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Abstract

Permutation codes are widely studied objects due to their numerous applications in various areas, such as

power line communications, block ciphers, and the rank modulation scheme for flash memories. Several kinds

of metrics are considered for permutation codes according to their specific applications. This paper concerns

some improvements on the bounds of permutation codes under Hamming metric and Kendall’s τ -metric

respectively, using mainly a graph coloring approach. Specifically, under Hamming metric, we improve the

Gilbert-Varshamov bound asymptotically by a factor n, when the minimum Hamming distance d is fixed

and the code length n goes to infinity. Under Kendall’s τ -metric, we narrow the gap between the known

lower bounds and upper bounds. Besides, we also obtain some sporadic results under Kendall’s τ -metric for

small parameters.
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independent set
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1 Introduction

Let Sn be the symmetric group on n elements. A permutation code is a subset of Sn satisfying certain constraints.
Permutation codes have been studied under various metrics according to specific applications. In this paper we
focus on two kinds of metrics, the Hamming metric and the Kendall’s τ -metric. We now briefly introduce the
motivations for these two metrics.

During the last decade, permutation codes under Hamming metric have attracted considerable attention,
due to their applications in data transmission over power lines [10, 18, 21]. In the power line application, there
are three main forms of noise which affect the transmission: the permanent narrow-band noise, the impulse noise
of short duration and white Gaussian noise (background noise). In many traditional data transmission media
(e.g., telephone lines and satellite communications), white Gaussian noise is the dominant type of error affecting
the system. However, the other two types of errors play important roles in the power line application. In [10]
and [21], permutation codes under Hamming metric are used to correct errors for this type of transmission.
Besides, permutation codes under Hamming metric have been applied in the design of block ciphers [7].

∗Corresponding author (e-mail: gnge@zju.edu.cn). Research supported by the National Natural Science Foundation of China
under Grant Nos. 11431003 and 61571310.
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The research on permutation codes under Kendall’s τ -metric has a relatively shorter history, which originates
from the development of flash memories. Flash memory incorporates a set of cells maintained at a set of levels
of charge to encode information. The chief disadvantage of flash memories is their inherent asymmetry between
cell programming (injecting cells with charge) and cell erasing (removing charge from cells). While raising the
charge level of a cell is an easy operation, reducing the charge level from a single cell would require completely
erasing a whole large block to which the cell belongs and then reprogramming, which will limit the lifetime of
a flash memory. Therefore, over-programming (increasing charge level on a cell above the desired amount) is a
severe problem. Moreover, flash memories meet common errors due to charge leakage and reading disturbance.
In order to overcome these problems, the novel framework of rank modulation is introduced in [14]. Instead
of encoding information with the absolute values of charge levels, data is represented by the relative rankings
of the charge levels on a group of cells. That is, if we have n cells and c1, c2, . . . , cn ∈ R represent the charge
levels, then this group of cells is said to encode the permutation σ ∈ Sn such that cσ(1) > cσ(2) > · · · > cσ(n).
In this framework, we save us the trouble to deal with errors which only slightly affect the absolute values of
charge levels but do not affect the relative rankings. However, sometimes the errors in the charge levels may be
large enough to cause some disturbance in the relative rankings. To detect and/or correct such errors we need
an appropriate distance measure. Several metrics on permutations are used for this purpose such as Kendall’s
τ -metric [1, 3, 15, 17], Ulam metric [9] and l∞-metric [16, 20].

The rest of this paper is organized as follows. In Section 2 we give the definitions and notations of permutation
codes under Hamming metric and Kendall’s τ -metric and summarize some important known facts regarding
the bounds, and then we introduce the corresponding graph models as a preparatory step for the upcoming
analysis. A lower bound of permutation codes under Hamming metric is given in Section 3 which improves
the Gilbert-Varshamov bound by a factor of n. A lower bound of permutation codes under Kendall’s τ -metric
is given in Section 4. In Section 5 some other sporadic results concerning permutation codes under Kendall’s
τ -metric are listed. We conclude in Section 6.

2 Preliminaries

In this section we first give some definitions and notations for permutation codes under Hamming metric and
Kendall’s τ -metric and summarize some important known facts regarding the bounds.

Let [n] denote {1, 2, . . . , n}. Let π = [π1, π2, . . . , πn] be a permutation over [n] such that for each i ∈ [n] we
have π(i) = πi. This form is known as the vector notation for a permutation. For an integer x ∈ [n], π−1(x)
indicates the position of x appearing in π. For two permutations σ and π, their composition, denoted by σπ,
is the permutation with σπ(i) = σ(π(i)) for all i ∈ [n]. All the permutations under this operation form the
noncommutative group Sn known as the symmetric group on [n] of size |Sn| = n!. Denote by ε , [1, 2, . . . , n]
the identity element of the group. For an unordered pair of distinct numbers x, y ∈ [n], this pair forms an
inversion in a permutation π if x < y and simultaneously π−1(x) > π−1(y). Let I(π) denote the total number
of inversions in a permutation π. π is called an even/odd permutation accordingly due to the parity of I(π).

2.1 Hamming metric

For two permutations σ and π, the Hamming distance between them is the number of positions in which their
vector notations differ, i.e.

dH(σ, π) = |{i ∈ [n] : σi 6= πi)}|.

For 1 ≤ d ≤ n, we say that C ⊂ Sn is an (n, d)-permutation code under Hamming metric, if dH(σ, π) ≥ d for
every two distinct permutations σ, π ∈ C. Denote the largest size of an (n, d)-permutation code under Hamming
metric as AH(n, d) and a code attaining this size is said to be optimal. The exact value of AH(n, d) and the
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constructions of optimal codes are the main research objectives. There are some fundamental results by basic
combinatorial techniques.

Proposition 1 [5, Proposition 1.1]

1. AH(n, 2) = n!;

2. AH(n, 3) = n!/2;

3. AH(n, n) = n;

4. AH(n, d) ≤ nAH(n− 1, d);

5. AH(n, d) ≤ n!/(d− 1)!.

However, deciding AH(n, d) turns out to be difficult for 4 ≤ d ≤ n− 1, except for some specifical cases.

Proposition 2 1. [6] If there are m mutually orthogonal Latin squares of order n, then AH(n, n− 1) ≥ mn.
In particular, if q is a prime power, then AH(q, q − 1) = q(q − 1).

2. [11] If q is a prime power, then AH(q + 1, q − 1) = (q + 1)q(q − 1).

We now summarize some important general results concerning the lower and upper bounds of AH(n, d).
Let D(n, k) (k = 0, 1, . . . , n) denote the set of all permutations in Sn which are exactly at distance k under

Hamming metric from the identity permutation ε:

D(n, k) = {π ∈ Sn : dH(π, ε) = k}.

A derangement of order k is a permutation π ∈ Sk with no fixed points, i.e., πi 6= i for 1 ≤ i ≤ k. Let Dk

be the number of derangements of order k. Then the cardinality of D(n, k) is

|D(n, k)| =

(
n

k

)
Dk.

For any permutation π ∈ Sn, the Hamming ball of radius r centered at π, denoted as BH(π, r), is defined
by BH(π, r) , {σ ∈ Sn : dH(σ, π) ≤ r}. Clearly under Hamming metric the size of a ball of radius r does not
depend on the center of the ball and we denote its size as BH(r):

BH(r) =

r∑

k=0

|D(n, k)|.

The Gilbert-Varshamov bound and sphere-packing bound for permutation codes under Hamming metric are
well known.

Proposition 3
n!

BH(d− 1)
≤ AH(n, d) ≤

n!

BH(⌊d−1
2 ⌋)

.

Improved lower bound for the case when d is fixed and n → ∞ is derived by Gao, Yang and Ge in [12].

Proposition 4 [12, Theorem 10] Let d be fixed and n → ∞. Then

AH(n, d) ≥ Ω(logn
n!

BH(d− 1)
).
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Later, Tait, Vardy and Verstraëte [19] consider the case when the ratio d/n is fixed and improve the Gilbert-
Varshamov bound by a factor of n.

Proposition 5 [19, Theorem 2] Let d/n be a fixed ratio with 0 < d/n < 0.5. Then as n → ∞, we have

AH(n, d) ≥ Ω(n
n!

BH(d− 1)
).

2.2 Kendall’s τ-metric

Given a permutation π = [π1, π2, . . . , πn] ∈ Sn, an adjacent transposition is an exchange of two adjacent
elements πi, πi+1, for some 1 ≤ i ≤ n − 1, resulting in the permutation [π1, . . . , πi−1, πi+1, πi, πi+2, . . . , πn].
The Kendall’s τ-distance between two permutations σ and π, denoted by dK(σ, π), is the minimum number
of adjacent transpositions required to transform one permutation into the other. For example, the Kendall’s
τ -distance between π1 = [1, 2, 3, 4, 5] and π2 = [2, 3, 1, 5, 4] is three, since we may do the adjacent transpositions
[1, 2, 3, 4, 5] → [2, 1, 3, 4, 5] → [2, 3, 1, 4, 5] → [2, 3, 1, 5, 4] and one may easily check that only two adjacent
transpositions are not enough. A well-known equivalent expression for dK(σ, π) [15] is as follows:

dK(σ, π) = |{(i, j) : σ−1(i) < σ−1(j) ∧ π−1(i) > π−1(j)}|.

For 1 ≤ d ≤
(
n

2

)
, we say that C ⊂ Sn is an (n, d)-permutation code under Kendall’s τ-metric, if dK(σ, π) ≥ d

for every two distinct permutations σ, π ∈ C. Denote the largest size of an (n, d)-permutation code under
Kendall’s τ -metric as AK(n, d) and a code attaining this size is said to be optimal. The exact value of AK(n, d)
and the constructions of optimal codes are the main research objectives. There are some fundamental results
as follows.

Proposition 6 1. AK(n, 2) = n!/2 and the optimal codes are either the set of all even permutations or the
set of all odd permutations;

2. [3, Theorem 10] For 2
3

(
n

2

)
< d ≤

(
n

2

)
, AK(n, d) = 2;

However, deciding AK(n, d) turns out to be difficult for 3 ≤ d ≤ 2
3

(
n

2

)
. We now summarize some important

results concerning the lower and upper bounds of AK(n, d).
Similarly as above we first introduce the Gilbert-Varshamov type lower bound and the sphere-packing upper

bound. For any permutation π ∈ Sn, the Kendall’s τ-ball of radius r centered at π, denoted as BK(π, r), is
defined by BK(π, r) , {σ ∈ Sn : dK(σ, π) ≤ r}. Clearly under Kendall’s τ -metric the size of a ball of radius r
does not depend on the center of the ball and we denote its size as BK(r). The Gilbert-Varshamov bound and
sphere-packing bound for permutation codes under Kendall’s τ -metric are as follows:

Proposition 7 [15, Theorems 17 & 18]

n!

BK(d− 1)
≤ Ak(n, d) ≤

n!

BK(⌊d−1
2 ⌋)

.

For two permutations σ and π with dK(σ, π) = 1, the double ball of radius r centered at σ and π is defined
by DB(σ, π, r) , B(σ, r) ∪B(π, r). Denote by DBn,r the double ball of radius r in Sn centered at the identity
permutation ε and the permutation [2, 1, 3, 4, . . . , n]. Improved upper bound for the cases when d is even is
derived in [3], using a code-anticode approach.
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Proposition 8 [3, Corollaries 3 & 5] If a code C ⊂ Sn has minimum Kendall’s τ-distance d, and an anticode
A ⊂ Sn has maximum Kendall’s τ-distance d− 1, then |C| · |A| ≤ n!. Particularly, since DBn,r is an anticode
of diameter 2r + 1, so we have

AK(n, 2(r + 1)) ≤
n!

|DBn,r|
.

Regarding the improvements on the lower bound, first we note that we could just concentrate on AK(n, d)
with odd d, since we have the following simple but useful fact [15]:

Lemma 9 [15, Theorem 26] For all n and t ≥ 1 we have AK(n, 2t) ≥ 1
2AK(n, 2t− 1).

An important improvement of the lower bound is derived in [1], which is a generalization of a construction
of an (n, 3)-permutation code under Kendall’s τ -metric using codes in the Lee metric appeared in [15]. The
generalization leads to a construction of an (n, 2t+ 1)-permutation code under Kendall’s τ -metric, which is of
optimal size up to a constant factor, for a fixed t.

Proposition 10 [1, Theorem 4.5] Let m = ((n − 2)t+1 − 3)/(n− 3), where n − 2 is a prime power. Then we
have

AK(n, 2t+ 1) ≥

{
n!/(t(t+ 1)m), t odd;

n!/(t(t+ 2)m), t even.

2.3 Graph models

Finally in this section we introduce a natural connection between codes and independent sets of their corre-
sponding graphs. A graph G consists of a set of vertices V (G) and a set of edges E(G). Two vertices u and
v are called adjacent if {u, v} ∈ E(G). An independent set in a graph is a set of vertices where every pair
of vertices are nonadjacent. The size of the largest independent set in a graph G is called the independence
number, denoted as α(G).

Let GH and GK be graphs with the same vertex set Sn. Two vertices are connected in GH (respectively,
GK) if and only if their Hamming distance (respectively, Kendall’s τ -distance) is at most d−1. Then, an (n, d)-
permutation code under Hamming metric (respectively, Kendall’s τ -metric) is equivalent to an independent
set in GH (respectively, GK). Via this natural connection, graph-theoretic tools for analyzing independence
numbers can be used for analyzing bounds of codes.

In this paper, we mainly use a coloring approach to analyze the lower bound of the independence numbers
of GH and GK . A coloring of a graph assigns a color to each vertex. It is called a proper coloring if it never
assigns the same color to both endpoints of an edge. The chromatic number of a graph G, denoted by χ(G),
is the smallest integer k such that a proper coloring of G using k colors exists. Given a proper coloring, by
definition every set of vertices with a same color constitutes an independent set. So we have

Lemma 11 α(G) ≥ |V (G)|/χ(G).

Thus, lower bounds of α(G) could be derived via analyzing upper bounds of χ(G).
Another fact concerning the independence number of a graph is as follows. An automorphism of a graph G

is a bijective function f : V (G) → V (G), such that for any pair of vertices u, v ∈ V (G), (f(u), f(v)) ∈ E(G)
if and only if (u, v) ∈ E(G). A graph G is called vertex transitive if for any two vertices u and v, there exists
some automorphism f : V (G) → V (G) such that f(u) = v. Then it is well known that (see, for example [13])

Lemma 12 If the graph G is vertex-transitive and G′ is any induced subgraph of G. Then we have

α(G)

|V (G)|
≤

α(G′)

|V (G′)|
.
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3 A lower bound of permutation codes under Hamming metric

In this section we consider the lower bound of AH(n, d) by giving a proper coloring for the graph GH .

Theorem 13 Let n, d be integers, 4 ≤ d ≤ n− 1. Let p be the smallest prime number greater than or equal to
n. Then, we have

AH(n, d) ≥
n!

pd−2
.

Proof. Let Zp = Z/pZ denote the residue class modulo p. View the vector notation of a permutation as an n×1
vector. Consider the coloring map

f : Sn → Z
d−1
p ,

whose value at σ ∈ Sn is determined by

f(σ) = Aσ (mod p),

where A is a (d− 1)×n Vandermonde matrix as follows (x1, x2 . . . , xn are distinct numbers in {0, 1, . . . , p− 1}):




1 1 · · · 1
x1 x2 · · · xn

...
...

. . .
...

xd−2
1 xd−2

2 · · · xd−2
n


 .

We claim that this coloring is proper. For any two distinct permutations σ and π with a same color v ∈ Z
d−1
p ,

we have Aσ ≡ Aπ ≡ v (mod p). So A(σ − π) ≡ 0 (mod p). Suppose the distance between σ and π is less than
d, then there are at most d−1 nonzero coordinates in σ−π. Then we can deduce that there exist d−1 columns
in A which are linearly dependent in Zp, which is a contradiction to the fact that every d− 1 columns in A are
linearly independent in Zp. Thus every two vertices with the same color are nonadjacent in GH . So our coloring
is proper.

Now we count the number T of colors we used. The colors are in Z
d−1
p and note that the first coordinate is

a constant 1 + 2+ · · ·+ n (mod p). Thus T ≤ pd−2. Now each color corresponds to an independent set in GH ,
or equivalently, an (n, d)-permutation code under Hamming metric. By Lemma 11 we have

|AH(n, d)| ≥
n!

pd−2
.

Consider the asymptotic behavior of our lower bound. The following notations simplify the upcoming
statements and comparisons. In the remaining part of this section, AH(n, d) denotes the bound we get in

Theorem 13, AGV
H (n, d) denotes the classical Gilbert-Varshamov bound and ÃH(n, d) denotes the lower bound

derived in [12].

Corollary 14 When d is a fixed constant and n goes into infinity, AH(n, d) improves the classical Gilbert-
Varshamov bound by a factor of n, that is,

AH(n, d)

AGV
H (n, d)

= Ω(n).
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Table 1: A comparison of AH(n, d) and ÃH(n, d) with d = 5 and 8 ≤ n ≤ 20

n AH(n, d) ÃH(n, d)
8 30 90

9 272 509

10 2726 3386

11 29990 25885
12 218025 223378

13 2834328 2147724
14 17744410 22767826

n AH(n, d) ÃH(n, d)
15 266166164 263832788
16 4258658637 3317928906
17 72397196844 45006297715
18 933426695688 655021291542
19 17735107218083 10181693092799
20 199959070286565 168351610362186

Proof. Since Dk = ⌊k!
e
+ 1

2⌋, we have

BH(d− 1) =

d−1∑

k=0

|D(n, k)| =

d−1∑

k=0

(
n

k

)
Dk = Θ(nd−1).

It is well known [4] that there exists a prime p, satisfying n ≤ p ≤ 2n,

AH(n, d) ≥
n!

pd−2
≥

n!

(2n)d−2
.

Then
AH(n, d)

AGV
H (n, d)

≥
BH(d− 1)

(2n)d−2
= Ω(n).

Furthermore, our lower bound also performs quite well when n is small. For d = 5 and 8 ≤ n ≤ 20, we list
the results of ÃH(n, d) and AH(n, d) in Table 1. Relatively better values are in bold form.

To sum up, the analysis above gives:

Theorem 15 When d is a fixed constant and n goes into infinity,

AH(n, d) ≥ Ω(n
n!

BH(d− 1)
).

A final remark is a comparison of our result with Proposition 5, the result obtained by Tait, Vardy and
Verstraëte [19]. They are restricted to the case when d/n is a fixed ratio with 0 < d/n < 0.5. Whereas our
result considers the case when d is fixed and n goes into infinity, that is, the ratio d/n goes into zero. So in
some sense our result works as a complement of theirs.

4 A lower bound of permutation codes under Kendall’s τ-metric

In the rest of this paper we turn our attention into Kendall’s τ -metric. As has been noted in Proposition 10,
the lower bound of AK(n, d) derived by [1] meets the sphere-packing upper bound asymptotically for any fixed
d. There’s only a constant gap between the lower and upper bounds. In this section we attempt to narrow this
gap.

For a permutation π ∈ Sn, an inversion vector xπ = (xπ(2), xπ(3), . . . , xπ(n)) ∈ Zn! , Z2 ×Z3 × · · · × Zn is
defined as:

xπ(i) = |{j : j < i, π−1(j) > π−1(i)}|, 2 ≤ i ≤ n.
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That is, xπ(i) ∈ Zi counts the number of inversions formed by ‘i’ and ‘j’, 1 ≤ j ≤ i − 1. For example, let
π = [4, 5, 2, 1, 3], then xπ = (1, 0, 3, 3). The sum of all entries equals the total number of inversions I(π).

An adjacent transposition results in an error of weight one in the inversion vector xπ. Specifically, suppose we
have two consecutive numbers a and b in the original permutation, with a < b. Then an adjacent transposition
which switches a and b will result in an error e+

b
, which is a vector with +1 on the entry xπ(b) and 0 elsewhere.

Continuing the example, switch ‘4’ and ‘5’ in π, we have π′ = [5, 4, 2, 1, 3] and xπ′ = (1, 0, 3, 4). Then xπ′ −xπ =
(0, 0, 0, 1) = e+

5
.

In contrast, if we have two consecutive numbers b and a in the original permutation, with b > a, then an
adjacent transposition which switches b and a will result in an error e−

b
, which is a vector with −1 on the

entry xπ(b) and 0 elsewhere. Continuing the example, switch ‘5’ and ‘2’ in π, we have π′ = [4, 2, 5, 1, 3] and
xπ′ = (1, 0, 3, 2). Then xπ′ − xπ = (0, 0, 0,−1) = e−

5
.

Between two permutations, t adjacent transpositions together lead to an error vector e, which is the sum-
mation of each error vector corresponding to each adjacent transposition. Let ω(e) be the summation of all the
entries in e, performed over the integers. Note that since there may be some offsets of the form e+

b
and e−

b
,

ω(e) will be an integer with absolute value no more than t.
The key tool is the following famous theorem of Bose and Chowla [2]:

Lemma 16 [2] Let q be a power of a prime and m = qt+1−1
q−1 . There exist q+ 1 integers d1 = 0, d2, . . . , dq+1 in

Zm such that the sums

di1 + di2 + · · ·+ dit (1 ≤ i1 ≤ i2 ≤ · · · ≤ it ≤ q + 1)

are all distinct modulo m.

Set q + 1 = n − 1. We now deal with AK(n, 2t + 1). Color each permutation in Sn using colors (c1, c2) ∈
Z2t+1 × Zm.

Theorem 17 Under the parameters given above, for any permutation π ∈ Sn, let c1(π) ≡ I(π) (mod 2t + 1)

and let c2(π) ≡
∑n−1

i=1 dixπ(i + 1) (mod m). Then for any two permutations π and σ with dK(π, σ) < 2t + 1,
we have (c1(π), c2(π)) 6= (c1(σ), c2(σ)).

Proof. Let e = xπ − xσ be the error vector between the inversion vectors of the two permutations. Since
dK(π, σ) < 2t + 1, |ω(e)| ≤ 2t. If |ω(e)| 6= 0, then clearly c1(π) 6= c1(σ). Otherwise, ω(e) = 0, then the
value of c2(π) − c2(σ) modulo m is the difference of two parts of summations. Each summation is the sum of
some s integers among {d1, . . . , dq+1}, with s ≤ t. By the Bose-Chowla theorem, this difference is nonzero so
c2(π) 6= c2(σ).

So the coloring is a proper coloring in the graph GK . A remark is that the proof of Barg and Mazumdar [1]
could be stated similarly in the framework above. Their coloring scheme aims at simultaneously dealing with
all the possible error vectors. However, this simultaneousness also restricts the number of colors to be of order
t2m (see Proposition 10), which is larger than (2t + 1)m in our approach. The trick in our framework, which
deals with errors respectively according to whether |ω(e)| is zero or not, turns out to be useful. In summary,
our coloring framework gives:

Theorem 18 Let m = ((n− 2)t+1 − 1)/(n− 3), where n− 2 is a prime power. Then AK(n, 2t+ 1) ≥ n!
(2t+1)m .

As for AK(n, 2t), by the theorem above and Lemma 9, we immediately have:

Theorem 19 Let m = ((n− 2)t − 1)/(n− 3), where n− 2 is a prime power. Then AK(n, 2t) ≥ n!
2(2t−1)m .
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We mention that there’s still a slight chance of doing better. In our framework above, when dealing with
errors with |ω(e)| 6= 0, we calculate the inversion number of a permutation modulo 2t+ 1. Could we lower this
number? We now state another Bose-Chowla theorem also appeared in [2]. Note that in the framework above,
both of the two Bose-Chowla theorems could be applied, and actually they lead to similar results, with Lemma
16 performing slightly better. However, the following Lemma 20 benefits our analysis later.

Lemma 20 [2] Let q = pn be a prime power. Then we can find q nonzero integers (less than qt) d1 =
1, d2, . . . , dq such that the sums

di1 + di2 + · · ·+ dit (1 ≤ i1 ≤ i2 ≤ · · · ≤ it ≤ q)

are all distinct modulo qt − 1.

The exact constructions of these integers are as follows. Let α1 = 0, α2, . . . , αq denote all the elements in
Fpn . Let y be a primitive element of the extension field Fpnt . Let ydi = y+αi for i = 1, 2 . . . , q, where di < pnt.
Then {di}1≤i≤q is the desired set of integers for carrying out our coloring scheme in Theorem 17. The choice
of the primitive element y, or equivalently, the choice of the irreducible polynomial of degree t with coefficients
from Fpn , uniquely determines {di}1≤i≤q. We now expect more properties from the choice of the irreducible
polynomial.

TakeAK(n, 5) as an example. Now we need an appropriate irreducible polynomial of degree 2 with coefficients
from Fpn , denoted as y2 = ay + b, a, b ∈ Fpn . We further demand that the set of integers {di}1≤i≤q satisfies:
the sum of any three integers is nonzero modulo p2n − 1. That is, (y+ i)(y+ j)(y+ k) 6= 1 for any i, j, k ∈ Fpn .
It can be checked that this is equivalent to the following problem.

Problem: For any prime power pn, find a, b ∈ Fpn such that
• y2 = ay + b is an irreducible polynomial in Fpn , and
• the following system of equations,

{
a2 + b + ai+ aj + ak + ij + ik + jk = 0

ab+ ib+ jb+ kb+ ijk = 1

with i, j, k being indeterminate, has no solution in F
3
pn .

Via computer search, although the desired a and b do not exist for F5 and F7, yet they do exist for primes
11, 13, 17, 19, 23. We conjecture that it may be true that there are infinitely many prime powers for which the
desired a and b exist.

Once a and b exist for a prime power pn, then we could do a small adjustment for our coloring map. Now
let c̃1(π) ≡ I(π) (mod 3) instead of modulo 5. For any two permutations σ and τ with dK(σ, π) < 5, the only
possibility for c̃1(σ) = c̃1(π) and ω(xπ − xσ) 6= 0 is that the error vector between their inversion vectors xσ and
xπ is a vector with exactly three entries being ‘1’ and otherwise ‘0’. Then the difference of c2(σ) and c2(π) will
be a summation of three integers out of {di}1≤i≤q. But by the further demand of the properties of a and b we
choose, this difference is ensured to be nonzero modulo p2n − 1. Thus it is guaranteed that c2(σ) 6= c2(π). So in
this manner, the constant gap between the lower bound and the sphere-packing upper bound could be a little
bit smaller.

5 Sporadic results on AK(n, d)

In this section we provide some other sporadic results concerning permutation codes under Kendall’s τ -metric.
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5.1 A generalization of the code-anticode method

First we take a look at Lemma 12. The code-anticode method used in [3] corresponds to finding a subset G′

of vertices, satisfying α(G′) = 1, with |G′| as large as possible. A natural generalization is to jump out of the
restriction α(G′) = 1. That is, as Lemma 12 suggests, we want to search for a subset G′ with α(G′)/|G′| as
small as possible. An illustrative example is the following precise determination of the value AK(5, 3). In [3] it
has been verified that 20 ≤ AK(5, 3) ≤ 23. We now show that 20 is the exact value.

Theorem 21

AK(5, 3) = 20.

Proof. Select G′ = {[1, 2, 3, 4, 5], [1, 2, 3, 5, 4], [1, 2, 4, 3, 5], [1, 2, 4, 5, 3], [1, 2, 5, 3, 4], [1, 2, 5, 4, 3], [2, 1, 3, 4, 5],
[2, 1, 3, 5, 4], [2, 1, 4, 3, 5], [2, 1, 4, 5, 3], [2, 1, 5, 3, 4], [2, 1, 5, 4, 3]}. It can be easily verified that α(G′) = 2. So we

have AK(5,3)
5! ≤ α(G′)

|G′| = 2
12 , which leads to AK(5, 3) ≤ 20 and thus fixes this value.

Although this is only a simple case, yet the idea lying behind it may have potentials for other parameters,
or even perhaps for analyzing upper bounds for other various codes.

5.2 Sporadic results by computer search

Some other sporadic results concerning small parameters n = 5 and n = 6 could be obtained by computer
search, via some algorithms designed for searching maximal independent sets. We obtain some values better
than those listed in the table in [3], by the program developed by Ashay Dharwadker [8]. These values are listed
as follows and their corresponding codewords are listed in the appendix. Although lacking strictly mathematical
analysis, the power of the program suggests that these may be the exact values.

Theorem 22

AK(5, 4) ≥ 12, AK(5, 6) ≥ 5,

AK(6, 3) ≥ 101, AK(6, 4) ≥ 64, AK(6, 5) ≥ 25,

AK(6, 6) ≥ 20, AK(6, 7) ≥ 11, AK(6, 8) ≥ 7.

5.3 Counting pairs of inversions: a Plotkin-type bound

In this subsection we prove a Plotkin-type bound by counting pairs of inversions. Recall that we have the
following expression for Kendall’s τ -metric:

dK(σ, π) = |{(i, j) : σ−1(i) < σ−1(j) ∧ π−1(i) > π−1(j)}|.

Theorem 23 If AK(n, 2t) ≥ M , then

2

(
M

2

)
t ≤

(
n

2

)
⌈
M

2
⌉⌊

M

2
⌋,

and if AK(n, 2t+ 1) ≥ M , then

(
⌈M

2 ⌉

2

)
(2t+ 2) +

(
⌊M

2 ⌋

2

)
(2t+ 2) + ⌈

M

2
⌉⌊

M

2
⌋(2t+ 1) ≤

(
n

2

)
⌈
M

2
⌉⌊

M

2
⌋.
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Proof. Suppose now we have an (n, d)-permutation code C under Kendall’s τ -metric of size M . We now
calculate the summation of all the pair-wise distances

∑
= Σc1,c2∈CdK(c1, c2). Firstly, for any pair of numbers

1 ≤ i < j ≤ n, we could partition C into two parts, according to whether i precedes j or vice versa. Then from
the expression for Kendall’s τ -metric, we know that the pair (i, j) contributes one to the distance between two
permutations from different parts. Thus, the pair (i, j) contributes at most ⌈M

2 ⌉⌊M
2 ⌋ to

∑
. So we have,

∑
≤

(
n

2

)
⌈
M

2
⌉⌊

M

2
⌋.

On the other hand,
∑

≥
(
M

2

)
d. And especially, if the distance d is odd, since the Kendall’s τ -distance

between two permutations of the same parity is even, then
∑

≥
(⌈M

2
⌉

2

)
(d+ 1) +

(⌊M

2
⌋

2

)
(d+ 1) + ⌈M

2 ⌉⌊M
2 ⌋d.

The theorem follows from a comparison of the upper bound and lower bound of
∑

.
Now we analyze when will the theorem above be useful. Using the first constraint as an example, when

d ≤ 1
2

(
n
2

)
, the constraint naturally holds for any M and thus does not provide any useful bound on M .

However, when 1
2

(
n
2

)
< d ≤ 2

3

(
n
2

)
, this bound may turn out to be better than the sphere packing upper bound or

Proposition 8. It is generally unrealistic to compare the Plotkin-type bound to the sphere-packing upper bound
or Proposition 8 since the precise size of a Kendall’s τ -ball or a double-ball is difficult to analyze. Below we list
several cases for small parameters, as supporting evidences to show that Theorem 23 may work slightly better.

n d Sphere-packing bound Theorem 23
6 9 7 4
7 13 8 4
7 11 14 12
8 17 11 4

n d Proposition 8 Theorem 23
7 12 11 8
8 18 9 4
8 16 14 8

6 Conclusions

Permutation codes under different metrics are interesting topics due to their various applications. The bounds
of permutation codes can be analyzed via studying the independence numbers of the corresponding graphs.
We use a coloring approach to analyze the independence numbers, which leads to some improvements on the
lower bounds of permutation codes under Hamming metric and Kendall’s τ -metric, respectively. Although this
coloring approach is well-known, the tricky part is the coloring strategy case-by-case. Besides, we also derive
some other sporadic results concerning the upper bound of permutation codes under Kendall’s τ -metric.
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Appendix

A (5,4)-permutation code under Kendall’s τ -metric with 12 codewords:

[1, 2, 3, 4, 5], [1, 3, 5, 4, 2], [1, 4, 5, 2, 3], [2, 1, 5, 4, 3], [2, 4, 3, 1, 5], [3, 4, 5, 1, 2],

[3, 5, 2, 1, 4], [4, 1, 3, 2, 5], [4, 2, 5, 1, 3], [5, 1, 2, 3, 4], [5, 2, 4, 3, 1], [5, 4, 1, 3, 2].

A (5,6)-permutation code under Kendall’s τ -metric with 5 codewords:

[1, 2, 3, 4, 5], [2, 4, 5, 3, 1], [3, 5, 2, 1, 4], [4, 3, 1, 5, 2], [5, 1, 4, 2, 3].

A (6,3)-permutation code under Kendall’s τ -metric with 101 codewords:

[1, 2, 3, 4, 6, 5], [1, 2, 5, 4, 3, 6], [1, 2, 6, 4, 3, 5], [1, 2, 6, 5, 3, 4], [1, 3, 2, 6, 5, 4], [1, 3, 4, 6, 2, 5],

[1, 3, 5, 2, 4, 6], [1, 3, 6, 5, 4, 2], [1, 4, 2, 5, 6, 3], [1, 4, 3, 2, 5, 6], [1, 4, 5, 6, 3, 2], [1, 4, 6, 2, 3, 5],

[1, 5, 2, 3, 6, 4], [1, 5, 3, 4, 6, 2], [1, 5, 6, 4, 2, 3], [1, 6, 4, 3, 5, 2], [1, 6, 5, 3, 2, 4], [2, 1, 3, 5, 6, 4],

[2, 1, 4, 3, 5, 6], [2, 1, 4, 6, 5, 3], [2, 3, 1, 6, 4, 5], [2, 3, 4, 1, 5, 6], [2, 3, 6, 4, 5, 1], [2, 4, 3, 5, 6, 1],

[2, 4, 5, 1, 6, 3], [2, 4, 6, 1, 3, 5], [2, 5, 1, 6, 4, 3], [2, 5, 3, 1, 6, 4], [2, 5, 4, 3, 1, 6], [2, 5, 6, 3, 4, 1],

[2, 6, 1, 3, 4, 5], [2, 6, 1, 5, 4, 3], [2, 6, 3, 5, 1, 4], [2, 6, 4, 5, 1, 3], [3, 1, 2, 4, 5, 6], [3, 1, 4, 5, 6, 2],

[3, 1, 5, 6, 2, 4], [3, 1, 6, 2, 4, 5], [3, 2, 4, 6, 1, 5], [3, 2, 5, 1, 4, 6], [3, 2, 5, 6, 4, 1], [3, 2, 6, 1, 5, 4],

[3, 4, 1, 2, 6, 5], [3, 4, 2, 5, 6, 1], [3, 4, 5, 1, 2, 6], [3, 4, 6, 5, 1, 2], [3, 5, 6, 4, 2, 1], [3, 6, 1, 4, 5, 2],

[3, 6, 4, 2, 1, 5], [3, 6, 5, 2, 1, 4], [4, 1, 2, 3, 6, 5], [4, 1, 3, 6, 5, 2], [4, 1, 5, 3, 2, 6], [4, 1, 6, 5, 2, 3],

[4, 2, 1, 5, 3, 6], [4, 2, 3, 6, 1, 5], [4, 2, 6, 5, 3, 1], [4, 3, 2, 1, 5, 6], [4, 3, 5, 6, 2, 1], [4, 3, 6, 1, 2, 5],

[4, 5, 1, 2, 6, 3], [4, 5, 2, 3, 6, 1], [4, 5, 3, 1, 6, 2], [4, 5, 6, 2, 1, 3], [4, 6, 2, 1, 5, 3], [4, 6, 3, 2, 5, 1],

[4, 6, 5, 1, 3, 2], [5, 1, 2, 4, 6, 3], [5, 1, 4, 3, 2, 6], [5, 1, 6, 2, 3, 4], [5, 2, 1, 3, 4, 6], [5, 2, 3, 4, 6, 1],

[5, 2, 4, 6, 1, 3], [5, 2, 6, 1, 3, 4], [5, 3, 1, 2, 4, 6], [5, 3, 1, 6, 4, 2], [5, 3, 2, 6, 1, 4], [5, 3, 4, 2, 1, 6],

[5, 3, 4, 6, 1, 2], [5, 4, 1, 6, 3, 2], [5, 4, 2, 1, 3, 6], [5, 4, 6, 3, 2, 1], [5, 6, 1, 3, 4, 2], [5, 6, 3, 2, 4, 1],

[5, 6, 4, 1, 2, 3], [6, 1, 2, 3, 5, 4], [6, 1, 2, 4, 5, 3], [6, 1, 3, 4, 2, 5], [6, 1, 5, 4, 3, 2], [6, 2, 4, 3, 1, 5],

[6, 2, 5, 1, 3, 4], [6, 2, 5, 4, 3, 1], [6, 3, 1, 5, 2, 4], [6, 3, 2, 1, 4, 5], [6, 3, 2, 5, 4, 1], [6, 3, 4, 5, 2, 1],

[6, 4, 1, 2, 3, 5], [6, 4, 3, 1, 5, 2], [6, 4, 5, 2, 3, 1], [6, 5, 1, 2, 4, 3], [6, 5, 4, 3, 1, 2].
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A (6,4)-permutation code under Kendall’s τ -metric with 64 codewords:

[1, 2, 3, 5, 6, 4], [1, 2, 4, 6, 5, 3], [1, 3, 2, 4, 6, 5], [1, 3, 4, 5, 6, 2], [1, 4, 2, 3, 5, 6], [1, 5, 2, 6, 4, 3],

[1, 5, 4, 3, 2, 6], [1, 5, 6, 3, 4, 2], [1, 6, 2, 5, 3, 4], [1, 6, 3, 4, 2, 5], [1, 6, 4, 5, 2, 3], [2, 1, 5, 4, 3, 6],

[2, 1, 6, 3, 4, 5], [2, 3, 1, 4, 5, 6], [2, 3, 5, 6, 1, 4], [2, 3, 6, 4, 1, 5], [2, 4, 1, 3, 6, 5], [2, 4, 6, 5, 1, 3],

[2, 5, 1, 6, 3, 4], [2, 5, 4, 3, 6, 1], [2, 6, 1, 5, 4, 3], [2, 6, 5, 3, 4, 1], [3, 1, 5, 2, 4, 6], [3, 1, 6, 5, 4, 2],

[3, 2, 1, 6, 5, 4], [3, 2, 5, 4, 1, 6], [3, 4, 2, 1, 6, 5], [3, 4, 5, 1, 2, 6], [3, 5, 4, 6, 2, 1], [3, 5, 6, 1, 2, 4],

[3, 6, 1, 2, 4, 5], [3, 6, 2, 5, 4, 1], [3, 6, 4, 5, 1, 2], [4, 1, 5, 6, 3, 2], [4, 1, 6, 2, 3, 5], [4, 2, 1, 5, 6, 3],

[4, 2, 3, 5, 1, 6], [4, 2, 6, 3, 1, 5], [4, 3, 1, 6, 5, 2], [4, 3, 6, 2, 5, 1], [4, 5, 1, 2, 3, 6], [4, 5, 2, 6, 3, 1],

[4, 5, 3, 6, 1, 2], [4, 6, 5, 1, 2, 3], [5, 1, 3, 2, 6, 4], [5, 1, 4, 6, 2, 3], [5, 2, 3, 1, 4, 6], [5, 2, 4, 1, 6, 3],

[5, 3, 1, 4, 6, 2], [5, 3, 2, 6, 4, 1], [5, 4, 3, 2, 1, 6], [5, 6, 1, 2, 3, 4], [5, 6, 3, 4, 1, 2], [5, 6, 4, 2, 1, 3],

[6, 1, 2, 4, 3, 5], [6, 1, 3, 5, 2, 4], [6, 2, 3, 1, 5, 4], [6, 2, 4, 3, 5, 1], [6, 3, 4, 2, 1, 5], [6, 4, 1, 3, 5, 2],

[6, 4, 2, 1, 5, 3], [6, 4, 5, 3, 2, 1], [6, 5, 1, 4, 3, 2], [6, 5, 3, 2, 1, 4].

A (6,5)-permutation code under Kendall’s τ -metric with 25 codewords:

[1, 2, 3, 4, 6, 5], [1, 3, 5, 4, 2, 6], [1, 5, 4, 6, 2, 3], [1, 6, 3, 5, 2, 4], [2, 1, 4, 5, 6, 3], [2, 3, 6, 4, 5, 1],

[2, 5, 4, 3, 6, 1], [2, 6, 1, 5, 3, 4], [3, 1, 6, 4, 2, 5], [3, 2, 1, 5, 6, 4], [3, 5, 4, 2, 6, 1], [4, 1, 3, 6, 5, 2],

[4, 2, 3, 1, 5, 6], [4, 2, 6, 5, 1, 3], [4, 3, 6, 2, 5, 1], [4, 5, 1, 2, 3, 6], [5, 2, 1, 3, 4, 6], [5, 3, 1, 6, 4, 2],

[5, 4, 6, 3, 1, 2], [5, 6, 1, 2, 3, 4], [6, 1, 4, 5, 3, 2], [6, 2, 4, 1, 3, 5], [6, 3, 2, 5, 1, 4], [6, 3, 4, 5, 1, 2],

[6, 5, 2, 4, 3, 1].

A (6,6)-permutation code under Kendall’s τ -metric with 20 codewords:

[1, 2, 3, 4, 6, 5], [1, 5, 4, 3, 6, 2], [1, 6, 3, 5, 2, 4], [1, 6, 4, 2, 5, 3], [2, 1, 5, 4, 6, 3], [2, 3, 4, 5, 6, 1],

[2, 6, 4, 1, 3, 5], [2, 6, 5, 3, 1, 4], [3, 2, 1, 5, 6, 4], [3, 4, 5, 1, 6, 2], [3, 6, 1, 4, 2, 5], [3, 6, 5, 2, 4, 1],

[4, 3, 2, 1, 6, 5], [4, 5, 1, 2, 6, 3], [4, 6, 1, 3, 5, 2], [4, 6, 2, 5, 3, 1], [5, 1, 2, 3, 6, 4], [5, 4, 3, 2, 6, 1],

[5, 6, 2, 4, 1, 3], [5, 6, 3, 1, 4, 2].

A (6,7)-permutation code under Kendall’s τ -metric with 11 codewords:

[1, 2, 3, 4, 5, 6], [1, 5, 4, 3, 6, 2], [2, 1, 6, 5, 4, 3], [2, 6, 3, 4, 5, 1], [3, 4, 5, 6, 1, 2], [3, 5, 2, 1, 6, 4],

[4, 3, 2, 1, 6, 5], [4, 5, 2, 1, 6, 3], [5, 6, 1, 2, 3, 4], [6, 1, 3, 4, 2, 5], [6, 5, 4, 3, 2, 1].

A (6,8)-permutation code under Kendall’s τ -metric with 7 codewords:

[1, 2, 3, 6, 4, 5], [1, 4, 5, 6, 2, 3], [2, 4, 5, 3, 1, 6], [3, 4, 6, 2, 1, 5], [3, 5, 1, 4, 2, 6], [5, 2, 6, 1, 3, 4], [6, 5, 4, 3, 1, 2].
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