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Abstract. Permutation codes under the Hamming metric are interesting top-
ics due to their applications in power line communications and block ciphers.

In this paper, we study perfect permutation codes in Sn, the set of all permu-
tations on n elements, under the Hamming metric. We prove the nonexistence

of perfect t-error-correcting codes in Sn under the Hamming metric, for more

values of n and t. Specifically, we propose some sufficient conditions of the
nonexistence of perfect permutation codes. Further, we prove that there does

not exist a perfect t-error-correcting code in Sn under the Hamming metric

for some n and t = 1, 2, 3, 4, or 2t + 1 ≤ n ≤ max{4t2e−2+1/t − 2, 2t + 1} for

t ≥ 2, or min{ e
2

√
n+ 2, bn−1

2
c} ≤ t ≤ bn−1

2
c for n ≥ 7, where e is the Napier’s

constant.

1. Introduction

Permutation codes were first studied in [2, 3, 9, 13]. Recently, they have at-
tracted considerable attention due to their applications as varied as power line
communications[24, 6, 21, 5], block ciphers[7], and the rank modulation scheme for
flash memories[1, 17, 16]. A permutation code is a subset of Sn, the set of all per-
mutations over {1, 2, . . . , n}. Permutation codes under various metrics have been
studied, such as the `∞-metric [18, 26, 29], the Ulam metric [12], the Kendall τ -
metric [1, 17, 25, 30], and the Hamming metric [24, 10, 6, 21, 5, 28]. Moreover, a
survey on metrics related to permutations is given in [8]. The Hamming distance
between permutations π and σ in Sn is the number of positions in which their vector
components differ. In this paper, we only consider the Hamming metric.

Permutation codes under the Hamming distance have been widely studied due to
their applications in data transmission over power line [24, 6, 21, 5]. There are three
main forms of noise (the permanent narrow-band noise, the impulse noise of short
duration, and white Gaussian noise) which affect the transmission in the power
line application. Permutation codes under the Hamming distance with minimum
distance d can correct bd−12 c errors. Ding et al. [10] and some authors in [14, 15, 23,
22, 11, 20, 28] studied permutation codes and presented some bounds on the size of
permutation codes under the Hamming metric. Previous work to study the perfect
permutation codes under various distance metrics (Hamming, Kendall, Ulam) can
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be found in [3, 19, 4, 27]. Blake [3] first studied perfect permutation codes under
the Hamming metric and proposed some necessary conditions of the existence of
these perfect permutation codes. Meanwhile, Buzaglo and Etzion [4] discovered
the existence of a perfect permutation code under the cyclic Kendall τ -metric, and
proved the nonexistence of perfect single-error-correcting permutation codes in Sn
under the Kendall τ -distance, where n > 4 is a prime or 4 ≤ n ≤ 10. Further, Wang
et al. [27] proved that there does not exist a perfect t-error-correcting code in Sn
under the Kendall τ -metric for some n and t = 2, 3, 4, 5, or 5

8

(
n
2

)
< 2t + 1 ≤

(
n
2

)
.

Recently, Kong and Hagiwara [19] proved the nonexistence of non-trivial perfect
permutation codes under the Ulam metric. In this paper, we study the nonexistence
of perfect t-error-correcting codes in Sn under the Hamming metric. We propose
some sufficient conditions of the nonexistence of perfect permutation codes under
the Hamming metric. Moreover, we prove that there does not exist a perfect one-
error-correcting code in Sn. We also prove that there does not exist a perfect
two-error-correcting code in Sn under the Hamming metric, where n2 − n + 2 has
a prime factor p > n, or 5 ≤ n < 11, or 12 ≤ n ≤ 17. We prove that there does not
exist a perfect three-error-correcting code in Sn under the Hamming metric, where
n + 1 > 7 is a prime, or 2n2 − 5n + 6 has a prime factor p > n, or 7 ≤ n ≤ 47.
We prove that there does not exist a perfect four-error-correcting code in Sn, where
9n4 − 46n3 + 87n2 − 50n + 24 has a prime factor p > n, or 9 ≤ n ≤ 50. We
further prove the nonexistence results of perfect t-error-correcting codes in Sn, where
2t+ 1 ≤ n ≤ max{4t2e−2+1/t − 2, 2t+ 1} for t ≥ 2, or min{ e2

√
n+ 2, bn−12 c} ≤ t ≤

bn−12 c for n ≥ 7, and e is the Napier’s constant.
The rest of this paper is organized as follows. In Section 2, we give the definitions

and notations of permutation codes under the Hamming metric and summarize some
important facts regarding the bounds. In Section 3, we propose some sufficient
conditions of the nonexistence of perfect permutation codes under the Hamming
metric. In Section 4, we prove the nonexistence of perfect t-error-correcting codes
in Sn for some n and t under the Hamming metric. Section 5 concludes this paper.

2. Preliminaries

In this section we give some definitions of permutation codes under the Hamming
metric and summarize some important facts regarding the bounds.

Let [n] , {1, 2, . . . , n−1, n} and e be the Napier’s constant. Let Sn be the set of
all permutations over [n]. For any permutation π ∈ Sn, we denote the permutation

by π , [π(1), π(2), . . . , π(n)]. For two permutations σ, π ∈ Sn, the product π ◦ σ
is defined as the composition of σ on π, that is, π ◦ σ(i) = σ(π(i)) for all i ∈ [n].
Hence, Sn forms a noncommutative group of size n! under this operation. Let
εn , [1, 2, . . . , n] be the identity element of Sn. For each π ∈ Sn, let π−1 be the
inverse element of π.

For two permutations σ, π ∈ Sn, the Hamming distance between them is the
number of positions in which their vector components differ, that is,

d(σ, π) = |{i ∈ [n] : σ(i) 6= π(i)}|.

For 1 ≤ d ≤ n, we say that C ⊂ Sn is an (n, d)-permutation code under the
Hamming metric, if d(σ, π) ≥ d for any two distinct permutations π, σ ∈ C. We
denote the largest size of an (n, d)-permutation code under the Hamming metric as
A(n, d). For a permutation σ ∈ Sn, a Hamming ball or sphere of radius t centered

at σ, denoted as Bn(σ, t) and Sn(σ, t), is defined by Bn(σ, t) , {π ∈ Sn|d(σ, π) ≤ t}
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and Sn(σ, t) , {π ∈ Sn|d(σ, π) = t}, respectively. Clearly, the size of a Hamming
ball or a sphere of radius t under the Hamming metric does not depend on the
center of the ball or the sphere. For convenience, we denote the size of Bn(π, t) and
Sn(π, t) as Bn(t) and Sn(t), respectively. Then, we obtain that

Sn(t) = |{π ∈ Sn|d(π, εn) = t}|.

We now summarize some important results of the lower and upper bounds on
A(n, d).

A derangement of order t is a permutation π ∈ St with no fixed points, that is,
π(i) 6= i for 1 ≤ i ≤ t. Let Dt be the number of derangements of order t. Then
from [28] we have

(1) Sn(t) =

(
n

t

)
Dt.

Clearly, due to the relationship between Bn(t) and Sn(t), it follows that

(2) Bn(t) = 1 +

t∑
i=1

Sn(i) = 1 +

t∑
i=1

(
n

i

)
Di.

The Gilbert-Varshamov bound and the sphere-packing bound for permutation
codes under the Hamming metric are given as follows:

Proposition 1. [28, Proposition 3]

(3)
n!

Bn(d− 1)
≤ A(n, d) ≤ n!

Bn(bd−12 c)
.

Frankl and Deza [13] proposed another upper bound in the following proposition.

Proposition 2. [13, Theorem 4]

(4) A(n, d) ≤ n!

(d− 1)!
.

When d = 2t+1, an (n, 2t+1)-permutation code C of size M under the Hamming
metric is a t-error-correcting code. Furthermore, if M ·Bn(t) = n!, we call the code
C a perfect (n, 2t + 1)-permutation code under the Hamming metric. That is, the
balls with radius t centered at the codewords of C form a partition of Sn. A perfect
(n, 2t + 1)-permutation code under the Hamming metric is also called a perfect
t-error-correcting code under the Hamming metric.

Based on the above definitions and notations, by using some upper bounds and
the properties of Bn(t) and Sn(t), we will prove the nonexistence of perfect t-error-
correcting codes in Sn under the Hamming metric for some n and t = 1, 2, 3, 4, or
2t+ 1 ≤ n ≤ max{4t2e−2+1/t − 2, 2t+ 1} for t ≥ 2, or min{ e2

√
n+ 2, bn−12 c} ≤ t ≤

bn−12 c for n ≥ 7.

3. Some sufficient conditions of the nonexistence of perfect
permutation codes

In this section, we will give some sufficient conditions of the nonexistence of a
perfect t-error-correcting code in Sn under the Hamming metric. By using some
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properties of Bn(t), we compute polynomial representations of Bn(t) for some t.
Due to the definition of Dt [13], we have the following expression

(5) Dt = t!

t∑
j=0

(−1)j

j!
.

To avoid confusion, we illustrate that n, t, s are all integers in the sequel. By (5),
it follows that D1 = 0, D2 = 1, D3 = 2, and D4 = 9. Hence, by (2), we give the
polynomial representations of Bn(t) for t = 1, 2, 3, 4 as follows.

Lemma 3.1. It holds that
Bn(1) = 1,

Bn(2) =
n2 − n+ 2

2
,

Bn(3) =
(n+ 1)(2n2 − 5n+ 6)

6
,

Bn(4) =
9n4 − 46n3 + 87n2 − 50n+ 24

24
.

Proof. By (2) and (5), it can be readily verified that Bn(1) = 1 +
(
n
1

)
D1 = 1. We

also compute that Bn(2) = Bn(1) +
(
n
2

)
D2 = 1 +

(
n
2

)
= n2−n+2

2 . Similarly, we have

that Bn(3) = (n+1)(2n2−5n+6)
6 and Bn(4) = 9n4−46n3+87n2−50n+24

24 .

In the following, we present a sufficient condition of the nonexistence of a perfect
t-error-correcting code under the Hamming metric by using the sphere packing
upper bound and the property of Bn(t), where 1 ≤ t ≤

⌊
n−1
2

⌋
.

Theorem 3.2. For 1 ≤ t ≤
⌊
n−1
2

⌋
, if Bn(t) has a prime factor p > n, then there

does not exist a perfect t-error-correcting code in Sn under the Hamming metric.

Proof. By the sphere-packing upper bound in Proposition 1, if there exists a perfect
t-error-correcting code C of size M in Sn under the Hamming τ -metric then Bn(t) ·
M = n!. If Bn(t) has a prime factor p > n then Bn(t) - n!. Therefore, if Bn(t) has
a prime factor p > n, then there does not exist a perfect t-error-correcting code in
Sn under the Hamming metric. So, we prove the above result.

By comparing two upper bounds on A(n, d) in Propositions 1 and 2, we can give
another sufficient condition of the nonexistence of a perfect t-error-correcting code
under the Hamming metric. We present an upper estimation of Bn(t) by using the
following lemma.

Lemma 3.3. For 1 ≤ t, we have that

Dt ≤ t!(1−
1

t+ 1
).

Proof. By (5), it follows that

(6) Dt+1 = (t+ 1)Dt + (−1)t+1.

Moreover, we compute

(t+ 1)!(1− 1

t+ 2
)− (t+ 1)

(
t!(1− 1

t+ 1
)
)

= (t+ 1)!(
1

t+ 1
− 1

t+ 2
)

=
t!

t+ 2
≥ 1,(7)
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where t ≥ 3. Since D1 = 0 and D2 = 1, it can be easily verified that Dt ≤ t!(1− 1
t+1 )

for 1 ≤ t ≤ 3. When t ≥ 3, we will prove that

(8) Dt ≤ t!(1−
1

t+ 1
).

by induction. When t = 3, we easily have that D3 = 2 ≤ 3!(1− 1
3+1 ).

Now assume that Ds satisfies the condition in (8) for some integers s ≥ 3, that
is, Ds ≤ s!(1− 1

s+1 ).
When t = s+ 1, it follows that

Ds+1
(a)
= (s+ 1)Ds + (−1)s+1 ≤ (s+ 1)Ds + 1

(b)

≤ (s+ 1)!(1− 1

s+ 1
) + 1

(c)

≤ (s+ 1)!(1− 1

s+ 2
),(9)

where
(a)
= ,

(b)

≤ ,
(c)

≤ follows from (6), the induction hypothesis on Ds, and (7), respec-
tively. Hence, by induction, we have that

Dt ≤ t!(1−
1

t+ 1
),

for t ≥ 3. Since t = 1, 2, this result also holds. Thus, the lemma follows.

Next, by using Lemma 3.3, we will present the upper bound on Bn(t), that is,
Bn(t) ≤ n!

(n−t)! as follows.

Lemma 3.4. For 1 ≤ t ≤
⌊
n−1
2

⌋
, we have that

(10) Bn(t) ≤ n!

(n− t)!
.

Proof. We prove this result by induction. When t = 1, by Lemma 3.1, it follows
that Bn(1) = 1. Hence, Bn(1) < n!

(n−1)! = n. Now assume that Bn(s) satisfies the

condition in (10) for some integers s ≥ 1, that is, Bn(s) ≤ n!
(n−s)! .

When t = s+ 1, we have that

Bn(s+ 1)
(d)
= Bn(s) +

(
n

s+ 1

)
Ds+1

(e)

≤ n!

(n− s)!
+

(
n

s+ 1

)
Ds+1

(f)

≤ n!

(n− s)!
+

(
n

s+ 1

)
(s+ 1)!(1− 1

s+ 2
),(11)

where
(d)
= ,

(e)

≤ ,
(f)

≤ follows from (2), the induction hypothesis on Bn(s), and Lemma
3.3, respectively. If t = s+ 1 then n ≥ 2s+ 3. Hence, we have that

(12) 1− 1

s+ 2
≤ 1− 1

n− s
.

By (11) and (12), we have that

Bn(s+ 1) ≤ n!

(n− s)!
+

(
n

s+ 1

)
(s+ 1)!(1− 1

n− s
) =

n!

(n− s− 1)!
.



6 Xiang Wang and Wenjuan Yin

Hence, by induction, it follows that

Bn(t) ≤ n!

(n− t)!
,

for 1 ≤ t ≤
⌊
n−1
2

⌋
. So, the lemma follows.

In the following TABLE 1, we compare the values of Bn(t) and n!
(n−t)! for t =

2, 3, or 4, and 2t+ 1 ≤ n ≤ 10.

Table 1. The values of (Bn(t), n!
(n−t)! ) for 2 ≤ t ≤ 4 and n ≤ 10.

(Bn(t), n!
(n−t)! ) n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

t = 2 (11, 20) (16, 30) (22, 42) (29, 56) (37, 72) (46, 90)
t = 3 − − (92, 210) (141, 336) (205, 504) (286, 720)
t = 4 − − − − (1339, 3024) (2176, 5040)

Assume that C is a perfect t-error-correcting code of size M in Sn under the
Hamming metric. By Proposition 1, then M = n!

Bn(t) . By Proposition 2, we present

another sufficient condition of the nonexistence of a perfect t-error-correcting code
in Sn under the Hamming metric in the following theorem.

Theorem 3.5. For 1 ≤ t ≤ bn−12 c, if (2t)! > n!
(n−t)! , then there does not exist a

perfect t-error-correcting code in Sn under the Hamming metric.

Proof. Since C is a perfect t-error-correcting code of size M in Sn under the Ham-
ming metric, we have that M = n!

Bn(t) . By Proposition 2, it follows that

M =
n!

Bn(t)
≤ n!

(2t)!
.

If (2t)! > n!
(n−t)! , by Lemma 3.4, then we have that (2t)! > Bn(t). Therefore, if

(2t)! > n!
(n−t)! then there does not exist a perfect t-error-correcting code in Sn under

the Hamming metric.

4. The nonexistence of perfect t-error-correcting codes in Sn

In the section, we will study the nonexistence of a perfect t-error-correcting code
in Sn for some n and t by using Theorems 3.2 and 3.5. We need some results of the
exact values of A(n, d) as follows.

Lemma 4.1. [5, Proposition 1.1] It holds that

A(n, 2) = n!,

A(n, 3) = n!/2,

A(n, n) = n.
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4.1. The nonexistence of perfect one-error-correcting code. When t =
1, by the exact value of A(n, 3) in Lemma 4.1, we will discuss the nonexistence of
a perfect one-error-correcting code in Sn in the following theorem.

Theorem 4.2. For n ≥ 3, there does not exist a perfect one-error-correcting code
in Sn under the Hamming metric.

Proof. Assume that C is a perfect one-error-correcting code of size M in Sn under
the Hamming metric. By Lemma 3.1 and Proposition 1, it follows thatM = n!

Bn(1) =

n!. By Lemma 4.1, we have that M ≤ n!/2. So, for n ≥ 3, there does not exist a
perfect one-error-correcting code C in Sn under the Hamming metric.

Example 1. When n = 3, let C = {[1, 2, 3], [2, 3, 1], [3, 1, 2]} be a permutation code
with minimum distance 3 and maximum size A(3, 3) = 3. Obviously, [1, 3, 2] /∈ C
and d([1, 3, 2], π) ≥ 2 for every π ∈ C. Hence, C is not a perfect one-error-correcting
code of size A(3, 3) in S3 under the Hamming metric.

4.2. The nonexistence of perfect t-error-correcting code for t = 2, 3,
or 4. When t = 2, 3, or 4, by Lemma 3.1 and Theorem 3.2, we will study the
nonexistence of a perfect t-error-correcting code in Sn as follows.

When t = 2, by Lemma 3.1, we have that Bn(2) = n2−n+2
2 . By computing the

value of n2 − n + 2 for 5 ≤ n ≤ 17, it follows that n2 − n + 2 has a prime factor
p > n except for n = 6, 11, 16. If n = 6 then B6(2) = 16 < (2 × 2)! = 24. If
n = 16 then B16(2) = 121 = 112. Thus, 121 - 16!. So, by Theorem 3.2, we prove
the nonexistence of a perfect two-error-correcting code in Sn, where n2 − n+ 2 has
a prime factor p > n, or 5 ≤ n < 11, or 12 ≤ n ≤ 17.

When t = 3, by Lemma 3.1, we have that Bn(3) = (n+1)(2n2−5n+6)
6 . First, if

n+1 > 8 is a prime then Bn(3) have a prime factor n+1 > n. Second, we compute
2n2 − 5n + 6 for 7 ≤ n ≤ 47 and obtain that (n + 1)(n2 + 2n − 6) has a prime
factor p > n except for n = 38. If n = 38 then B38(3) = 17576 = 23 × 133. Thus,
17576 - 38!. So, by Theorem 3.2, we prove the nonexistence of a perfect three-error-
correcting code in Sn, where n+1 > 6 is a prime, or 2n2−5n+6 has a prime factor
p > n, or 7 ≤ n ≤ 47.

When t = 4, by Lemma 3.1, we have that Bn(4) = 9n4−46n3+87n2−50n+24
24 . By

computing the value of 9n4 − 46n3 + 87n2 − 50n + 24 for 9 ≤ n ≤ 50, it follows
that 9n4 − 46n3 + 87n2 − 50n + 24 has a prime factor p > n. So, by Theorem
3.2, we prove the nonexistence of a perfect four-error-correcting code in Sn, where
9n4 − 46n3 + 87n2 − 50n+ 24 has a prime factor p > n, or 9 ≤ n ≤ 50.

By the above discussion, the following theorem is easily obtained.

Theorem 4.3. When t = 2, there does not exist a perfect two-error-correcting code
in Sn, where n2 − n+ 2 has a prime factor p > n, or 5 ≤ n < 11, or 12 ≤ n ≤ 17.
When t = 3, there does not exist a perfect three-error-correcting code in Sn, where
n + 1 > 6 is a prime, or 2n2 − 5n + 6 has a prime factor p > n, or 7 ≤ n ≤ 47.
When t = 4, there does not exist a perfect four-error-correcting code in Sn, where
9n4 − 46n3 + 87n2 − 50n+ 24 has a prime factor p > n, or 9 ≤ n ≤ 50.

4.3. The nonexistence of perfect t-error-correcting code for some
fixed t ≥ 2. Given a fixed value of t, by Theorem 3.5, we compute the range of
n such that there are no perfect t-error-correcting codes in Sn under the Hamming
metric as follows. For convenience, let f(n) = n!

(n−t)! , where n ≥ 2t+ 1 and t ≥ 2 is

a fixed integer.
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It follows that f(n+1)
f(n) = n+1

n−t+1 > 1 and f(n) is an increasing function. When

n = 2t+ 1, we have that

f(2t+ 1) =
(2t+ 1)!

(t+ 1)!
.

Thus,
f(2t+ 1)

(2t)!
=

(2t+ 1)

(t+ 1)!
<

2t+ 1

2(t+ 1)
< 1,

where t ≥ 2. When n = 4t2 + t− 1, we have that

f(4t2 + t− 1)

(2t)!
=

(4t2 + t− 1) · · · 4t2

(2t)!
>

(2t)2t

(2t)!
> 1.

Hence, there exists some integer (2t+ 1) < n0 < 4t2 + t− 1 such that f(n0) < (2t)!
and f(n0+1) ≥ (2t)!. For convenience, let n0(t) be the integer such that f

(
n0(t)

)
<

(2t)! and f
(
n0(t) + 1

)
≥ (2t)!, where t ≥ 2.

By Theorem 3.5, we easily obtain the following lemma.

Lemma 4.4. Given an integer t ≥ 2, if 2t + 1 ≤ n ≤ n0(t) then there does not
exist a perfect t-error-correcting code in Sn.

Proof. By the definition of n0(t), we have that f(n)
(2t)! < 1 for 2t + 1 ≤ n ≤ n0(t).

Hence, by Theorem 3.5, it follows that there does not exist a perfect t-error-
correcting code in Sn for 2t+ 1 ≤ n ≤ n0(t).

Example 2. When t = 2, we have that f(5)
4! = 5

6 and f(6)
4! = 5

4 . Hence, n0(2) = 5.

When t = 3, we have that f(9)
6! = 7

10 and f(10)
6! = 1. Thus, n0(3) = 9. When t = 4,

we have that f(15)
8! = 13

16 and f(16)
8! = 13

12 . It follows that n0(4) = 15. When t = 5,

we have f(22)
10! = 209

240 and f(23)
10! = 4807

4320 . Therefore, n0(5) = 22.

Now, we present the lower and upper bounds on n0(t) as follows.

Lemma 4.5. Given an integer t ≥ 2 and n0(t) is defined as above, we have that

(13) n0(t) < (4t2 + 4t+ 1)e−2+γ(t)e

(
ln(2t+1)

)
/t,

and

(14) n0(t) ≥ max{4t2e−2+1/t − 2, 2t+ 1},
where γ(t) = t

2(T−t) and T = max{4t2e−2+1/t − 2, 2t+ 1}.

Proof. First, we present the lower bound on n0(t). By the definition of n0(t) and
f(n), it follows that

f
(
n0(t) + 1

)
=

(
n0(t) + 1

)
!(

n0(t) + 1− t
)
!
≥ (2t)!.

Then, we have that
n0(t)+1∑

i=n0(t)−t+2

ln i ≥
2t∑
i=1

ln i.

Since ln i <
∫ i+1

i
lnxdx < ln(i+ 1) for 1 ≤ i, we have that

2t∑
i=1

ln i =

2t∑
i=2

ln i >

2t∑
i=2

∫ i

i−1
lnxdx =

∫ 2t

1

lnxdx = 2t ln(2t)− (2t− 1),(15)
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and

n0(t)+1∑
i=n0(t)−t+2

ln i <

n0(t)+1∑
i=n0(t)−t+2

∫ i+1

i

lnxdx =

∫ n0(t)+2

n0(t)−t+2

lnxdx

=
(
n0(t) + 2

)
ln
(
n0(t) + 2

)
−
(
n0(t) + 2− t

)
ln
(
n0(t) + 2− t

)
− t.(16)

By (15) and (16), it follows that(
n0(t) + 2

)
ln
(
n0(t) + 2

)
−
(
n0(t) + 2− t

)
ln
(
n0(t) + 2− t

)
− t > 2t ln(2t)− (2t− 1).

Hence,

t ln
(
n0(t) + 2

)
+
(
n0(t) + 2− t

)
ln

n0(t) + 2

n0(t) + 2− t
> 2t ln(2t)− (t− 1).(17)

Since ln(1 + x) < x for 0 < x < 1, we have that(
n0(t) + 2− t

)
ln

n0(t) + 2

n0(t) + 2− t
>
(
n0(t) + 2− t

) t

n0(t) + 2− t
= t,(18)

where 0 < t
n0(t)+2−t < 1. By (17) and (18), it follows that

t ln
(
n0(t) + 2

)
> 2t ln(2t)− (2t− 1).

Hence, we have that

n0(t) > e

(
2t ln(2t)−(2t−1)

)
/t − 2.

It is easily verified that

e

(
2t ln(2t)−(2t−1)

)
/t − 2 = e2 ln(2t)e−2+1/t − 2 = 4t2e−2+1/t − 2.

Moreover, since n0(t) ≥ 2t+ 1, it follows that n0(t) ≥ max{4t2e−2+1/t − 2, 2t+ 1}.
Second, we give the upper bound on n0(t). By the definition of n0(t), it follows

that

f
(
n0(t)

)
=

n0(t)!(
n0(t)− t

)
!
< (2t)!.

Then,
n0(t)∑

i=n0(t)−t+1

ln i <

2t∑
i=1

ln i.

Since ln i <
∫ i+1

i
lnxdx < ln(i+ 1) for 1 ≤ i, we have that

2t∑
i=1

ln i <

2t∑
i=1

∫ i+1

i

lnxdx =

∫ 2t+1

1

lnxdx = (2t+ 1) ln(2t+ 1)− 2t,(19)

and

n0(t)∑
i=n0(t)−t+1

ln i >

n0(t)−1∑
i=n0(t)−t

∫ i+1

i

lnxdx =

∫ n0(t)

n0(t)−t
lnxdx

= n0(t) lnn0(t)−
(
n0(t)− t

)
ln
(
n0(t)− t

)
− t.(20)

By (19) and (20), it follows that

n0(t) lnn0(t)−
(
n0(t)− t

)
ln
(
n0(t)− t

)
− t < (2t+ 1) ln(2t+ 1)− 2t.
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Further, we have that

t lnn0(t) +
(
n0(t)− t

)
ln

n0(t)

n0(t)− t
< (2t+ 1) ln(2t+ 1)− t.(21)

For convenience, let α(t) = t

2
(
n0(t)−t

) . Since ln(1 + x) > x − x2/2 for 0 < x < 1,

we have that(
n0(t)− t

)
ln

n0(t)

n0(t)− t
>
(
n0(t)− t

)( t

n0(t)− t
− t2

2
(
n0(t)− t

)2 )
= t
(
1− t

2
(
n0(t)− t

)) = t
(
1− α(t)

)
,(22)

where 0 < t
n0(t)−t < 1. By (21) and (22), it follows that

t lnn0(t) < (2t+ 1) ln(2t+ 1)−
(
2− α(t)

)
t.

Then,

n0(t) < e

(
(2t+1) ln(2t+1)−(2−α(t))t

)
/t.

By (14) and the definition of γ(t), since γ(t) = t
2(T−t) and n0(t) > T , it follows that

γ(t) > α(t) > 0. Hence, we have that

n0(t) < e

(
(2t+1) ln(2t+1)−(2−γ(t))t

)
/t.

Moreover, e

(
(2t+1) ln(2t+1)−(2−γ(t))t

)
/t = (4t2 + 4t + 1)e−2+γ(t)e

(
ln(2t+1)

)
/t. So, we

prove the above result.

Next, we compare the upper and lower bounds on n0(t) with the exact value

of n0(t) as follows. For convenience, we denote e

(
(2t+1) ln(2t+1)−(2−γ(t))t

)
/t and

e

(
2t ln(2t)−(2t−1)

)
/t − 2 as Un0(t) and Ln0(t), respectively.

Example 3. When t = 2, it follows that Un0(2) ≈ 10.5 and Ln0(2) = 5. When
t = 3, we have that Un0(3) ≈ 18.5 and Ln0(3) = 7. When t = 4, it follows that
Un0(4) ≈ 28.4 and Ln0(4) ≈ 9.1. When t = 5, we obtain that Un0(5) ≈ 30.4
and Ln0(5) ≈ 14.5. Moreover, we give the values of n0(t), Un0(t), and Ln0(t) for
2 ≤ t ≤ 10, or t = 100, 200 in TABLE 2.

Table 2. The values of n0(t), Un0(t), and Ln0(t) for 2 ≤ t ≤ 10,
or t = 100, 200.

t 2 3 4 5 6 7 8 9 10 100 200
n0(t) 5 9 15 22 30 39 49 61 73 5659 22181
Un0(t) 10.5 18.5 28.4 30.4 42.9 52.5 62.8 75.2 88.2 5819.4 22528.4
Ln0(t) 5 7 9.1 14.5 21.0 28.6 36.9 46.9 57.9 5465.8 21760.2

When t tends to be infinity, we will prove that lim
t→∞

Un0(t)
Ln0(t)

= 1 as follows.

Lemma 4.6. When t tends to be infinity, we have that

lim
t→∞

Un0(t)

Ln0(t)
= 1.
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Proof. First, we compare the sizes of 4t2e−2+1/t − 2 and 2t+ 1 where t tends to be
infinity. It is easily obtained that

(23) 4t2e−2+1/t − 2 > 2t+ 1,

when t tends to be infinity. Thus, we only prove that lim
t→∞

Un0(t)
4t2e−2+1/t−2 = 1.

Second, we compute the value of γ(t) when t tends to be infinity. By the definition
of γ(t) and (23), we have that

(24) lim
t→∞

γ(t) = lim
t→∞

t

2(4t2e−2+1/t − 2− t)
= 0

Finally, by (23) and (24), it follows that

lim
t→∞

Un0(t)

Ln0(t)
= lim
t→∞

(4t2 + 4t+ 1)e−2e

(
ln(2t+1)

)
/t

4t2e−2+1/t − 2
= 1

Hence, the lemma follows.

By Lemmas 4.4 and 4.5, the following theorem is easily obtained.

Theorem 4.7. Given an integer t ≥ 2, if 2t+ 1 ≤ n ≤ max{4t2e−2+1/t− 2, 2t+ 1}
then there does not exist a perfect t-error-correcting code in Sn.

Example 4. When t = 10, we have that Ln0(10) ≈ 57.9. Then, by Theorem
4.7, we have that there does not exist a perfect 10-error-correcting code in Sn for
21 ≤ n ≤ 57.

4.4. The nonexistence of perfect t-error-correcting code for some
fixed n ≥ 7. In this subsection, given a fixed value of n, by Theorem 3.5, we
compute the range of t such that there are no perfect t-error-correcting codes in Sn
under the Hamming metric as follows. When t = bn−12 c, it is easily verified that
n!

(n−t)! < (2t)! for n ≥ 7. Moreover, when t = 1, we obtain that n!
(n−t)! > (2t)! for

n ≥ 7. Similarly, we also find the integer t0(n) such that n!(
n−t0(n)

)
!
<
(
2t0(n)

)
! and

n!(
n−t0(n)+1

)
!
≥
(
2t0(n)− 2

)
!.

Next, we will give the estimation of t0(n). When t ≥ 5, we have that

4t2e−2 − 2 > 2t+ 1.

Hence, when t ≥ 5 and 2t+ 1 ≤ n ≤ 4t2e−2 − 2 < 4t2e−2+
1
t − 2, by using Theorem

4.7, we have that there does not exist a perfect t-error-correcting code in Sn. So,
when n ≥ 11 and e

2

√
n+ 2 ≤ t ≤ bn−12 c, there does not exist a perfect t-error-

correcting code in Sn. Thus, it follows that t0(n) ≤ e
2

√
n+ 2 for n ≥ 11. When

7 ≤ n ≤ 10, we have that e
2

√
n+ 2 > bn−12 c. Thus, it follows that

(25) t0(n) ≤ min{e
2

√
n+ 2, bn− 1

2
c},

for n ≥ 7.
By the above discussion, we easily obtain the following theorem.

Theorem 4.8. Given an integer n ≥ 7, if min{ e2
√
n+ 2, bn−12 c} ≤ t ≤ b

n−1
2 c then

there does not exist a perfect t-error-correcting code in Sn.
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Example 5. When n = 7, min{ e2
√
n+ 2, bn−12 c} = 3. Hence, there does not exist a

perfect 3-error-correcting code in S7. When n = 100, min{ e2
√
n+ 2, bn−12 c} ≈ 13.8.

Thus, there does not exist a perfect t-error-correcting code in S100 for 13.8 ≤ t ≤ 49.
When n = 1000, min{ e2

√
n+ 2, bn−12 c} ≈ 43.01. Therefore, there does not exist a

perfect t-error-correcting code in S1000 for 43.01 ≤ t ≤ 499.

5. Conclusion

Permutation codes under the Hamming metric have been studied due to their
applications in power line communications and block ciphers. In this paper, we
considered the nonexistence of perfect codes under the Hamming metric. We gave
two sufficient conditions of the nonexistence of perfect permutation codes under
the Hamming metric. Moreover, we used these sufficient conditions to prove that
there does not exist a perfect t-error-correcting code in Sn under the Hamming
metric for some n and t = 1, 2, 3, 4, or 2t + 1 ≤ n ≤ max{4t2e−2+1/t − 2, 2t + 1}
for t ≥ 2, or min{ e2

√
n+ 2, bn−12 c} ≤ t ≤ bn−12 c for n ≥ 7. Specifically, we

proved that there does not exist a perfect one-error-correcting code in Sn. We also
proved that there does not exist a perfect two-error-correcting code in Sn, where
n2 − n + 2 has a prime factor p > n, or 5 ≤ n < 11, or 12 ≤ n ≤ 17. We further
proved that there does not exist a perfect three-error-correcting code in Sn,where
n+ 1 > 6 is a prime, or 2n2 − 5n+ 6 has a prime factor p > n, or 7 ≤ n ≤ 47. We
proved that there does not exist a perfect four-error-correcting code in Sn, where
9n4−46n3+87n2−50n+24 has a prime factor p > n, or 9 ≤ n ≤ 50. Moreover, given
an integer t ≥ 2, we proved that there does not exist a perfect t-error-correcting
code in Sn, where 2t + 1 ≤ n ≤ max{4t2e−2+1/t − 2, 2t + 1}. Given an integer
n ≥ 7, we also proved that there does not exist a perfect t-error-correcting code in
Sn, where min{ e2

√
n+ 2, bn−12 c} ≤ t ≤ b

n−1
2 c.
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