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Abstract

A constant composition code over a k-ary alphabet has the property that the numbers of occurrences of the k symbols within a
codeword is the same for each codeword. These specialize to constant weight codes in the binary case, and permutation codes in the
case that each symbol occurs exactly once. Constant composition codes arise in powerline communication and balanced scheduling,
and are used in the construction of permutation codes. In this paper, direct and recursive methods are developed for the construction
of constant composition codes.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Constant composition code; Constant weight code; Permutation code

1. Introduction

Communication over an electric power line has become an attractive alternative to cable television or telephone as
a solution to the “last mile” problem of delivering information services to and within a home (see [18]). Modulation of
the frequency can be used to accomplish this information encoding, but this causes a variation in power delivered on
the line. If k different frequencies can be chosen, each information unit can be encoded as a codeword over the k-ary
alphabet of frequencies [6,8]. Then the frequencies are transmitted sequentially, decoded to determine the information,
and the power output remains as available electrical power. Without careful selection of codewords, power output on
the line is not constant, and the information delivery interferes with the power delivery. Constant composition codes
provide an acceptable solution, by allowing local variations that are small but ensuring that upon completion of each
codeword, the power expended is the same for each information unit encoded.

More generally, constant composition codes arise in frequency hopping (FH), when a schedule is needed to determine
frequencies on which to transmit; see [9]. When each frequency is to be used a specified number of times within a
frame, each FH sequence is a codeword of constant composition. Indeed, whenever a different cost is associated with
each symbol in the underlying alphabet, uniform cost of codewords leads to constant composition.

Two special cases, (binary) constant weight codes and permutation codes, have been studied in some depth; in this
paper, we consider the generalization to constant composition codes.
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Let C be a k-ary code of length n and distance d on the alphabet {1, . . . , k}. As usual, the elements of C are codewords,
and the collection of alphabet symbols in the ith position of every codeword is the ith column of C.

Code C has constant weight composition [n1, . . . , nk] if every codeword has ni occurrences of symbol i for i =
1, . . . , k. (Since the alphabet is immaterial to a code, we may view the composition [n1, . . . , nk] as an unordered
multiset, and not restrict the alphabet to {1, . . . , k}.) Code C is a constant composition code, or CCC([n1, . . . , nk], d),
or simply a CCC. Let A([n1, . . . , nk], d) denote the maximum size of such a CCC. Unless stated otherwise, we assume
n = ∑

ni .
We say [n1, . . . , nk] is a refinement of [m1, . . . , mh] if there is a partition {I1, . . . , Ih} of {1, . . . , k} such that∑
i∈Ij

ni = mj for each j. In this case, we write [n1, . . . , nk]�[m1, . . . , mh]. The dual of [n1, . . . , nk], written as
[n1, . . . , nk]∗, is the partition of n whose ith part is the number of nj , j = 1, . . . , k, which are greater than or equal to i.

When writing compositions, the exponential notation n
t1
1 n

t2
2 · · · nth

h may be used to abbreviate

[
t1︷ ︸︸ ︷

n1, . . . , n1,

t2︷ ︸︸ ︷
n2, . . . , n2, . . . ,

th︷ ︸︸ ︷
nh, . . . , nh].

In case the ni are themselves exponents, we revert to the composition list to avoid confusion.
The following are easy consequences of the definitions, and generalize the results in [21] for ternary codes.

Lemma 1.1. (1) If [n1, . . . , nk]�[m1, . . . , mh], then A([n1, . . . , nk], d)�A([m1, . . . , mh], d).
(2) If d = d1 + · · · + dk , then A([n1, . . . , nk]∗, d)�mini A(1ni , di).

(3) If d > 2(n − nk), then A([n1, . . . , nk], d) = 1.
(4) A([n1, . . . , nk], 2(n − nk)) = �n/(n − nk)�.
(5) A([2, n1, . . . , nk], d)� 1

2A([1, 1, n1, . . . , nk], d + 1).

Only (5) requires an explanation. In a code with composition [1, 1, n1, . . . , nk], let 1 and 2 be the symbols in the
first two parts. Without loss of generality, at least half of the codewords contain the 1 in a position prior to that of the
2. In this set of codewords, identify symbols 1 and 2. By selecting codewords in this way, the distance can drop by at
most 1. Similar identifications are possible, but this appears to be the most useful example that is trivial.

Codes with constant composition 1n are also known as permutation arrays, denoted by PA(n, d), and have been
studied recently in [4]. Several of the constructions to follow for CCCs have been used for PAs. Codes with constant
composition [w, n − w] are the much-investigated constant weight binary codes [2].

For distance two, the largest code is easily determined. Indeed, A([n1, . . . , nk], 2) = (
n

n1,n2,...,nk
), the multinomial

coefficient. Even for distance three, however, no general result for CCCs appears to be known, despite the fact that
for permutation arrays the maximum can be achieved by the set of all even permutations. In this vein, we provide one
minor result for illustrative purposes.

Lemma 1.2. A(211n−2, 3)��n/2� · �n/2� · (n − 2)!/2.

Proof. Form �n/2� · �n/2� pairs P of integers in the range from 1 to n by including each pair {i, j} for which
i + j ≡ 1 (mod 2). For each pair P ∈ P, form codewords by placing symbol 0 in the two positions in P, and form
(n − 2)!/2 codewords of this type by placing the entries of each even permutation on {1, . . . , n − 2} in the remaining
cells in the same order. Codewords arising from two disjoint pairs in P have distance at least four. Those arising
from the same pair have distance at least three. Finally, other pairs of codewords have distance at least three; two arise
from the differing location of the 0, and at least one further difference arises from the fact that the permutations in the
remaining positions are both even. �

There are two main upper bounds that we employ: the Johnson and Plotkin bounds. The latter holds for any code,
regardless of the constant composition property. The proofs of both upper bounds are standard and omitted. After each
bound, we give an example of a composition and distance for which equality is achieved.
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Proposition 1.3 (Johnson bound).

A([n1, n2, . . . , nk], d)� n

n1
A([n1 − 1, n2, . . . , nk], d).

Corollary 1.4. A([n1, . . . , nk], n) = �n/ max{ni}�.

Proof. Suppose without loss of generality that n1 is the largest part in the composition. We can obtain equality with
shifts of the codeword

n1︷ ︸︸ ︷
1 . . . 1

n2︷ ︸︸ ︷
2 . . . 2 . . . . . .

nk︷ ︸︸ ︷
k . . . k

by n1 positions at a time. �

Proposition 1.5 (Plotkin bound). Any k-ary code of length n and minimum distance d has at most

d

d − n + n/k

codewords, provided the denominator is positive. Equality occurs if and only if the bound is an integer multiple of k,
no pair of codewords are at distance n, and every symbol occurs equally often in each column.

Corollary 1.6. A(112m, 2m) = 2m + 1.

Proof. The Plotkin bound is 2m+2, but equality is impossible due to the composition. We have A(112m, 2m)=2m+1
using all cyclic shifts of the codeword 1234 . . . mm . . . 432. �

2. Codes from polynomials

In this section, we use polynomials over finite fields to construct CCCs (see [15] for definitions).

Theorem 2.1. Let q = pr = km + 1 be a prime power. Then

A(11km, q − k)� q(q − 1)

k
.

Proof. Take a generator � for GF∗(q). Let P= {(ax + b)k : a, b ∈ GF(q), a �= 0} be a set of polynomials of degree
k. For each f (x) ∈ P, construct one codeword

f (·) = (f (0), f (�0), f (�1), . . . , f (�q−2)).

We claim that C = {f (·) : f (x) ∈ P} is the desired CCC with q(q − 1)/k codewords. To prove the claim, we need to
verify the minimal distance, weight distribution, and number of codewords contained in C.

1. For any two distinct polynomials f (x), g(x) ∈ P, f (x)−g(x)=0 has at most k roots, as the degree of f (x)−g(x)

is at most k and the polynomials are over GF(q). Then the distance of any two different codewords of C is at least
q − k.

2. Since k | q − 1, �(x) = xk is a homomorphism from (GF∗(q), ·) to (GF∗(q), ·) with kernel size k. If �(·) is
applied to any permutation of GF(q), the resulting vector has the desired weight distribution. The linear function
h(x) = ax + b with a �= 0 is a permutation polynomial over GF(q). Thus any f (·) with f (x) ∈ P has the desired
weight distribution.

3. For any f (x) ∈ P,

f (x) = (ax + b)k =
k∑

i=0

(
k

i

)
aibk−ixi .
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If two polynomials f1(x) = (a1x + b1)
k and f2(x) = (a2x + b2)

k result in the same vector f1(·) = f2(·), then

ak
1 = ak

2 ,

kak−1
1 b1 = kak−1

2 b2,

ka1b
k−1
1 = ka2b

k−1
2 ,

bk
1 = bk

2.

From the first and the last equations,a1=�j1a2 andb1=�j2b2, where� ∈ GF∗(q)with order k and 0�j1, j2 �k−1.
With the fact that p�k, the second and the third equations show that k | j1 − j2 and k | j2 − j1, thus j1 = j2. So
f1(·) = f2(·) if and only if a1 = �j a2 and b1 = �j b2 with 0�j �k − 1. Thus |C| = q(q − 1)/k. �

Taking q = 2 · ((q − 1)/2) + 1 with k = (q − 1)/2 yields the Jacobsthal matrix construction in [21]. The following
construction is known to be optimal when q �9.

Corollary 2.2.

A

([
q − 1

2
,
q − 1

2
, 1

]
,
q + 1

2

)
�2q,

where q = pm is an odd prime power.

Let � ∈ F = GF(qm) and K = GF(q). The trace TrF/K(�) of � over K is

TrF/K(�) = � + �q + · · · + �qm−1
.

Theorem 2.3. Let q be a prime power and m be a positive integer. Then

A([
q︷ ︸︸ ︷

qm−1, . . . , qm−1], qm − qm−1)�q(qm − 1).

Proof. Let F = GF(qm) and K = GF(q). Let P = {TrF/K(ax + b) : a, b ∈ GF(qm), a �= 0}. According to
the definition of trace, each element of P is a polynomial of degree qm−1. For each f (x) ∈ P, construct one
codeword

f (·) = (f (0), f (�0), f (�1), . . . , f (�qm−2)).

We claim that C = {f (·) : f (x) ∈ P} is the desired CCC with q(qm − 1) codewords.
To prove the claim, we need to verify the minimal distance, weight distribution, and number of codewords contained

in C.

1. Since the degree of each polynomial in P is qm−1, the minimal distance of C is qm − qm−1.

2. TrF/L(·) is a homomorphism from (GF(qm), +) to (GF(q), +). So the weight distribution is [
q︷ ︸︸ ︷

qm−1, . . . , qm−1].
3. To check the size of C, we use a method similar to that in the proof of Theorem 2.1. For convenience, we use Tr

instead of TrF/K . Suppose that two functions from P f1(x) = Tr(a1x + b1) and f2(x) = Tr(a2x + b2) give the
same codeword, f1(·) = f2(·). Then for any x ∈ F , Tr(a1x + b1) = Tr(a2x + b2). Take x = 0, and then x = 1, to
get

Tr(b1) = Tr(b2) and Tr(a1) = Tr(a2).
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By linearity of the trace function, for any x ∈ F , Tr(a1x) = Tr(a2x). Hence Tr((a1 − a2)x) = 0, i.e. (a1 −
a2)x ∈ Ker(Tr(·)), the kernel of the trace function. Also a1 − a2 ∈ Ker(Tr). Then a1 − a2 = 0. As a conclusion,
Tr(a1x + b1) = Tr(a2x + b2) implies that a1 = a2 and Tr(b1 − b2) = 0. Then |C| = qm(qm − 1)/(qm − 1) =
q(qm − 1). �

Example 2.4. Let q = 32 and m = 2. Then A([3, 3, 3], 6)�24, which is indeed optimal according to Table III of [21].
We also see this code in Example 4.2.

In principle, Theorems 2.1 and 2.3 can be applied to any PA constructed from permutation polynomials or a fractional
linear transformation over finite fields (refer to [4]). Here are two examples.

Example 2.5. Take a PA(10, 8) with 720 permutations from PGL(2, 9) [4]. Using k = 2 in Theorem 2.1, A(1224, 6)

�360, where weights of 1 come from 0 and ∞. Using TrF/K with F =GF(9) and K =GF(3), A([3, 3, 3, 1], 4)�240,

where weight 1 comes from ∞.

3. Codes from distance-preserving mappings

The paper [3] investigates mappings f from Zn
2 to Sn that “preserve” (do not decrease) Hamming distance. Here, we

continue these ideas and consider applications to constant-composition codes. The set of r-subsets of a set S is denoted
by (

S
r
). A generalized distance-preserving map GDPM(m, n, d, r; q) is a function

f : Xm →
(
Sn

r

)
,

where |X| = q and such that

(i) f (x) is a PA(n, d) for all x ∈ Xm, and
(ii) dist(u, v)�dist(x, y) for all u ∈ f (x) and v ∈ f (y).

It is always assumed that 2�q �n and r �1. When r = 1, we can take d = n. The condition that m�n is required
in all cases. Another necessary condition is qmr �n!.

GDPMs behave nicely with respect to concatenation. More precisely, suppose that f is a GDPM(m1, n1, d1, r; q) and
g is a GDPM(m2, n2, d2, r; q). Define f �g on Xm1+m2 by (f �g)(x1x2)={uivi : i = 1, . . . , r}, whenever x1 ∈ Xm1 ,
x2 ∈ Xm2 , and f (x1) = {u1, . . . , ur}, g(x2) = {v1, . . . , vr}. This definition depends on some arbitrary ordering of the
ui and vi . Such an ordering is implicitly assumed. A typical element in the range of f � g is viewed as a concatenation
of permutations over appropriate sets. When these sets are disjoint, we obtain:

Lemma 3.1. If f is a GDPM(m1, n1, d1, r; q) and g is a GDPM(m2, n2, d2, r; q), then f � g forms a GDPM(m1 +
m2, n1 + n2, d1 + d2, r; q).

The word lengths in a GDPM can also be incremented by one.

Lemma 3.2. Suppose that q �n. If there exists a GDPM(m, n, d, r; q), then there exists a GDPM(m+1, n+1, d, r; q).

Proof. Suppose that f is the hypothesized GDPM, and, for convenience, X = {1, . . . , q}. Define f ′ on Xm+1 by
u′ ∈ f ′(xa) if and only if

u′(i) =
{

u(i) if i < n + 1, u(i) �= a,

n + 1 if u(i) = a,

a if i = n + 1

for some u ∈ f (x), where x ∈ Xm and a ∈ X. Clearly, f ′(xa) is a PA(n + 1, d). Since f (x) = {u1, . . . , ur} is a
PA(n, d), we know that if u1(i) = u2(i) = a, then u1 and u2 differ in d positions other than position i. So u′

1 and u′
2,
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defined as above, differ in at least d positions. On the other hand, if u1(i) = u2(j) = a with i �= j , then u′
1(i) = n + 1

and u′
2(j) = n + 1. So u′

1 and u′
2 differ both in positions i and j, and in at least d − 2 other positions. Thus f ′(xa) is a

PA(n+ 1, d). Suppose now that u′ ∈ f (xa) and v′ ∈ f (y, b) arise from u ∈ f (x) and v ∈ f (y), respectively. If a =b,

dist(u′, v′)�dist(u, v)�dist(x, y) = dist(xa, ya).

If a �= b,

dist(u′, v′)�dist(u, v) + 1�dist(x, y) + 1 = dist(xa, yb).

Therefore, f ′ is the required GDPM. �

Define Aq(m, d) to be the maximum size of a q-ary code of length m and distance d. Lower bounds on A2(m, d)

have been studied extensively in the literature. See [16].

Theorem 3.3. Suppose that there exist GDPM(mi, ni, di, r; q) for i = 1, . . . , k. Let m = ∑
mi and d �

∑
di . Then

there exists a CCC with composition [n1, . . . , nk]∗ and distance d of size r · Aq(m, d).

Proof. Let |X| = q and suppose that fi : Xmi → (
Sni

r
) are the hypothesized GDPMs. Define the permutations in the

range of fi as acting on the symbols {1, . . . , ni}. Let C be any code of length m and distance d over the alphabet X.
Define

C′ =
⋃
x∈C

(f1 � · · · � fk)(x).

We claim that C′ is the required CCC. First, the symbols of each word of C′ are, in some order, 1, . . . , n1, 1, . . . , n2, . . . ,

1, . . . , nk . So C′ has constant composition [n1, . . . , nk]∗. There are r|C| elements in C′ since |fi(x)| = r for all i, x.
Finally, suppose that u, v ∈ C′. If u and v result from the same x ∈ C, the distance between u and v is at least

∑
di �d

by condition (i) of the GDPM. On the other hand, if u and v result from codewords x �= y, then their distance is at least
dist(x, y)�d from condition (ii) of the GDPM. �

In [3], it was observed that a DPM(n, n; q) gives rise to a PA(nk, d) of size Aq(nk, d). Apart from allowing m �= n,
Theorem 3.3 essentially strengthens this conclusion in the sense that 1nk�kn as compositions. (See part (1) of Lemma
1.1.) But if all ni are equal and a PA is desired, we can in fact multiply the bound above by a substantial factor.

Theorem 3.4. If there exists a GDPM(m, n, d, r; q) then there exists a PA(nk, dk) of size r ·Aq(mk, dk)·A(1k, �dk/n�).

Proof. Suppose that f is the given GDPM and C is a q-ary code of length mk and distance dk. By Lemma 3.1,

C′ =
⋃
x∈C

(

k︷ ︸︸ ︷
f � · · · � f )(x)

forms a GDPM(mk, nk, dk, r; q). So C′ is a PA(nk, dk). Now, for each word in C′, the k disjoint blocks of n symbols
used can be permuted according to a PA(k, �dk/n�). The distance between words resulting from different permutations
of blocks is at least n�dk/n��dk, since no symbols from distinct blocks can agree. �

In [3], a GDPM(4, 4, 4, 1; 2) is presented.

Corollary 3.5. (1) A(14n, 4d)�A2(4n, 4d)A(1n, d).
(2) A(n4, d)�A2(4n, d).

Using a hill-climbing algorithm, we have found various GDPMs with small parameters.

Lemma 3.6. There exists the following GDPMs: GDPM(6, 6, 6, 2; 2), GDPM(6, 6, 3, 3; 2), GDPM(6, 7, 7, 7; 2), and
GDPM(4, 5, 5, 1; 3).
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Proof. For the first map, consider the partial map below and use the automorphism x → x + 3 to create 2-subsets at
distance 6. Also, f (x + (1, 0, . . . , 0)) is a transposition on the last two entries of f (x).

000000 → 012345 010000 → 012435 001000 → 012534 011000 → 013245
000100 → 014325 010100 → 013425 001100 → 014532 011100 → 014235
000010 → 021345 010010 → 021435 001010 → 021534 011010 → 023145
000110 → 024315 010110 → 023415 001110 → 024531 011110 → 024135
000001 → 102345 010001 → 102435 001001 → 104532 011001 → 105432
000101 → 135042 010101 → 132405 001101 → 103542 011101 → 135402
000011 → 152034 010011 → 120345 001011 → 204531 011011 → 250413
000111 → 124305 010111 → 120435 001111 → 201534 011111 → 123405

For the second map, we cycle the first three coordinates of the following images to obtain the required PAs
of distance 3.

000000 → 503214 100000 → 520314 010000 → 305214 110000 → 250341
001000 → 450312 101000 → 520143 011000 → 105243 111000 → 502413
000100 → 043215 100100 → 042351 010100 → 301254 110100 → 023415
001100 → 403512 101100 → 024315 011100 → 103245 111100 → 210345
000010 → 450132 100010 → 502134 010010 → 503421 110010 → 025431
001010 → 054132 101010 → 520431 011010 → 051432 111010 → 502143
000110 → 034251 100110 → 203154 010110 → 130425 110110 → 230451
001110 → 034152 101110 → 420531 011110 → 031452 111110 → 021435
000001 → 453210 100001 → 524301 010001 → 351240 110001 → 125304
001001 → 541302 101001 → 425013 011001 → 145023 111001 → 152340
000101 → 314520 100101 → 243510 010101 → 314205 110101 → 312540
001101 → 413502 101101 → 241503 011101 → 314025 111101 → 231045
000011 → 345120 100011 → 452130 010011 → 513420 110011 → 521034
001011 → 145032 101011 → 542130 011011 → 135042 111011 → 521403
000111 → 431502 100111 → 432150 010111 → 314250 110111 → 213450
001111 → 314052 101111 → 124035 011111 → 413025 111111 → 241053

Next, we cycle all coordinates of the images below for the required PAs of distance 7.

000000 → 2035146 100000 → 5142360 010000 → 6432105 110000 → 2360154
001000 → 6425310 101000 → 3150624 011000 → 0254316 111000 → 1365240
000100 → 5104623 100100 → 0563142 010100 → 4601523 110100 → 1325460
001100 → 3146025 101100 → 6213450 011100 → 4501623 111100 → 4506123
000010 → 0645213 100010 → 0426513 010010 → 4521036 110010 → 4326150
001010 → 1063425 101010 → 0634215 011010 → 1064532 111010 → 6431052
000110 → 1530462 100110 → 6130542 010110 → 3264105 110110 → 6130452
001110 → 6250341 101110 → 4062513 011110 → 0134652 111110 → 3401256
000001 → 0541362 100001 → 0263514 010001 → 6412035 110001 → 6104235
001001 → 2435106 101001 → 0243516 011001 → 4650123 111001 → 4516023
000101 → 3541620 100101 → 6124305 010101 → 0452361 110101 → 6504123
001101 → 5602134 101101 → 0243156 011101 → 1643520 111101 → 2405361
000011 → 3026541 100011 → 2153604 010011 → 1654230 110011 → 0436512
001011 → 5203416 101011 → 0421635 011011 → 4652103 111011 → 4031652
000111 → 6145302 100111 → 3041526 010111 → 6132045 110111 → 5124036
001111 → 4165302 101111 → 6350241 011111 → 1250346 111111 → 2163450
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The GDPM from ternary words is now given.

0000 → 02431 1000 → 20431 2000 → 21043
0100 → 10432 1100 → 12430 2100 → 31042
0200 → 31024 1200 → 30421 2200 → 10423
0010 → 02341 1010 → 21340 2010 → 20341
0110 → 01234 1110 → 30412 2110 → 10342
0210 → 10324 1210 → 12340 2210 → 40321
0020 → 02134 1020 → 32140 2020 → 20143
0120 → 30214 1120 → 30142 2120 → 40132
0220 → 02143 1220 → 30124 2220 → 40123
0001 → 03241 1001 → 23401 2001 → 23041
0101 → 01432 1101 → 13402 2101 → 41032
0201 → 03421 1201 → 13420 2201 → 41023
0011 → 21304 1011 → 23410 2011 → 41302
0111 → 03412 1111 → 41230 2111 → 13042
0211 → 01324 1211 → 41320 2211 → 43012
0021 → 23104 1021 → 23140 2021 → 42013
0121 → 03142 1121 → 34102 2121 → 43102
0221 → 03124 1221 → 34120 2221 → 43120
0002 → 21403 1002 → 32401 2002 → 24031
0102 → 04231 1102 → 34201 2102 → 14032
0202 → 01423 1202 → 34021 2202 → 43021
0012 → 02314 1012 → 24310 2012 → 42301
0112 → 04312 1112 → 14230 2112 → 40312
0212 → 04321 1212 → 14320 2212 → 14023
0022 → 04213 1022 → 24103 2022 → 24013
0122 → 04132 1122 → 34210 2122 → 40213
0222 → 04123 1222 → 14203 2222 → 42103 �

Example 3.7. From [16], A2(24, 7)�212, so using the GDPM(4, 4, 4, 1; 2), A(64, 7)�212. Refining the composition,
there is a 1454 code of the same distance and size. Using the GDPM(6, 6, 6, 2; 2) above, A(46, 7)�213. By comparison,
inflating a PA(6, 2) by 4 gives a code with the same composition and distance 8, but with smaller size 6!.

We now give a result that trades intra-distance and length for multiplicity.

Theorem 3.8. If there is a GDPM(n, n, n, 1; q) and a PA(k, d) of size r, then there is a GDPM(n + k, n + k, d, r; q)

for all k�n/(q − 1).

Proof. Suppose that X is the alphabet Zq . Suppose that f is the given GDPM. Define e : Xk → (
E
k
), where E =

{1, . . . , n + k}, by

e(x1, . . . , xk) = {x1, x2 + q, . . . , xk + q(k − 1)}.
We find |e(x) ∩ e(y)| = k − dist(x, y) for any x, y ∈ Xk . Now we extend f to g : Xn+k → Sn+k by g(x1x2) = y1y2,
where x1 ∈ Xk , x2 ∈ Xn, y1 is any ordering of the points of e(x1), and y2 is the permutation defined by f (x2) on the
points of {1, . . . , n + k}\e(x1), say in increasing order. Now permute the coordinates of y1 according to the PA(k, d)

to obtain the desired multiplicity. It is easy to check that the resulting map is distance-preserving. �

4. Codes from resolvable designs

Let X be a set of size n and B a collection of nonempty subsets of X (blocks) whose sizes belong to K. If t
and � are positive integers, the pair (X,B) is a t-wise balanced design with index � (or simply a design) if every
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t-subset of X is contained in exactly � blocks. From now on, we consider only � = 1. Design (X,B) is resolvable if
B can be partitioned into partitions (resolution classes) of X. If in addition each resolution class contains the same
number of blocks of each size, the design is class-uniformly resolvable. The block set B of a design with t = � = 1
is itself a partition of X; in this trivial case every design is class-uniformly resolvable. Of much greater interest are
such objects with t �2. For t = 2, there is a large base of literature on resolvable designs and a growing interest
in the class-uniform condition. Relatively little is known about t-designs for large t, and even less about resolvable
designs.

When there is one block size, K = {k}, the class-uniform condition is vacuous. Such a design is a Steiner system
S(t, k, n). For a S(t, k, n) to be resolvable, we need k |n. An easy counting argument shows there are (

n
t
)/(

k
t
) blocks

and thus (
n−1
t−1 )/(

k−1
t−1 ) resolution classes.

If we relax to the condition that every t-subset of X is contained in at most one block, then the result (X,B) is a
packing. A packing is (class-uniformly) resolvable in the same sense that a design is. A packing withK={k} is denoted
by S′(t, k, n).

Theorem 4.1. Suppose that there is a resolvable S′(t, k, n) with r resolution classes and a PA(n/k, �d/k�) of size s,
where d �(k − t + 1)n/k. Then there exists a CCC(kn/k, d) of size rs.

Proof. Arbitrarily order the blocks of each resolution class, say with labels 1, . . . , n/k. Multiply each class according
to the hypothesized PA on the blocks. From each resulting class, form codewords as follows: if symbol i occurs in
the block with label j, put symbol j in position i. The distance between codewords resulting from different resolution
classes is �(k − t + 1) · n/k, since distinct blocks of the packing meet in less than t points. The distance between
codewords resulting from the same resolution class is at least k · �d/k� since the PA guarantees that at least d/k pairs
of blocks are disjoint. �

Example 4.2. For q a prime power, consider the affine plane of order q, a resolvable S(2, q, q2). There also exists
PA(q, q − 1) of size q(q − 1). So by Theorem 4.1, there exists a CCC with composition [qq ] and distance q(q − 1) of
size (q + 1)q(q − 1). For q = 3, the construction of codewords is illustrated below.

123 456 789 → 111222333 147 258 369 → 123123123
123 789 456 → 111333222 147 369 258 → 132132132
456 123 789 → 222111333 258 147 369 → 213213213
456 789 123 → 333111222 258 369 147 → 312312312
789 123 456 → 222333111 369 147 258 → 231231231
789 456 123 → 333222111 369 258 147 → 321321321

159 267 348 → 123312231 168 249 357 → 123231312
159 348 267 → 132213321 168 357 249 → 132321213
267 159 348 → 213321132 249 168 357 → 213132321
267 348 159 → 312231123 249 357 168 → 312123231
348 159 267 → 231123312 357 168 249 → 231312123
348 267 159 → 321132213 357 249 168 → 321213132

The following result generalizes Theorem 4.1 in the case where block sizes are not uniform. The proof is
similar.

Theorem 4.3. Suppose that there is a class-uniformly resolvable t-wise balanced design with r resolution classes (or
a packing with the same parameters) such that each class has mi blocks of size i for t � i�k. Suppose also that there
are PA(mi, di) of size si for each i. Let d � min{∑ idi,

∑
(i − t + 1)mi}. Then there exists a CCC with composition

tmt · · · kmk and distance d of size r
∏

si .

Example 4.4. A CCC([3, 2, 2, 2], 6) of size 18 can be formed from a class-uniformly resolvable 2-design on nine
points with six resolution classes, each consisting of one block of size three and three blocks of size two. (See [7] for
this example.) In each class, the blocks of size two can be permuted according to a maximum PA(3, 3).
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5. Codes from computer search

To contrast and complement the exhaustive search methods in [21] for ternary codes, we present some nonexhaustive
techniques for finding constant composition codes with small parameters.

Any computational method for constant composition codes must have some way of generating possible code-
words. Given the composition vector [n1, . . . , nk] stored as a static array, one can generate all n!/n1!n2! · · · nk!
words with this composition recursively as follows. Given an n-set X, procedures to find the lexicographically first
m-subset, say first(X, m), and next m-subset following Y, say nextmsub(X, Y, m), of X are implemented (see
[17] for details). Then, a recursive function is invoked that at the deepest level returns a partition of X into sets
X1, . . . , Xk of sizes n1, . . . , nk . The resulting partition is converted to a codeword by placing symbol i in the positions
indexed by Xi , i = 1, . . . , k.

rec(i):
if (i = =k) then report codeword
else Y := first(X′, ni)

X := X\Y , rec(i + 1), X := X ∪ Y

Y := nextmsub(X′, Y, ni)

X := X\Y , rec(i + 1), X := X ∪ Y

X := {1, . . . , n}
rec(1)

Clique search: This technique involves simply building a graph G([n1, . . . , nk], d) whose vertex set is all possible
codewords, with an edge between two vertices if the distance between corresponding words is at least d. The paper
[21] discusses exhaustive clique search of this graph to find ternary CCCs. Alternatively, a probabilistic clique-finding
algorithm, such as the one found in [1], can be used to find an approximate maximum clique in G([n1, . . . , nk], d).
Since graph size is a constraint, this method works well for coarse compositions and large distance. Some improvements
on the bounds in [21] are given below.

Proposition 5.1. We have A([5, 3, 1], 3) = 72, and

A([4, 3, 2], 3)�216, A([6, 3, 1], 3)�116,

A([5, 4, 1], 3)�168, A([4, 4, 2], 3)�532,

A([4, 3, 3], 3)�690, A([5, 3, 2], 3)�327,

A([5, 4, 1], 4)�76, A([5, 2, 2], 4)�49.

Greedy search: In this method, we begin with an empty array, and while looping through all possible codewords, we
add one if it has distance at least d from every member of the current code. If the number of codewords is small enough
to permit several greedy runs, a fixed number of codewords can be erased and the ordering of possible codewords
changed in subsequent runs. Alternatively, several greedy passes can be made while declining to check a randomly
chosen proportion of codewords. In any case, it is not necessary to use memory (other than storing the current code),
since the distance test can be embedded in the construction of all codewords.

We have applied greedy search to some larger ternary compositions (n > 10) and certain quaternary compositions.

Example 5.2. Using repeated greedy search, we found that A([4, 4, 4, 4], 9)�403. This improves upon the lower
bound of 5 × 12 from resolvable 2-(16, 4, 2) designs with PA(4, 3) mentioned in Theorem 4.1.

Building by columns: At times, it may be fruitful to dualize the notion of constructing a code “one word at a time”.
Instead, we fix a target M of codewords and hill-climb to find n columns of length M with the requirement that the desired
composition and minimum distance are achieved. Using considerations from the Plotkin bound, it is best to assume that
the possible columns are “equitable” with respect to the alphabet; that is, the numbers of occurrences of symbols i �= j

differ by at most one for every i, j = 1, . . . , k. For the composition requirement, we never consider a column if the
current family of columns already has ni occurrences of symbol i in the same position. For the distance requirement,
we do not add a column if it causes more than n − d agreements in some pair of rows. For some compositions, this
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method has the advantage of reducing the search space. On the other hand, the method fails unless exactly n columns
are produced, and it requires an initial guess of M.

Example 5.3. An easy strengthening of the Plotkin bound, Proposition 1.5, states that the size b of a k-ary code with
length 2k and distance 2k − 1 satisfies (

b
2 )�2k(b − k), or

b�2k − 1
2

(√
8k + 1 − 1

)
.

The (floor of the) right side is known [19] to be achieved for k�9. Now consider such codes with composition 2k .
Using the technique of building by columns, we have found that the bound above is met with equality for k =1, 2, 4, 5,

but that for k = 3 the bound (four codewords) cannot be met. When 8k + 1 is a perfect square (say k = 3, 6), equality
is achieved only if every pair of codewords intersects. While we have found a CCC(26, 11) of size 8, it remains an
interesting open question whether the upper bound of 9 can be met. Examples for k = 4 and 5 are given below.

k = 4
01320132
13031022
20103123
22311300
33200211

k = 5
0421031234
1340224130
2233411040
3004132142
3112404203
4120340312
4302013421

6. Refining the composition

Here, we present a general construction that, given a CCC C of length n and certain CCCs of lengths n1, . . . , nk ,
yields a CCC with more codewords than C and with a refined composition. This method was used with some success
in [4] to recursively construct PAs from constant weight binary codes. Before presenting the construction, we require
the notion of a transversal packing.

Suppose that X is a set partitioned into subsets Xi , where |Xi | = gi for i = 1, . . . , k. A transversal packing of
distance � and type g1g2 · · · gk is a collection T of k-subsets of X with |A ∩ Xi | = 1 for each i and A ∈ T and such that
|A ∩ B|�k − � for every A, B ∈ T .

Certain well-known constructions for transversal packings with both large and small distances are used:

• � = k, |T | = min{g1, . . . , gk}
take disjoint k-sets across the Xi ;

• � = k − 1
use mutually orthogonal latin squares;

• � = 1, |T | = ∏
i gi

take all possible k-sets across the Xi .

Theorem 6.1. Let C be a CCC([n1, . . . , nk], d). In addition, for i =1, . . . , k, let Ci be a CCC([n1i , . . . , nli i], di) with

n1i + · · · + nli i = ni that can be written as a disjoint union Ci = ∪j C
(j)
i of CCC([n1i , . . . , nli i], d ′

i ). Suppose that

there are transversal packings Tj of distance � and type |C(j)
1 | · · · |C(j)

k | for each j.
Let d=d1+· · ·+dk and suppose that the sum of any � of the d ′

i is at least d. Then there is a CCC([n11, n21, . . . , nlkk], d)

of size

|C|
∑
j �1

|Tj |.

Proof. Given a codeword w of C, we place the code Ci on symbols i1, . . . , ili in the positions corresponding to symbol

i of C. Fix j and consider the C
(j)
i as a partition for the transversal packing Tj . Form concatenations (over i) of rows of
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C
(j)
i according to the k-subsets of Tj . Now, take the union of such words over all j and over each w ∈ C. The size and

composition of the resulting code are as required. It remains to verify the distance. By the condition on (k − t +1)-wise
sums of the d ′

i , it follows that the minimum distance between codewords resulting from the same j and w is at least d.
By the fact that d = d1 + · · · + dk , concatenations from different j but the same w ∈ C have distance at least d. Finally,
since the minimum distance in C is d, and the Ci are on disjoint sets of symbols, the distance between words arising
from different w ∈ C is also at least d. �

7. Cyclic codes

In this section, we introduce cyclic CCCs, defined as CCCs with automorphism group containing a cyclic subgroup
of order equal to the code length, i.e., the code contains a codeword and all its cyclic shifts. We present two constructions
based on cyclotomic classes and circulant weighing matrices, respectively.

Cyclic CCCs can be viewed as FH sequences, which have been extensively studied in the area of spread spectrum
communications. In this section, a couple of optimal FH sequences are constructed with respect to the well-known
Lempel–Greenberger bound [14]. On the other hand, all the known constructions for FH sequences provide nice cyclic
CCCs.

Let X = {x(j)} and Y = {y(j)} be two sequences with length v over a given alphabet A. Their Hamming correlation
is defined as

HX,Y (�) =
v−1∑
j=0

h[x(j), y(j + �)], 0���v − 1,

where h[x, y] = 1 if x �= y, and 0 otherwise, and all the operations among indices are performed modulo v.
Let S be the set of all sequences of length v over a given alphabet A. For X ∈ S, let

H(X) = max
0<�<v

{HX,X(�)}.

A sequence X ∈ S is optimal if H(X)�H(X′) for all X′ ∈ S.

Lemma 7.1 (Lempel–Greenberger bound [14]). For every sequence Y ={y(j)} of length v over an alphabet A of size
|A| = m,

H(X)� (v − b)(v + b − m)

m(v − 1)
,

where b is the least nonnegative residue of v modulo m.

The following corollary makes the above bound easier to use.

Corollary 7.2 (Fuji-Hara et al. [9]). Suppose v = am + b with 0�b�m − 1. Then

H(X)�
{

a if v �= m,

0 if v = m.

7.1. Cyclic codes based on cyclotomic classes

In this section, we present a method based on cyclotomic classes to construct cyclic CCCs with length p = ef + 1,
where p is a prime. This method also leads to some optimal FH sequences.

Let p = ef + 1 be an odd prime. The cyclotomic classes Ci in GF(p), 0� i�e − 1, are Ci = {�i+te : 0� t �f − 1},
where � is a primitive element of GF(p). The cyclotomic numbers of order e are (i, j) = |(Ci + 1) ∩ Cj |.

The following equations can be derived from the definition of cyclotomic numbers.
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Lemma 7.3 (Storer [20]). For any i and j,

(1) |(Ci + w) ∩ Cj | = |(w−1Ci + 1) ∩ w−1Cj |, and
(2) if w−1 ∈ Ch, then |(Ci + w) ∩ Cj | = (i + h, j + h).

Let v = (a0, a1, . . . , am−1) be a sequence on the alphabet Ze. Then suppv(t) = {i : ai = t, 0� i�m − 1} is the
support of the symbol t ∈ Ze in sequence v.

Lemma 7.4. Let p = ef + 1 be an odd prime with e even and C0, C1, . . . , Ce−1 be its cyclotomic classes. Construct a
cyclic sequence v = (a0, a1, . . . , ap−1) of length p on the alphabet Ze according to

suppv(0) = C�(0) ∪ {0} and

suppv(i) = C�(i), 1� i�e − 1,

where (�(0), �(1), . . . , �(e − 1)) is a permutation of (0, 1, . . . , e − 1). Then the sequence v forms a cyclic CCC with

A(f e−1(f + 1)1, p − d)�p,

where d is determined based on two different cases:

d =
{∑e−1

i=0 (i, i) + 1 if f is odd,∑e−1
i=0 (i, i) + 2 if f is even.

Proof. The distance between v and its wth cyclic shift is equal to

e−1∑
i=0

|(C�(i) + w) ∩ C�(i)| + |{w} ∩ C�(0)| + |{0} ∩ (C�(0) + w)|.

If w−1 ∈ Ch, then the sum of the first e terms is equal to

e−1∑
i=0

(�(i) + h, �(i) + h) =
e−1∑
i=0

(i, i).

This sum is independent of the value of w. Then

d =
e−1∑
i=0

(i, i) + max
w

(|{w} ∩ C�(0)| + |{0} ∩ (C�(0) + w)|).

The maximal value of |{w} ∩ C�(0)| + |{0} ∩ (C�(0) + w)| is determined by whether there exist w and −w belonging
to C�(0). Let w = �t , then −w = �t+(p−1)/2. Both w and −w belong to C�(0) if and only if (p − 1)/2 ≡ 0 (mod e). If
e is even, both w and −w belong to C�(0) if and only if (p − 1)/2 ≡ 0 (mod e); that is, f is even. If e is odd, then f has
to be even. Then (p − 1)/2 ≡ 0 (mod e), and both w and −w are in C0. �

We now give a related construction with more cyclic codewords.

Lemma 7.5. Let p=ef+1 be an odd prime and C0, C1, . . . , Ce−1 be its cyclotomic classes. For each k=0, 1, . . . , e−1,
define the cyclic sequence vk by

suppvk
(0) = Ck ∪ {0},

suppvk
(i) = Ck+i .

Then the set of all cyclic shifts of all vk forms a CCC with

A(f e−1(f + 1)1, p − d)�ep,
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where d is given by

d =
{

max{∑e−1
i=0 (i, i) + 2,

∑e−1
i=0 (k + i, i) + 1|1�k�e − 1} if f is even,

max{∑e−1
i=0 (i, i) + 1,

∑e−1
i=0 (k + i, i) + 2|1�k�e − 1} otherwise.

Proof. Lemma 7.4 tells us the distance for any single cyclic codeword. We only need to check the distance between
two different cyclic codewords. The distance between Xl and the wth cyclic shift of Xk is equal to the maximum of
the expression

e−1∑
i=0

|(Ci+k + w) ∩ Cl+i | + |{w} ∩ Ce−l | + |{0} ∩ (Ce−k + w)|.

If w−1 ∈ Ch, then the first summation is equal to

e−1∑
i=0

(i + h + k, i + h + l) =
e−1∑
i=0

(k − l + i, i).

This sum is independent of the value of w.
The maximal value of |{w}∩Ce−l |+|{0}∩(Ce−k +w)| is determined by whether there exists a w such that w ∈ Ce−l

and −w ∈ Ce−k . Since w runs through all of Zp, the summation is at least 1. We need to check the conditions under
which the summation is 2.

Without loss of generality, suppose that w ∈ Ce−l . Then w = �e−l+te for some t. Notice that −w = �(p−1)/2+(k−l).
So −w ∈ Ce−k if and only if (p − 1)/2 + (k − l) ≡ 0 (mod e). Now k − l can be any value except 0. Therefore, the
summation is 2 except if (p − 1)/2 ≡ 0 (mod e), i.e., f is even. �

To calculate the actual distance, we need to evaluate
∑e−1

i=0 (k + i, i) for each possible value of k. With the following
lemma, the task is quite simple.

Lemma 7.6 (Storer [20]). (1) For any integers m and n, (i + me, j + ne) = (i, j).

(2) (i, j) = (e − i, j − i).
(3)

e−1∑
j=0

(i, j) = f − �i where �i =
{1 if f is even and i = 0,

1 if f is odd and i = e/2,

0 otherwise.

(4)

e−1∑
i=0

(i, j) = f − �i where �i =
{

1 if j = 0,

0 otherwise.

From these basic properties of cyclotomic numbers, we derive the following formula.

Lemma 7.7. Let p = ef + 1 be an odd prime. Then

e−1∑
i=0

(k + i, i) =
{

f − 1 if k = 0,

f otherwise.

Proof. By part (7.6) of Lemma 7.6, we have (k + i, i) = (e − k − i, −k) for any i. Thus

e−1∑
i=0

(k + i, i) =
e−1∑
i=0

(e − k − i, −k) =
e−1∑
i=0

(i, −k).

This summation is f − 1 only when k = 0 by part (7.6) of Lemma 7.6. �



926 W. Chu et al. / Discrete Applied Mathematics 154 (2006) 912–929

Theorem 7.8. Let p = ef + 1 be an odd prime.

(1) If f is even, then there exists a cyclic CCC with

A(f e−1(f + 1)1, p − (f + 1))� p(p − 1)

f
.

(2) If f is odd, then there exist cyclic CCCs with

A(f e−1(f + 1)1, p − f )�p and

A(f e−1(f + 1)1, p − (f + 2))� p(p − 1)

f
.

Proof. This follows directly from Lemmas 7.5 and 7.7. �

In terms of optimal FH sequences, we claim the following.

Corollary 7.9. For any odd prime p=ef+1 with f odd. There exists an optimal FH sequence X with length p, alphabet
size f and H(X) = f .

Proof. This is a restatement of A(f e−1(f + 1)1, p − f ))�p. The optimum follows from Lemma 7.1. �

Compare this with Theorem 2.1, which claims that

A(11f e, p − f )� p(p − 1)

f
.

If we change the symbol with weight 1 to another symbol, the distance will decrease by at least 1 and at most 2.
Theorem 7.8 points out how to get better distance when p is an odd prime. Of course, in the construction of Lemma
7.5, if we assign {0} with a special symbol ∞, then we recover the cyclic version of Theorem 2.1, in which the length
is a prime. We omit the details here.

This method can produce more cyclic codewords with shorter distance. However, a simple formula as in Theorem
7.8 is difficult to obtain, and we need more information about the cyclotomic numbers. The cyclotomic numbers are
known for almost all values of e less than 24 and in a few other cases. Here is an example. Let f be an odd integer. Let
p = 4f + 1 be a prime and of form p = x2 + 4y2 with x ≡ 1 (mod 4). There are at most five different cyclotomic
numbers of order 4. They are

(0, 0) = (2, 2) = (2, 0) = p − 7 + 2x

16
,

(0, 1) = (1, 3) = (3, 2) = p + 1 + 2x − 8y

16
,

(1, 2) = (0, 3) = (3, 1) = p + 1 + 2x + 8y

16
,

(0, 2) = p + 1 − 6x

16
,

others = p − 3 − 2x

16
.

Example 7.10. The following cyclic CCC shows A([10, 9, 9, 9], 26)�4 · 37.

0012233030020311031312331202212110032
0123300101131022102023002313323221103
0230011212202133213130113020030332210
0301122323313200320201220131101003321

From one of these cyclic orbits, A([10, 9, 9, 9], 28)�37, which is an optimal FH sequence. Taking two orbits, it
follows that A([10, 9, 9, 9], 27)�2 · 37.
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Assign symbols on cyclotomic classes by

(supp(0), supp(1), supp(2), supp(3)) = (C�(0), C�(1), C�(2), C�(3)),

where (�(0), �(1), �(2), �(3)) is a permutation of (0, 1, 2, 3). Support assignments from the 12 “even” permutations of
size 4 (those differing from the identity (0, 1, 2, 3)by an even number of transpositions) giveA(37, [10, 9, 9, 9], 24)�12·
37.

Cyclotomic classes and cyclotomic numbers provide an efficient construction for cyclic CCCs. The optimum with
respect to the Lempel–Greenberger bound suggests that the result could be optimal with respect to CCC, or close to it.
The following example provides evidence that the resulting cyclic CCC could be optimal.

Example 7.11. Let p = 7 = 3 · 2 + 1 with e = 3 and f = 2. With a very simple calculation, we can construct a cyclic
CCC as follows:

0021120
0102201
0210012

Thus A([3, 2, 2], 4)�21. According to [21], A([3, 2, 2], 4) = 21. If we take all possible assignments for cyclotomic
classes, A([3, 2, 2], 3)�42, which is optimal [21]. With respect to the Lempel–Greenberger bound, none of these
sequences is optimal.

In general, FH sequence families do not provide cyclic CCCs. The reason is that they may not have constant weight
distributions. However, any single FH sequence provides a cyclic CCC. The following is a known optimal construction
for FH sequences.

Theorem 7.12 (Lempel and Greenberger [14]). For any q = pn with p a prime and any 1� t �n, there exists an
optimal FH sequence of length q − 1 and alphabet size pt . Therefore,

A([
pt︷ ︸︸ ︷

pn−t , . . . , pn−t , pt − 1], pn − pn−t )�pn − 1.

Example 7.13. Let q = 9 with p = 3, n = 2 and k = 1. Then A([3, 3, 2], 6)�8. Again, this is best possible according
to [21].

Recently there are some new optimal constructions for FH sequences [9].

7.2. Cyclic codes from circulant weighing matrices

A circulant weighing matrix W of order n and weight k, denoted by CW(n, k), is a square matrix with entries from
{0, 1, −1} determined by its first row, and any other row being a cyclic shift of its predecessor, satisfying the weighing
property: WWT = kIn.

Any circulant weighing matrix is a cyclic CCC with certain distance and weight distributions. In this section, we
review some results in this area and transform them into cyclic CCCs. The main task here is to provide an efficient way
to compute the distance.

The following properties are well-known results on circulant weighing matrices.

Lemma 7.14. Let W be a CW(n, k) matrix. Then

(1) k = s2 for some integer s; and
(2) m+ = 1

2 s(s + 1), m− = 1
2 s(s − 1), where m+ and m− denote the weight of 1 and −1, respectively.
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Lemma 7.15. Let W be a CW(n, k) and supp(0) be the support of symbol 0. If

max
1� i �n−1

|(supp(0) + i) ∩ supp(0)|��,

then there exists a cyclic CCC with

A

(
[m+, m−, n − k], 3n − 2k − 3�

2

)
�n,

where m+ and m− represent the weights of 1 and −1, respectively, and can be computed via Lemma 7.14.

Proof. The weight distribution and total number of codewords are easy to determine. Let {an}n−1
i=0 and {bn}n−1

i=0 be any two
different rows in W. To compute the minimal Hamming distance, we notice that the inner product of {an}n−1

i=0 , {bn}n−1
i=0 ∈

C can be expressed as A − D, where A is the total number of pairs of (±1, ±1) and D is the total number of pairs of
(±1, ∓1). Since WWT = kIn, we have A − D = 0. We also need to know the number of pairs (0, ±1) and (±1, 0). The
condition in the lemma implies that such number is 2(n − k − �). Thus the Hamming distance we are looking for is

D + 2(n − k − �) = n − (2n − 2k − �)

2
+ 2(n − k − �) = 3n − 2k − 3�

2
. �

Lemma 7.16. Let q be a prime power. There exists a CW(q2 + q + 1, q2), and

A

([
q(q + 1)

2
,
q(q − 1)

2
, q + 1

]
,
q2 + 3q

2

)
�q2 + q + 1.

Proof. The construction for CW(q2 + q + 1, q2) is as follows [10]:
Let D be a cyclic planar difference set with parameters (q2 + q + 1, q2). Let

	(x) =
∑
d∈D

xd

be the Hall polynomial. Then

	(x)2 =
∑
d∈D

x2d + 2
∑

e �=f ∈D

xe+f .

It is proved that 	(x)2 has coefficients of xi 0, 1, 2, i.e., 2d �= 2e unless d = e, e + f �= e′ + f ′ unless e = e′

and f = f ′, and 2d �= e + f unless d = e = f . Take J (x) = ∑q2+q
i=0 xi , and take the coefficients of 	(x) − J (x)

as the sequence of the first row of the circulant weighing matrix. Refer to [10] for details. We care about the position
of 0 in the resulting sequence. It is the set 2D, which is still a planar difference set. The conclusion follows from
Lemma 7.15. �

Example 7.17. For q = 2, A([3, 3, 1], 5)�7, which is optimal [21].

Example 7.18. The following sequence is the first row of CW(21, 16)

+ + + + + − + 0 + 0 − + + − 0 0 + − 0 − −
Take all the cyclic shifts of this sequence. We get A([10, 6, 5], 14)�21.

8. Conclusions

A variety of methods can be employed to construct constant composition codes. We have explored connections
with generalized weighing matrices and with frequency hopping sequences. We employed cyclotomy and resolvable
designs as the bases for constructive methods. We also developed heuristic computational search techniques. We have
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established techniques for producing codes with constant composition (including permutation codes) from binary codes.
Each of these is useful in the construction of specific CCCs [5]; however, the wide variation in parameters for CCCs
appears to necessitate such a multi-pronged approach.

While number-theoretic and algebraic techniques appear well suited to construction when each symbol appears
equally often, in the remaining cases techniques that are more powerful appear to include computer search and that
of distance-preserving maps. In any event, the powerful connections with other better-studied classes of designs and
codes open a number of avenues for further examination.
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