subject
to the constraint . Finally, when this value of
is incorporated into , the derivative is negative.
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