Nonexistence of perfect permutation codes under the Kendall τ -metric

Xiang Wang ¹ Wang Yuanjie ¹ Yin Wenjuan² *Fang-Wei Fu²

¹ National Computer Network Emergency Response Technical Team/Coordination Center of China (CNCERT/CC)

² Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China

E-mail: xqwang@mail.nankai.edu.cn, wang.yuanjie@outlook.com, ywjaimama@163.com, fwfu@nankai.edu.cn

Abstract

In the rank modulation scheme for flash memories, permutation codes have been studied. In this paper, we study perfect permutation codes in S_n , the set of all permutations on n elements, under the Kendall τ -Metric. We answer one open problem proposed by Buzaglo and Etzion. That is, proving the nonexistence of perfect codes in S_n , under the Kendall τ -metric, for more values of n. Specifically, we present the recursive formulas for the size of a ball with radius r in S_n under the Kendall τ -metric. Further, We prove that there are no perfect t-error-correcting codes in S_n under the Kendall τ -metric for some n and t = 2, 3, 4, or 5.

Keywords: Flash memory, Perfect codes, Kendall τ -Metric, Permutation codes.

1 Introduction

Flash memory is a non-volatile storage medium that is both electrically programmable and erasable. The rank modulation scheme for flash memories has been proposed in [2]. In this scheme, one permutation corresponds to a relative ranking of all the flash memory cells' levels. A permutation code is a nonempty subset of S_n , where S_n is the set of all the permutations over $\{1, 2, ..., n\}$. Permutation codes have been studied under various metrics, such as the ℓ_{∞} -metric [4, 6, 7], the Ulam metric [11], and the Kendall τ -metric [3, 5, 8, 9].

In this paper, we will focus on permutation codes under the Kendall τ -metric. The Kendall τ -distance [7] between two permutations $\pi, \sigma \in S_n$ is the minimum number of adjacent transpositions required to obtain the permutation σ from π , where an adjacent transposition is an exchange of two distinct adjacent elements. Permutation codes under

^{*}Corresponding Author

the Kendall τ -distance with minimum distance d can correct up to $\lfloor \frac{d-1}{2} \rfloor$ errors. Let A(n,d) be the size of the largest code in S_n with minimum Kendall τ -distance d. The bounds on A(n,d) were proposed in [3, 10, 14, 15]. Some t-error-correcting codes in S_n were constructed in [1, 3, 8, 12, 13]. Buzaglo and Etzion [10] proved that there are no perfect single-error-correcting codes in S_n , where n > 4 is a prime or $4 \le n \le 10$. They further [10] proposed the open problem to prove the nonexistence of perfect codes in S_n , under the Kendall τ -metric, for more values of n and/or other distances. In this paper, we prove that there are no perfect t-error-correcting codes in S_n under the Kendall τ metric for some n and t = 2, 3, 4, or 5. Specially, we prove that there are no perfect two-error-correcting codes in S_n , where n+2 > 6 is a prime. We also prove that there are no perfect three-error-correcting codes in S_n , where n+1 > 6 is a prime, $n^2 + 2n - 6$ has a prime factor p > n, or $4 \le n \le 33$. We further prove that there are no perfect four-error-correcting codes in S_n , where n+1 > 6 or n+2 > 7 is a prime, $n^2 + 3n - 12$ has a prime factor p > n, or $5 \le n \le 19$. Finally, we prove that there are no perfect five-error-correcting codes in S_n , where $n+7 \ge 12$ is a prime or $n^3 + 3n^2 - 6n - 28$ has a prime factor p > n.

The rest of this paper is organized as follows. In Section 2, we will give some basic definitions for the Kendall τ -metric and for perfect permutation codes. In Section 3, we determine the size of some balls with radius r in S_n under the Kendall τ -metric. In Section 4, we prove the nonexistence of a perfect t-error-correcting code in S_n for some n and t = 2, 3, 4, or 5 by using the sphere packing upper bound. Section ?? concludes this paper.

2 Preliminaries

In this section we give some definitions and notations for the Kendall τ -metric and perfect permutation codes. In addition, we summarize some important known facts.

Let [n] denote the set $\{1, 2, ..., n\}$. Let S_n be the set of all the permutations over [n]. We denote by $\pi \triangleq [\pi(1), \pi(2), ..., \pi(n)]$ a permutation over [n]. For two permutations $\sigma, \pi \in S_n$, their multiplication $\pi \circ \sigma$ is denoted by the composition of σ on π , i.e., $\pi \circ \sigma(i) = \sigma(\pi(i))$, for all $i \in [n]$. Under this operation, S_n is a noncommutative group of size $|S_n| = n!$. Denote by $\epsilon_n \triangleq [1, 2, ..., n]$ the identity permutation of S_n . Let π^{-1} be the *inverse* element of π , for any $\pi \in S_n$. For an unordered pair of distinct numbers $i, j \in [n]$, this pair forms an inversion in a permutation π if i < j and simultaneously $\pi(i) > \pi(j)$.

Given a permutation $\pi = [\pi(1), \pi(2), ..., \pi(i), \pi(i+1), ..., \pi(n)] \in S_n$, an adjacent transposition is an exchange of two adjacent elements $\pi(i), \pi(i+1)$, resulting in the permutation $[\pi(1), \pi(2), ..., \pi(i+1), \pi(i), ..., \pi(n)]$ for some $1 \leq i \leq n-1$. For any two permutations $\sigma, \pi \in S_n$, the Kendall τ -distance between two permutations π, σ , denoted by $d_K(\pi, \sigma)$, is the minimum number of adjacent transpositions required to obtain the permutation σ from π . The expression for $d_K(\pi, \sigma)$ [3] is as follows:

$$d_K(\sigma,\pi) = |\{(i,j) : \sigma^{-1}(i) < \sigma^{-1}(j) \land \pi^{-1}(i) > \pi^{-1}(j)\}|.$$

For $\pi \in S_n$, the Kendall τ -weight of π , denoted by $w_K(\pi)$, is defined as the Kendall

 τ -distance between π and the identity permutation ϵ_n . Clearly, $w_K(\pi)$ is the number of inversions in the permutation π .

Definition 1. For $1 \leq d \leq {n \choose 2}$, $C \subset S_n$ is an (n, d)-permutation code under the Kendall τ -metric, if $d_K(\sigma, \pi) \geq d$ for any two distinct permutations $\pi, \sigma \in C$.

For a permutation $\pi \in S_n$, the Kendall τ -ball of radius r centered at π , denoted as $B_K^n(\pi, r)$, is defined by $B_K^n(\pi, r) \triangleq \{\sigma \in S_n | d_K(\sigma, \pi) \leq r\}$. For a permutation $\pi \in S_n$, the Kendall τ -sphere of radius r centered at π , denoted as $S_K^n(\pi, r)$, is defined by $S_K^n(\pi, r) \triangleq \{\sigma \in S_n | d_K(\sigma, \pi) = r\}$. The size of a Kendall τ -ball or a τ -sphere of radius r does not depend on the center of the ball under the Kendall τ -metric. Thus, we denote the size of $B_K^n(\pi, r)$ and $S_K^n(\pi, r)$ as $B_K^n(r)$ and $S_K^n(r)$, respectively. We denote the largest size of an (n, d)-permutation code under the Kendall τ -metric as $A_K(n, d)$. The sphere-packing bound for permutation codes under the Kendall τ -metric are as follows:

Proposition 1. [3, Theorems 17 and 18]

$$A_K(n,d) \le \frac{n!}{B_K^n(\lfloor \frac{d-1}{2} \rfloor)}$$

When d = 2r + 1, an (n, 2r + 1)-permutation code C under the Kendall τ -metric is called a perfect permutation code under the Kendall τ -metric if it attains the spherepacking bound, i.e., $|C| \cdot B_K^n(r) = n!$. That is, the balls with radius r centered at the codewords of C form a partition of S_n . A perfect (n, 2r + 1)-permutation code under the Kendall τ -metric is also called a perfect r-error-correcting code under the Kendall τ -metric.

In [10], Buzaglo and Etzion proved that there does not exist a perfect one-errorcorrecting code under the Kendall τ -metric if n > 4 is a prime or $4 \le n \le 10$. Based on the above definitions and notations, we will prove the nonexistence of a perfect *t*-errorcorrecting code in S_n under the Kendall τ -metric for some n and t = 2, 3, 4, or 5 by using the sphere-packing upper bound in the following sections.

3 The size of a ball or a sphere with radius r in S_n under the Kendall τ -metric

In this section, we compute the size of a ball or a sphere with radius r in S_n under the Kendall τ -metric and give recursive formulas of $B_K^n(r)$ and $S_K^n(r)$, respectively. Since $B_K^n(r)$ does not depend on the center of the ball, we consider the ball $B_K^n(\epsilon_n, r)$ which is a ball with radius r centered at the identity permutation ϵ_n and denote by $S_K^n(\epsilon_n, r) \triangleq \{\sigma \in S_n | d_K(\sigma, \epsilon_n) = w_k(\sigma) = r\}$ the sphere centered at ϵ_n and of radius r.

3.1 The size of a sphere of radius r in S_n under the Kendall τ -metric

In order to give the property of $S_K^n(r)$, we require some notations and lemmas in [10]. For a permutation $\pi = [\pi(1), \pi(2), ..., \pi(n)] \in S_n$, the *reverse* of π is the permutation $\pi^r \triangleq [\pi(n), \pi(n-1), ..., \pi(2), \pi(1)].$ For all $\pi \in S_n$, we have $w_K(\pi) \leq \binom{n}{2}$. For convenience, we denote $S_K^n(r) = 0$ for $r \geq \binom{n}{2} + 1$.

Lemma 1. [10, Lemma 1] For every $\pi, \epsilon_n \in S_n$,

$$d_K(\epsilon_n, \pi) + d_K(\epsilon_n, \pi^r) = w_K(\pi) + w_K(\pi^r) = d_K(\pi, \pi^r) = \binom{n}{2}.$$
 (1)

By Lemma 1, we can obtain the following lemma.

Lemma 2. For any $0 \le i \le \lfloor \frac{\binom{n}{2}}{2} \rfloor$,

$$S_K^n(i) = S_K^n\left(\binom{n}{2} - i\right). \tag{2}$$

Proof. Let $m = \binom{n}{2}$. We just need to prove that $|S_K^n(\epsilon_n, i)| = |S_K^n(\epsilon_n, m-i)|$. First we define a function $f: S_K^n(\epsilon_n, i) \to S_K^n(\epsilon_n, m-i)$, where $f(\pi) = \pi^r$ for any $\pi \in S_K^n(\epsilon_n, i)$. If $\pi \in S_K^n(\epsilon_n, i)$, then $w_K(\pi) = i$. By (1), $w_K(\pi^r) = \binom{n}{2} - i = m - i$. Hence,

If $\pi \in S_K^n(\epsilon_n, i)$, then $w_K(\pi) = i$. By (1), $w_K(\pi^r) = \binom{n}{2} - i = m - i$. Hence, $f(\pi) \in S_K^n(\epsilon_n, m - i)$. Moreover, we can easily prove that the function f is reasonable and bijection. Thus, $S_K^n(i) = S_K^n(\binom{n}{2} - i)$.

When i = 0 or 1, $S_K^n(0) = 1$ and $S_K^n(1) = n - 1$. We will further give a recursive formula of $S_K^n(r)$ in the following lemma.

Lemma 3. For all $4 \le n$ and $2 \le i \le n-1$,

$$S_K^n(i) = \sum_{j=0}^i S_K^{n-1}(j).$$
(3)

Moreover, for all $5 \le n$ and $n \le i \le \lfloor \frac{\binom{n}{2}}{2} \rfloor$,

$$S_K^n(i) = \sum_{j=i-(n-1)}^{i} S_K^{n-1}(j).$$
(4)

Proof. When $4 \le n$ and $2 \le i \le n-1$, we define $S_K^n(\epsilon_n, i, j) \triangleq \{\pi \in S_K^n(\epsilon_n, i) | \pi(j) = n\}$ for $n-i \le j \le n$, i.e., $\pi \in S_K^n(\epsilon_n, i)$ is an element of $S_K^n(\epsilon_n, i, j)$ if n appears at the jth position of π . For $\pi \in S_K^n(\epsilon_n, i)$, the number of inversions in the permutation π is i. If $\pi(j) = n$, $(\pi(k), n)$ is an inversion for all $j+1 \le k \le n$. Hence, for any $\pi \in S_K^n(\epsilon_n, i)$, n can only appear at the jth position of π for every $n-i \le j \le n$. So, we obtain that $S_K^n(\epsilon_n, i) = \bigcup_{j=n-i}^n S_K^n(\epsilon_n, i, j)$.

For all $n-i \leq j \leq n$, we define $f_j : S_K^n(\epsilon_n, i, j) \to S_K^{n-1}(\epsilon_{n-1}, i-(n-j))$, where $f_j(\pi) = [\pi(1), \pi(2), ..., \pi(j-1), \pi(j+1), ..., \pi(n)]$ for any $\pi \in S_K^n(\epsilon_n, i, j)$. That is, we delete the element n of π to obtain $f_j(\pi)$. Obviously, f_j is injective. For $\pi_1 \in S_K^{n-1}(\epsilon_{n-1}, i-(n-j))$,

we define π such that $\pi(k) = \pi_1(k)$ for $1 \le k \le j - 1$, $\pi(j) = n$, and $\pi(k) = \pi_1(k-1)$ for $j+1 \le k \le n$. Then, $\pi \in S_n$ and $w_K(\pi) = w_K(\pi_1) + (n-j) = i$. Thus, $\pi \in S_K^n(\epsilon_n, i, j)$ and $f_j(\pi) = \pi_1$. So, we obtain that f_j is bijection for all $n-i \le j \le n$.

Since all the set $S_K^n(\epsilon_n, i, j)$ are pairwise disjoint and all the f_j are bijection for all $n - i \leq j \leq n$, we have

$$S_{K}^{n}(i) = |S_{K}^{n}(\epsilon_{n}, i)| = |\cup_{j=n-i}^{n} S_{K}^{n}(\epsilon_{n}, i, j)| = \sum_{j=n-i}^{n} |S_{K}^{n}(\epsilon_{n}, i, j)|$$
$$= \sum_{j=n-i}^{n} |S_{K}^{n-1}(\epsilon_{n-1}, i - (n-j))| = \sum_{j=0}^{i} S_{K}^{n-1}(j).$$

Similarly, for all $5 \le n$ and $n \le i \le \lfloor \frac{\binom{n}{2}}{2} \rfloor$, then $\lfloor \frac{\binom{n}{2}}{2} \rfloor \le \binom{n-1}{2}$. Thus, for all $i - (n-1) \le j \le \lfloor \frac{\binom{n}{2}}{2} \rfloor$, $S_K^{n-1}(j)$ exists. So, we also prove that

$$S_K^n(i) = \sum_{j=i-(n-1)}^i S_K^{n-1}(j)$$

Furthermore, we give the recursive formula of $S_K^n(i)$ for all $4 \le n$ and $4 \le i \le n-1$ in the following lemma. For convenience, for any function f(t) and two positive integers i < t, we denote $\sum_{l=t}^{i} f(l) = 0$.

Lemma 4. For all $4 \le n$ and $4 \le i \le n-1$, there exists a unique integer t such that $\binom{t-1}{2} < i \le \binom{t}{2}$ and $t \ge 4$. Then, we have

$$S_K^n(i) = S_K^t(\binom{t}{2} - i) + \sum_{l=t}^{i-1} \sum_{j=i-l}^{i-1} S_K^l(j) + \sum_{l=i}^{n-1} \sum_{j=0}^{i-1} S_K^l(j).$$
(5)

Proof. When $4 \le n$ and $4 \le i \le n - 1$, by (3), we have

$$S_K^n(i) - S_K^{n-1}(i) = \sum_{j=0}^{i-1} S_K^{n-1}(j).$$
(6)

In (6), we set n to i + 1, ..., n and obtain n - i equations, respectively. Then by summing all the equations, we have

$$S_K^n(i) - S_K^i(i) = \sum_{l=i}^{n-1} \sum_{j=0}^{i-1} S_K^l(j).$$
(7)

For j < i and i < n, if $S_K^n(j)$ and $S_K^i(i)$ are known, then by (7) we can compute $S_K^n(i)$. In the following, we will compute $S_K^i(i)$. By (4), for $i \leq \binom{i-1}{2}$ (i.e., $4 \leq i$), we obtain that

$$S_K^i(i) - S_K^{i-1}(i) = \sum_{j=1}^{i-1} S_K^{i-1}(j).$$
(8)

For $4 \leq i$, we can find an integer t such that $\binom{t-1}{2} < i \leq \binom{t}{2}$ and $t \geq 4$. Then, $\binom{t}{2} + \frac{t}{2}$ $\frac{(t-1)(t-4)}{2} < 2i$ and $t < {t-1 \choose 2}$ for $5 \le t$. When i = 4, we have t = 4. When $5 \le i$, we have $4 \leq t, i \leq {t \choose 2} < 2i$, and t < i.

Thus, we obtain

$$0 \le \binom{t}{2} - i < i. \tag{9}$$

When i = 4, $S_K^4(4) = S_K^4(\binom{4}{2} - 4) = S_K^4(2)$. Similarly, when 4 < i, in (4), we set *n* to t + 1, ..., i and obtain i - t equations, respectively. By summing all the equations, we have

$$S_K^i(i) - S_K^t(i) = \sum_{l=t}^{i-1} \sum_{j=i-l}^{i-1} S_K^l(j).$$
(10)

Combining (2), (9), and (10), we have

$$S_K^i(i) = S_K^t(\binom{t}{2} - i) + \sum_{l=t}^{i-1} \sum_{j=i-l}^{i-1} S_K^l(j).$$
(11)

When $4 \le i$, we also have $S_K^i(i) = S_K^t(\binom{t}{2} - i) + \sum_{l=t}^{i-1} \sum_{j=i-l}^{i-1} S_K^l(j)$. When i = t = 4, the second term (i.e., $\sum_{l=4}^{3} \sum_{j=i-l}^{i-1} S_{K}^{l}(j)$) is zero. Finally, by (7) and (11), we can obtain the expression of $S_{K}^{n}(i)$ in the above lemma.

Specifically, we give the formulas of $S_K^n(2)$ and $S_K^n(3)$ for all $3 \le n$ as follows.

Lemma 5. For all $3 \leq n$, we have

$$S_K^n(2) = \frac{n(n-1)}{2} - 1,$$
(12)

$$S_K^n(3) = \frac{n^3 - 7n}{6}.$$
(13)

Proof. When i = 2, by (6), we have

$$S_K^n(2) - S_K^2(2) = \sum_{l=2}^{n-1} \sum_{j=0}^{1} S_K^l(j).$$
(14)

Since $S_K^n(0) = 1$, $S_K^n(1) = n - 1$ and $S_K^2(2) = 0$, by (14), we have

$$S_K^n(2) = \sum_{l=2}^{n-1} \sum_{j=0}^{1} S_K^l(j) = \sum_{l=2}^{n-1} l = \frac{n(n-1)}{2} - 1.$$
 (15)

Similarly, when i = 3, by (6), we have

$$S_K^n(3) - S_K^3(3) = \sum_{l=3}^{n-1} \sum_{j=0}^2 S_K^l(j).$$
(16)

Since $S_K^n(0) = 1$, $S_K^n(1) = n - 1$, $S_K^n(2) = \frac{n(n-1)}{2} - 1$, and $S_K^3(3) = 1$, by (16), we have

$$S_K^n(3) = S_K^3(3) + \sum_{l=3}^{n-1} \sum_{j=0}^2 S_K^l(j) = 1 + \sum_{l=3}^{n-1} \frac{l^2 + l - 2}{2} = \frac{n^3 - 7n}{6}.$$
 (17)

According to (15) and (17), we can obtain the expressions of $S_K^n(2)$ and $S_K^n(3)$ as (12) and (13), respectively.

Here, we easily obtain $S_K^2(0) = S_K^2(1) = 1$. By Lemma 5, when n = 3, we have $S_K^3(0) = 1$, $S_K^3(1) = 2$, $S_K^3(2) = 2$, and $S_K^3(3) = 1$. By Lemma 5 and Lemma 2, we have $S_K^4(0) = 1$, $S_K^4(1) = 3$, $S_K^4(2) = 5$, $S_K^4(3) = 6$, $S_K^4(4) = 5$, $S_K^4(5) = 3$, and $S_K^4(6) = 1$. If all the $S_K^n(j)$ for all n and $j \le i - 1$ are known, by Lemma 4, we can compute $S_K^n(i)$ for $4 \le n$ and $4 \le i \le n - 1$. Next we present an example to compute $S_K^n(i)$ in Lemma 4.

Example 1. When i = 4, $\binom{3}{2} < 4 \le \binom{4}{2}$. Then, we obtain t = 4 in Lemma 4. Furthermore, by (5), we have

$$S_K^n(4) = S_K^4(\binom{4}{2} - 4) + \sum_{l=4}^3 \sum_{j=i-l}^{i-1} S_K^l(j) + \sum_{l=4}^{n-1} \sum_{j=0}^3 S_K^l(j).$$

By Lemma 5, we have $S_K^4(\binom{4}{2}-4) = S_K^4(2) = 5$. Thus,

$$S_K^n(4) = 5 + \sum_{l=4}^{n-1} \left(1 + (l-1) + \frac{l(l-1)}{2} - 1 + \frac{l^3 - 7l}{6} \right) = \frac{n(n+1)(n^2 + n - 14)}{24}.$$
 (18)

In the following, we give the recursive formula of $S_K^n(i)$ for all $5 \le n$ and $n \le i \le \lfloor \frac{\binom{n}{2}}{2} \rfloor$.

Lemma 6. For all $5 \le n$ and $n \le i \le \lfloor \frac{\binom{n}{2}}{2} \rfloor$, there exists a unique integer t such that $\binom{t-1}{2} < i \le \binom{t}{2}$ and $t \ge 4$. Then, we have

$$S_K^n(i) = S_K^t(\binom{t}{2} - i) + \sum_{l=t}^{i-1} \sum_{j=i-l}^{i-1} S_K^l(j) - \sum_{l=n}^{i-1} \sum_{j=i-l}^{i-1} S_K^l(j).$$
(19)

Proof. When $5 \le n$ and $n \le i \le \lfloor \frac{\binom{n}{2}}{2} \rfloor$, in (4), we set n to n+1, ..., i, respectively. Then we obtain n - i equations and sum all the equations. Thus, we have

$$S_K^i(i) - S_K^n(i) = \sum_{l=n}^{i-1} \sum_{j=i-l}^{i-1} S_K^l(j).$$
(20)

By (11) and (20), we have

$$S_K^n(i) = S_K^t\binom{t}{2} - i + \sum_{l=t}^{i-1} \sum_{j=i-l}^{i-1} S_K^l(j) - \sum_{l=n}^{i-1} \sum_{j=i-l}^{i-1} S_K^l(j).$$

When i = n, the third term (i.e., $\sum_{l=n}^{i-1} \sum_{j=i-l}^{i-1} S_K^l(j)$) is zero.

Example 2. When i = 5 and n = 5, we have $\binom{3}{2} < 5 \le \binom{4}{2}$. Then, we obtain t = 4 in Lemma 6. Furthermore, by (19), we have

$$S_K^5(5) = S_K^4(\binom{4}{2} - 5) + \sum_{l=4}^4 \sum_{j=5-l}^4 S_K^l(j).$$

Thus, $S_K^5(5) = S_K^4(1) + \sum_{j=1}^4 S_K^4(j) = 3 + (3+5+6+5) = 22.$

For every $6 \le n$, due to $i = 5 \le n - 1$, $S_K^n(5)$ can be computed by Lemma 4.

Hence, if $S_K^n(j)$ are known for all $1 \le j \le i-1$ and n, we will compute $S_K^n(i)$ for all n in the next two steps. For $5 \le i$, there exists a unique integer t such that $\binom{t-1}{2} < i \le \binom{t}{2}$. Then, for every $2 \le l \le t-1$, $S_K^l(i) = 0$. First, when $t \le l \le i$, if $i > \lfloor \binom{l}{2} \\ \frac{l}{2} \rfloor$, we have $S_K^l(i) = S_K^l(\binom{l}{2} - i)$ where $\binom{l}{2} - i < i$; otherwise, by Lemma 6, we compute $S_K^l(i)$ for $i \le \lfloor \frac{\binom{l}{2}}{2} \rfloor$. Second, when $i+1 \le l$, we compute $S_K^l(i)$ by Lemma 4.

When i = 5, we can compute $S_K^n(5)$ for all n. Here, t = 4. Then, $S_K^4(5) = S_K^4(\binom{4}{2} - 5) = S_K^4(1) = 3$ and $S_K^5(5) = 22$ by Lemma 6 in Example 2. In the following, we will give the formula of $S_K^n(5)$ for all $6 \le n$ by Lemma 4.

Example 3. When i = 5 and $6 \le n$, by Lemma 4 and (7), we have

$$S_K^n(5) = S_K^5(5) + \sum_{l=5}^{n-1} \sum_{j=0}^4 S_K^l(j)$$

By Examples 1 and 2 and Lemma 5, we have

$$S_{K}^{n}(5) = 22 + \sum_{l=5}^{n-1} \left(1 + (l-1) + \frac{l(l-1)}{2} - 1 + \frac{l^{3} - 7l}{6} + \frac{l(l+1)(l^{2} + l - 14)}{24} \right)$$
$$= \frac{(n-1)(n^{4} + 6n^{3} - 9n^{2} - 74n - 120)}{120}$$
(21)

for all $5 \leq n$.

By Lemmas 2, 4, and 6, we can obtain the property of $S_K^n(i)$ for all $6 \leq i$ and n as follows.

Proposition 2. When $6 \le i$, we can compute $S_K^n(i)$ for all $5 \le n$ by using Lemmas 2, 4, and 6.

Proof. For all $0 \le i \le 5$ and $3 \le n$, all the $S_K^n(i)$ are computed. We can compute $S_K^n(i)$ for all n by using $S_K^n(j)$ for all $1 \le j \le i - 1$ and n.

First, we find an integer t such that $\binom{t-1}{2} < i \le \binom{t}{2}$. For every $t \le l \le i$, if $i > \lfloor \frac{\binom{l}{2}}{2} \rfloor$, we have $S_K^l(i) = S_K^l(\binom{l}{2} - i)$ where $\binom{l}{2} - i < i$; else if $i \le \lfloor \frac{\binom{l}{2}}{2} \rfloor$, we compute $S_K^l(i)$ by Lemma 6. Second, for every $i + 1 \le l$, we compute $S_K^l(i)$ by Lemma 4. So, we can obtain $S_K^n(i)$ for all $5 \le n$ and $6 \le i$.

3.2 The size of a ball of radius r in S_n under the Kendall τ -metric

In this subsection, we will give the size of a ball with radius r in S_n under the Kendall τ metric and give recursive formula of $B_K^n(r)$ by using $S_K^n(r)$. We easily obtain the following
lemma about the relationship between $B_K^n(r)$ and $S_K^n(r)$.

Lemma 7. For any $0 \le r \le {n \choose 2}$, we have

$$B_K^n(r) = \sum_{l=0}^r S_K^n(l).$$
 (22)

Given $S_K^n(i)$ for all $0 \le i \le r-1$, by Lemmas 4, 6 and 7, we easily obtain the recursion formula of $B_K^n(r)$ in the following theorem.

Theorem 1. Suppose $S_K^n(i)$ are known for all $0 \le i \le r-1$ and $5 \le n$. If $4 \le r \le \lfloor \frac{\binom{n}{2}}{2} \rfloor$, there exists a unique integer t such that $\binom{t-1}{2} < r \le \binom{t}{2}$. When $4 \le r \le n-1$, we have

$$B_K^n(r) = \sum_{l=0}^{r-1} S_K^n(l) + S_K^t(\binom{t}{2} - r) + \sum_{l=t}^{r-1} \sum_{j=r-l}^{r-1} S_K^l(j) + \sum_{l=r}^{n-1} \sum_{j=0}^{r-1} S_K^l(j).$$
(23)

When $n \leq r \leq \lfloor \frac{\binom{n}{2}}{2} \rfloor$, we have

$$B_K^n(r) = \sum_{l=0}^{r-1} S_K^n(l) + S_K^t(\binom{t}{2} - r) + \sum_{l=t}^{r-1} \sum_{j=r-l}^{r-1} S_K^l(j) - \sum_{l=n}^{r-1} \sum_{j=r-l}^{r-1} S_K^l(j).$$
(24)

Specially, we have $B_K^n(0) = 1$ and $B_K^n(1) = n$. When r = 2, for all $n \ge 2$, we have

$$B_K^n(2) = \sum_{l=0}^2 S_K^n(l) = (1+n-1+\frac{n(n-1)}{2}-1) = \frac{(n+2)(n-1)}{2}.$$
 (25)

When r = 3, for all $n \ge 3$, we have

$$B_K^n(3) = \sum_{l=0}^3 S_K^n(l) = (1+n-1+\frac{n(n-1)}{2}-1+\frac{n^3-7n}{6}) = \frac{(n+1)(n^2+2n-6)}{6}.$$
 (26)

Example 4. When r = 4 and $4 \le n$, by Example 1 and Theorem 1, we have

$$B_{K}^{n}(4) = \sum_{l=0}^{3} S_{K}^{n}(l) + S_{K}^{4}(\binom{4}{2} - 4) + \sum_{l=4}^{3} \sum_{j=4-l}^{4-1} S_{K}^{l}(j) + \sum_{l=4}^{n-1} \sum_{j=0}^{3} S_{K}^{l}(j)$$
$$= \frac{(n+2)(n+1)(n^{2}+3n-12)}{24}.$$
 (27)

Moreover, when r = 5 and $5 \le n$, by Example 3 and Theorem 1, we have

$$B_K^n(5) = \sum_{l=0}^4 S_K^n(l) + S_K^n(5)$$

= $\frac{(n+7)n(n^3 + 3n^2 - 6n - 28)}{120}$. (28)

When $r \ge 6$, we can compute $B_K^n(r)$ by using Proposition 2 and Theorem 1.

The nonexistence of a perfect *t*-error-correcting 4 code in S_n under the Kendall τ -metric for some n and t = 2, 3, 4, or 5

In this section, we will prove the nonexistence of a perfect t-error-correcting code in S_n under the Kendall τ -metric for some n and t = 2, 3, 4, or 5 by using the sphere-packing upper bound. By Proposition 1, we give the necessary condition of the existence of a perfect t-error-correcting code in S_n under the Kendall τ -metric.

Lemma 8. For any $0 \le t \le {n \choose 2}$, if there exists one perfect t-error-correcting code C in S_n under the Kendall τ -metric. Then, we must have

$$B_K^n(t) \cdot |C| = n!. \tag{29}$$

That is, the necessary condition of the existence of a perfect t-error-correcting code in S_n under the Kendall τ -metric is $B_K^n(t)|n!$.

Proof. By the sphere-packing upper bound in Proposition 1, if there exists one perfect t-error-correcting code C in S_n under the Kendall τ -metric, we must have $B_K^n(t) \cdot |C| = n!$. Thus, $B_K^n(t)|n!$. So, the necessary condition of the existence of a perfect t-error-correcting code in S_n under the Kendall τ -metric is $B_K^n(t)|n!$.

According to Lemma 8, we have the following theorem which illustrate the nonexistence of a perfect t-error-correcting code in S_n under the Kendall τ -metric.

Theorem 2. For any $0 \le t \le {n \choose 2}$, if $B_K^n(t)$ has a prime factor p > n, then there does not exist one perfect t-error-correcting code in S_n under the Kendall τ -metric.

Proof. By Lemma 8, the necessary condition of the existence of a perfect t-error-correcting code in S_n under the Kendall τ -metric is $B_K^n(t)|n!$. Since $B_K^n(t)$ has a prime factor p > n, we have $B_K^n(t) \nmid n!$. So, we prove the above result.

In the following, we will discuss the nonexistence of a perfect t-error-correcting code in

 S_n for some n and t = 2, 3, 4, or 5 by using Theorem 2. When t = 2, by (25), we have $B_K^n(2) = \frac{(n+2)(n-1)}{2}$. By Theorem 2, we can prove the nonexistence of a perfect two-error-correcting code in S_n , where n + 2 > 6 is a prime.

When t = 3, by (26), we have $B_K^n(3) = \frac{(n+1)(n^2+2n-6)}{6}$. First, if n+1 > 6 is a prime, then $B_K^n(3)$ have a prime factor n+1 > n. Second, we compute n^2+2n-6 for $4 \le n \le 33$ and obtain that $(n+1)(n^2+2n-6)$ has a prime factor p > n except n = 13 and n = 26. If n = 13, $B_K^{13}(3) = 441 = 9 \times 7^2$. Thus, $441 \nmid 13!$. If n = 26, $B_K^{26}(3) = 3249 = 9 \times 19^2$. Hence, $3249 \nmid 26!$. So, by Theorem 2, we can prove the nonexistence of a perfect threeerror-correcting code in S_n , where n + 1 > 6 is a prime, $n^2 + 2n - 6$ has a prime factor p > n, or $4 \le n \le 33$.

When t = 4, by (27), we have $B_K^n(4) = \frac{(n+1)(n+2)(n^2+3n-12)}{24}$. First, if n+1 > 6or n+2 > 7 is a prime, then $B_K^n(3)$ have a prime factor p > n. Second, we compute $n^2 + 3n - 12$ for $5 \le n \le 19$ and obtain that $(n^2 + 3n - 12)(n+1)(n+2)$ has a prime factor p > n except n = 13. If n = 13, $B_K^{13}(4) = 1715 = 5 \times 7^3$. Thus, $1715 \nmid 13!$. So, by Theorem 2, we can prove the nonexistence of a perfect four-error-correcting code in S_n , where n+1 > 6 or n+2 > 7 is a prime, $n^2 + 3n - 12$ has a prime factor p > n, or $5 \le n \le 19$.

When t = 5, by (28), $B_K^n(5) = \frac{(n+7)n(n^3+3n^2-6n-28)}{120}$. By Theorem 2, we can prove the nonexistence of a perfect five-error-correcting code in S_n , where $n+7 \ge 12$ is a prime or $n^3 + 3n^2 - 6n - 28$ has a prime factor p > n.

By the above discussion, we have the following theorem.

Theorem 3. When t = 2, there are no perfect two-error-correcting codes in S_n , where n + 2 > 6 is a prime. When t = 3, there are no perfect three-error-correcting codes in S_n , where n + 1 > 6 is a prime, $n^2 + 2n - 6$ has a prime factor p > n, or $4 \le n \le 33$. When t = 4, there are no perfect four-error-correcting codes in S_n , where n + 1 > 6 or n + 2 > 7 is a prime, $n^2 + 3n - 12$ has a prime factor p > n, or $5 \le n \le 19$. When t = 5, there are no perfect five-error-correcting codes in S_n , where $n + 7 \ge 12$ is a prime or $n^3 + 3n^2 - 6n - 28$ has a prime factor p > n.

5 Conclusion

Permutation codes under the Kendall τ -metric have been attracted lots of research interest due to their applications in flash memories. In this paper, we considered the nonexistence of perfect codes under the Kendall τ -metric. We gave the recursive formulas of the size of a ball or a sphere with radius t in S_n under the Kendall τ -metric. Specifically, we gave the polynomial expressions of the size of a ball or a sphere with radius r when t = 2, 3, 4, or 5. Finally, we used the sphere-packing upper bound to prove that there are no perfect terror-correcting codes in S_n under the Kendall τ -metric for some n and t = 2, 3, 4, or 5. Specifically, we proved that there are no perfect two-error-correcting codes in S_n , where n+2 > 6 is a prime. We also proved that there are no perfect three-error-correcting codes in S_n , where n+1 > 6 is a prime, $n^2 + 2n - 6$ has a prime factor p > n, or $4 \le n \le 33$. We further proved that there are no perfect four-error-correcting codes in S_n , where n+1 > 6or n+2 > 7 is a prime, $n^2 + 3n - 12$ has a prime factor p > n, or $5 \le n \le 19$. We proved that there are no perfect five-error-correcting codes in S_n , where $n+7 \ge 12$ is a prime or $n^3 + 3n^2 - 6n - 28$ has a prime factor p > n.

References

- Horvitz M., Etzion T.: Constructions of snake-in-the-box codes for rank modulation. IEEE Trans. Inf. Theory 60, 7016-7025 (2014).
- Jiang A., Mateescu R., Schwartz M., Bruck J.: Rank modulation for flash memories. IEEE Trans. Inf. Theory 55, 2659-2673 (2009).
- [3] Jiang A., Schwartz M., Bruck J.: Correcting charge-constrained errors in the rankmodulation scheme. IEEE Trans. Inf. Theory 56, 2112-2120 (2010).
- [4] Kløve T., Lin T.T., Tsai S.C., Tzeng W.G.: Permutation arrays under the Chebyshev distance. IEEE Trans. Inf. Theory 56, 2611-2617 (2010).
- [5] Wang X, Fu F.-W.: On the snake-in-the-box codes for rank modulation under Kendall's τ -metric. Des. Codes Cryptogr. 83, 455-465 (2017).
- [6] Wang X, Fu F.-W.: Snake-in-the-box codes under the ℓ_∞-metric for rank modulation. Des. Codes Cryptogr. 83, 455-465 (2019).
- Yehezkeally Y., Schwartz M.: Snake-in-the-box codes for rank modulation. IEEE Trans. Inf. Theory 58, 5471-5483 (2012).
- [8] Barg A., Mazumdar A.: Codes in permutations and error correction for rank modulation. IEEE Trans. Inf. Theory 56, 3158-3165 (2010).
- [9] Zhang Y.W., Ge G.N.: Snake-in-the-box codes for rank modulation under Kendall's τ -metric. IEEE Trans. Inf. Theory **62**, 151-158 (2016).
- [10] Buzaglo S., Etzion T.: Bounds on the size of permutation codes with the Kendall τ -metric. IEEE Trans. Inf. Theory **61**, 3241-3250 (2015).
- [11] Farnoud F., Skachek V., Milenkovic O.: Error-correction in falsh memories via codes in the Ulam metric. IEEE Trans. Inf. Theory 59, 3003-3020 (2013).
- [12] Zhou H., Jiang A., Bruck J.: Systematic error-correcting codes for rank modulation. in Proc. IEEE Int. Symp. Inf. Theory, 2978-2982 (2012).
- [13] Zhou H., Schwartz M., Jiang A., Bruck J.: Systematic error-correcting codes for rank modulation. IEEE Trans. Inf. Theory 61, 17-32 (2015).

- [14] Wang X, Zhang Y.W., Yang Y.T., Ge G.N.: New bounds of permutation codes under Hamming metric and Kendall's τ -metric. Des. Codes Cryptogr. **85**, 533-545 (2017).
- [15] Vijayakumaran S.: Largest permutation codes With the Kendall τ -metric in S_5 and S_6 . IEEE Communications Letters. **20**, 1912-1915 (2016).