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Abstract

In the rank modulation scheme for flash memories, permutation codes
have been studied. In this paper, we study perfect permutation codes in Sn,
the set of all permutations on n elements, under the Kendall τ -Metric. We
answer one open problem proposed by Buzaglo and Etzion. That is, proving
the nonexistence of perfect codes in Sn, under the Kendall τ -metric, for more
values of n. Specifically, we present the recursive formulas for the size of a
ball with radius r in Sn under the Kendall τ -metric. Further, We prove that
there are no perfect t-error-correcting codes in Sn under the Kendall τ -metric
for some n and t = 2, 3, 4, or 5.
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1 Introduction

Flash memory is a non-volatile storage medium that is both electrically programmable
and erasable. The rank modulation scheme for flash memories has been proposed in [2].
In this scheme, one permutation corresponds to a relative ranking of all the flash memory
cells’ levels. A permutation code is a nonempty subset of Sn, where Sn is the set of all
the permutations over {1, 2, ..., n}. Permutation codes have been studied under various
metrics, such as the ℓ∞-metric [4, 6, 7], the Ulam metric [11], and the Kendall τ -metric
[3, 5, 8, 9].

In this paper, we will focus on permutation codes under the Kendall τ -metric. The
Kendall τ -distance [7] between two permutations π, σ ∈ Sn is the minimum number of
adjacent transpositions required to obtain the permutation σ from π, where an adjacent
transposition is an exchange of two distinct adjacent elements. Permutation codes under
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the Kendall τ -distance with minimum distance d can correct up to ⌊d−1
2 ⌋ errors. Let

A(n, d) be the size of the largest code in Sn with minimum Kendall τ -distance d. The
bounds on A(n, d) were proposed in [3, 10, 14, 15]. Some t-error-correcting codes in Sn

were constructed in [1, 3, 8, 12, 13]. Buzaglo and Etzion [10] proved that there are no
perfect single-error-correcting codes in Sn, where n > 4 is a prime or 4 ≤ n ≤ 10. They
further [10] proposed the open problem to prove the nonexistence of perfect codes in Sn,
under the Kendall τ -metric, for more values of n and/or other distances. In this paper,
we prove that there are no perfect t-error-correcting codes in Sn under the Kendall τ -
metric for some n and t = 2, 3, 4, or 5. Specially, we prove that there are no perfect
two-error-correcting codes in Sn, where n + 2 > 6 is a prime. We also prove that there
are no perfect three-error-correcting codes in Sn, where n+ 1 > 6 is a prime, n2 + 2n− 6
has a prime factor p > n, or 4 ≤ n ≤ 33. We further prove that there are no perfect
four-error-correcting codes in Sn, where n + 1 > 6 or n + 2 > 7 is a prime, n2 + 3n − 12
has a prime factor p > n, or 5 ≤ n ≤ 19. Finally, we prove that there are no perfect
five-error-correcting codes in Sn, where n+7 ≥ 12 is a prime or n3 +3n2 − 6n− 28 has a
prime factor p > n.

The rest of this paper is organized as follows. In Section 2, we will give some basic
definitions for the Kendall τ -metric and for perfect permutation codes. In Section 3, we
determine the size of some balls with radius r in Sn under the Kendall τ -metric. In
Section 4, we prove the nonexistence of a perfect t-error-correcting code in Sn for some n

and t = 2, 3, 4, or 5 by using the sphere packing upper bound. Section ?? concludes this
paper.

2 Preliminaries

In this section we give some definitions and notations for the Kendall τ -metric and perfect
permutation codes. In addition, we summarize some important known facts.

Let [n] denote the set {1, 2, ..., n}. Let Sn be the set of all the permutations over [n]. We
denote by π , [π(1), π(2), ..., π(n)] a permutation over [n]. For two permutations σ, π ∈ Sn,
their multiplication π ◦ σ is denoted by the composition of σ on π, i.e., π ◦ σ(i) = σ(π(i)),
for all i ∈ [n]. Under this operation, Sn is a noncommutative group of size |Sn| = n!.
Denote by ǫn , [1, 2, ..., n] the identity permutation of Sn. Let π

−1 be the inverse element
of π, for any π ∈ Sn. For an unordered pair of distinct numbers i, j ∈ [n], this pair forms
an inversion in a permutation π if i < j and simultaneously π(i) > π(j).

Given a permutation π = [π(1), π(2), ..., π(i), π(i+1), ...π(n)] ∈ Sn, an adjacent trans-
position is an exchange of two adjacent elements π(i), π(i+1), resulting in the permutation
[π(1), π(2), ..., π(i + 1), π(i), ...π(n)] for some 1 ≤ i ≤ n − 1. For any two permutations
σ, π ∈ Sn, the Kendall τ -distance between two permutations π, σ, denoted by dK(π, σ),
is the minimum number of adjacent transpositions required to obtain the permutation σ

from π. The expression for dK(π, σ) [3] is as follows:

dK(σ, π) = |{(i, j) : σ−1(i) < σ−1(j) ∧ π−1(i) > π−1(j)}|.

For π ∈ Sn, the Kendall τ -weight of π, denoted by wK(π), is defined as the Kendall
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τ -distance between π and the identity permutation ǫn. Clearly, wK(π) is the number of
inversions in the permutation π.

Definition 1. For 1 ≤ d ≤
(

n
2

)

, C ⊂ Sn is an (n, d)-permutation code under the Kendall
τ -metric, if dK(σ, π) ≥ d for any two distinct permutations π, σ ∈ C.

For a permutation π ∈ Sn, the Kendall τ -ball of radius r centered at π, denoted as
Bn

K(π, r), is defined by Bn
K(π, r) , {σ ∈ Sn|dK(σ, π) ≤ r}. For a permutation π ∈ Sn, the

Kendall τ -sphere of radius r centered at π, denoted as Sn
K(π, r), is defined by Sn

K(π, r) ,
{σ ∈ Sn|dK(σ, π) = r}. The size of a Kendall τ -ball or a τ -sphere of radius r does not
depend on the center of the ball under the Kendall τ -metric. Thus, we denote the size of
Bn

K(π, r) and Sn
K(π, r) as Bn

K(r) and Sn
K(r), respectively. We denote the largest size of

an (n, d)-permutation code under the Kendall τ -metric as AK(n, d). The sphere-packing
bound for permutation codes under the Kendall τ -metric are as follows:

Proposition 1. [3, Theorems 17 and 18]

AK(n, d) ≤
n!

Bn
K(⌊d−1

2 ⌋)
.

When d = 2r + 1, an (n, 2r + 1)-permutation code C under the Kendall τ -metric is
called a perfect permutation code under the Kendall τ -metric if it attains the sphere-
packing bound, i.e., |C| · Bn

K(r) = n!. That is, the balls with radius r centered at the
codewords of C form a partition of Sn. A perfect (n, 2r + 1)-permutation code under
the Kendall τ -metric is also called a perfect r-error-correcting code under the Kendall
τ -metric.

In [10], Buzaglo and Etzion proved that there does not exist a perfect one-error-
correcting code under the Kendall τ -metric if n > 4 is a prime or 4 ≤ n ≤ 10. Based on
the above definitions and notations, we will prove the nonexistence of a perfect t-error-
correcting code in Sn under the Kendall τ -metric for some n and t = 2, 3, 4, or 5 by using
the sphere-packing upper bound in the following sections.

3 The size of a ball or a sphere with radius r in

Sn under the Kendall τ-metric

In this section, we compute the size of a ball or a sphere with radius r in Sn under the
Kendall τ -metric and give recursive formulas of Bn

K(r) and Sn
K(r), respectively. Since

Bn
K(r) does not depend on the center of the ball, we consider the ball Bn

K(ǫn, r) which is
a ball with radius r centered at the identity permutation ǫn and denote by Sn

K(ǫn, r) ,

{σ ∈ Sn|dK(σ, ǫn) = wk(σ) = r} the sphere centered at ǫn and of radius r.

3.1 The size of a sphere of radius r in Sn under the Kendall

τ-metric

In order to give the property of Sn
K(r), we require some notations and lemmas in [10].

For a permutation π = [π(1), π(2), ..., π(n)] ∈ Sn, the reverse of π is the permutation
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πr , [π(n), π(n−1), ..., π(2), π(1)]. For all π ∈ Sn, we have wK(π) ≤
(

n
2

)

. For convenience,
we denote Sn

K(r) = 0 for r ≥
(

n
2

)

+ 1.

Lemma 1. [10, Lemma 1] For every π, ǫn ∈ Sn,

dK(ǫn, π) + dK(ǫn, π
r) = wK(π) + wK(πr) = dK(π, πr) =

(

n

2

)

. (1)

By Lemma 1, we can obtain the following lemma.

Lemma 2. For any 0 ≤ i ≤
⌊(n

2
)

2

⌋

,

Sn
K(i) = Sn

K

(

(

n

2

)

− i
)

. (2)

Proof. Let m =
(

n
2

)

. We just need to prove that |Sn
K(ǫn, i)| = |Sn

K(ǫn,m − i)|. First we
define a function f : Sn

K(ǫn, i) → Sn
K(ǫn,m− i), where f(π) = πr for any π ∈ Sn

K(ǫn, i).
If π ∈ Sn

K(ǫn, i), then wK(π) = i. By (1), wK(πr) =
(

n
2

)

− i = m − i. Hence,
f(π) ∈ Sn

K(ǫn,m− i). Moreover, we can easily prove that the function f is reasonable and
bijection. Thus, Sn

K(i) = Sn
K

((

n
2

)

− i
)

.

When i = 0 or 1, Sn
K(0) = 1 and Sn

K(1) = n − 1. We will further give a recursive
formula of Sn

K(r) in the following lemma.

Lemma 3. For all 4 ≤ n and 2 ≤ i ≤ n− 1,

Sn
K(i) =

i
∑

j=0

Sn−1
K (j). (3)

Moreover, for all 5 ≤ n and n ≤ i ≤
⌊(n

2
)

2

⌋

,

Sn
K(i) =

i
∑

j=i−(n−1)

Sn−1
K (j). (4)

Proof. When 4 ≤ n and 2 ≤ i ≤ n − 1, we define Sn
K(ǫn, i, j) , {π ∈ Sn

K(ǫn, i)|π(j) = n}
for n − i ≤ j ≤ n, i.e., π ∈ Sn

K(ǫn, i) is an element of Sn
K(ǫn, i, j) if n appears at the jth

position of π. For π ∈ Sn
K(ǫn, i), the number of inversions in the permutation π is i. If

π(j) = n, (π(k), n) is an inversion for all j + 1 ≤ k ≤ n. Hence, for any π ∈ Sn
K(ǫn, i),

n can only appear at the jth position of π for every n − i ≤ j ≤ n. So, we obtain that
Sn
K(ǫn, i) = ∪n

j=n−iS
n
K(ǫn, i, j).

For all n−i ≤ j ≤ n, we define fj : S
n
K(ǫn, i, j) → Sn−1

K (ǫn−1, i−(n−j)), where fj(π) =
[π(1), π(2), ..., π(j − 1), π(j + 1), ..., π(n)] for any π ∈ Sn

K(ǫn, i, j). That is, we delete the
element n of π to obtain fj(π). Obviously, fj is injective. For π1 ∈ Sn−1

K (ǫn−1, i− (n− j)),
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we define π such that π(k) = π1(k) for 1 ≤ k ≤ j − 1, π(j) = n, and π(k) = π1(k − 1) for
j + 1 ≤ k ≤ n. Then, π ∈ Sn and wK(π) = wK(π1) + (n − j) = i. Thus, π ∈ Sn

K(ǫn, i, j)
and fj(π) = π1. So, we obtain that fj is bijection for all n− i ≤ j ≤ n.

Since all the set Sn
K(ǫn, i, j) are pairwise disjoint and all the fj are bijection for all

n− i ≤ j ≤ n, we have

Sn
K(i) = |Sn

K(ǫn, i)| = | ∪n
j=n−i S

n
K(ǫn, i, j)| =

n
∑

j=n−i

|Sn
K(ǫn, i, j)|

=
n
∑

j=n−i

|Sn−1
K (ǫn−1, i− (n− j))| =

i
∑

j=0

Sn−1
K (j).

Similarly, for all 5 ≤ n and n ≤ i ≤ ⌊
(n
2
)

2 ⌋, then ⌊
(n
2
)

2 ⌋ ≤
(

n−1
2

)

. Thus, for all i− (n− 1) ≤

j ≤ ⌊
(n
2
)

2 ⌋, Sn−1
K (j) exists. So, we also prove that

Sn
K(i) =

i
∑

j=i−(n−1)

Sn−1
K (j).

Furthermore, we give the recursive formula of Sn
K(i) for all 4 ≤ n and 4 ≤ i ≤ n − 1

in the following lemma. For convenience, for any function f(t) and two positive integers
i < t, we denote

∑i
l=t f(l) = 0.

Lemma 4. For all 4 ≤ n and 4 ≤ i ≤ n − 1, there exists a unique integer t such that
(

t−1
2

)

< i ≤
(

t
2

)

and t ≥ 4. Then, we have

Sn
K(i) = St

K(

(

t

2

)

− i) +

i−1
∑

l=t

i−1
∑

j=i−l

Sl
K(j) +

n−1
∑

l=i

i−1
∑

j=0

Sl
K(j). (5)

Proof. When 4 ≤ n and 4 ≤ i ≤ n− 1, by (3), we have

Sn
K(i)− Sn−1

K (i) =

i−1
∑

j=0

Sn−1
K (j). (6)

In (6), we set n to i+ 1, ..., n and obtain n− i equations, respectively. Then by summing
all the equations, we have

Sn
K(i)− Si

K(i) =

n−1
∑

l=i

i−1
∑

j=0

Sl
K(j). (7)

For j < i and i < n, if Sn
K(j) and Si

K(i) are known, then by (7) we can compute Sn
K(i).

In the following, we will compute Si
K(i). By (4), for i ≤

(

i−1
2

)

(i.e., 4 ≤ i), we obtain that

Si
K(i)− Si−1

K (i) =

i−1
∑

j=1

Si−1
K (j). (8)

5



For 4 ≤ i, we can find an integer t such that
(

t−1
2

)

< i ≤
(

t
2

)

and t ≥ 4. Then,
(

t
2

)

+
(t−1)(t−4)

2 < 2i and t <
(

t−1
2

)

for 5 ≤ t. When i = 4, we have t = 4. When 5 ≤ i, we have

4 ≤ t, i ≤
(

t
2

)

< 2i, and t < i.
Thus, we obtain

0 ≤

(

t

2

)

− i < i. (9)

When i = 4, S4
K(4) = S4

K(
(4
2

)

− 4) = S4
K(2).

Similarly, when 4 < i, in (4), we set n to t + 1, ..., i and obtain i − t equations,
respectively. By summing all the equations, we have

Si
K(i)− St

K(i) =
i−1
∑

l=t

i−1
∑

j=i−l

Sl
K(j). (10)

Combining (2), (9), and (10), we have

Si
K(i) = St

K(

(

t

2

)

− i) +

i−1
∑

l=t

i−1
∑

j=i−l

Sl
K(j). (11)

When 4 ≤ i, we also have Si
K(i) = St

K(
(

t
2

)

− i) +
∑i−1

l=t

∑i−1
j=i−l S

l
K(j). When i = t = 4,

the second term (i.e.,
∑3

l=4

∑i−1
j=i−l S

l
K(j)) is zero. Finally, by (7) and (11), we can obtain

the expression of Sn
K(i) in the above lemma.

Specifically, we give the formulas of Sn
K(2) and Sn

K(3) for all 3 ≤ n as follows.

Lemma 5. For all 3 ≤ n, we have

Sn
K(2) =

n(n− 1)

2
− 1, (12)

Sn
K(3) =

n3 − 7n

6
. (13)

Proof. When i = 2, by (6), we have

Sn
K(2)− S2

K(2) =
n−1
∑

l=2

1
∑

j=0

Sl
K(j). (14)

Since Sn
K(0) = 1, Sn

K(1) = n− 1 and S2
K(2) = 0, by (14), we have

Sn
K(2) =

n−1
∑

l=2

1
∑

j=0

Sl
K(j) =

n−1
∑

l=2

l =
n(n− 1)

2
− 1. (15)

Similarly, when i = 3, by (6), we have

Sn
K(3)− S3

K(3) =

n−1
∑

l=3

2
∑

j=0

Sl
K(j). (16)
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Since Sn
K(0) = 1, Sn

K(1) = n− 1, Sn
K(2) = n(n−1)

2 − 1, and S3
K(3) = 1, by (16), we have

Sn
K(3) = S3

K(3) +

n−1
∑

l=3

2
∑

j=0

Sl
K(j) = 1 +

n−1
∑

l=3

l2 + l − 2

2
=

n3 − 7n

6
. (17)

According to (15) and (17), we can obtain the expressions of Sn
K(2) and Sn

K(3) as (12)
and (13), respectively.

Here, we easily obtain S2
K(0) = S2

K(1) = 1. By Lemma 5, when n = 3, we have
S3
K(0) = 1, S3

K(1) = 2, S3
K(2) = 2, and S3

K(3) = 1. By Lemma 5 and Lemma 2, we have
S4
K(0) = 1, S4

K(1) = 3, S4
K(2) = 5, S4

K(3) = 6, S4
K(4) = 5, S4

K(5) = 3, and S4
K(6) = 1.

If all the Sn
K(j) for all n and j ≤ i− 1 are known, by Lemma 4, we can compute Sn

K(i)
for 4 ≤ n and 4 ≤ i ≤ n− 1. Next we present an example to compute Sn

K(i) in Lemma 4.

Example 1. When i = 4,
(3
2

)

< 4 ≤
(4
2

)

. Then, we obtain t = 4 in Lemma 4. Further-
more, by (5), we have

Sn
K(4) = S4

K(

(

4

2

)

− 4) +
3

∑

l=4

i−1
∑

j=i−l

Sl
K(j) +

n−1
∑

l=4

3
∑

j=0

Sl
K(j).

By Lemma 5, we have S4
K(

(

4
2

)

− 4) = S4
K(2) = 5. Thus,

Sn
K(4) = 5 +

n−1
∑

l=4

(

1 + (l − 1) +
l(l − 1)

2
− 1 +

l3 − 7l

6

)

=
n(n+ 1)(n2 + n− 14)

24
. (18)

In the following, we give the recursive formula of Sn
K(i) for all 5 ≤ n and n ≤ i ≤ ⌊

(n
2
)

2 ⌋.

Lemma 6. For all 5 ≤ n and n ≤ i ≤ ⌊
(n
2
)

2 ⌋, there exists a unique integer t such that
(

t−1
2

)

< i ≤
(

t
2

)

and t ≥ 4. Then, we have

Sn
K(i) = St

K(

(

t

2

)

− i) +

i−1
∑

l=t

i−1
∑

j=i−l

Sl
K(j) −

i−1
∑

l=n

i−1
∑

j=i−l

Sl
K(j). (19)

Proof. When 5 ≤ n and n ≤ i ≤ ⌊
(n
2
)

2 ⌋, in (4), we set n to n + 1, ..., i, respectively. Then
we obtain n− i equations and sum all the equations. Thus, we have

Si
K(i)− Sn

K(i) =
i−1
∑

l=n

i−1
∑

j=i−l

Sl
K(j). (20)

By (11) and (20), we have

Sn
K(i) = St

K(

(

t

2

)

− i) +

i−1
∑

l=t

i−1
∑

j=i−l

Sl
K(j) −

i−1
∑

l=n

i−1
∑

j=i−l

Sl
K(j).

When i = n, the third term (i.e.,
∑i−1

l=n

∑i−1
j=i−l S

l
K(j)) is zero.

7



Example 2. When i = 5 and n = 5, we have
(3
2

)

< 5 ≤
(4
2

)

. Then, we obtain t = 4 in
Lemma 6. Furthermore, by (19), we have

S5
K(5) = S4

K(

(

4

2

)

− 5) +
4

∑

l=4

4
∑

j=5−l

Sl
K(j).

Thus, S5
K(5) = S4

K(1) +
∑4

j=1 S
4
K(j) = 3 + (3 + 5 + 6 + 5) = 22.

For every 6 ≤ n, due to i = 5 ≤ n− 1, Sn
K(5) can be computed by Lemma 4.

Hence, if Sn
K(j) are known for all 1 ≤ j ≤ i− 1 and n, we will compute Sn

K(i) for all n
in the next two steps. For 5 ≤ i, there exists a unique integer t such that

(

t−1
2

)

< i ≤
(

t
2

)

.

Then, for every 2 ≤ l ≤ t − 1, Sl
K(i) = 0. First, when t ≤ l ≤ i, if i > ⌊

(l
2
)
2 ⌋, we have

Sl
K(i) = Sl

K(
(

l
2

)

− i) where
(

l
2

)

− i < i; otherwise, by Lemma 6, we compute Sl
K(i) for

i ≤ ⌊
(l
2
)
2 ⌋. Second, when i+ 1 ≤ l, we compute Sl

K(i) by Lemma 4.

When i = 5, we can compute Sn
K(5) for all n. Here, t = 4. Then, S4

K(5) = S4
K(

(

4
2

)

−
5) = S4

K(1) = 3 and S5
K(5) = 22 by Lemma 6 in Example 2. In the following, we will give

the formula of Sn
K(5) for all 6 ≤ n by Lemma 4.

Example 3. When i = 5 and 6 ≤ n, by Lemma 4 and (7), we have

Sn
K(5) = S5

K(5) +
n−1
∑

l=5

4
∑

j=0

Sl
K(j).

By Examples 1 and 2 and Lemma 5, we have

Sn
K(5) = 22 +

n−1
∑

l=5

(

1 + (l − 1) +
l(l − 1)

2
− 1 +

l3 − 7l

6
+

l(l + 1)(l2 + l − 14)

24

)

=
(n− 1)(n4 + 6n3 − 9n2 − 74n− 120)

120
(21)

for all 5 ≤ n.

By Lemmas 2, 4, and 6, we can obtain the property of Sn
K(i) for all 6 ≤ i and n as

follows.

Proposition 2. When 6 ≤ i, we can compute Sn
K(i) for all 5 ≤ n by using Lemmas 2, 4,

and 6.

Proof. For all 0 ≤ i ≤ 5 and 3 ≤ n, all the Sn
K(i) are computed. We can compute Sn

K(i)
for all n by using Sn

K(j) for all 1 ≤ j ≤ i− 1 and n.

First, we find an integer t such that
(

t−1
2

)

< i ≤
(

t
2

)

. For every t ≤ l ≤ i, if i > ⌊
(l
2
)
2 ⌋,

we have Sl
K(i) = Sl

K(
(

l
2

)

− i) where
(

l
2

)

− i < i; else if i ≤ ⌊
(l
2
)
2 ⌋, we compute Sl

K(i) by
Lemma 6. Second, for every i+1 ≤ l, we compute Sl

K(i) by Lemma 4. So, we can obtain
Sn
K(i) for all 5 ≤ n and 6 ≤ i.
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3.2 The size of a ball of radius r in Sn under the Kendall

τ-metric

In this subsection, we will give the size of a ball with radius r in Sn under the Kendall τ -
metric and give recursive formula of Bn

K(r) by using Sn
K(r). We easily obtain the following

lemma about the relationship between Bn
K(r) and Sn

K(r).

Lemma 7. For any 0 ≤ r ≤
(

n
2

)

, we have

Bn
K(r) =

r
∑

l=0

Sn
K(l). (22)

Given Sn
K(i) for all 0 ≤ i ≤ r−1, by Lemmas 4, 6 and 7, we easily obtain the recursion

formula of Bn
K(r) in the following theorem.

Theorem 1. Suppose Sn
K(i) are known for all 0 ≤ i ≤ r− 1 and 5 ≤ n. If 4 ≤ r ≤ ⌊

(n
2
)

2 ⌋,

there exists a unique integer t such that
(

t−1
2

)

< r ≤
(

t
2

)

. When 4 ≤ r ≤ n− 1, we have

Bn
K(r) =

r−1
∑

l=0

Sn
K(l) + St

K(

(

t

2

)

− r) +
r−1
∑

l=t

r−1
∑

j=r−l

Sl
K(j) +

n−1
∑

l=r

r−1
∑

j=0

Sl
K(j). (23)

When n ≤ r ≤ ⌊
(n
2
)

2 ⌋, we have

Bn
K(r) =

r−1
∑

l=0

Sn
K(l) + St

K(

(

t

2

)

− r) +

r−1
∑

l=t

r−1
∑

j=r−l

Sl
K(j) −

r−1
∑

l=n

r−1
∑

j=r−l

Sl
K(j). (24)

Specially, we have Bn
K(0) = 1 and Bn

K(1) = n. When r = 2, for all n ≥ 2, we have

Bn
K(2) =

2
∑

l=0

Sn
K(l) = (1 + n− 1 +

n(n− 1)

2
− 1) =

(n + 2)(n − 1)

2
. (25)

When r = 3, for all n ≥ 3, we have

Bn
K(3) =

3
∑

l=0

Sn
K(l) = (1+n− 1+

n(n− 1)

2
− 1+

n3 − 7n

6
) =

(n + 1)(n2 + 2n− 6)

6
. (26)

Example 4. When r = 4 and 4 ≤ n, by Example 1 and Theorem 1, we have

Bn
K(4) =

3
∑

l=0

Sn
K(l) + S4

K(

(

4

2

)

− 4) +

3
∑

l=4

4−1
∑

j=4−l

Sl
K(j) +

n−1
∑

l=4

3
∑

j=0

Sl
K(j)

=
(n+ 2)(n + 1)(n2 + 3n− 12)

24
. (27)
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Moreover, when r = 5 and 5 ≤ n, by Example 3 and Theorem 1, we have

Bn
K(5) =

4
∑

l=0

Sn
K(l) + Sn

K(5)

=
(n+ 7)n(n3 + 3n2 − 6n− 28)

120
. (28)

When r ≥ 6, we can compute Bn
K(r) by using Proposition 2 and Theorem 1.

4 The nonexistence of a perfect t-error-correcting

code in Sn under the Kendall τ-metric for some

n and t = 2, 3, 4, or 5

In this section, we will prove the nonexistence of a perfect t-error-correcting code in Sn

under the Kendall τ -metric for some n and t = 2, 3, 4, or 5 by using the sphere-packing
upper bound. By Proposition 1, we give the necessary condition of the existence of a
perfect t-error-correcting code in Sn under the Kendall τ -metric.

Lemma 8. For any 0 ≤ t ≤
(

n
2

)

, if there exists one perfect t-error-correcting code C in
Sn under the Kendall τ -metric. Then, we must have

Bn
K(t) · |C| = n!. (29)

That is, the necessary condition of the existence of a perfect t-error-correcting code in Sn

under the Kendall τ -metric is Bn
K(t)|n!.

Proof. By the sphere-packing upper bound in Proposition 1, if there exists one perfect
t-error-correcting code C in Sn under the Kendall τ -metric, we must have Bn

K(t) · |C| = n!.
Thus, Bn

K(t)|n!. So, the necessary condition of the existence of a perfect t-error-correcting
code in Sn under the Kendall τ -metric is Bn

K(t)|n!.

According to Lemma 8, we have the following theorem which illustrate the nonexistence
of a perfect t-error-correcting code in Sn under the Kendall τ -metric.

Theorem 2. For any 0 ≤ t ≤
(

n
2

)

, if Bn
K(t) has a prime factor p > n, then there does not

exist one perfect t-error-correcting code in Sn under the Kendall τ -metric.

Proof. By Lemma 8, the necessary condition of the existence of a perfect t-error-correcting
code in Sn under the Kendall τ -metric is Bn

K(t)|n!. Since Bn
K(t) has a prime factor p > n,

we have Bn
K(t) ∤ n!. So, we prove the above result.

In the following, we will dicuss the nonexistence of a perfect t-error-correcting code in
Sn for some n and t = 2, 3, 4, or 5 by using Theorem 2.

When t = 2, by (25), we have Bn
K(2) = (n+2)(n−1)

2 . By Theorem 2, we can prove the
nonexistence of a perfect two-error-correcting code in Sn, where n+ 2 > 6 is a prime.
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When t = 3, by (26), we have Bn
K(3) = (n+1)(n2+2n−6)

6 . First, if n+ 1 > 6 is a prime,
then Bn

K(3) have a prime factor n+1 > n. Second, we compute n2+2n−6 for 4 ≤ n ≤ 33
and obtain that (n+ 1)(n2 + 2n− 6) has a prime factor p > n except n = 13 and n = 26.
If n = 13, B13

K (3) = 441 = 9 × 72. Thus, 441 ∤ 13!. If n = 26, B26
K (3) = 3249 = 9 × 192.

Hence, 3249 ∤ 26!. So, by Theorem 2, we can prove the nonexistence of a perfect three-
error-correcting code in Sn, where n + 1 > 6 is a prime, n2 + 2n − 6 has a prime factor
p > n, or 4 ≤ n ≤ 33.

When t = 4, by (27), we have Bn
K(4) = (n+1)(n+2)(n2+3n−12)

24 . First, if n + 1 > 6
or n + 2 > 7 is a prime, then Bn

K(3) have a prime factor p > n. Second, we compute
n2 + 3n − 12 for 5 ≤ n ≤ 19 and obtain that (n2 + 3n − 12)(n + 1)(n + 2) has a prime
factor p > n except n = 13. If n = 13, B13

K (4) = 1715 = 5 × 73. Thus, 1715 ∤ 13!. So,
by Theorem 2, we can prove the nonexistence of a perfect four-error-correcting code in
Sn, where n + 1 > 6 or n + 2 > 7 is a prime, n2 + 3n − 12 has a prime factor p > n, or
5 ≤ n ≤ 19.

When t = 5, by (28), Bn
K(5) = (n+7)n(n3+3n2

−6n−28)
120 . By Theorem 2, we can prove the

nonexistence of a perfect five-error-correcting code in Sn, where n+ 7 ≥ 12 is a prime or
n3 + 3n2 − 6n− 28 has a prime factor p > n.

By the above discussion, we have the following theorem.

Theorem 3. When t = 2, there are no perfect two-error-correcting codes in Sn, where
n + 2 > 6 is a prime. When t = 3, there are no perfect three-error-correcting codes in
Sn, where n + 1 > 6 is a prime, n2 + 2n − 6 has a prime factor p > n, or 4 ≤ n ≤ 33.
When t = 4, there are no perfect four-error-correcting codes in Sn, where n + 1 > 6 or
n + 2 > 7 is a prime, n2 + 3n − 12 has a prime factor p > n, or 5 ≤ n ≤ 19. When
t = 5, there are no perfect five-error-correcting codes in Sn, where n + 7 ≥ 12 is a prime
or n3 + 3n2 − 6n− 28 has a prime factor p > n.

5 Conclusion

Permutation codes under the Kendall τ -metric have been attracted lots of research interest
due to their applications in flash memories. In this paper, we considered the nonexistence
of perfect codes under the Kendall τ -metric. We gave the recursive formulas of the size of
a ball or a sphere with radius t in Sn under the Kendall τ -metric. Specifically, we gave the
polynomial expressions of the size of a ball or a sphere with radius r when t = 2, 3, 4, or 5.
Finally, we used the sphere-packing upper bound to prove that there are no perfect t-
error-correcting codes in Sn under the Kendall τ -metric for some n and t = 2, 3, 4, or 5.
Specifically, we proved that there are no perfect two-error-correcting codes in Sn, where
n+2 > 6 is a prime. We also proved that there are no perfect three-error-correcting codes
in Sn, where n+1 > 6 is a prime, n2+2n−6 has a prime factor p > n, or 4 ≤ n ≤ 33. We
further proved that there are no perfect four-error-correcting codes in Sn, where n+1 > 6
or n+2 > 7 is a prime, n2 +3n− 12 has a prime factor p > n, or 5 ≤ n ≤ 19. We proved
that there are no perfect five-error-correcting codes in Sn, where n+ 7 ≥ 12 is a prime or
n3 + 3n2 − 6n− 28 has a prime factor p > n.
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