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Abstract

In this paper we prove new lower bounds for the maximal size of permutation
codes by connecting the theory of permutation codes with the theory of linear
block codes. More specifically, using the columns of a parity check matrix of an
[n, k, d]q linear block code, we are able to prove the existence of a permutation
code in the symmetric group of degree n, having minimum distance at least d
and large cardinality. With our technique, we obtain new lower bounds for per-
mutation codes that enhance the ones in the literature and provide asymptotic
improvements in certain regimes of length and distance of the permutation code.

1 Introduction

Permutation codes have been of great interest recently due to their applications (for
example in powerline communications [2, 3]) and for their intrinsecal combinatorial
interest [8, 9, 10, 15, 18]. Let us now briefly explain what permutation codes are.
The symmetric group S, can be endowed with a metric d;, defined as follows: if
0,7 € S, then dp(o,7) = |{i € {1,...,n}: o(i) # 7(4)}|- An (n,d)-permutation
code is a subset T' of S,, such that min{d,(o,7): 0,7 € T',0 # 7} = d. The maximal
size M (n,d) of an (n, d)-permutation code has been studied widely in the literature.
Very nice ideas to produce lower bounds appeared in [9, 10, 18], and they all improve
asymptotically the famous Gilbert-Varshamov bound. In this paper we provide new
lower bounds for M(n,d). From a theoretical point of view, the paper connects the
theory of permutation codes with the theory of linear block codes and converts the
problem of extistence of permutation codes with certain parameters into existence
problems for some linear block codes. From a practical perspective, our approach
allows to produce improved bounds for many set of parameters n,d. Moreover, for
certain choices of regimes of n and d we actually beat asymptotically the best known
bounds in [10, 18]. The paper is structured as it follows.

Section 2 recaps the basic tools we need from coding theory and the theory of
permutation codes.

Section 3 provides the technical heart of our proof, which gives the wanted con-
nection between the theory of permutation codes and the theory of linear block codes.

In Section 4 we use the results of Section 3 together with results from the theory
of Maximum Distance Separable (MDS) codes to provide two new lower bounds on
permutation codes. The first (Theorem 4.5) beats the bounds in [10, 18] whenever
the next prime power larger than or equal to n is smaller than the next prime larger
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than or equal to n (in all the other cases it gives the same bound). The second one
(Theorem 4.9) beats asymptotically [10, 18] in the large distance regime.

In Section 5 we produce new bounds using Almost MDS codes that provide ad-
ditional improvements of the bounds in [10, 18] under the assumption that a linear
code with certain parameters exists.

Finally, in Section 6 we compare the bounds we obtained in the paper with the
previous bounds in the literature.

Conclusions are provided in Section 7.

2 Preliminaries

In this section we recall the basic notions of linear codes endowed with the Hamming
distance, and the theory of permutation codes.

2.1 Linear Block codes

Let g be a prime power and denote by I, the field with ¢ elements. For a given
positive integer n we consider, the Hamming distance over Fy, that is the map

dp i F? x F? — N,

defined by dpr (u,v) = [{i € {1,...,n} | u; # v} foru = (u1,...,up),v = (v1,...,0n) €
Fy. Moreover, the Hamming weight of a vector v € Fy is the quantity

wr(v) =dg(v,0) = [{i € {1,...,n} | v; # 0}

In this context, an [n, k], code C is a k-dimensional subspace of [y equipped with
the Hamming distance. The integer n is the length and k is called the dimension
of C. The minimum distance of C is the integer defined by

d(C) := min{dy (u,v) | u,v € C,u # v}.

In the following we will use the notation [n, k, d], for a code of length n, dimension k
and minimum distance d.

Definition 2.1. The dual code C* of an [n, k], code C is the [n,n — k], code
ct = {uelFy | (u,c)=0forallcecC},
where (-, -) denotes the standard inner product between two vectors in Fy.

Two important matrices are related to an [n, k], code C. A generator matrix
G € F’;X" for C is a k x » matrix in F; whose rows are a basis for C, i.e. C =

{mG | m € Fi}. A parity check matrix for C is a matrix H € F" %™ such that
C={ucF!|Hu =0}
From the definition, it is straightforward to verify that a matrix H € FS{’*’“)X” is

a parity check matrix for an [n, k], code C if and only if it is a generator matrix for
the dual code C*t.

Proposition 2.2. Let C be an [n, k], code, H € F,S”*W" be a parity check matrix
for C and let d be a positive integer. The following are equivalent.

1. d(C) > d.

2. Every d — 1 columns of H are linearly independent over IF,.



Definition 2.3. Two [n, k], codes C and C’ are said to be equivalent if there exists
0 € Sn, A1y .., A € Fy such that

C = {(Alcg(l),...,AnCU(n)) | (cl,...,cn) S C}

In terms of their generator matrices an, respectively, parity check matrices, we
can see the following. If G and G’ are generator matrices for C and C’ respectively,
then C and C’ are equivalent if and only if there exists P permutation matrix and
D diagonal matrix such that G’ = GPD. An analogous statement holds with their
parity check matrices.

Proposition 2.4. Let H and H' be parity check matrices for two [n, k], codes C and
C’ respectively. Then, C and C' are equivalent if and only if there exists a permutation
matriz P and a diagonal matriz D such that H = HPD.

Lemma 2.5. Let C be an [n, k] linear code C. If C* has a codeword of Hamming
weight n, then there exists an [n, k] code C' equivalent to C which has a parity check
matriz whose first row is equal to (1,1,...,1).

Proof. A parity check matrix for C is a generator matrix for Ct. Let v € Ct be
a codeword of Hamming weight n, and take as a generator matrix for C+ a matrix

H whose first row is v = (v1,...,v,). Define the matrix D = diag(v;?,...,v; ).
Therefore, the code C’ whose parity check matrix is H' = HD is equivalent to C and
the first row of H’ is equal to (1,1,...,1). O

2.2 Permutation codes

Let n € N be a positive integer and denote by &,, the symmetric group on n elements.
On the group §,, we consider the Hamming distance, that is defined for 0,7 € S,
as

dp(o,7) =1{ie{1,...,n} | o(i) #7(i)}|.

Definition 2.6. A permutation code of length n is a subset I' of S,, endowed with
the Hamming distance. The minimum distance of I" is the quantity

d(T') = min{dp(o,7) | 0,7 € T,0 # 7}.

Let M(n,d) be the maximum cardinality that a permutation code of length n and
minimum distance d can have. There are many known bounds on this quantity, that
we now briefly recall.

Theorem 2.7 (Singleton-like bound).

n'

M(nd) < 7

A derangement of size r is a permutation on r elements with no fixed points.
Let D, denote the number of derangements of size r. The number of derangements
of size k is also known as the subfactorial, and it is well-known that

"L (—1)! |
— — |4z
D, =r! Z T + 5
1=0
Theorem 2.8 (Sphere-packing bound).

n'

M(n,d) S W.
>izo (?)Dz



Theorem 2.9 (Gilbert-Varshamov bound).
n!
d—1 /n .
Zz’:O (z)Dz
An improvement of the Gilbert-Varshamov bound, at least from an asimptotical

point of view, was given in [10], whose proof relies on rational function fields theory.
Another proof of the same result can be found in [18].

M(n,d) =

Theorem 2.10. [10, Theorem 2/[18, Theorem 13]. For every prime p > n, for every

2<d<n,
n!

M(n,d) >

pd—2'

3 Bounding Permutation Codes Using Linear Block
Codes

In this section we provide a general lower bound on the maximal size of a permutation
code of given length n and minimum distance d. The bound in Theorem 3.1 is the
technical heart of the paper from which the explicit bounds in the next sections will
follow.

Let n be a positive integer. For a given subset IC of the symmetric group S,,
we denote by M (K, d) the maximum cardinality of a permutation code of minimum
distance at least d entirely contained in /C, i.e.

M(K,d) = max {|T| | T C K,d(T) > d}.

Note that, with this notation, M(S,,d) = M(n,d). In the next proposition we use
the convention that Sp = S; = {1}. For a set A C S,, and an element g € S,, we
denote by Ag the set {ag: a € A}. Clearly, if T is a permutation code of minimum
distance d, then also I'g is a permutation code of minimum distance d.

Theorem 3.1. Let d,k,n be integers such that 0 < k < n and 1 < d < n. Let
moreover q be a prime power and s,r be positive integers such that n = qs +r and
0 <r < gq. If there exists an [n, k,d]q code C such that C* has a codeword of Hamming
weight n, then

n!M(KC, d)

M(n,d) >
(n7 )— (S+1)!rs!q7rqnfk71’

where KK = (Ss+1)" X (Ss)47".

Proof. Let C be an [n, k,d], code such that C* has a codeword of Hamming weight n.
By Lemma 2.5 we have an [n, k, d], code C’ with a parity check matrix H € F{" "
whose first row is (1,1,...,1). Let v; be the i-th column of H and let n = ¢gs+r with

0 <r < g¢. We can write Fy = {ao,...,aq—1} and define the map
L:{l,....n} — Fy i+ a(modq)-
Moreover, choose the subgroup of S,, defined as
K={ceS8,|o(i)=i modgq, forallie{1,...,n}}.

One can see that I 2 (Ss41)" X (Ss)77".

Let IV C K be a permutation code of minimum distance d and cardinality M (K, d).
Consider the set of right cosets of S,, /K, that is {Koi}ieq1,...,1s,|/k)3 for some o;’s in
S,.. Define the set

T = UF/O’i.



From this set, we consider the map
o: T — Fg_k
o — Y L(o(i))v;.
i=1
Assume (o) = ¢(7) and dy(o,7) =r < d—1. Let {j1,...,Jr} be the subset of
{1,...,n} such that o(j;) # 7(j;). Then

T

0= (o) = (1) = D (L(a(je)) — L(7(je)))s,.

(=1

Since vj,, ..., vj, are linearly independent, it follows L(o(j¢)) — L(7(j¢)) = O for every
¢ e {1,...,r}. Therefore, o and 7 are equal over the integers on all the i’s not in
{j1,.--Je} (because of their distance), and they are equal modulo ¢ on all the i’s in
{j1,-..7¢} (since the a; are all distinct elements of F, and by the independence of the
vj,’s). This forces in particular that o(i) = 7(i) mod ¢ for any ¢ € {1,...n}. Since
the equation holds for any i, by relabeling i with 7(i), we get that o7=1(i) =4 mod ¢
for all i € {1,...n}. This implies that o7—! € K and also, by construction, we have
I"o =T"7. Since di(o,7) < d and d(I'o) = d(I") = d, we obtain o = 7. This shows
that for every z € Im(p) the preimage ¢~ !(z) is a permutation code of minimum
distance at least d. Moreover, since H has (1,1,...,1) as first row, Im(p) C H4,
where

Hi={(z1,...,xn_k) € IFZ*k | 2y = ZL(@)}
i=1

Therefore, by generalized pigeonhole principle, we have that there exists z € H; such
that ¢~ !(z) has cardinality at least

7] 7l _ n!M(K, d)

Tm(p)| = [Ha] (s +D)lrslamrgn=k-t’

O

In the rest of the paper we will apply Theorem 3.1, as we will be always able to
show the existence of a codeword of weight n in the dual of the code. Nevertheless,
one can also show the following

Theorem 3.2. Let d,k,n be integers such that 0 < k < n and 1 < d < n. Let
moreover q be a prime power and s, be positive integers such that n = qs +r and
0 <r < gq. If there exists an [n,k,d], code C, then we have

nIM (K, d)

M(n,d) >
(n, d) 2 (s + 1)lrsla—rgn—k’

where KK = (Ss+1)" X (Ss)97".

Proof. The proof is completely analogous except for the fact that Im(y) is not any-
more included in H; (as H does not necessarily has in the first row all 1’s). Therefore,
in the last step one simply has to replace H; with FQ”“ getting

|| S 7] _ n!M (K, d)
[Tm(p)| — |Fg_k| (5 + 1)Irsla—rgn—Fk"




4 Lower bounds using MDS codes

In this section we are going to apply the result of Theorem 3.1 using a specific class
of linear codes, namely the MDS codes.

Theorem 4.1 (Singleton Bound [14]). Let C be an [n, k,d], code. Then
d<n-—k+1.

The Singleton defect of an [n, k, d]; code C is the number s(C) :=n—k+1—d.
Observe that, by Theorem 4.1, the Singleton defect of a linear code C is always a
non-negative integer.

Recall that, for fixed n and d, the lower bound on M (n,d) provided in Theorem
3.1 depends on the existence of an [n, k,d], code C, and it contains a factor ¢g" =1
in the denominator. Since n —k —1 = d— 2+ s(C), it is only useful to consider codes
with small Singleton defect.

Definition 4.2. An [n,k,d], code C with s(C) = 0 is called maximum distance
separable (MDS) code.

Whenever an [n, k, d]4-code is MDS, we write that is an [n, k], MDS code.

MDS codes have been deeply studied over the last 60 years because of their optimal
parameters [11, 17] and their connection to finite projective geometry [13, 1]. In the
following we recall few of their basic properties.

Theorem 4.3. Let C be an [n, k], MDS code. Then C* is an [n.n — k], MDS code.

Theorem 4.4. [6, Theorem 6] Any [n, k|, MDS code with n < ¢ has o codeword of
weight ¢ for every L =n—k+1,...,n. In particular, for every k, a [q,k]q code has
codewords of weight q.

Corollary 4.5. For every k and every [q, k], MDS code C, the dual code C+ has a
codeword of weight q.

Proof. Let C be a [q, k], MDS code. By Theorem 4.3, C* is a [q,q — k], MDS code,
and by Theorem 4.4, C*+ has a codeword of Hamming weight ¢. O

Theorem 4.6. For every prime power q > n, and every integer d with 2 < d < n,

n!
-2 *
qd

M(n,d) >

Proof. Tt directly follows from Theorem 3.1 with the choice, s = 1, and r = 0, and
Corollary 4.5 which ensures the existence of the wanted [n, k, d]4-code. O

Theorem 4.6 provides a lower bound on M (n,d), using the existence of MDS
codes of length n over a finite field with cardinality at least n. The rest of the section
is devoted to obtain a similar bound, using MDS codes whose length exceeds the
cardinality of the underlying finite field.

Theorem 4.7. [6, Theorem 8] A [q+ 1,k]; MDS code has a codeword of weight ¢ for
every { € {q—k+2,...,q+ 1}, except for the g-ary symplex code [q+1,2],, that has
only codewords of weight 0 and q. In particular, for every k # 2, o [¢ + 1,k]q code
has codewords of weight q + 1.

Corollary 4.8. For every k # q— 1 and every [q+ 1,k]q MDS code C, the dual code
Ct has a codeword of weight ¢ + 1.

Proof. Let C be a [q+ 1,k], MDS code. By Theorem 4.3, Ct isa[¢+1,¢+1— k|,
MDS code, with ¢ +1 — k # 2. Therefore, by Theorem 4.4, C*+ has a codeword of
Hamming weight ¢ + 1. O



Theorem 4.9. For every prime power q, and every 3 < d < q,

(g+ 1)
2qd72 :

M(q+1,d) >

Proof. Tt follows directly from Theorem 3.1 with the choice s = 1, 7 = 1, and Corollary
4.8 which ensures the existence of the wanted [n, k, d]4-code.
O

5 A lower bound using Almost MDS codes

In Section 4 we have already studied the bound with respect to MDS codes, hence in
this section we will deal with codes with Singleton defect equal to 1.

Definition 5.1. An [n,k,d]; code C with s(C) = 1 is called Almost MDS (or
AMDS for short).

Almost MDS codes have been deeply studied in literature, since they represent
the closest family to the one of MDS codes. Some classical examples of those codes
arise from algebraic-geometric codes obtained using curves of genus 1 [16]. For the
interested reader we refer to [4, 5, 7).

Lemma 5.2. Let q be a prime power, n, k,d be three positive integers such that d > 2.
If C is an [n, k,d], code with k < q — 2, then C* has a codeword of weight n.

Proof. Consider a generator matrix for C that, after permutation of coordinates, we
can assume of the form (I; | A). Then, a generator matrix for C* is given by
(AT | =I,_1). Since d > 2, the rows of A are all non-identically zero. Indeed, if one
of them were identically zero, then we would find a codeword of weight 1 in C. Take
now an element ¢ € C*+. Then, c is of the form ¢ = m(A" | —I,_), and we assume
m € (F7)"~*. In this way the last n — k entries of ¢ are non-zero. Therefore, we
want to prove that there exists m € (F;)”_k such that also the first k entries of ¢ are
nON-Zero.

Let us call a; the i-th row of A, that is also the i-th column of AT. Let us define
the sets

A ={me (F;)"_k |m € {a;)"}.
We want i
m¢ A=A,
i=1

so that all the first k entries of ¢ are non zero. We can give an estimation on the sets
A; as follows. We observe that every A; is described by zeros of a linear polynomial

in n — k variables. By Schwartz-Zippel Lemma [12, Lemma 1] we have |4;| < (¢ —
1)"~* =1 and hence |A| < k(g—1)""*~1. Since k < ¢ — 2, we conclude observing that

(ED" 1= (a =) > k(g —1)" " > |Al.
O

In Section 3, we have introduced the function M (K,d) for any positive integer
d and any subgroup K of some symmetric group. In the special case that K is the
direct product of copies of Z/2Z, we can associate the function M (K,d) to a very
well-known function in coding theory.



Definition 5.3. Let ¢ be a prime power, and d,n be two positive integers such that
d < n. We define the number A,(n, d) as the maximum cardinality of a non-necessarily
linear code of length n and minimum distance d over [y, i.e.

Ay(n,d) = max{|C|: C CFy,d(C) = d}.
Lemma 5.4. Let K C S, be a subgroup of the form K = (S2)" = (Z/2Z)". Then
M(K,d) = As(r, | £]).

Proof. The subgroup K can be seen as, after relabeling the elements {1,...,2n}, the
subgroup

IC = 8{172} X 8{374} X ... X 8{27’71,2’1“} = <{(2’L — 1, 2’&) | Z = 1, . ,T}>.
The map
o F5 — K
v=(v;); —> J[;(2i—1,2¢)"

is a bijective homothety, i.e. it preserves the distance up to a scalar multiple. In fact,
we have that for every u,v € I},

2d g (u,v) = dg(p(u), p(v)).

Therefore [¢(A2(r, [£]))] < |[M(K,d)| by the maximality of M (K, d) and |Aa(r, [4])| >
¢~ (|M(K,d)|) by the maximality of As(r,|[4]). The claim follows as ¢ is a bijec-
tion. (]

Theorem 5.5. Let n,d be two positive integers such that d < n and q be a prime
power with ¢ < n < 2q. If there exists an [n,n — d,d]q AMDS code C such that ct
has a codeword of weight n, then

nlds(n—q, [4])
M(n,d)ZW.

Proof. Tt directly follows from Theorem 3.1 with s = 1, » = n — ¢, (and therefore
K = (S2)"), and Lemma 5.4. O

Theorem 5.6. Let n,d be two positive integers such that d > 2 and q be a prime
power with ¢ < n < min{2q, g+ d —2}. If there exists an [n,n —d,d], AMDS code C,

then 4
M(n,d) > W-
Proof. Tt follows from Theorem 5.5 and Lemma 5.2. O

6 Comparison with the previous bounds

We explain here how our bounds compare with others given in the literature. As our
Theorem 4.5 allows ¢ to be the next prime power greater or equal to n, we beat (or
at least equal) the bounds in [10, 18] (see Table 1). Interestingly enough, when n — 1
is a prime power, Theorem 4.8 beats asymptotically the bounds in [10, 18] in the
large distance regime. We formalize this in the proposition below. Let us denote by
nextprime(-) the function that sends an integer n to the smallest prime number larger
than or equal to n, and by nextprimepower(-) the function that sends an integer n to
the smallest prime number larger than or equal to n.



For the rest of this section, we set

n!

Bo P d) = N )
1a(n,d) nextprime(n)?—2
n!
Bm 3 ) d = . )
as(n, d) nextprimepower(n )42
B d n!
new(n, d) = W

More specifically, Boja(n,d) represents the bound in [10, Theorem 2] and [18,
Theorem 13], while Bpqs(n,d) and Bpew(n,d) are the bounds in Theorem 4.6 and
Theorem 4.9, respectively. It is trivial to see that Bumas(n,d) > Boa(n,d), for every
n,d. We now focus on the comparisons of Bgq(n,d) with Bphew(n,d) and the bound
given in Theorem 5.5.

Proposition 6.1. Let n € N, and set d = bn for some 0 < b < 1. Then,

B b
lim inf new(n, d) > %.

n Bo(n,d)

In particular, for b > log.(2), Bpnew(n,d) gives asymptotically a better bound than
Bold(n,d).

Proof. We have,

Bnew(nad) - nd72 _ 1 1+ 1 bn—2 . e_b
Boa(n,d) — N n 2"

O

It is important to show that in the regime where we beat the old bound, the new
one is actually non-trivial. We do that in the following remark.

Remark 6.2. Observe that in the regime log,(2) < £ < 1, the bound Byew(n,d) is
asymptotically non-trivial. Indeed,

(1-b)n

!
Buew(n,d) = =—————— > Vor —— > \/ax "

—
2(n— 1)tn-2 = V" oen(y — 1)bn-2 2¢n o0,

where the second inequality follows from Stirling’s approximation formula. Moreover,
notice that the bound Bypew(n,d) can only be used when n — 1 is a prime power.

The following proposition shows the regime in which our bound in Theorem 5.6
beats by a large scale the previous known bounds.

Proposition 6.3. Let g be a prime power andn = aq for some a such that 1 < a < 2.
Set d = bn = baq with Wja) <b<1, and

nla(n — 0, 14))

Bamds(na d) = 2n—qqd—1

Then
Bamds (TL, d)

— +00,
Boia(n, d)

as n goes to infinity.



n Theorem 4.6 Theorem 4.9 [10, 18]

9 56 45 25
10 248 277 248
11 2727 2727
12 16 772 16 359 16 772
13 218026 218026
14 1330236 1526178 1043789
15 19953 528 15656 834
16 319256 438 250509 332
17 4258658638 2713679719 4258658 638
18 49127720 826 38327927742 49127720 826
19 933 426 695 689 933 426 695 689
20 8693872621 156 9334266 956 886 8693872621 156
21 182571 325 044 256 182571 325 044 256

Table 1: This table compares the results given by Theorem 4.6 and Theorem 4.9 with
[10, Theorem 2] and [18, Theorem 13] for many values of n and d = 6. For each line
of the table the numbers in bold denote the best bounds.

Proof. We have

_ bagq bag—2 bag—2 ba
Bamds(nvd) > AQ((a 1)Q7l_ 2 J)Oé 172g" > i a1 _ i2(a10g2(a)b70(+1)q.
Bold(n,d) - 2(@—1)quaq—1 = a2q 92(a—1)q a2q
Since we assumed #_;(a) < b, then alogy(a)b—a+1 > 0, and in turn % —
+00.

Again, we notice in the next remark that in the regime where we beat the old
bound, the new one is actually non-trivial.

Remark 6.4. Observe that in the regime n = aq and d = bn = bagq, with b < 1 the
bound Bamds(n,d) is non-trivial. Indeed

5 aaq+%q(1fb)aq

n!2 o 3
Bamds(nvd) > 2(a—l)quaq—1 > 2 27”]2 equQ(Oz—l)q — +00,

for g going to infinity, where the second inequality follows from Stirling’s formula.

Remark 6.5. Proposition 6.3 shows that the bound given in Theorem 5.6 could beat
by far the bound in [10, Theorem 2] and [18, Theorem 13], and therefore also the one
from Theorem 4.6, for % > algg;l(a) and n large enough. The reader should notice
that Proposition 6.3 is conditioned to the existence of a family of AMDS codes of
length n over Fg, for g large and 1 < 2 < 2 fixed. The existence of such family is not
proven nor disproven and explicit constructions of linear codes with these parameters

becomes now central also in the theory of permutation codes.

7 Conclusions

In this paper we connected the theory of linear codes with the theory of permutation
codes. In turn, this allows to produce new lower bounds for the maximal size of

10



permutation codes. The lower bounds produced use the existence of certain codes of
given distance and length over an alphabet of a given size, converting the problem
of finding a lower bound for permutation codes of given distance into the problem
of finding a certain linear codes with parameters as in Theorem 3.1. In Section 6
we apply Theorem 3.1 and obtain improved bounds with respect to the ones in the
literature [10, 18], as one can now select a the next prime power instead of the next
prime in the bound of [10, Theorem 2] and [18, Theorem 13] (thanks to our Theorem
4.6). Moreover, in Proposition 6.1 and Proposition 6.3 we show that we beat them
asymptotically for certain regimes of n and d.
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