
Neural Network Decoders for Permutation
Codes Correcting Different Errors

Yeow Meng Chee and Hui Zhang

Industrial Systems Engineering and Management, National University of Singapore, Singapore
Emails: ymchee@nus.edu.sg, isezhui@nus.edu.sg

Abstract—Permutation codes were extensively studied in order
to correct different types of errors for the applications on power
line communication and rank modulation for flash memory.
In this paper, we introduce the neural network decoders for
permutation codes to correct these errors with one-shot decoding,
which treat the decoding as n classification tasks for non-binary
symbols for a code of length n. These are actually the first general
decoders introduced to deal with any error type for these two
applications. The performance of the decoders is evaluated by
simulations with different error models.

I. INTRODUCTION

A. The Background

The permutation code is a subset of the symmetric group,
and was extensively studied because of potential applications
on power line communication (PLC) and rank modulation
(RM) for flash memory. Typically, the errors occurring in
these applications include, but not limit to, insertion, deletion,
substitution, adjacent transposition, and translocation.

The application of permutation code on PLC channel is in
M -ary FSK modulation scheme where symbols are modulated
as sinusoidal waves with M different frequencies [6], [10],
[14], [22], [37], [39]. The noises prone to occur include addi-
tive background noise, impulse noise and permanent frequency
disturbance, which can be considered as substitution errors
on the permutation matrix of the corresponding codeword. In
order to measure the PLC channel model with synchronization
issue, it is natural to consider the mixture of these three
types of errors and insertion/deletion errors. Nevertheless, the
decoding of these mixed errors is a difficult task to achieve
with classical decoding algorithms.

For PLC channel without synchronization issue, decoding
algorithms for permutation code were provided in [22] and
[6], [37] for codes obtained by composition of cosets of
permutation groups and distance preserving mappings respec-
tively. For PLC channel with synchronization issue, algorithms
for correcting mixture of insertion/deletion/substitution errors
for permutation codes were explored in [8], [9], [19], [20],
[35]. Their work mainly focused on some special cases, and
no efficient general decoder is known yet. In their model,
the output of the channel which suffers from the mixed
errors is a variation of the original permutation instead of
the corresponding permutation matrix, which is not necessary
in the PLC channel model for regaining synchronization we
consider in this paper.

In RM scheme for flash memory, information is stored in the
form of rankings of cell charges [23], [24]. The translocation
error, which is an extension of another well-studied error, the
adjacent transposition error [1], [5], [7], [24], [31], is caused
by moving the rankings of one cell below a certain number of
closest ranked cells. Interleaved codes correcting translocation
errors equipped with certain Ulam distance were constructed
in [13]. However no efficient decoder for the general family
of interleaved codes was known yet.

B. The Neural Network Decoders

Recently, a lot of research has been done on decoding
with neural networks, we call them neural network decoders,
see for example [2]–[4], [11], [17], [25], [27]–[30], [32]–
[34], [41]. Neural network decoders build upon supervised
learning algorithms such as multi-layer perceptron (MLP),
were proposed to decode codes as a classification task [18].
For binary codes, a single classification is replaced with n
binary classifications in [17], [30], where n is the length of
code, and they showed that the bit error rate approaches the
maximum a posteriori criterion decoding algorithms.

Decoding permutation codes with non-binary symbols may
induce more complexity compared to binary case, as we can
see in next section that a codeword in a permutation code over
n symbols is transformed into square n length bits for PLC
application, which implies more decoding complexity even
for codes of short length. Fortunately, in the applications of
permutation codes, the length of codes is usually not quite
large. For example, it was indicated in [16] that, increasing
the length of code utilized implies more critical constraints in
terms of program and sensing accuracy.

For linear codes, such as BCH codes, polar codes, Reed
Solomon codes, deep learning succeeded on improving belief
propagation decoding algorithms for large code length, see
[2]–[4], [27]–[29], [33], [34], [41].

C. Our Contributions and Organization

In this paper, we introduce low-latency one-shot neural
network decoders for permutation codes for the applications of
PLC and RM for flash memory. We use MLPs as our decoders,
and let the output execute n classification tasks as in [17],
[30], but for non-binary symbols, each corresponding to one
coordinate of the codeword. Actually, these are the first general
decoders introduced to deal with any error type for these two

ar
X

iv
:2

20
6.

03
31

5v
1 

 [
cs

.I
T

] 
 7

 J
un

 2
02

2



applications. Experiments show that the decoders can achieve
good block error rate when the code has short length and small
size, however the decoding ability decays when the code length
and size increase.

The organization of the paper is as follows. In Section II, we
formally state the error models of these applications, and also
the permutation codes that we use in the paper. In Section III,
we present the settings of the neural network decoders for
permutation codes. In Section IV, we show the performance
by simulation, and Section V concludes the paper.

II. THE PROBLEM STATEMENT

In this section, we formally introduce the error models of
the two applications, and also provide some permutation codes
that we use in simulation.

A. The Channel Model for PLC Channel

In an M -ary FSK modulation scheme for power line com-
munication (PLC), symbols are modulated as sinusoidal waves
with n different frequencies. In order to handle the noise, it
was proposed in [14] that n detected envelopes can be used in
the decoding process. The i-th envelop detector for a frequency
fi, i ∈ [1, n] , {1, . . . , n} is followed by a threshold Ti.
For values above the threshold, it outputs a one, otherwise,
a zero. Hence, we have n outputs per transmitted symbol.
A transmitted codeword of length n thus leads to n2 binary
outputs, which are placed in a binary n× n matrix.

Example 1. Suppose a codeword π = (1, 2, 4, 3) is sent
through the channel. Let tj represent the j-th time interval,
for j ∈ [1, 4]. If the codeword is received correctly, the output
of the demodulator would be

f1 1 0 0 0
f2 0 1 0 0
f3 0 0 0 1
f4 0 0 1 0

t1 t2 t3 t4

Three types of noises are prone to occur in the output matrix
[14], [39], namely, additive background noise: a one becomes
a zero, or vice versa (with probability pbg); impulse noise: a
complete column is received as ones (with probability pim);
permanent frequency disturbance: a complete row is received
as ones (with probability ppfd).

In this work, we also consider the PLC channel with
synchronization issue, and employ the model in [12] (see Fig.
1). Suppose some symbols enter the queue to be transmitted
over the channel. At each channel use, one of the three events
occur: (i) with probability pi, a random symbol is inserted and
transmitted through the channel; (ii) with probability pd, the
next queued symbol is deleted; (iii) with probability 1−pi−pd,
the next queued symbol is transmitted through the channel,
while also suffering from the above three types of noises from
the channel. Here, the insertion/deletion errors correspond to
a whole column inserted/missing in the output matrix.

As in [12], we assume pi = pd, and assume a maximum
insertion length `max for each time interval, and thus generate

Insert

Delete

Transmit

ti ti+1

pi

pd

pt

Fig. 1. The channel model for PLC. For each channel use, the “insert” state
inserts a random symbol into the channel with probability pi. With probability
pd, the next queued symbol is deleted, and with probability pt = 1−pi−pd,
the next queued symbol is transmitted.

an output matrix of dimension n × (n + `max ∗ (n + 1)) by
filling zero columns at the end. In order to reduce storage
waste with zero columns, we only take the first cmax columns
in each matrix for a preset cmax in decoding phase.

Example 2. Take `max = 1 and cmax = n + 3. Assume
the codeword (1, 2, 4, 3) is sent through the channel, and the
output matrix is

f1 1 0 0 1 0 0 0
f2 1 1 1 1 0 0 0
f3 0 0 1 0 0 0 0
f4 0 1 0 0 0 0 0

We can consider there exists a deletion when sending “2”,
a permanent frequency disturbance at frequency f2, and an
insertion at the last time slot.

B. The Error Model for RM Scheme

In rank modulation (RM) for flash memory, the rank of a
cell reflects the relative position of its own charge level, and
the ranking of the n cells induces a permutation (see Fig. 2).
The data may be vulnerable to noises caused by potential cell
over-injection, charge leakage, and read/write disturbance. The
translocation errors were defined to characterize the noises
[13], [23], [24]. For a permutation π = (x1, . . . , xn), a
translocation for distinct i, j ∈ [1, n] is obtained by moving xi
to the j-th position and shift elements between them, including
xj . Thus if i < j, the permutation π after translocation i, j is

· · · , xi−1, xi+1, · · · , xj , xi, xj+1, · · ·

and if i > j, it is

· · · , xj−1, xi, xj , · · · , xi−1, xi+1, · · · .

In order to characterize all the noises, we set our model as
the analysis in [13]. We assume that each cell charge suffers
from a small Gaussian noise n1 ∼ N (0, σ2

1) which may due
to read/write disturbance and a low nearly uniform charge
leakage rate, and with a small probability p, it also suffers
from a possible large Gaussian noise n2 ∼ N (0, σ2

2), for some
σ2 > σ1, which may caused by serious cell over-injection and
high charge leakage rate. That means, suppose the charge of
the i-th cell of the memory is ci, and the charge retrieved is
ci + n1 + n2. Apparently, the ranking of the charge levels of
all the cells may be reordered.

Example 3. Assume n = 9, σ1 = 0.2, p = 0.001,
σ2 = 1.0. In Fig. 2, we suppose the original charges



(1, 2, 5, 3, 4, 9, 6, 8, 7) (1, 2, 5, 3, 4, 9, 7, 6, 8)

Fig. 2. The two figures show the original charge ranking and retrieved charge
ranking suffering from Gaussian noises respectively.

of the cells are [1.5, 2.0, 3.0, 3.5, 2.5, 4.5, 5.5, 5.0, 4.0]1,which
corresponds to the permutation (1, 2, 5, 3, 4, 9, 6, 8, 7), and
the charges retrieved suffering from the Gaussian noises are
[1.68, 1.76, 3.08, 3.68, 2.14, 4.72, 4.40, 5.12, 3.90] correspond-
ing to permutation (1, 2, 5, 3, 4, 9, 7, 6, 8).

C. Permutation Codes and Decoding Algorithms

A permutation code is a subset of the symmetric group Sn,
which consists of all permutations of n symbols 1, 2, . . . , n.

The following Tenengolts’ single insertion/deletion cor-
recting code is well known (see [26], [38]). For any π =
(x1, . . . , xn) ∈ Sn, define the vector α(π) as

α(π)i =

{
1, if xi+1 ≥ xi.
0, otherwise.

Define the code as the set

Cn = {π ∈ Sn :

n−1∑
i=1

iα(π)i ≡ 0 (mod n)}.

However, this code may not be good at correcting substitution
errors because of its low Hamming distance. We take the code
Cen, which consists of only even permutations in Cn and has
minimum Hamming distance at least three.

Permutation code with Hamming distance exactly charac-
terizes PLC channel model without synchronization issue (see
Appendix). Decoding algorithms were only provided in [22]
and [6], [37] for permutation codes obtained by composi-
tion of cosets of permutation groups and distance preserving
mappings respectively in literature as far as we know. For
comparison with the neural network decoders in this paper, we
also provide a minimum distance (MD) decoding in Appendix.
For PLC channel with synchronization issue, algorithms for
correcting mixture of insertion/deletion/substitution errors for
permutation codes were explored in [8], [9], [19], [20], [35].
However their work mainly focused on some special cases.
In particular, decoders of Cn for the case a single error per
codeword were provided in [8], [9], and no general classical
decoder is known yet.

For RM scheme, we take the interleaved code of size
((n/3)!/2)3 from [13, Proposition 15], denoted as CILn , which

1Note that we take the charge voltage level arrangment similar as in [16]
for simulation in this paper.

Input
layer

Embedding
layer

Flatten
layer

Fully
connected
layers

Output
layer

x′
1

x′
2

x′
3

x′
n

Fig. 3. The Multi-layer Perceptron Decoder

was proved to correct a single translocation error, obtained by
interleaving even permutations with n/3 symbols. Extensions
into t-translocation error correcting codes were also provided
in [13]. However no efficient decoder for the general family
of interleaved codes was known.

III. THE NEURAL NETWORK DECODERS

In this section, we present the settings of the neural network
decoders, that are employed to decode permutation codes. The
readers may refer to [18] for more definitions.

A. The Setting of Neural Network Decoders

A multi-layer perceptron (MLP) is a class of feed-forward
neural network, consisting three types of layers: input layer,
hidden layer, and output layer. We describe explicitly the
format of different layers for the two applications below.

For RM model, the input layer is just the permutation
retrieved from the cells that suffers from Gaussian noises, for
example the permutation (1, 2, 5, 3, 4, 9, 7, 6, 8) in Example 3.
We take the first hidden layer of the decoder as an embedding
layer, namely a mapping f : {1, . . . , n} → R∗, which maps
each element of 1, . . . , n into a real vector of fixed length,
and it is followed by a flatten layer that flats the input of this
layer into a one-dimension vector, and several fully connected
(or dense) layers that are connected to every neuron of its
preceding layer, and an output layer (see Fig. 3).

As for PLC, we just take the output matrix of the channel
of dimension n × cmax as given in Example 2 as the input
layer, which is then followed by a flatten layer, several fully
connected layers, and an output layer.

In both cases, the output layer corresponds to the codeword
to be retrieved, that was fed into the error models. Actually,
the decoders execute n classification tasks, where each of them
corresponds to one coordinate of the codeword.



B. The Activation Functions and Output Layers

Each fully connected layer performs an activation function
g(WX + b), which is taken to be rectified linear unit (ReLU)
function g(Z)i = max{0, zi} for Z = (z1, z2, . . . ), where
X = (x1, x2, . . . ) represents the vector received from the
neurons in the previous layer.

In the output layer, the k-th output performs a softmax
function

g(Zk)i = ezk,i/(
∑
j

ezk,j )

for i, k ∈ [n], where Zk , (zk,1, . . . , zk,n) = WkX + bk.
Finally, x′k = argmaxig(Zk)i is taken as the predicted symbol
of the k-th coordinate of the codeword (see Fig. 3).

The ReLU function works to make the network approximate
nonlinear functions [21], and softmax function normalizes
the output to a probability distribution in each of the n
classification tasks.

C. The Loss Function

The loss function measures the difference between actual
labels and the predicted output. Suppose π = (x1, . . . , xn) is
the codeword fed into the model. Let yk be the one-hot vector
of xk, which is a vector of length n with all zero except a
one at the xk-th coordinate, and ŷk be the output of the k-
th softmax function, then the loss is defined as the sum of
cross-entropy loss of the n outputs, that is

Loss = −
∑
k∈[n]

∑
i∈[n]

yk,i log(ŷk,i)

where yk,i, ŷk,i are the i-th components of yk, ŷk respectively.

IV. IMPLEMENTATION AND PERFORMANCE

In this section, we show the performance of neural network
decoders introduced in the previous section by simulation. We
take `max = 1 and cmax = n + 3 or n for PLC model with
or without synchronization issue respectively. For RM model,
we take the charge levels as {1.5+0.5i : i = [0, 8]} for n = 9
and {1.5 + 0.4i : i = [0, 11]} for n = 12.

A. The Training/Test Sets and Hyper-Parameters

The supervised learning algorithm produces an inferred
function based on the labeled training set, and the test set
is used for verification of the effectiveness of the training
process. In the simulations, both the training and test sets are
sets of data pairs composed of input and output of the neural
network decoders as indicated in the previous section.

In particular, for each point in Fig. 4–Fig. 6, we take a test
set of size 106, where each original codeword π fed into the
error models is randomly chosen from the whole codebook.
In order to better visualize the decoding ability for different
channel requirement, we train a model for each curve in the
figures. For each curve, we let the training set has size δM
where M is the size of code, and δ is the number of time that
each codeword is fed into the error models in generating the
training set pairs. For example, when n = 6, for the curve with

code size δ dense layers #parameters
Ce6 56 106 128 44, 708 (42, 404)
Ce7 360 105 128 48, 433 (45, 745)
Ce8 2544 104 128 52, 672 (49, 600)
Ce8 2544 104 256 170, 816 (164, 672)
CIL9 27 106 64 18, 914
CIL12 1728 104 64 27, 104

TABLE I
THE PARAMETERS OF MLP DECODERS.

pi = pd = 0 and pim = ppfd = 0.001, we take the size of
training set as 106M , where each 105M of them corresponds
to errors with the same pim, ppfd, pi, pd, and one pbg .

We let the MLP decoders all have three fully connected
layers of the same size, and the embedding size is n if
necessary. In order to relief over-fitting, there is a dropout layer
with rate 0.1 before the output layer. The number δ, size of
dense layers and the total number of trainable parameters are
listed in Table I. Notice that, in the first four rows of the last
column, the values denote the trainable parameters for PLC
model with (or without) synchronization issue respectively.

We implement with TensorFlow library. In the training
process, we take batch size as 200, and use Adam algorithm
for optimization with a default learning rate 0.001. In order to
fully utilize the data in training set, we choose the number of
epochs larger than one in the way that the decoders achieve a
higher BLER on the test set, which indicates the rounds that
entire training set is passed in training process.

B. The Performance and Analysis

The performance of our schemes is measured by the block
error rate (BLER) decoding on test set.

In Fig. 4, we consider the PLC channel without synchro-
nization issue. We take the test sets with pim = ppfd = 0.001,
and the background noises in the set {0.005i : i ∈ [1, 10]}.
The MD decoder is implemented for comparison. We can
see that when n = 6, the MLP decoder approaches the MD
decoder, however when n increases, the gap also increases. For
n = 8, an MLP decoder with dense layer size 256 performs
better compared to the one with size 128, and more trainable
parameters lead to better decoding ability in this case.

In Fig. 5, we consider the PLC channel with synchronization
issue. We take the test sets with pim = ppfd = 0.001, and the
background noises in the set {0.001+ 0.003i : i ∈ [0, 9]}, for
each pi = pd ∈ {0.001, 0.005}. We can see that when n = 6,
the BLER can reach below 10−4 for pi = pd = pbg = 0.001.
However, when n increases, the decoding ability seems decay
faster than in Fig. 4. For n = 8, the decoder with dense layer
size 256 also performs better in this case.

In Fig. 6, we consider the MLP decoders for RM scheme
for n ∈ {9, 12}. We take the test sets with σ1 in the set
{0.05i : i ∈ [1, 10]}. When p = 0, that is the scheme only
suffers from the small disturbance, both the codes can reach
zero BLER when σ1 is small. When σ2 is twice the gap of
two adjacent charge levels, the BLER for n = 9 reaches below



Fig. 4. The Performance of Decoders for PLC Channel without Synchroniza-
tion Issue: The solid line and dashed line are for MLP decoders with hidden
layers size 128 and 256 respectively. Here, pim = ppfd = 0.001.

Fig. 5. The Performance of Decoders for PLC Channel with Synchronization
Issue: The solid line and dashed line are for MLP decoders with hidden layers
size 128 and 256 respectively. Here, pim = ppfd = 0.001.

10−4 when p ∈ {0.001, 0.005} for small σ1, and it also holds
for n = 12, when p = 0.001. However, when taking fixed
σ2 = 1, the code with length 12 has less reliability.

In our decoders, the decoding is treated as n classification
tasks. In essence, in training process when labeled data is
fed into the neural network, the local features are memorized
by trainable parameters, and in decoding phase, the network
infers the label of data by recognizing the features. Therefore,
compared to the classical decoding algorithms, the neural
network decoder may provide more flexibility.

V. CONCLUSION

In this paper, we introduced neural network decoders for
one-shot decoding of permutation codes correcting errors for
PLC and RM for flash memory, which are the first general

Fig. 6. The Performance of MLP Decoders for RM Scheme.

decoders introduced to correct any error types. Experiments
show that the decoders perform well on correcting the errors,
in particular for codes of small length and size. The decoding
ability decays when the length and size of codes increase.
It will be interesting to explore in future work whether it is
possible to increase the decoding ability by further increasing
the complexity of neural network decoders.

ACKNOWLEDGMENT

The authors would like to thank Zekun Tong and Xinke Li
for assistance on programming.

APPENDIX

The connection between permutation codes with Hamming
distance and PLC channel model was implied by not given
explicitly in literature. Here, we provide a proof. For a per-
mutation π = (x1, . . . , xn), we let Y π be the n×n matrix by
assigning one in the xi-th row in the i-th column for i ∈ [1, n]
and zero in all other positions, and let Y C = {Y π : π ∈ C}.
Let π, σ ∈ C, and the Hamming distances dH(π, σ) and
dH(Y π, Y σ) are defined as the number of positions that the
two components differ in.

Proposition 4. A permutation code can correct any com-
bination of e1 background noise, e2 impulse noise, and e3
permanent frequency disturbance with e1 + e2 + e3 ≤ d − 1
if and only if it has minimum Hamming distance d.

Proof: For any π, σ ∈ C, since dH(π, σ) ≥ d, we have
dH(Y π, Y σ) ≥ 2d. In the output matrix M suffering from
noise, firstly we can locate the rows I and columns J that
the impulse noise and permanent frequency disturbance occur,
since they are all-one vectors. Then we can consider these
rows and columns as erasures. Omitting the chosen rows and
columns in all the matrices in Y C , the resulting set of matrices
still has minimum Hamming distance at least 2d− 2e2− 2e3,



and can correct up to b(2d − 2e2 − 2e3 − 1)/2c = d − 1 −
e2− e3 background noise. The reverse is obvious, since if the
permutation code has minimum Hamming distance d−1, then
some d − 1 background noise (or impulse noise, permanent
frequency disturbance) may ruin the decoding ability of C.

We denote the matrix Y by omitting the rows in I and
columns in J as Y \{I, J}. For a received matrix M of the
channel output, we can decode M as the codeword

π? = argminπ∈CdH(Y π\{I, J},M\{I, J}) (1)

Since the decoding by (1) is time costly, in Fig. 4 we imple-
ment the minimum distance (MD) decoding by the following

π? = argminπ∈CdH(Y π,M) (2)

When the probabilities of impulse noise, and permanent fre-
quency disturbance are low, that is, mostly only one of them
occurs, the decoding with (2) that differs from decoding with
(1) will be rare.

REFERENCES

[1] A. Barg and A. Mazumdar, “Codes in permutations and error correction
for rank modulation,” IEEE Trans. Inf. Theory, vol. 56, no. 7, pp. 3158–
3165, Jul. 2010.

[2] I. Be’ery, N. Raviv, T. Raviv, and Y. Be’ery, “Active deep decoding of
linear codes,” IEEE Trans. Commun., vol. 68, no. 2, pp. 728–736, Feb.
2020.

[3] A. Bennatan, Y. Choukroun, and P. Kisilev, “Deep learning for decoding
of linear codes – a syndrome-based approach,” in Proc. IEEE Int. Symp.
Inf. Theory, Vail, CO, USA, Jun. 2018, pp. 1595–1599.

[4] A. Buchberger, C. Häger, H. D. Pfister, L. Schmalen, and A. G. Amat,
“Pruning neural belief propagation decoders,” in Proc. IEEE Int. Symp.
Inf. Theory, Los Angeles, CA, USA, Jun. 2020, pp. 338–342.

[5] S. Buzaglo and T. Etzion, “Perfect permutation codes with the Kendall’s
τ -metric,” in Proc. IEEE Int. Symp. Inf. Theory, Honolulu, HI, USA,
Jun./Jul. 2014, pp. 2391–2395.

[6] Y. M. Chee and P. Purkayastha, “Efficient decoding of permutation codes
obtained from distance preserving maps,” in Proc. IEEE Int. Symp. on
Inf. Theory, Cambridge, MA, USA, Jul. 2012, pp. 641–645.

[7] Y. M. Chee and V. K. Vu, “Breakpoint analysis and permutation codes
in generalized Kendall tau and Cayley metrics,” in Proc. IEEE Int. Symp.
Inf. Theory, Honolulu, HI, USA, Jun./Jul. 2014, pp. 2959–2963.

[8] L. Cheng, T. G. Swart, and H. C. Ferreira, “Synchronization using
insertion/deletion correcting permutation codes,” in Proc. Int. Symp. on
Power Line Commun. and its Applications, Jeju Island, Korea, Apr. 2008,
pp. 135–140.

[9] L. Cheng, T. G. Swart, and H. C. Ferreira, “Re-synchronization of
permutation codes with Viterbi-like decoding,” in Proc. Int. Symp. on
Powerline Commun. and its Applic., Dresden, Germany, Mar. 2009, pp.
36–40.

[10] W. Chu, C. J. Colbourn, and P. Dukes, “Constructions for permutation
codes in powerline communications,” Des. Codes Cryptogr., vol. 32, pp.
51–64, 2004.

[11] V. Corlay, J. J. Boutros, P. Ciblat, and L. Brunel, “Neural network
approaches to point lattice decoding,” IEEE Trans. Inf. Theory, vol. 68,
no. 5, pp. 2969–2989, May 2022.

[12] M. C. Davey and D. J. C. MacKay, “Reliable communication over
channels with insertions deletions and substitutions,” IEEE Trans. Inf.
Theory, vol. 47, no. 2, pp. 687–698, Feb. 2001.

[13] F. Farnoud, V. Skachek, and O. Milenkovic, “Error-correction in flash
memories via codes in the Ulam metric,” IEEE Trans. Inf. Theory, vol.
59, no. 5, pp. 3003–3020, May 2013.

[14] H. C. Ferreira, A. J. H. Vinck, T. G. Swart, and I. de Beer, “Permutation
trellis codes,” IEEE Trans. Commun., vol. 53, no. 11, pp. 1782–1789, Nov.
2005.

[15] F. Göloǧlu, J. Lember, A.-E. Riet, and V. Skachek, “New bounds for
permutation codes in Ulam metric,” in Proc. IEEE Int. Symp. Inf. Theory,
Jun. 2015, pp. 1726–1730.

[16] M. Grossi, M. Lanzoni, and B. Riccò, “Program schemes for multilevel
flash memories,” Proceedings of the IEEE, vol. 91, no. 4, pp. 594–601,
2003.

[17] T. Gruber, S. Cammerer, J. Hoydis, and S. T. Brink, “On deep learning
based channel decoding,” in Proc. IEEE 51st Annu. Conf. Inf. Sci. Syst.,
Baltimore, MD, USA, 2017, pp. 1–6.

[18] S. Haykin, Neural Networks: A Comprehensive Foundation (2 ed.),
Prentice Hall, 1998.

[19] R. Heymann and H. C. Ferreira, “Using tree structures to resynchronize
permutation codes,” in Proc. Int. Symp. on Powerline Commun. and its
Applic., Rio de Janeiro, Brazil, Mar. 2010, pp. 108–113.

[20] R. Heymann, H. C. Ferreira, and T. G. Swart, “Combined permutation
codes for synchronization,” in Proc. Int. Symp. Inf. Theory Appl., Hon-
olulu, Hawaii, USA, Oct. 2012, pp. 230–234.

[21] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, no. 5,
pp. 359–366, 1989.

[22] F. H. Hunt, S. Perkins, and D. H. Smith, “Decoding mixed errors and
erasures in permutation codes,” Des. Codes Cryptogr., vol. 74, pp. 481–
493, 2015.

[23] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank Modulation
for Flash Memories,” in Proc. IEEE Int. Symp. on Inf. Theory, Toronto,
ON, Canada, Jul. 2008, pp. 1731–1735.

[24] A. Jiang, M. Schwartz, and J. Bruck, “Error-Correcting Codes for Rank
Modulation,” in Proc. IEEE Int. Symp. on Inf. Theory, Toronto, ON,
Canada, Jul. 2008, pp. 1736–1740.

[25] C. T. Leung, R. V. Bhat, and M. Motani, “Low-Latency neural decoders
for linear and non-linear block codes,” IEEE GLOBECOM, Waikoloa, HI,
USA, Dec. 2019.

[26] V. I. Levenshtein, “On perfect codes in deletion and insertion metric,”
Discrete Math. Appl., vol. 3, no. 1, pp. 3–20, 1991.

[27] M. Lian, F. Carpi, C. Häger, and H. D. Pfister, “Learned belief-
propagation decoding with simple scaling and SNR adaptation,” in Proc.
IEEE Int. Symp. Inf. Theory, Paris, France, pp. 161–165, Jul. 2019.

[28] M. Lian, C. Häger, and H. D. Pfister, “What can machine learning teach
us about communications?,” in Proc. IEEE Inform. Theory Workshop,
Guangzhou, China, Nov. 2018.

[29] L. Lugosch and W. J. Gross, “Neural offset min-sum decoding,” in Proc.
IEEE Int. Symp. on Inf. Theory, Aachen, Germany, Jun. 2017, pp. 1361–
1365.

[30] W. Lyu, Z. Zhang, C. Jiao, K. Qin, and H. Zhang, “Performance
evaluation of channel decoding with deep neural networks,” in Proc. IEEE
Int. Conf. Commun., Kansas City, MO, USA, May 2018, pp. 1–6.

[31] A. Mazumdar, A. Barg, and G. Zémor, “Constructions of rank modula-
tion codes,” IEEE Trans. Inf. Theory, vol. 59, no. 2, pp. 1018–1029, Feb.
2013.

[32] M. Mohammadkarimi, M. Mehrabi, M. Ardakani, and Y. Jing, “Deep
learning based sphere decoding,” IEEE Trans. Wireless Commun., pp.
4368–4378, Sep. 2019.

[33] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode linear
codes using deep learning,” in Proc. 54th Annu. Allerton Conf. Commun.
Control Comput., Monticello, IL, USA, Sep. 2016, pp. 341–346.

[34] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y.
Be’ery, “Deep learning methods for improved decoding of linear codes,”
IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, pp. 119–131, Feb.
2018.

[35] T. Shongwe, T. G. Swart, H. C. Ferreira, and T. van Trung, “Good syn-
chronization sequences for permutation codes,” IEEE Trans. Commun.,
vol. 60, no. 5, pp. 1204–1208, May 2012.

[36] D. H. Smith and R. Montemanni, “A new table of permutation codes,”
Des. Codes Cryptogr., vol. 63, pp. 241–253, 2012.

[37] T. Swart and H. Ferreira, “Decoding distance-preserving permutation
codes for power-line communications,” AFRICON, Sep. 2007, pp. 1–7.

[38] G. M. Tenengolts, “Nonbinary codes, correcting single deletion or
insertion (Corresp.),” IEEE Trans. Inf. Theory, vol. 30, no. 5, pp. 766–
769, Sep. 1984.

[39] A. J. H. Vinck, “Coded modulation for powerline communications,”
Proc. Int. J. Elec. Commun., vol. 54, no. 1, pp. 45–49, 2000.

[40] G. Zeng, D. Hush, and N. Ahmed, “An application of neural net in
decoding error-correcting codes,” in Proc. IEEE Int. Symp. on Circuits
and Systems, vol. 2, May 1989, pp. 782–785.

[41] W. Zhang, S. Zou, and Y. Liu, “Iterative soft decoding of Reed–Solomon
codes based on deep learning,” IEEE Commun. Lett., vol. 24, no. 9, pp.
1991–1994, Sep. 2020.


	I Introduction
	I-A The Background
	I-B The Neural Network Decoders
	I-C Our Contributions and Organization

	II The Problem Statement
	II-A The Channel Model for PLC Channel
	II-B The Error Model for RM Scheme
	II-C Permutation Codes and Decoding Algorithms

	III The Neural Network Decoders
	III-A The Setting of Neural Network Decoders
	III-B The Activation Functions and Output Layers
	III-C The Loss Function

	IV Implementation and Performance
	IV-A The Training/Test Sets and Hyper-Parameters
	IV-B The Performance and Analysis

	V Conclusion
	References

