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New Lower Bounds for Permutation Arrays Using
Contraction

Sergey Bereg ∗ Zevi Miller † Luis Gerardo Mojica ∗ Linda Morales ∗

I.H. Sudborough∗

August 28, 2018

Abstract

A permutation array A is a set of permutations on a finite set Ω, say of size n. Given
distinct permutations π, σ ∈ Ω, we let hd(π, σ) = |{x ∈ Ω : π(x) 6= σ(x)}|, called the
�Hamming distance between π and σ. Now let hd(A) = min{hd(π, σ) : π, σ ∈ A}. For
positive integers n and d with d ≤ n we let M(n, d) be the maximum number of permuta-
tions in any array A satisfying hd(A) ≥ d. There is an extensive literature on the function
M(n, d), motivated in part by suggested applications to error correcting codes for message
transmission over power lines.

A basic fact is that if a permutation group G is sharply k-transitive on a set of size
n ≥ k, then M(n, n− k+ 1) = |G|. Motivated by this we consider the permutation groups
AGL(1, q) and PGL(2, q) acting sharply 2-transitively on GF (q) and sharply 3-transitively
on GF (q)∪{∞} respectively. Applying a contraction operation to these groups, we obtain
the following new lower bounds for prime powers q satisfying q ≡ 1 (mod 3).

1. M(q − 1, q − 3) ≥ (q2 − 1)/2 for q odd, q ≥ 7,

2. M(q − 1, q − 3) ≥ (q − 1)(q + 2)/3 for q even, q ≥ 8,

3. M(q, q − 3) ≥ Kq2log(q) for some constant K if q is odd, q ≥ 13.

These results resolve a case left open in a previous paper [2], where it was shown that
M(q−1, q−3) ≥ q2−q and M(q, q−3) ≥ q3−q for all prime powers q such that q 6≡ 1 (mod
3). We also obtain lower bounds for M(n, d) for a finite number of exceptional pairs n, d,
by applying this contraction operation to the sharply 4 and 5-transitive Mathieu groups.

1 Introduction

1.1 Notation and General Background

We consider permutations on a set Ω of size n. Given two such permutations π and σ, we let
hd(π, σ) = |{x ∈ Ω : π(x) 6= σ(x)}|, so hd(π, σ) is the number of elements of Ω at which π and
σ disagree. When hd(π, σ) = d, we say that π and σ and are at Hamming distance d, or that
the Hamming distance between π and σ is d. A permutation array A is a set of permutations
on Ω. We say that hd(A) = d if d = min{hd(π, σ) : π, σ ∈ A}. For positive integers n and d
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with d ≤ n we let M(n, d) be the maximum number of permutations in any permutation array
A satisfying hd(A) ≥ d.

Consider a fixed ordering x1, x2, · · · , xn of the elements of Ω. The image string of the per-
mutation σ ∈ A is the string σ(x1)σ(x2) · · · σ(xn). Thus the permutation array A can also be
regarded as an |A|×n matrix whose rows are the image strings of the permutations in A. When
hd(A) = d, any two rows of A disagree in at least d positions and some pair of rows disagree in
exactly d positions. In particular, if G is a permutation group acting on Ω, then we obtain a
|G| × n permutation array whose rows consist of the mage strings of all the elements of G. We
refer to this array by G, and we use hd(G) to refer to the hamming distance of this array.

The study of permutation arrays began (to our knowledge) with the papers [9] and [13], where
good bounds on M(n, d) (together with other results) were developed based on combinatorial
methods, motivated by the Gilbert-Varshamov bounds for binary codes. In recent years there
has been renewed interest in permutation arrays, motivated by suggested applications in power
line transmission [12], [20], [28], [15], block ciphers [27], and in multilevel flash memories [17]
and [18].

We review here some of the known results and methods for estimating M(n, d).
Some elementary exact values and bounds on M(n, d) are the following (summarized with

short proofs in [8]) ; M(n, 2) = n!, M(n, 3) = n!
2

, M(n, n) = n, M(n, d) ≥ M(n − 1, d),
M(n, d) ≥ M(n, d + 1), M(n, d) ≤ nM(n − 1, d), and M(n, d) ≤ n!

(d−1)! . More sophisticated

bounds were developed in the above cited papers [9] and [13], with a recent improvement in [29].
The smallest interesting case for d is d = 4. Here some interesting and non-elementary bounds
for M(n, 4) were developed in [11], using linear programming, characters on the symmetric group
Sn, and Young diagrams. In [19] it is shown that if K > 0 is a constant with n > e30/K

2
and

s < n1−K , then M(n, n− s) ≥ θ(s!
√
log(n)). The lower bound is achieved by a polynomial time

randomized construction, using the Lovasz Local Lemma in the analysis.
There are various construction methods for permutation arrays. First there is a connection

with mutually orthogonal latin squares (MOLS). It was shown in [7] that if there are m MOLS
of order n, then M(n, n − 1) ≥ mn. From this it follows that if q is a prime power, then
M(q, q − 1) = q(q − 1). Computational approaches for bounding M(n, d) for small n and d,
including clique search, and the use of automorphisms are described in [8], [16], and [23]. There
are also constructions of permutation arrays that arise from the use of permutation polynomials,
also surveyed in [8], which we mention briefly below.

Additional construction methods are coset search [2] and partition and extension [3]. In the
first of these, one starts with with a permutation group G on n letters with hd(G) = d, and
which is a subgroup of some group H (for example H = Sn). Now for disjoint permutation
arrays A,B on the same set of letters, let hd(A,B) = min{hd(σ, τ) : σ ∈ A, τ ∈ B}. For x /∈ G
we observe that the coset xG of G in H is a permutation array with hd(xG) = hd(G). For
cosets x1G, x1G, · · · , xkG of G, the Hamming distance of the permutation array ∪1≤i≤kxiG is
the minimum of d and m, where m = min{hd(xiG, xjG) : 1 ≤ i < j ≤ k}. The method of coset
search is to iteratively find coset representatives xi so that m, while in general less than d, is
still reasonably large. The partition and extension method is a way of obtaining constructive
lower bounds M(n+ 1, d+ 1) from such bounds for M(n, d).

Moving closer to the subject of this paper, we consider a class of optimal constructions which
arise through sharply transitive groups. We say that a permutation array A on a set Ω of
size n is sharply k-transitive on Ω if given any two k-tuples x1, x2, · · · , xk and y1, y2, · · · , yk of
distinct elements of Ω there exists a unique g ∈ A such that g(xi) = yi for all 1 ≤ i ≤ k. In
our applications A will be the set of image strings of a permutation group acting on Ω. From
the bound M(n, d) ≤ n!

(d−1)! we have for any positive integer k that M(n, n − k + 1) ≤ n!
(n−k)! .

2



Now if G is a sharply k-transitive group acting on Ω, then |G| = n!
(n−k)! . Also, in such a G any

two distinct elements g, h of G can agree in at most k − 1 positions, since otherwise gh−1 is a
nonidentity element of G fixing at least k elements of Ω, contrary to sharp k-transitivity. Thus
hd(G) ≥ n− k + 1. So a sharply k-transitive group G implies the existence of an optimal array
(the set of image strings of elements of G) realizing M(n, n − k + 1) = n!

(n−k)! . The following
theorem gives a strong converse to the above, including the generalization to arbitrary arrays
that may not be groups.

Theorem 1 [4] Let A be a permutation array on a set of n letters satisfying hd(A) ≥ n−k+1.
Then |A| = n!

(n−k)! = M(n, n− k + 1)⇐⇒ A is sharply k-transitive on this set.

The sharply k-transitive groups (for k ≥ 2) are known, and these are as follows [6], [10], [22];

k = 2 : the Affine General Linear Group AGL(1, q) acting on the finite field GF (q), consisting
of the transformations {x→ ax+ b : x, a 6= 0, b ∈ GF (q)},
k = 3 : the Projective Linear Group PGL(2, q) acting on GF (q) ∪ {∞}, consisting of the
transformations {x→ ax+b

cx+d
: x, a, b, c, d ∈ GF (q), ad− bc 6= 0},

k = 4 : the Mathieu group M11 acting on a set of size 11,

k = 5 : the Mathieu group M12 acting on a set of size 12,

arbitrary k : the symmetric group Sk acting on a set of size k is sharply k and (k−1)-transitive,
as well as the alternating group Ak acting on a set of size k is sharply (k − 2)-transitive ([22],
Theorem 7.1.4).

In this paper we obtain new lower bounds on M(n, d) for n and d near a prime power.
Previous results of this kind are given in [8] where it is shown that for n = 2k with n 6≡ 1(mod
3) we have M(n, n − 3) ≥ (n + 2)n(n − 1) and M(n, n − 4) ≥ 1

3
n(n − 1)(n2 + 3n + 8). It is

also shown that for any prime power n with n 6≡ 2(mod 3) we have M(n, n − 2) ≥ n2. These
results are based on permutation polynomials. Similar such results appearing in [2], are based
on a contraction operation applied to permutation arrays defined in the next section. The latter
results yield M(n − 1, n − 3) ≥ n2 − 1 when n 6≡ 1(mod 3), and M(n − 2, n − 5) ≥ n(n − 1)
when n 6≡ 2(mod 3) and n 6≡ 0, 1(mod 5).

Our goal is to obtain new lower bounds when q is prime power satisfying q ≡ 1 (mod 3); that
is, to resolve the case left open in [2] where the methods of that paper do not apply. For such q,
we accomplish this by applying the contraction operation to the permutation arrays AGL(1, q)
and PGL(2, q) (acting on GF (q) and on GF (q) ∪ {∞} respectively), obtaining the following
constructive lower bounds.

1. for q ≥ 7, M(q − 1, q − 3) ≥ (q2 − 1)/2 for q odd and M(q − 1, q − 3) ≥ (q − 1)(q + 2)/3 for
q even, and

2. for q ≥ 13, M(q, q − 3) ≥ Kq2log(q) for some constant K if q is odd, and

3. bounds for M(n, d) for a finite number of exceptional pairs n, d, obtained from the Mathieu
groups.

We will use standard graph theoretic notation. In particular for a graph G and S ⊆ V (G)
we let [S]G be the graph with vertex set S and edge set E([S]G) = {xy : x, y ∈ S, xy ∈ E(G)},
and we call it the graph induced by S. When G is understood by context, we abbreviate [S]G by
[S].

1.2 Contraction and the Contraction Graph

Consider a permutation array A acting on a set Ω = {x1, x2, · · · , xn} of size n, where the elements
of Ω are ordered by their subscripts. We distinguish some element, say xn, by renaming it F .

3



Thus the image string of any element σ ∈ A will be σ(x1)σ(x2) · · ·σ(F ), and we say that σ(xi)
occurs in position or coordinate xi of the string. Now for any π ∈ A, define the permutation π4

on Ω by

π4(x) =


π(F ) if x = π−1(F ),

F if x = F,

π(x) otherwise.

Thus the image string of π4 is obtained from the image string of π by interchanging the
symbols F and π(F ) if π(F ) 6= F , while π4 = π if and only if π(F ) = F . In either case, π4

has F as its final symbol. We let π4− be the permutation on n − 1 symbols obtained from π4

by dropping the last symbol F from π4. As an example, if π = aFbcd, then π4 = adbcF , and
π4− = adbc. We call the operation π → π4− contraction, and we call π4− the contraction of the

permutation π. Further, for any subset R ⊂ A, let R4 = {π4 : π ∈ R}, and R4− = {π4− : π ∈ R}.
So R4− is a permutation array on the symbol set Ω−{F} of size n−1, and is called the contraction
of R.

We note some basic properties related to the contraction operation.

Lemma 2 Let G be a permutation group acting on the set Ω of size n, and let π, σ ∈ G.
a) The only coordinates in either π or σ whose values are affected by the 4 operation are
π−1(F ), σ−1(F ), and F . Thus hd(π4, σ4) ≥ hd(π, σ)− 3.
b) Assume hd(π4, σ4) = hd(π, σ) − 3. Then πσ−1 contains a 3-cycle in its disjoint cycle
factorization, and |G| is divisible by 3.
c) Let S ⊆ G. Then |S4| = |S4− | and hd(S4) = hd(S4− ). If also hd(S) > 3, then |S| = |S4|.

Proof. Part a) follows immediately from the definition of the 4 operation.
For b), the assumption implies that there are positions xi, xj, F at which the image strings

of π and σ disagree and π4 and σ4 agree. So for some indices s, t we must have π(xi) =
xs, π(xj) = F, π(F ) = xt, while σ(xi) = F, σ(xj) = xt, σ(F ) = xs. Then πσ−1 (composing left
to right) contains the 3-cycle (xi, F, xj) in its disjoint cycle factorization. Thus the subgroup
of G generated by πσ−1 has order divisible by 3, and hence |G| is divisible by 3 by Lagrange’s
theorem.

Consider c). The first two equalities follow from the fact that all image strings in S4 have
F as their last coordinate. To see |S| = |S4| when hd(S) > 3, suppose to the contrary that
π4 = σ4 for distinct π, σ ∈ S. As noted in the proof of part a), π4 and σ4 can agree in at
most three positions where π and σ disagreed. Thus π and σ already agreed in at least n − 3
positions. So hd(π, σ) ≤ 3, a contradiction.

Consider a permutation array H on n symbols with hd(H) = d. The array H4− is on n − 1

symbols and satisfes hd(H4− ) ≥ d−3 by Lemma 2a,c. For the arrays H = AGL(1, q), PGL(2, q)

and certain Mathieu groups, our goal is to find a subset I ⊂ H with hd(I4− ) ≥ d− 2; that is, a

subset I whose contraction I4− has Hamming distance larger by 1 than the lower bound d − 3

for hd(H4− ) given by Lemma 2a. The lower bound M(n − 1, d − 2) ≥ |I4− | follows. Now our
underlying arrays H will satisfy hd(H) > 3, so hd(I) ≥ hd(H) > 3. Thus by Lemma 2c we have
hd(I4− ) = hd(I4) and |I4− | = |I4| = |I|. So we get M(n − 1, d − 2) ≥ |I|, yielding the main
results of this paper.

To find such a subset I of H, we employ a graph CH defined as follows.

4



Definition 3 Let H be a permutation array with hd(H) = d. Define the contraction graph for H,

denoted CH , by V (CH) = H and E(CH) = {πσ : π, σ ∈ H, hd(π4, σ4) = d− 3}.

For π ∈ CH , notice that if π(F ) = F , then π is an isolated point in CH . This is because then
π4 = π, so that for any other σ ∈ CH we have hd(π4, σ4) = hd(π, σ4) ≥ hd(π, σ)−2, implying
no edge joining π and σ in CH . We thus have the following characterization of edges in CH :

πσ ∈ E(CH)⇐⇒ {π(F ) 6= F, σ(F ) 6= F, σ(π−1(F )) = π(F ), π(σ−1(F )) = σ(F )}. (1)

This condition on edges is illustrated in Figure 1.

F
x

π(x)

σ(x)

Fb

F a b

a

π−1(F )σ−1(F )

Figure 1: Neighbors π, σ in CH ; σ(π−1(F )) = π(F ), and π(σ−1(F )) = σ(F )

Since hd(H4) ≥ d− 3 by Lemma 2a, it follows that any independent set I of vertices in CH
must satisfy hd(I4) ≥ d−2. Now by using Lemma 2a,c (together with hd(H) > 3 for our arrays
H) get M(n − 1, d − 2) ≥ |I| as explained in the preceding paragraph. We are thus reduced
to finding a large independent set in CH for each of the arrays H = AGL(1, q), PGL(2, q), and
Mathieu groups considered in this paper.

2 The contraction graph for AGL(1, q)

Let q be a prime power. Recall the Affine General Linear Group AGL(1, q) acting as a permu-
tation group on the finite field GF (q) of size q, as the set of transformations {x→ ax+ b : a 6=
0, x, b ∈ GF (q)} under the binary operation of composition. For any π ∈ AGL(1, q) the permu-
tation π4 on GF (q) is defined as in the previous section, based on some ordering x1, x2, · · · , xq of
the elements of GF (q), where F = xq is a distinguished element. Clearly |AGL(1, q)| = q(q−1).
By standard facts AGL(1, q) is sharply 2-transitive in this action, and it is straightforward to
see that hd(AGL(1, q)) = q − 1 (see Lemma 4a for most of that short proof).

Our goal in this section is to obtain a lower bound on M(q− 1, q− 3) for prime powers q ≥ 7
satisfying q ≡ 1(mod 3). Our method will involve the contraction graph CAGL(1,q) for AGL(1, q),
which we henceforth abbreviate by CA(q).

By definition we then have V (CA(q)) = AGL(1, q), and E(CA(q)) = {πσ : hd(π4, σ4) =
q − 4}. Following the plan described in the previous section, we find an independent set I in
CA(q). Once we have such an I, then I4− is a permutation array on q − 1 symbols, and by

Lemma 2c satisfies hd(I4− ) = hd(I4) ≥ q − 3. This implies the lower bound M(q − 1, q − 3) ≥
|I4− | = |I4| = |I|, the last equality by Lemma 2c, since q ≥ 7 implies hd(I) ≥ q − 1 > 3. The
actual size of I will then yield our precise lower bound.

We are thus reduced to finding a large independent set I in CA(q), and from this we get
the bound M(q − 1, q − 3) ≥ |I|. We begin on that in the following Lemma, which establishes
relations in the the finite field GF (q) that correspond to edges in the graph CA(q).
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Lemma 4 Let π and σ be vertices of the graph CA(q), q ≡ 1(mod 3), say with σ(x) = ax + r
and π(x) = bx+ s.
a) If a 6= b, then hd(π, σ) = q − 1.
b) If π(F ) = F , then π is an isolated point in CA(q). There are q − 1 points π satisfying
π(F ) = F .
c) Suppose π and σ are neighbors in CA(q). Then

c1) hd(π, σ) = q − 1, and hd(π4, σ4) = hd(π, σ)− 3, and
c2) a

b
and b

a
are the distinct roots of the quadratic t2 + t+ 1 = 0 over GF (q).

Proof. For a), just observe that π(x) = σ(x) has the unique solution x = s−r
a−b .

For the first claim in b) suppose not, and let σ be a neighbor of π in CA(q). Then we have
hd(π4, σ4) = q − 4, implying also that hd(π, σ) = q − 1 by Lemma 2a. Let i be the coordinate
of agreement between π and σ. Since π(F ) = F , we have π4 = π. Thus hd(π, σ4) = q − 4.
Now σ4 can have at most two coordinates, apart from i, in which it agrees with π, these being
F and j = σ−1(F ). So altogether π and σ4 agree in at most the 3 coordinates i, j, F . So
q − 4 = hd(π, σ4) ≥ q − 3, a contradiction.

Now consider the second claim in b). For any fixed i ∈ GF (q), i 6= F
Since π(F ) = F , we have q−1 choices for the value π(i) for any fixed i ∈ GF (q), i 6= F . Hence

there are q − 1 choices for the ordered pair (π(F )(= F ), π(i)), each such choice determining π
uniquely by the sharp 2-transitivity of AGL(1, q) acting on GF (q). The claim follows.

For c1), by the definition of edges in CA(q) we have q− 4 = hd(π4, σ4) ≥ hd(π, σ)− 3 using
Lemma 2a. Since hd(π, σ) = q or q − 1, it follows that hd(π, σ) = q − 1 and we have equality
throughout, as required.

Consider c2). By part c1) we have hd(π, σ) = q− 1 and hd(π4, σ4) = hd(π, σ)− 3. So there
are distinct α, β ∈ GF (q), with neither α nor β being F , such that σ(F ) = i, σ(α) = F , and
σ(β) = j, and π(F ) = j, π(α) = i, and π(β) = F for distinct i, j ∈ GF (q). This gives the
following set of equations in GF (q).

σ(α)− σ(β) = F − j = a(α− β)
σ(α)− σ(F ) = F − i = a(α− F )
π(α)− π(β) = i− F = b(α− β)
π(α)− π(F ) = i− j = b(α− F ).

(2)

The second and third equations of (2) imply

a(α− F ) = −b(α− β). (3)

Now starting with the first equation of (2) we obtain

a(α− β) = F − j
= (F − i) + (i− j)
= (a+ b)(α− F ) (by the second and fourth equations of (2)).

Multiplying equation (3) by a and the last equation by b, we obtain the equations{
a2(α− F ) = −ab(α− β)
ab(α− β) = b(a+ b)(α− F ).

(4)

Thus a2(α− F ) = −b(a+ b)(α− F ), and on dividing by α− F (since α 6= F ) we obtain

a2 + b(a+ b) = 0. (5)
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Dividing equation (5) by a2 or by b2, we obtain that a/b and b/a are both roots of the equation
t2 + t+ 1 = 0.

We show that a/b and b/a are distinct. Assuming otherwise, then a/b = 1 or −1. If q is
even then from 1 + t + t2 = 0 we get the contradiction 1 = 0 since the characteristic is 2. Now
assume q is odd. If a/b = 1, then we get 1 + 1 + 1 = 0, forcing q ≡ 0(mod 3), a contradiction.
If a/b = −1, then we get 1 = 0, again a contradiction.

Let t1 and 1
t1

be the distinct roots of t2 + t+ 1 = 0 in GF (q) for q ≡ 1 (mod 3) (by Corollary
23a). Let π ∈ CA(q) with π(x) = ax+r, and let σ be a neighbor of π in CA(q). Then by Lemma
4c2 we have σ(x) = at1 + s1 or σ(x) = a 1

t1
+ s2, so far with s1 and s2 undetermined. The next

lemma shows that s1 and s2 are uniquely determined by π and t1.

Lemma 5 Let q be a prime power with q ≡ 1 (mod 3). Suppose π is not an isolated point
of CA(q), say with π(x) = ax + r. Let t1 be a root of t2 + t + 1 = 0 in GF (q). Then the
neighbors of π in CA(q) are σ1 and σ2, given by σ1(x) = at1x + (a − t1)F + r(1 + t1) and
σ2(x) = a 1

t1
x+ (a− 1

t1
)F + r(1 + 1

t1
). In particular, each non-isolated point of CA(q) has degree

2 in CA(q).

Proof. : Let N(π) be the set of neighbors of π in CA(q). First we verify that σ1, σ2 ∈ N(π),
giving details only for σ1 ∈ N(π) as the containment σ2 ∈ N(π) is proved similarly. To do this,
we show that all conditions of (1) are satisfied with σ1 playing the role of σ. Clearly π(F ) 6= F
since π is not isolated. To show σ1(F ) 6= F , assume not. Suppose first that a 6= 1. Then
σ1(F ) = F yields F = r

1−a . But now we get π(F ) = ar
1−a + r = r

1−a = F , a contradiction. Next
suppose a = 1 so π(x) = x + r. Then σ1(F ) = F together with a = 1 yields r(1 + t1) = 0.
Combining this with t1 6= −1 yields r = 0. But then π(F ) = F , a contradiction.

So it remains to show that σ1(π
−1(F )) = π(F ) and π(σ−11 (F )) = σ1(F ). For the first

equality, solving ax + r = F we obtain π−1(F ) = F−r
a

. Thus σ1(π
−1(F )) = at1

(
F−r
a

)
+ (a −

t1)F + r(1 + t1) = aF + r = π(F ), as required. For the second equality, from the formula for
σ1 we obtain σ−11 (F ) = 1

at1

(
F (1− a+ t1)− r(1 + t1)

)
. Plugging this into π and simplifying, we

obtain π(σ−11 (F )) = 1
t1

(
F (1 − a + t1) − r(1 + t1)

)
+ r. Working backwards from the equality

π(σ−11 (F )) = σ1(F ) we must show that 1
t1

(
F (1 − a + t1) − r(1 + t1)

)
= F

(
a − t1 + at1

)
+ rt1.

This is equivalent to F
(
1− a+ t1

)
= r(t21 + t1 + 1) + F (at1 − t21 + at21) = F (at1 − t21 + at21). We

are now reduced to showing 1− a+ t1 = at1 − t21 + at21. This follows from t21 + t1 + 1 = 0.
Now let σ ∈ N(π), and we show that σ = σ1 or σ2. By Lemma 4, we know that σ(x) = at1+s1

or σ(x) = a 1
t1

+ s2 for suitable s1, s2 ∈ GF (q). Suppose first that σ(x) = at1 + s1. Applying the

equality σ(π−1(F )) = π(F ) together with π−1(F ) = F−r
a

, we get at1
(
F−r
a

)
+ s1 = aF + r. so

s1 = (a− t1)F + r(1 + t1). Thus σ = σ1. A very similar argument shows that if σ(x) = a 1
t1

+ s2,

then s2 = (a− 1
t1

)F + r(1 + 1
t1

), and thus σ = σ2. So we have N(π) = {σ1, σ2}, completing the
proof.

Consider the subgroup Q = {x+ b : b ∈ GF (q)} of AGL(1, q). Clearly |Q| = q, and for each
h ∈ GF (q), h 6= 0, Q has the coset hxQ = {hx+ b : b ∈ GF (q)}, which we abbreviate by Qh.

Theorem 6 Let q be a prime power with q ≡ 1 (mod 3). Then the connected components of
CA(q) are as follows.
a) There are q − 1 isolated points, these being the points π satisfying π(F ) = F .
b) If q is odd, then each non-isolated point component is a cycle of length 6.
c) If q is even, then each non-isolated point component is a cycle of length 3.
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Proof. For part a), we show that π ∈ CA(q) is an isolated point if and only if π(F ) = F . Then
a) follows by Lemma 4b.

If π(F ) = F , then immediately π is isolated in CA(q) by Lemma 4b. For the converse,
suppose to the contrary that π is isolated and that π(F ) 6= F . Let σ1 be given by σ1(x) =
at1x + (a − t1)F + r(1 + t1) as in Lemma 5. Then the proof of Lemma 5, starting from the
established claim π(F ) 6= F (this claim being an assumption here), shows that σ1 is a neighbor
of π in CA(q). This contradicts π being isolated.

Consider part b). By Lemma 5 each nontrivial component of CA(q) is a cycle. Let π0 be a
point on such a cycle C, say with π0 ∈ Qa. Let t1 be a fixed root of t2 + t + 1 = 0. Consider a
sequence of 4 vertices π0π1π2π3 on C with πjπj+1 ∈ E(CA(q)) for 0 ≤ j ≤ 2. We may suppose
that πj ∈ Qatj1

by Lemma 5 and straightforward induction (otherwise replace t1 by 1
t1

). Thus

π0, π1, π2 are distinct since they belong distinct cosets of Q. Since t31 = 1, we see also that π0
and π3 belong to the same coset Qa of Q. We now show that π0 6= π3. Writing π1(x) = bx + c
(so b = at1), we apply the first and third equations of (2) with π0 and π1 playing the roles of

σ and π respectively, to get t1 = b
a

= −
(
i−F
j−F

)
= −

(
π0(F )−F
π1(F )−F

)
. Applying this equation two more

times we get 1 = t31 = −
(π0(F )−F
π3(F )−F

)
, so that

(π0(F )−F
π3(F )−F

)
= −1. Thus π0(F ) 6= π3(F ) , so π0 6= π3.

Thus each cycle component has length at least 4.
Consider now a sequence of 7 vertices π0π1 · · · π6 on C with πjπj+1 ∈ E(CA(q)) for 0 ≤ j ≤ 5.

We claim the first 6 of these π0, π1, · · · , π5 must be distinct as follows. Clearly any two vertices
πj, πj+3 are distinct, 0 ≤ j ≤ 2, by the same argument that showed π0 6= π3. But any two
vertices πi, πj with i 6≡ j(mod 3) are distinct, since t1 6= 1 and t21 6= 1 imply that they belong

to different cosets of Q, proving the claim. Finally note that 1 = t61 =
(π0(F )−F
π6(F )−F

)
, so that

π0(F ) = π6(F ). Since also π0 and π6 also belong to the same coset Qa of Q, it follows that
π0 = π6. Thus the component C containing π0 is a cycle of length 6, as required.

Now consider part c). Consider as above the sequence of 4 vertices π0π1π2π3 in a nontrivial

component, with πjπj+1 ∈ E(CA(q)) for 0 ≤ j ≤ 2. We get
(π0(F )−F
π3(F )−F

)
= −1 = 1 since q is even.

So since also π0 and π3 belong to the same coset Qa of Q, it follows that π0 = π3. Thus the
cycle containing π0 has length 3.

Corollary 7 Let q be a prime power with q ≡ 1 (mod 3) and q ≥ 7. Then

a) if q is odd, then M(q − 1, q − 3) ≥ (q2 − 1)/2, and

b) if q is even, then M(q − 1, q − 3) ≥ (q − 1)(q + 2)/3.

Proof. For part a) we form an independent set I in CA(q) by taking 3 independent points
in each cycle component of of length 6, together with the set Y of isolated points. Then
M(q− 1, q− 3) ≥ |Y |+ 1

2
(|CA(q)−Y |) = q− 1 + 1

2

(
q(q− 1)− (q− 1)

)
= (q2− 1)/2 , as required.

For part b), we form an independent set I in CA(q) by taking one point from each length 3
cycle component, together with the set Y of isolated points. We then have M(q − 1, q − 3) ≥
|Y |+ 1

3
(|CA(q)− Y |) = (q − 1)(q + 2)/3.

The lower bounds in this corollary should be compared to the lower bound M(q, q − 2) ≥ q2

for prime powers q 6≡ 2(mod 3), derived by using permutation polynomials [8].

3 The contraction graph for PGL(2, q)

Let q be a power of a prime. The permutation group PGL(2, q) is defined as the set of one to
one functions σ : GF (q) ∪ {∞} → GF (q) ∪ {∞}, under the binary operation of composition,
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given by

{ σ(x) =
ax+ b

cx+ d
: a, b, c, d ∈ GF (q), ad 6= bc, x ∈ GF (q) ∪ {∞} }. (6)

Here σ(x) is computed by the rules:

1. if x ∈ GF (q) and x 6= −(d/c), then σ(x) = ax+b
cx+d

,

2. if x ∈ GF (q) and x = −(d/c), then σ(x) =∞,

3. if x =∞, and c 6= 0, then σ(x) = a/c, and

4. if x =∞, and c = 0, then σ(x) =∞.

We regard PGL(2, q) as a permutation group acting on the set GF (q) ∪ {∞} of size q + 1
via the one to one map x 7→ σ(x). One can show that |PGL(2, q)| = (q + 1)q(q − 1), and it is
well known that PGL(2, q) is sharply 3-transitive in its action on GF (q) ∪ {∞} (see [24] for a
proof). It is straightforward to verify that hd(PGL(2, q)) = q − 1, and by Theorem 1 we have
M(q + 1, q − 1) = |PGL(2, q)| = (q + 1)q(q − 1).

Take a fixed ordering of GF (q) ∪ {∞} with ∞ as final symbol, say x1, x2, · · · , xq,∞ where
the xi are the distinct elements of GF (q). Then any element π ∈ PGL(2, q) is identified with
the length q + 1 string π(x1)π(x2)π(x3) · · · π(xq)π(∞), which again we call the image string
of π. For any such π ∈ PGL(2, q) the permutation π4 on GF (q) ∪ {∞} is defined as in the
section introducing contraction, where F = ∞ is the distinguished element of GF (q) ∪ {∞}
in that definition. As an example, if π = a∞bcde, then π4 = aebcd∞, and π4− = aebcd. In

the same way, for any subset R ⊂ PGL(2, q), the sets R4, and R4− are defined as in that
section, with F = ∞. Since hd(PGL(2, q)) = q − 1 = q + 1 − 2, the image strings of any two
elements of PGL(2, q) agree in at most two positions. It follows from Lemma 2a that for any
π, σ ∈ PGL(2, q) we have hd(π4, σ4) ≥ hd(π, σ)− 3 ≥ q − 4. That is, π4 and σ4 can agree in
at most 5 positions; up to 2 occurring from the original π and σ, and up to 3 more occurring
from the π4 and σ4 operation.

As noted earlier, lower bounds for M(q, q − 3) and M(q, q − 4) when q 6≡ 1(mod 3) based on
permutation polynomials are known [8]. Thus in this section, we restrict ourselves to the case
q ≡ 1(mod 3), q an odd prime power, where such bounds are not known. For technical reasons
we take q ≥ 13.

The plan will be similar in some respects to the one we used in the previous section. That is,
for a certain set I ⊂ PGL(2, q) we will find a permutation array I4− ⊂ PGL(2, q)4− on q symbols

with hd(I4− ) ≥ q − 3, thus obtaining the lower bound on M(q, q − 3) ≥ |I4− |. This set I will be
an independent set in the contraction graph CPGL(2,q) for PGL(2, q), which we abbreviate by
CP (q).

Since hd(PGL(2, q)) = q − 1, CP (q) is given by V (CP (q)) = PGL(2, q), and E(CP (q)) =
{πσ : hd(π4, σ4) = q − 4}. So edges πσ of CP (q) correspond to pairs π, σ ∈ PGL(2, q) for
which hd(π4, σ4) achieves its least possible value of q−4, occurring when π4 and σ4 agree in 5
positions, so consequently hd(π4, σ4) = hd(π, σ)− 3. Thus a set I ⊆ V (CP (q)) is independent
in CP (q) if and only if it satisfies hd(I4) ≥ q−3. By Lemma 2c, we get hd(I4− ) = hd(I4) ≥ q−3,

while |I4− | = |I4| = |I|, with the last equality following from hd(I4) = q − 3 > 3 since q ≥ 13.
We are thus reduced to finding an independent set I in CP (q), from which M(q, q − 3) ≥ |I|

follows.
To do this, it will be useful to represent functions in PGL(2, q) in a form different than the

standard ax+b
cx+d

form.
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Definition 8 Fix a prime power q.
1. Let K, r, i ∈ GF (q) with r 6= 0. Define the function f : GF (q) ∪ {∞} → GF (q) ∪ {∞} by
f(x) = K + r

x−i for x /∈ {i,∞}, while f(∞) = K and f(i) =∞.

2. Let P = {K + r
x−i : K, r, i ∈ GF (q), r 6= 0} be the set of all functions defined in 1.

3. Let N ⊂ PGL(2, q) be given by N = {π ∈ PGL(2, q) : π(x) = ax+b
cx+d

, c 6= 0}.

We will now see that P is the same set of functions as N .

Lemma 9 Let the map α : N → P be defined as follows. For any π ∈ N with π(x) = ax+b
cx+d

, let

α(π) ∈ P be given by α(π)(x) = a
c

+
bc−ad

c2

x+ d
c

. Then

a) π and α(π) are the same function on GF (q) ∪ {∞}.
b) |P | = |N | = q2(q − 1).
c) The map α is one to one and onto.

Proof. For a), straightforward manipulation shows that for x 6= −d
c

we have π(x) = a
c

+
bc−ad

c2

x+ d
c

=

α(π)(x). Also by definition α(π)(∞) = a
c

= π(∞) and α(π)(−d
c
) =∞ = π(−d

c
). so π and α(π)

are the same function.
Consider b). Clearly |P | = q2(q − 1) since there are q − 1 choices for r, and q choices for

each of K and i, independent of each other. To show |N | = q2(q − 1), observe first that for
any π ∈ PGL(2, q) with π(x) = ax+b

cx+d
we have c = 0 ⇔ π(∞) = ∞. The ⇒ direction is

immediate by definition. To see ⇐, assume c 6= 0. Then π(∞) = a
c
6= ∞, completing the

proof of the observation. Next we have π(∞) = ∞ ⇔ π(x) = Ax + B ∈ AGL(1, q) for all
x for suitable A 6= 0, B ∈ GF (q), by definition of computing in PGL(2, q). Thus we have
|N | = |PGL(2, q)| − |AGL(2, q)| = (q + 1)q(q − 1)− q(q − 1) = q2(q − 1).

Part c) is immediate from parts a) and b), since any two distinct elements of N are distinct
as functions. As an alternative (constructive) proof, let f(x) = K + r

x−i ∈ P be given. Then for

π(x) = Kx+r−iK
x−i ∈ N we have α(π) = f . Thus α is onto, and since |P | = |N |, α is also one to

one.

We now see how the above observations, together with results which come later, reduce the
study of CP (q) to the set P of permutations.. It was shown above that for π ∈ PGL(2, q), we
have π(∞) =∞⇔ c = 0. By condition (1) (with ∞ = F ) we see that π(∞) =∞ implies that
π is an isolated point in CP (q), and we will see later that for CP (q) the converse is also true.
So to study the structure of CP (q) apart from its isolated points, we are reduced to studying its
subgraph induced by the permutations in N . By the bijection α : N ↔ P , under which π ∈ N
and α(π) ∈ P are the same permutation on GF (q) ∪ {∞}, we are then reduced to studying P .

Lemma 10 Let π, σ ∈ P with π(x) = a+ r
x−i , σ(x) = b+ s

x−j with r, s 6= 0. Then hd(π4, σ4) =

hd(π, σ)− 3⇐⇒ (b− a)(j − i) = r and r = s .

Proof. =⇒ : By assumption we have π(∞) = a and π(i) = ∞, together with σ(j) = ∞ and
σ(∞) = b. By Lemma 2a the only coordinates of either π or σ whose values are affected by
the 4 operation are the 3 coordinates π−1(∞) = i, σ−1(∞) = j, and ∞. So the assumption
hd(π4, σ4) = hd(π, σ)− 3 implies that σ(i) = a and π(j) = b. Thus we get π(j) = a+ r

j−i = b,

yielding (b−a)(j− i) = r as required. Now interchanging the roles of π and σ in this argument,
specifically, using σ(i) = b+ s

i−j = a, we get (a− b)(i− j) = s, so also r = s.
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Figure 2: The graph P1, partitioned into levels B0 and Bgi , 1 ≤ i ≤ q − 1.

⇐= : Again by assumption we have π(∞) = a, σ(∞) = b, π(i) = ∞, σ(j) = ∞, and
(b− a)(j − i) = r . To prove hd(π4, σ4) = hd(π, σ)− 3, it remains only to show that π(j) = b
and σ(i) = a. For simplicity we let r = s = 1, since the argument does not depend on
r = s. Solving for b in (b − a)(j − i) = 1 we get b = 1

j−i + a = π(j). Solving for a we get

a = b− 1
j−i = b+ 1

i−j = σ(i), as required.

Lemma 11 Let q = pm, where p is an odd prime, with q ≡ 1(mod 3), q ≥ 13. Let π, σ ∈ P ,
say with π(x) = a + r

x−i , σ(x) = b + s
x−j , with r, s 6= 0. Then hd(π4, σ4) = hd(π, σ) − 3 ⇐⇒

πσ ∈ E(CP (q)).

Proof. ⇐=: By definition of edges in CP (q) and Lemma 2a we have q − 4 = hd(π4, σ4) ≥
hd(π, σ)−3. Now since q−1 ≤ hd(π, σ) ≤ q+1, equality is forced together with hd(π, σ) = q−1.
This yields hd(π4, σ4) = hd(π, σ)− 3.
=⇒ : By the assumption hd(π4, σ4) = hd(π, σ) − 3 and hd(π, σ) ≥ q − 1 we are reduced to
showing that hd(π, σ) = q − 1; that is, that π and σ already agree in two coordinates.

By assumption and Lemma 10 we have r = s, so write π(x) = a + r
x−i and σ(x) = b + r

x−j ,

for a, b, i, j, k ∈ GF (q) with r 6= 0. Note also i 6= j, since otherwise by Lemma 10 we get r = 0,
a contradiction.

We now derive a quadratic equation over GF (q) whose distinct roots are the coordinates
of agreement between π and σ. Since hd(π4, σ4) = hd(π, σ) − 3, by Lemma 10 we have
(b− a)(j − i) = r. Thus b = r

j−i + a. Now we set π(x) = σ(x) to find the possible coordinates
x at which π and σ agree, understanding that x can be neither i nor j since π and σ can
have no agreements in any of the coordinates i = π−1(∞), j = σ−1(∞), or ∞ by Lemma 2a.
Substituting r

j−i + a for b and simplifying we obtain 1
x−i −

1
x−j = 1

j−i . Hence i−j
(x−i)(x−j) = 1

j−i ,

and we get the quadratic x2 − (i + j)x + ij + (i − j)2 = 0. By Corollary 23b there are two
distant roots to this equation, giving the two coordinates of agreement for π and σ as follows;
x1 = 1

2
[i(1 +

√
−3) + j(1−

√
−3)], and x2 = 1

2
[i(1−

√
−3) + j(1 +

√
−3)].

Hence by our reduction at the beginning of the proof it follows that πσ ∈ E(CP (q)), as
required.

The preceding two Lemmas yield the following.
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Corollary 12 Let q = pm, where p is an odd prime, with q ≡ 1(mod 3), q ≥ 13.

a) Let π, σ ∈ P , say with π(x) = a + r
x−i , σ(x) = b + s

x−j , r, s 6= 0. Then πσ ∈ E(CP (q)) ⇐⇒
r = s and (b− a)(j − i) = r.

b) π ∈ PGL(2, q) is an isolated point in CP (q)⇐⇒ π(∞) =∞.

Proof. Part a) follows immediately from Lemmas 10 and 11.
For part b), suppose first that π(∞) = ∞. Then immediately π is isolated in CP (q) by the

equivalence (1) (with ∞ = F ) applicable to any contraction graph.
Conversely, suppose to the contrary that π is isolated in CP (q) and π(∞) = x 6= ∞. Let

i = π−1(∞), and let j be any coordinate with j /∈ {i,∞}, and let π(j) = y. Then by sharp 3-
transitivity of PGL(2, q) we can find an element σ ∈ PGL(2, q) satisfying σ(j) =∞, σ(i) = x,
and σ(∞) = y. Then we get hd(σ4, π4) = hd(σ, π) − 3. So by Lemma 11 we have πσ ∈
E(CP (q)), contradicting π being isolated.

The next two theorems, which use the preceding Corollary, tell us more about CP (q). For
S ⊂ CP (q), recall that [S] is the subgraph of CP (q) induced by S. When r is fixed by context,
we denote a vertex π ∈ CP (q), π ∈ P , with π(x) = a+ r

x−i , by the abbreviation (i, a).
Consider the partition of P given by P = ∪r 6=0Pr, where for r ∈ GF (q) with r 6= 0, Pr =

{a + r
x−i : a, i ∈ GF (q)}, so |Pr| = q2. Further consider the partition of Pr given by Pr =

∪i∈GF (q)Bi(r), where Bi(r) = {a+ r
x−i : a ∈ GF (q)}.

Theorem 13 Let q = pm, where p is an odd prime, with q ≡ 1(mod 3), q ≥ 13. Then the
following hold in the graph CP (q).
a) For any r 6= s, r, s 6= 0, we have [Pr] ∼= [Ps].
b) For any r 6= 0 and i 6= j, [Bi(r)∪Bj(r)] is a perfect matching, which matches Bi(r) to Bj(r).
c) For any r 6= 0, the subgraph [Pr] is regular of degree q − 1.
d) Let v ∈ CP (q) be a non isolated point, and N(v) the set of neighbors of v in CP (q). Then
[N(v)] is a disjoint union of cycles.

Proof. For a), consider for any r ∈ GF (q), r 6= 0, the map ϕ : P1 → Pr given by ϕ(a+ 1
x−i) =

a + r
x−ri . Let v, w ∈ P1, say with v(x) = a + 1

x−i and w(x) = b + 1
x−j . Then vw ∈ E([P1]) ⇔

(b−a)(j−i) = 1⇔ (b−a)(rj−ri) = r ⇔ ϕ(v)ϕ(w) ∈ E([Pr]) . Thus ϕ is a graph isomorphism,
and since r was arbitrary, it follows that for any s 6= 0 we have [Pr] ∼= [P1] ∼= [Ps].

Consider b). Fix r, and consider any two points (i, a) and (j, b) of Pr. By Corollary 12
we have (i, a)(j, b) ∈ E(CP (q)) if and only if i 6= j and (b − a)(j − i) = r in GF (q). Let
Hij = [Bi(r) ∪ Bj(r)] for i 6= j. Note there can be no edge in Hij of the form (i, a)(i, b) since
(b− a)(i− i) = 0 6= r, and similarly no edge of the form (j, a)(j, b). Now given (i, a) ∈ Bi(r), a
point (j, b) ∈ Bj(r) is a neighbor of (i, a) if and only if (b− a)(j − i) = r by Corollary 12.

Thus for this fixed i and j we can uniquely determine b by the equation b = r(j − i)−1 + a,
showing that (j, b) is the only neighbor of (i, a) in Bj(r). A symmetric argument shows that
each point in Bj(r) has a unique neighbor in Bi(r). Thus E(Hij) is a perfect matching, which
matches Bi(r) to Bj(r).

For c), let v ∈ CP (q), say with v ∈ Bi(r) ⊂ Pr for some r 6= 0. By Corollary 12, any neighbor
of v in CP (q) must also lie in Pr. By part b), the neighbors of v are in one to one correspondence
with the sets Bj(r), j 6= i, j ∈ GF (q). Thus v has exactly |GF (q)| − 1 = q − 1 neighbors in
CP (q).

For d), take v ∈ CP (q), and by the isomorphism of subgraphs [Pr] from part a), we can take
v = (i, a) ∈ P1. By Corollary 12 we have N(v) ⊂ P1. It suffices to show that [N(v)] is regular of
degree 2. Let (j, b) ∈ N(v), so j 6= i by part b). Now any neighbor (k, c) of (j, b) in N(v) must

12
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Figure 3: Perfect matching between any two levels of P1.

lie in N((i, a))∩N((j, b)). So to show that (j, b) has degree 2 in [N(v)], it suffices to show that
(k, c) ∈ P1 satisfies (k, c) ∈ N((i, a))∩N((j, b)) if and only if k is a root in GF (q) of a quadratic
equation over GF (q) having two distinct roots in GF (q).

Suppose first that (k, c) ∈ N((i, a))∩N((j, b)). By Corollary 12 we must have the equations

(c− a)(k − i) = 1, (b− c)(j − k) = 1, (b− a)(j − i) = 1.

Using the second and third equations we get c = (j − i)−1 − (j − k)−1 + a, and from the first
equation c = (k− i)−1 + a. Setting these two expressions for c equal we obtain (k− i)−1 + (j −
k)−1 = (j − i)−1. Some simplification leads to the quadratic k2 − k(i + j) + ij + (j − i)2 = 0
with coefficients over GF (q) and unknown k. By Corollary 23b from the Appendix, we see
that that there are two distinct solutions for k; namely k1 = 1

2
[i(1 +

√
−3) + j(1−

√
−3)], and

k2 = 1
2
[i(1−

√
−3) + j(1 +

√
−3)].

Conversely suppose that k is one of the two distinct solutions of k2−k(i+j)+ij+(j−i)2 = 0.
Then (k − i)(j − k) = −k2 + k(i + j) − ij = (j − i)2, and using 1

(k−i)(j−k) =
(

1
j−i

)(
1
k−i + 1

j−k

)
,

one can derive 1
k−i + 1

j−k = 1
j−i . Now set c = 1

k−i + a, so immediately we get (c− a)(k − i) = 1.

Since (i, a) and (j, b) are neighbors we have (b − a)(j − i) = 1, so b = 1
j−i + a. It follows that

c = 1
k−i + a = 1

j−i −
1
j−k + a = b − 1

j−k . Hence we get (b − c)(j − k) = 1. Thus the three

equations (c − a)(k − i) = 1, (b − c)(j − k) = 1, and (b − a)(j − i) = 1 hold, showing that
(k, c) ∈ N((i, a)) ∩N((j, b)) by Corollary 12.

Note that once k is determined (as one of the two distinct roots), then the point (k, c) is
uniquely determined by the perfect matching between Bk(1) and Bi(1) (or Bj(1)). Thus we
obtain that an arbitrary point (j, b) ∈ N(v) has exactly two neighbors in N(v), completing d).

To round out the structure of CP (q) we consider the connected components of CP (q).

Theorem 14 Let q = pm, where p is an odd prime, with q ≡ 1(mod 3), q ≥ 13. Then the
connected components of CP (q) are as follows.
1) the isolated points - these are of the form π(x) = ax + b, a 6= 0, and there are q(q − 1) of
them,
2) the q − 1 many connected components [Pr] induced by the sets Pr.
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Proof. By Corollary 12b we have that π ∈ PGL(2, q) is an isolated point in CP (q) if and only
if π(∞) = ∞. This is equivalent to π(x) = ax + b, a 6= 0 and there are q(q − 1) such points,
completing part 1).

The remaining permutations are all of the form π(x) = a + r
x−i for suitable a, r, i ∈ GF (q)

with r 6= 0 as shown earlier. Hence it suffices to analyze the connected component structure of
[∪r 6=0Pr]. By Corollary 12 and Theorem 13a, to prove part 2) it suffices to prove that any one
of the [Pr], say [P1], is connected.

Recall the partition P1 = ∪i∈GF (q)Bi(1) defined above, and from now on we abbreviate Bi(1)
by Bi. Let g by a generator of the multiplicative cyclic subgroup of nonzero elements in GF (q).
Then we can write this partition as P1 = B0∪(∪1≤k≤q−1Bgk). We regard the sets in this partition
as “levels” of CP (q); where B0 is level 0 and Bgk is level k, 1 ≤ k ≤ q − 1. See Figure 2 for
an illustration of P1 from this viewpoint, where in that Figure we continue with the notation
(i, a) for a+ 1

x−i . In particular, (gt, a) refers to a+ 1
x−gt . By Theorem 13b the subgraph of [P1]

induced by any two levels has edge set which is a perfect matching, as illustrated in Figure 3.
First we observe that to show that [P1] is connected it suffices to show that any two vertices

in B0 are joined by a path in [P1]. For if that was true, then we can find a path in [P1] from
(0, 0) to any vertex w ∈ P1 (thus showing connectedness of [P1]) as follows. If w ∈ B0 we are
done by assumption. So suppose w /∈ B0, say with w ∈ B(gk). Let v be the unique neighbor in
B0 of w under the perfect matching E([B0 ∪B(gk)]). Let P be the path from (0, 0) to v in [P1]
which exists by assumption. Then P followed by the edge vw is a walk joining (0, 0) to w, so P
contains a path from (0, 0) to w.

By Theorem 13b there is a (unique) path in [P1] starting at (0, 0) and passing through levels
1, 2, · · · , q − 1 in succession. Let (0, 0) − (g, α1) − (g2, α2) − ... − (gq−1, αq−1) be this path,
illustrated in bold lines in Figure 4, for suitable αk ∈ GF (q). For k ≥ 1 let (0, βk) ∈ B0 be
the unique neighbor in level 0 of the vertex (gk, αk) in level k. The edges (gk, αk)(0, βk) are
illustrated by the dotted lines in in Figure 4.

This path and the points (0, βk) are illustrated in Figure 4. Our first step is to obtain the
values of αk and βk.

Claim 1: We have

a) α1 = 1
g
, α2 = 1

g−1 , and αk = gk−1+gk−3+gk−4+···+g+1
(g−1)gk−1 for k ≥ 3.

b) β1 = 0, and βk = (g2−g+1)(1+g+g2+g3+···+gk−2)
gk(g−1) for k ≥ 2.

Proof of Claim 1: We repeatedly use the fact, proved earlier, that if (r, a) and (s, b) are adjacent
vertices in the contraction graph CP (q), then (s− r)(b− a) = 1.

For part a), since (0, 0) − (g, α1) is an edge in CP (q) we have (α1 − 0)(g − 0) = 1, so
α1 = 1

g
. Since (g, α1) − (g2, α2) is an edge we have (α2 − 1

g
)(g2 − g) = 1, yielding α2 = 1

g−1 ,

and similarly (α3 − 1
g−1)(g3 − g2) = 1, yielding α3 = g2+1

(g−1)g2 . Now for k ≥ 3 we proceed by

induction, having proved the base case k = 3. Since (gk, αk)− (gk−1, αk−1) is an edge, we have
(αk − αk−1)(gk − gk−1) = 1. Solving for αk and applying the inductive hypothesis to αk−1, we

obtain αk = 1
gk−gk−1 + gk−2+gk−4+gk−5+···+g+1

(g−1)gk−2 , which after simplification yields the claim.

For part b), we have β1 = 0 since (0, 0)−(g, α1) is an edge by definition. Since (g2, α2)−(0, β2)
is an edge, we have ( 1

g−1 − β2)(g
2 − 0) = 1, and solving for β2 and simplifying we get the claim

for k = 2. Consider now k ≥ 2. The existence of edge (gk, αk)− (0, βk) gives (αk − βk)gk = 1, so

βk = αk − 1
gk

. Using the formula for αk from part a), we have βk = gk−1+gk−3+gk−4+···+g+1
(g−1)gk−1 − 1

gk
=

gk+gk−2+gk−3+···+g2+1
(g−1)gk = (g2−g+1)(1+g+g2+g3+···+gk−2)

gk(g−1) . QED

Claim 2: We have |{βk : 1 ≤ k ≤ q − 1}| = q − 1; that is, the βk, 1 ≤ k ≤ q − 1, are pairwise
distinct.
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Figure 4: The path (0, 0)− (g, α1)− (g2, α2)− · · · − (gq−1, αq−1) in P1, where (0, βi) is the level
0 neighbor of (gi, αi).

Proof of Claim 2: In applying Claim 1, we note first that g could have been chosen so as not to
be a root of x2 − x + 1 = 0 as follows. The number of roots in GF (q) to this quadratic is at
most 2. Now the number of generators in the multiplicative cyclic group GF (q)− {0} of order
q − 1 is the euler totient function φ(q − 1), defined as the number of integers 1 ≤ s ≤ q − 1
which are relatively prime to q − 1. Since q is an odd prime power with q ≥ 13, we know that
φ(q − 1) > 2, so such a g exists.

We show that for for any pair j, k with 1 ≤ j < k ≤ q − 1 we have βk 6= βj.
Consider first the case j = 1. Since β1 = 0, we need to show that βk 6= 0 for 2 ≤ k ≤

q − 1. Supposing the contrary and applying Claim 1b we get (g2−g+1)(1+g+g2+g3+···+gk−2)
gk(g−1) = 0.

Canceling the nonzero factor g2−g+1
gk(g−1) (by the preceding paragraph) on the left side, we get

0 = (1 + g+ g2 + g3 + · · ·+ gk−2) = gk−1−1
g−1 . This implies that gk−1− 1 = 0, so g has order k− 1.

This is impossible since k−1 ≤ q−2 while g, being a generator of the cyclic group GF (q)−{0},
must have order q − 1.

So now suppose that j ≥ 2. Assuming the contrary that βk = βj and applying Claim 1b, we
get after simplification that 1 + g + g2 + g3 + · · ·+ gk−2 = gk−j(1 + g + g2 + g3 + · · ·+ gj−2) =

gk−j + gk−j+1 + · · · + gk−2. Thus we have 0 = 1 + g + g2 + · · · + gk−j−1 = gk−j−1
g−1 . So gk−j = 1,

which is impossible since k − j ≤ q − 3, while g has order q − 1. QED

We introduce some notation in preparation for the rest of the argument. Let Z = {(0, βk) :
1 ≤ k ≤ q − 1} ⊂ B0. Since |B0| = q, by Claim 2 we have |B0 − Z| = 1, and we let
u be the unique vertex of B0 − Z. Further for any subset T of vertices in CP (q), we let
N(T ) = {v ∈ CP (q) : v /∈ T, vt ∈ E(CP (q)) for some t ∈ T} be the neighbor set of T in CP (q).
Recall also that [T ] denotes the subgraph of CP (q) induced by T .

Claim 3: Let H = [Z ∪N(Z)]CP (q), and H ′ = [{u} ∪N(u)]CP (q).
a) H ′ is connected.
b) H is connected.
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c) V (H) ∩ V (H ′) = ∅
d) We have the partition V (P1) = V (H) ∪ V (H ′).

Proof of Claim 3: For part a), we apply Theorem 13b to deduce that H ′ has the spanning star
subgraph K1,q−1, where the center is u and the leaves, one in each level Bi, i 6= 0, form N(u).
Thus H ′ is connected.

Consider part b). Since β1 = 0 we have (0, 0) ∈ Z ⊂ V (H). Thus it suffices to show that for
any w ∈ V (H) there is a path in H joining (0, 0) to w.

Suppose first that w ∈ Z, so w = (0, βk) for some k. Observe that (gi, αi) ∈ N(Z) for
all i by definition. So the path (0, 0) − (g, α1) − (g2, α2) − ... − (gk, αk) followed by the edge
(gk, αk)− (0, βk) is path in H joining (0, 0) to w.

Next suppose w ∈ N(Z), say with w adjacent to (0, βk) ∈ Z. Then the path (0, 0)− (g, α1)−
(g2, α2)− ...− (gk, αk) followed by the length 2 path (gk, αk)− (0, βk)−w is a walk in H joining
(0, 0) to w, and this walk contains the required path.

Next consider c). Suppose not, and let z ∈ V (H) ∩ V (H ′), say with z ∈ B(gk), noting that
k ≥ 1 since each level, in particular B0, is an independent set in [P1]. Then z has two distinct
neighbors in B0; namely u and (0, βj), for some 1 ≤ j ≤ q − 1. This contradicts the fact that
the edge set of [B(gk)∪B0] is a perfect matching between the levels B(gk) and B0 by Theorem
13b. Thus V (H) ∩ V (H ′) = ∅.

Consider now d). By part c), it suffices to show that |V (P1)| = |V (H)| + |V (H)′|. By
Theorem 13b, it follows that |V (H)| = |Z|q = (q − 1)q. For the same reason |V (H ′)| = q.
Therefore |V (P1)| = q2 = |V (H)|+ |V (H)′| as required. QED

We can now complete the proof of the theorem by showing that P1 is connected. In view of
Claim 3, to do this we are reduced to showing that there is an edge vw ∈ E([P1]) with v ∈ H ′
and w ∈ H. Suppose no such edge exists. Since [P1] is (q−1)-regular by Theorem 13c, it follows
that H ′ is a simple q − 1 regular graph on q vertices. Thus H ′ = Kq. Hence [N(u)] = Kq−1.
But this is a contradiction for q ≥ 5 since by Theorem 13d the neighborhood of any nonisolated
point in CP (q) is regular of degree 2, while [N(u)] is regular of degree q − 2 > 2 since we have
assumed q ≥ 13.

We can now obtain our independent set in CP (q) as a consequence of our previous results
and the following theorem of Alon [1].

Theorem 15 [1] Let G = (V,E) be a graph on N vertices with average degree t ≥ 1 in which
for every vertex v ∈ V the induced subgraph on the set of all neighbors of v is r-colorable. Then
the maximum size α(G) of an independent set in G satisfies α(G) ≥ c

log(r+1)
N
t
log(t), for some

absolute constant c.

Corollary 16 Let q be a power of an odd prime p, with q ≡ 1(mod 3), q ≥ 13.
a) α(CP (q)) ≥ Kq2log(q) for some constant K.
b) M(q, q − 3) ≥ Kq2log(q) for some constant K.

Proof. Consider a). By Corollary 12a there is no edge between any two subgraphs [Pr] and [Ps]
for r 6= s. Since there are q such subgraphs, and by Theorem 13a) they are pairwise isomorphic,
it suffices to show that α(P1) ≥ Kqlog(q) for some constant K.

We now apply Alon’s theorem to the subgraph [P1] of CP (q). Now [P1] is (q − 1)-regular by
Theorem 13c, and has q2 points. Since the neighborhood of every point is a disjoint union of
cycles by Theorem 13d, this neighborhood must be 3-colorable. It follows by Alon’s theorem
that [P1] contains an independent set of size c

log(4)
q2

q−1 log(q − 1) ∼ Kqlog(q), for some constant
K.
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For b), let I be an independent set in CP (q) of size Kq2log(q) for suitable constant K,
guaranteed to exist by by part a). Then by the reduction made in the discussion preceding
Lemma 10 we have M(q, q − 3) ≥ |I| ≥ Kq2log(q).

4 Special case lower bounds for M(n, d) via the Mathieu

groups

In this section we consider the Mathieu groups M11,M12,M22,M23,M24, discovered by E. Math-
ieu in 1861 and 1873. These permutation groups are the earliest known example of sporadic
simple groups. See [10], [6], or [25] for a discussion of their construction. These groups act on
11, 12, 22, 23, 24 letters respectively, with M11 being a 1 point stabilizer of M12, while M23 and
M22 are 1 and 2 point stabilizers of M24 respectively.

In this section we apply the contraction operation to these permutation groups to obtain new
permutation arrays, with resulting lower bounds for M(n, d) for suitable n and d.

Since M12 is sharply 5-transitive we have by Theorem 1 that hd(M12) = 8 and M(12, 8) =
|M12| = 95040. Similarly since M11 is sharply 4-transitive we have M(11, 8) = |M11| = 7920.
For M24 we do not have sharp transitivity. But observe that for any permutation group G acting
on some set, and three elements π, σ, τ ∈ G, we have hd(π, σ) = hd(πτ, στ) = hd(τπ, τσ). Thus
hd(G) =min{hd(1, σ) : σ ∈ G}. From the set of disjoint cycle structures of elements of M24

(available at [30]) we find that the largest number of 1-cycles in the disjoint cycle structure of
any nonidentity element of M24 is 8. Thus hd(M24) = 24 − 8 = 16, and from the stabilizer
relation also hd(M23) = hd(M22) = 16. We thus obtain M(24, 16) ≥ |M24| = 24, 423, 040,
M(23, 16) ≥ |M23| = 10, 200, 960, and M(22, 16) ≥ |M22| = 443, 520.

We now apply the contraction operation to these groups. Considering the action of M12

on the 12-letter set Ω = {x1, x2, · · · , x12}, we designate some element, say x12, of Ω as the
distinguished element F in the definition of π4. Then define for each π ∈M12 the permutation
π4 on the set Ω exactly as in the introduction. Thus, using the natural ordering of elements of
Ω by subscript, the image string of any σ ∈M12 can be written σ(x1)σ(x2) · · ·σ(x11)σ(F ).

As before, we let π4− be the permutation on 11 symbols obtained from π4 by dropping the

final symbol F , and for any subset S ⊂M12, we let S4− = {π4− : π ∈ S}, sometimes writing this

as (S)4− .

Proposition 17 a) hd((M12)
4
− ) ≥ 6.

b) M(11, 6) ≥ |M12| = 95040.
c) M(10, 6) ≥ 8640.

Proof. We start with a). Suppose not. Since hd(M12) = 8, and for any α, β ∈ M12 we have
hd(α4, β4) ≥ hd(α, β) − 3 by Lemma 2a, the contrary assumption implies hd((M4

12)−) = 5.
Thus there is a pair σ, τ ∈ M12 such that hd(σ, τ) = 8 and hd(σ4, τ4) = 5; so hd(σ4, τ4) =
hd(σ, τ)−3. Thus by Lemma 2b we know that πσ−1 has a 3-cycle in its disjoint cycle factorization
so the order of πσ−1 is divisible by 3.

Since hd(σ, τ) = 8 and π and σ are permutations on 12 letters, it follows that there are four
positions, call them xi, 1 ≤ i ≤ 4, at which π and σ agree. Then πσ−1 belongs to the subgroup
H of M12 fixing these four positions; that is H = {α ∈ M12 : α(xi) = xi, 1 ≤ i ≤ 4}. This H,
denoted M8, is known to be isomorphic to Q8, the quaternion group of order 8 ([5], section 3.2).
We can also verify this directly by making use of GAP (Groups, Algorithms, Programming), a
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system for computational discrete algebra. The following output employing GAP shows that
H ∼= Q8, the quaternion group of order 8 ([14])

gap> G := MathieuGroup(12);;
gap> H = Stabilizer(G, [1, 2, 3, 4], OnTuples);;
gap> StructureDescription(H);
“Q′′8

Now the order of πσ−1 is divisible by 3 as noted above. But 3 does not divide |Q8|, a
contradiction to Lagrange’s theorem.

Consider next b). Using Lemma 2c and hd(M12) = 8 > 3, we have |M12| = |(M12)
4
− |. Thus

(M12)
4
− is a permutation array on 11 letters of size |M12| with hd((M12)

4
− ) ≥ 6. Part b) follows.

For part c), we recall from the introduction the elementary bound M(n − 1, d) ≥ M(n,d)
n

.

Using part a), we then obtain M(10, 6) ≥ M(11,6)
11

≥ 8640.

We remark that using the same method as in part b) of the above proposition one can show
M(10, 6) ≥ |M11| = 7920. But this is obviously weaker than the bound we give in part c).

We now consider the contraction of M24 and resulting special case bounds for M(n, d). Using
similar notation as for M12 above, we let M24 act on the set of 24 letters Θ = {x1, x2, · · · , x24},
and we designate x24 as the distinguished symbol F in the definition of π4 from the introduction.
Now define π4 for any π ∈M24 as in the introduction, along with accompanying definitions S4

and S4− for S ⊆M24.

Proposition 18 a) hd((M24)
4
− ) ≥ 14.

b) M(23, 14) ≥ |M24| = 244, 823, 040.

c) M(22, 14) ≥ |M24|
23

= 10, 644, 480.

d) M(21, 14) ≥ |M24|
23.22

= 483, 840.

Proof.
For a), suppose not. Since hd(M24) = 16, and for any α, β ∈ M24 we have hd(α4, β4) ≥

hd(α, β)−3, it follows that hd((M24)
4
− ) = 13. Thus there is pair σ, τ ∈M24 such that hd(σ, τ) =

16 and hd(σ4, τ4) = 13; so hd(σ4, τ4) = hd(σ, τ)− 3. Hence by Lemma 2b, τσ−1 has a 3-cycle
in its disjoint cycle structure factorization.

Since hd(σ, τ) = 16, and σ and τ are permutations on 24 letters, it follows that σ and τ must
agree on 8 positions. Thus τσ−1 belongs to the subgroup H of M24 fixing these 8 positions.
From the structure theory of M24, we know that if these 8 positions form an “octad” (among
the 24 positions), then H = M16

∼= Z2×Z2×Z2×Z2, the elementary Abelian group of order 16
([25] Theorem 3.21, and [26] pp. 197-208). Again, this can also be verified directly using GAP
from the following output ([14]).

gap> G := MathieuGroup(24);;
gap> H := Stabilizer(G, [1, 2, 3, 4, 5], OnTuples);;
gap> S = SylowSubgroup(H, 2);;
gap> octad := Filtered([1..24], x→ not x in MovedPoints(S));
[1,2,3,4,5,8,11,13]
gap> H := Stabilizer(G, octad,OnTuples);;
gap> StructureDescription(H);
“C2 × C2 × C2 × C ′′2 .
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If these 8 positions do not form an octad, then H is the identity ([25], Lemma 3.1). Now the
order of τσ−1 is divisible by 3, so 3 must divide |H|. By Lagrange’s theorem, this contradicts
that |H| has order either 16 or 1.

Consider next b). Using Lemma 2c and hd(M24) = 16 > 3, we have |M24| = |(M24)
4
− |. Thus

(M24)
4
− is a permutation array on 23 letters of size |M24|, and by part a) we have hd((M24)

4
− ) ≥

14. Part b) follows.

For part c), we again use the bound M(n − 1, d) ≥ M(n,d)
n

. Using part b), we then obtain

M(22, 14) ≥ M(23,14)
23

≥ |M24|
23

= 10, 644, 480.

For d), using M(n − 1, d) ≥ M(n,d)
n

again we get M(21, 14) ≥ M(22,14)
22

≥ |M24|
23.22

= 483, 840.

5 Concluding Remarks

We mention some problems left open from our work.

1. Recall that if I is an independent set in CP (q), then M(q, q − 3) ≥ |I|. To find a large such
I, one can focus on any nontrivial connected component, say P1, of CP (q). If P1 contains an
independent set of size k, then by the isomorphism of the connected components Pi, 1 ≤ i ≤ q−1,
we get an independent set of size k(q − 1) + q(q − 1) = (q − 1)(k + q) in CP (q), where q(q − 1)
counts the number of isolated points in CP (q). Our lower bound M(q, q − 3) ≥ Kq2log(q)
implies, again by the isomorphism of components, that α(P1) ≥ Cqlog(q) (where α(G) is the
maximum size of an independent set in a graph G), for some constant C. We therefore ask
whether an improvement on this lower bound for α(P1) can be found.

Now V (P1) can be viewed as a rectangular array {(i, a) : i, a ∈ GF (q)} as in Figure 2, where
we let i be the row index, and a the column index. By Corollary 12a an independent set in P1 is
just a subset S of this array with the property that for any two points (i, a), (j, b) ∈ S we have
(b − a)(j − i) 6= 1 in GF (q). Using the integer programming package GUROBI, we computed
independent sets in P1 of size k for various q. This k, together with the resulting lower bound
(q−1)(k+q) for M(q, q−3) are presented in Table 1. The primes q = 41, 47, 53, 59, 71, 83, 89, for
example, are not included in this table since q 6≡ 1(mod 3), and henceM(q, q−3) ≥ (q+1)q(q−1),
an improvement over the lower bound obtained using GUROBI.

2. We also ask for good upper bounds on α(P1).

6 Appendix - Some facts from Number Theory

In this section we review some facts from number theory that were used in this paper.
We start with some notation. For an odd prime p and integer r 6≡ 0(mod p), define the

Legendre symbol ( r
p
) to be 1 (resp. -1) if r is a quadratic residue (resp. nonresidue); that is a

square (resp. nonsquare) mod p. If r ≡ 0(mod p), then define ( r
p
) = 0. A couple of simple facts

about this symbol are these.

Lemma 19 For an odd prime p and integers r and s we have the following.
a) (−1

p
) = 1 if p ≡ 1(mod 4), and (−1

p
) = −1 if p ≡ 3(mod 4).

b) ( rs
p

) = ( r
p
)( s
p
).

Proof. For a), suppose p ≡ 1(mod 4). So write p = 4k + 1, and consider the multiplicative
group of nonzero elements mod p, which has order 4k and is cyclic. Let x be a generator of this
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group. Then note that in this group we have 1 = x4k = (x2k)2, while also (−1)2 = 1 in this
group. Since the quadratic z2 − 1 = 0 has exactly two solutions z = 1 or −1 in GF (q), and
since x2k 6= 1 since x is a generator, it follows that x2k = −1. Thus -1 is a square mod p.

If p ≡ 3(mod 4), then this cyclic group has order 4k + 2 for some integer k. This time we
have 1 = (x2k+1)2, so that by the same reasoning as above we have x2k+1 = −1. This shows
that -1 is not a square mod p, since it is on odd power of the generator.

Consider now b). Just observe that the product rs is a square mod p if and only if both r and
s are squares mod p or if both r and s are non-squares mod p. Part b) then follows immediately.

We now recall the quadratic reciprocity law.

Theorem 20 (Gauss Quadratic Reciprocity Law) For odd primes p and q we have

(
p

q
)(
q

p
) = (−1)(

p−1
2

)( q−1
2

).

There are lots of proof of quadratic reciprocity in the literature, so we omit the proof here.
Now let’s apply these facts to determining (−3

p
) for odd primes p.

Theorem 21 Let p > 3 be an odd prime. Then
a) If p ≡ 1 (mod 6), then -3 is a quadratic residue mod p.
b) If p ≡ 5 (mod 6), then -3 is a quadratic nonresidue mod p.

Proof. By the lemma above we have (−3
p

) = (−1
p

)(3
p
), while by quadratic reciprocity we have

(3
p
) = (p

3
)(−1)

p−1
2 . Thus

(
−3

p
) = (−1)

p−1
2 (
−1

p
)(
p

3
).

The factors on the right depend on the residue classes of p mod 4 and p mod 3. Thus we
consider the four cases defined by the combinations of these two possibilities, obtaining results
that initially depend on the residue class of p mod 12.

case 1: p ≡ 1(mod 4) and p ≡ 1(mod 3); equivalently p ≡ 1(mod 12).

Now p ≡ 1(mod 3) says that (p
3
) = 1. Also p ≡ 1(mod 4) implies (−1)

p−1
2 = 1 and by Lemma

19 also implies (−1
p

) = 1. So by the formula above we have (−3
p

) = 1, showing that −3 is a

quadratic residue when p ≡ 1(mod 12).

case 2: p ≡ 1(mod 4) and p ≡ 2(mod 3); equivalently p ≡ 5(mod 12).

Now p ≡ 2(mod 3) says that (p
3
) = −1. Also p ≡ 1(mod 4) implies (−1)

p−1
2 = 1 and also

Lemma 19 implies (−1
p

) = 1. So by the formula above we have (−3
p

) = −1, showing that −3 is

a quadratic nonresidue when p ≡ 5(mod 12).

case 3: p ≡ 3(mod 4) and p ≡ 1(mod 3); equivalently p ≡ 7(mod 12).

Since p ≡ 1(mod 3) we have (p
3
) = 1. Also p ≡ 3(mod 4) implies (−1)

p−1
2 = −1, and also

Lemma 19 implies (−1
p

) = −1. So by the formula above we have (−3
p

) = 1, showing that −3 is

a quadratic residue when p ≡ 7(mod 12).

case 4: p ≡ 3(mod 4) and p ≡ 2(mod 3); equivalently p ≡ 11(mod 12).

Since p ≡ 2(mod 3) we have (p
3
) = −1. Again p ≡ 3(mod 4) implies that (−1)

p−1
2 = −1, and

also that (−1
p

) = −1. So by the formula above we get (−3
p

) = −1, showing that −3 is a quadratic

nonresidue when p ≡ 11(mod 12).
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Putting together cases 1 and 3, we see that −3 is a quadratic residue mod p when p ≡ 1(mod
6), while cases 2 and 4 show that −3 is a quadratic nonresidue mod p when p ≡ 5(mod 6), as
required.

Corollary 22 Consider the prime power q = pm, where p > 3 is an odd prime. If q ≡ 1(mod
3), then −3 is a square in the finite field GF (q).

Proof. Since p > 3 is an odd prime we have either p ≡ 1(mod 6) or p ≡ 5(mod 6). If p ≡ 1(mod
6), then −3 is already a square in the prime subfield GF (p) ⊆ GF (q) by Theorem 21, so −3 is
a square in GF (q), as required.

So suppose p ≡ 5(mod 6). Consider the quadratic extension GF (p)(
√
−3) of GF (p) obtained

by adjoining to GF (p) a root of the irreducible (by Theorem 21) polynomial x2 + 3 over GF (p).
Then GF (p)(

√
−3) ∼= GF (p2), and −3 is a square in GF (p2).

Since q ≡ 1(mod 3), then since p ≡ 5(mod 6) we have p ≡ 2(mod 3), so it follows that m
must be even. We recall the basic fact from finite fields that GF (pr) ⊆ GF (ps) if and only if
r|s. It follows that GF (p2) ⊆ GF (q). Thus since −3 is a square in GF (p2), then −3 is a square
in GF (q).

Corollary 23 Let q = pm be a prime power, q ≡ 1(mod 3).

a)The equation x2 + x + 1 = 0 has two distinct solutions in GF (q). If x1 is such a root, then
1
x1

is the other distinct root.

b)For q odd and distinct i, j ∈ GF (q), the equation x2 − (i + j)x + ij + (i − j)2 = 0 has two
distinct roots in GF (q).

Proof. Consider a), and suppose first that p is odd. Since the characteristic of the field
is odd, we may find the solutions by the standard quadratic formula. We obtain the solutions
x = 1

2
[−1+

√
−3 ], 1

2
[−1−

√
−3 ], where we have used the existence of

√
−3 in GF (q) by Corollary

22. These solutions are distinct since p is odd.
Now suppose p = 2. Recall the trace function TrGF (q)/GF (2)(x) =

∑m−1
i=0 x2

i
, defined for

any x ∈ GF (q), which we abbreviate by Tr(x). It can be shown (see [21]) that the quadratic
equation ax2 + bx+ c = 0, with a, b, c ∈ GF (2m), a 6= 0, has two distinct solutions in GF (2m) if
and only if b 6= 0 and Tr(ac

b2
) = 0. In our case we have a = b = c = 1, so ac

b2
= 1. Since p = 2 and

q ≡ 1(mod 3), m must be even. Thus there are an even number of terms in the sum defining
Tr(x), each of them equal to 1. So since the characteristic is 2, we get Tr(ac

b2
) = 0 in our case.

It follows that x2 + x+ 1 = 0 has two distinct solutions when p = 2, as required.
Observe that if x1 is a root of of x2 +x+ 1 = 0, then by direct substitution so is 1

x1
. To show

that x1 and 1
x1

are distinct, assume not. Then x1 = 1 or −1. If q is even, then x21 + x1 + 1 = 0
implies that 1 = 0 since the characteristic of the field is 2, a contradiction. Assume q is odd.
Then if x1 = 1 we get 1 + 1 + 1 = 0, implying q ≡ 0(mod 3), a contradiction. If x1 = −1, then
we get 1 = 0, contradiction. Thus x1 and and 1

x1
are distinct.

Next consider b). Applying the quadratic formula in this field of odd characteristic, we get
the two solutions x = 1

2
[ i+ j±

√
(i+ j)2 − 4(ij + (j − i)2) ] = 1

2
[ i+ j±

√
−3(i2 + j2) + 6ij ] =

1
2
[ i + j ±

√
−3(i− j)2 ] = 1

2
[ i + j ±

√
−3(i − j) ]. Now since −3 is a square in GF (q) for

q ≡ 1(mod 3) by Corollary 22, it follows that the two solutions for x can be written as x1 =
1
2
[i(1 +

√
−3) + j(1 −

√
−3)], and x2 = 1

2
[i(1 −

√
−3) + j(1 +

√
−3)]. Also these two solutions

are distinct since i 6= j and q is odd.

21



References

[1] N. Alon: Independence numbers of locally sparse graphs and a Ramsey type result, Random
Structures and Algorithms 9(3) (1996), 271-278.

[2] S. Bereg, A. Levy, and I.H. Sudborough: Constructing Permutation Arrays from Groups,
Designs, Codes, and Cryptography 86(5) (2018), 1095-1111.

[3] S. Bereg, L. Morales, and I.H. Sudborough: Extending permutation arrays: improving
MOLS bounds, Designs, Codes, and Cryptography 83(3) (2017), 661-883.

[4] I. Blake, G. Cohen, and M. Deza: Coding with permutations, Information and Control 43
(1979), 1-19.

[5] L.S. Boya: Introduction to Sporadic Groups, Proceedings of the Workshop “Supersymmet-
ric Quantum Mechanics and Spectral Design”, SIGMA 7 (2011), 1-18.

[6] P.J. Cameron: Permutation Groups, Cambridge University Press, Vol. 45 (1999).

[7] C.J. Colbourn, T. Klove, Alan C.H. Ling: Permutation arrays for powerline communication
and mutually orthogonal latin triangles, IEEE Transactions on Information Theory 50(6),
1289-1291.

[8] W. Chu, C.J. Colbourn, and P. Dukes: Constructions for permutation codes in powerline
communications, Designs, Codes, and Cryptography 32 (2004), 51-64.

[9] M. Deza and S.A. Vanstone: Bounds for permutation arrays, J. of Statistical Planning and
Inference 2(2) (1978), 197-209.

[10] J. Dixon and B. Mortimer: Permutation Groups, Graduate Texts in Mathematics Vol.
163, Springer-Verlag, New York (1996).

[11] P. Dukes and N. Sawchuk: Bounds on permutation codes of distance four, J. of Algebr.
Comb. 31 (2010), 143-158.

[12] H.C. Ferreira and A.J.H. Vinck: Interference cancellation with permutation trellis arrays,
Proc. IEEE Vehicular Technology Conf., Boston, MA, USA (Sept. 2000), 2401-2407.

[13] P. Frankl and M. Deza: On the maximum number of permutations with given maximal or
minimal distance, J. of Combinatorial Theory, Series A 22(3) (1977), 352-360.

[14] D.F. Holt, personal communication.

[15] S. Huczynska: Powerline communications and the 36 officers problem, Philosophical Trans-
actions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
364(1849) (2003), 34-40.

[16] I. Janiszczak, W. Lempkin, P.R. Ostergard, and R. Staszewski: Permutation codes invariant
under isometries, Designs, Codes, and Cryptography 75(3) 2015, 497-507.

[17] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck: Rank modulation for flash memories,
Proc. IEEE Symp. Inf. Theory (2008), 1731-1735.

[18] A. Jiang, M. Schwartz, and J. Bruck: Error-correcting codes for rank modulation, Proc.
IEEE Symp. Inf. Theory (2008), 1736-1740.

22



[19] P. Keevash and C.Y. Ku: A random construction for permutation codes and the covering
radius, Designs, Codes, and Cryptography 41 (2006), 79-86.

[20] N. Pavlidou, A.J.H. Vinck, J. Yazdani, and B. Honary: Powerline communications: state
of the art and future trends, IEEE Commun. Mag. 41(4) (2003), 34-40.

[21] K. Pommerening: Quadratic equations in finite fields of characteristic 2, unpublished
manuscript (2000), English version (February 2012).

[22] Derek J.S. Robinson: A Course in the Theory of Groups, Graduate Texts in Mathe-
matics Vol. 80, Springer-Verlag, New York (1996).

[23] D.H. Smith and R. Montemanni: A new table of permutation codes, Designs, Codes, and
Cryptography 63(2) (2012), 241-253.

[24] D.R. Stinson: Combinatorial Designs, Springer, India (2010).

[25] Leo Taslaman, The Mathieu groups, M.S. thesis, Lund University, 2009.

[26] T. Thompson: From error-corecting codes through sphere packing to simple
groups, Carus Mathematical Monographs 21, Mathematical Association of America (1983).

[27] D.R. de la Torre, C.J. Colbourn, and A.C.H. Ling: An application of permutation arrays
to block ciphers, Proc. 31st Southeastern Int. Conf. on Combinatorics, Graph Theory, and
Computing, Boca Raton, Fl., USA 145 (2000), 5-7.

[28] A.J.H. Vinck: Coded modulation for powerline commumnications, A.E.U. Int. J. Electronic
Commun. 54 (2000), 45-49.

[29] X. Wang, Y. Zhang, Y. Yang, and G. Ge: New bounds of permutation codes under Ham-
ming metric and Kendall’s τ -metric, Designs, Codes, and Cryptography 85(3) (2017), 533-
545.

[30] https://en.wikipedia.org/wiki/Mathieu group M24

23



q k (q − 1)(k + q) ≤M(q, q − 3))
7 13 120
13 33 552
19 81 1800
31 122 4590
37 191 8208
43 191 9828
49 226 13200
61 314 22500
67 340 26862
73 382 32760
79 415 38532
97 535 60672
103 598 71502
109 637 80568
121 2613 328080
127 768 112770
139 867 138828
151 945 164400
157 984 177996
163 1031 193428
169 1069 207984
181 1174 243900
193 1262 279360
199 1310 298782
211 1403 338940
223 1496 381618
229 1565 409032
241 1671 458880
277 1956 616308
283 2009 646344
289 2045 672192
307 2197 766224
313 2272 806528
331 2396 899910
337 2462 940464
343 2501 972648

Table 1: Independent set of size k in P1 obtained by integer programming, and resulting lower
bound (q − 1)(k + q) for M(q, q − 3), when q ≡ 1(mod 3).
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