
0018-9448 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2018.2859403, IEEE
Transactions on Information Theory

1

Local Rank Modulation for Flash Memories
Michal Horovitz and Tuvi Etzion, Fellow, IEEE

Abstract—Local rank modulation scheme was suggested
for representing information in flash memories in order to
overcome drawbacks of rank modulation. For 0 < s ≤ t ≤
n with s dividing n, an (s, t, n)-LRM scheme is a local rank
modulation scheme where the n cells are locally viewed
cyclically through a sliding window of size t resulting
in a sequence of small permutations which requires less
comparisons and less distinct values. The gap between two
such windows equals to s. In this work, encoding, decoding,
and asymptotic enumeration of the (1, t, n)-LRM scheme
is studied.

Index Terms—Flash memory, local rank modulation.

I. INTRODUCTION

Flash memory is a non-volatile technology that is both
electrically programmable and electrically erasable. It
incorporates a set of cells maintained at a set of charge
levels to encode information. While raising the charge
level of a cell is an easy operation, reducing the charge
level requires the erasure of the whole block to which the
cell belongs. For this reason charge is injected into the
cell over several iterations. Such programming is slow
and can cause errors since cells may be injected with
extra unwanted charge. Other common errors in flash
memory cells are due to charge leakage and reading
disturbance that may cause charge to move from one
cell to its adjacent cells. In order to overcome these
problems, the novel framework of rank modulation was
introduced in [8]. In this setup, the information is carried
by the relative ranking of the cells’ charge levels and not
by the absolute values of the charge levels. Denote the
charge level in the ith cell by ci, 0 ≤ i < n, and hence
c = (c0, c1, . . . , cn−1) is the sequence of the charge
levels in the n cells. A codeword in this scheme is the
permutation defined by the order of the charge levels,
from the highest one to the lowest one, e.g. if n = 5
and c = (3, 5, 2, 7, 10) then the permutation, i.e., the
codeword in the rank modulation scheme, is [5, 4, 2, 1, 3].
This allows for more efficient programming of cells,
and coding by the ranking of the cells’ charge levels
is more robust to charge leakage than coding by their

Michal Horovitz is with the Department of Computer Science,
Tel-Hai College, and The Galilee Research Institute - Migal, Upper
Galilee — Israel (email: horovitzmic@telhai.ac.il). This work is part
of her Ph.D. thesis performed at the Department of Computer Science,
Technion — Israel Institute of Technology.

Tuvi Etzion is with the Computer Science Department, Technion–
Israel Institute of Technology, Haifa 3200003, Israel (e-mail: et-
zion@cs.technion.ac.il).

This work was supported in part by the United States — Israel
Binational Science Foundation (BSF), Jerusalem, Israel, under Grant
2012016. This paper was presented in part in the Information Theory
Workshop, Hobart, Tasmania, Australia, November 2–5, 2014

actual values. The push-to-the-top operation is a basic
minimal cost operation in the rank modulation scheme
by which a single cell has its charge level increased such
that it will be the highest of the set. Research on the rank
modulation scheme since its introduction less than ten
years ago has been developed in a few directions, such
as error-correction [1], [2], [3], [9], [10], [13], [18], Gray
codes [6], [7], [8], [16], [17], and capacity [14].

Two main metrics were studied in the literature. The
first is the Kendall τ -metric [1], [2], [3], [10], [18]
which corresponds to a case where the total difference
in the charge levels can be bounded. The second is the
infinity metric [13], [16] which models a different type
of common errors, the limited-magnitude spike errors.
A useful method for studying of the Kendall τ -metric is
embedding the set of all permutations with the Kendall
τ -metric into a different spaces and metrics, such as
Lee metric and Hamming Distance [1], [10], [18]. This
method is used also for constructing error-correcting
codes for multi-permutations [3]. Many papers consider
the single error case: design codes [1], [3], [10], explore
bounds on the capacity [1], [2], and study the snake-in-
the-box codes [6], [7], [15], [16], [17], which are Gray
codes capable for correcting one error. In [10] the authors
construct families of rank modulation codes that correct
a number of errors that grows with the number of cells
at varying rates.

A drawback of the rank modulation scheme is the
need for a large number of comparisons when reading
the induced permutation. Furthermore, n distinct charge
levels are required for a group of n cells. The local
rank modulation (LRM) scheme was suggested [5] in
order to overcome these problems. In this scheme, the
n cells are locally viewed through a sliding window,
resulting in a sequence of permutations for a much
smaller number of cells which requires fewer compar-
isons and fewer distinct values. For 0 < s ≤ t ≤ n,
where s divides n, the (s, t, n)-LRM scheme, defined
in [5], [14], is a local rank modulation scheme over n
physical cells, where t is the size (length) of each sliding
window and s is the gap between two such windows.
In this scheme the permutations are over {1, 2, . . . , t},
i.e., elements from St, and the push-to-the-top operation
merely raises the charge level of the selected cell above
those cells which are comparable with it. We say that a
sequence with n

s permutations, from St, is an (s, t, n)-
LRM scheme realizable if it can be demodulated to a
sequence of charges in n cells under the (s, t, n)-LRM
scheme. Except for the degenerate case where s = t = n,

0018-9448 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2018.2859403, IEEE
Transactions on Information Theory

2

not every sequence is realizable.
In [14] bounded LRM codes were defined and studied.

In this setup, the charge levels in each window are taken
from {1, ..., D} for some D ≥ t. The authors mainly
study the (t− 1, t, n)-LRM.

The (1, 2, n)-LRM scheme was defined in [5] in order
to get the simplest hardware implementation. All de-
modulated sequences of permutations in this scheme are
realizable, except for the two sequences of permutations
in which all permutations are the same. Hence, 2n − 2
sequences of permutations are realizable in this scheme.
But, since only two permutations are used in this scheme,
it follows that this scheme is relatively very weak, as
the total number of possible codewords is relatively
small. Therefore, we are interested in the (1, t, n)-LRM
schemes for t ≥ 3, and this is the motivation for this
work.

In this paper we focus on the (1, t, n)-LRM schemes
for t ≥ 3, and suggest a demodulation method for
these schemes. The (1, t, n)-LRM scheme is a local
rank modulation scheme over n physical cells, where
the size of each sliding window is t, and each cell starts
a new window. Since the size of a sliding window is t,
demodulated sequences of permutations in this scheme
contain t! permutations. Therefore, we need t! symbols
to represent the demodulated sequences of permutations.

Let θ = (θ1, θ2, . . . , θt!) be an order of the t!
permutations from St, and Σ = {1, 2, . . . , t!} be an
alphabet where i represents the permutation si. A se-
quence α = (α0, α1, . . . , αn−1) over the alphabet Σ is
called a base-word in the (1, t, n)-LRM scheme, and
it is realizable, if there exists a sequence of charge
levels c = (c0, c1, . . . , cn−1), such that for each i,
0 ≤ i < n, αi represents the permutation induced by
ci, ci+1, . . . , ci+t−1, where indices are taken modulo n.

In this paper a mapping method, in which each base-
word α = (α0, α1, . . . , αn−1) over the alphabet of
size t!, is mapped to a codeword g = (g0, g1, . . . , gn−1)
over an alphabet of size t, will be presented. A codeword
is called legal if there exists a realizable base-word
which is mapped to it. We have to make sure that
two distinct realizable base-words are mapped into two
distinct legal codewords. Note again, that the indices in
the base-words, charge levels, and the codewords are
taken modulo n.

Let Mt be the number of legal codewords in the
(1, t, n)-LRM scheme. Since a symbol in a codeword is
from an alphabet with t letters, it follows that Mt ≤ tn.
But, this upper bound is not tight since there exist illegal
codewords. We prove in this paper that this upper bound
on Mt is asymptotically tight, i.e. lim

n→∞
Mt

tn = 1.
Our setup assumes that the words are cyclic, i.e. there

is wrap-around, a convention that was also assumed
in [5]. A cyclic setup reduces the number of possible
codewords in the sense that some base-words are not
realizable. But, as it will be proved, asymptotically the

number of codewords is not reduced, i.e. lim
n→∞

Mt

tn = 1,
when n cells with a window of size t are used. On the
other hand, if we consider a noncyclic setup then with
n cells there exist only n − t + 1 distinct windows of
length t and hence a related code has at most tn−t+1

codewords. Therefore, the cyclic setup increases the
number of codewords compared to the noncyclic setup
in a factor of about tt−1. This implies a considerable
advantage (at least theoretically) for the cyclic setup on
the noncyclic one. Moreover, the cyclic setup is more
symmetric (with respect to the different cells) which
makes it simple to handle (encoding/decoding), more
appealing, and more interesting. The only advantage of
the noncyclic setup is that all the codewords are legal.
This make this setup very simple, but with a factor of
about tt−1 less codewords.

Another possible drawback of the local rank modu-
lation is a potential of too many charge levels. There
are a few ways to overcome this problem. The most
simple one is to have n not larger than the number of
charge levels. It should be emphasis that by using this
solution, the local rank modulation has no advantage on
the rank modulation in the number of required distinct
charge levels, but LRM is still better in sense of having
less comparisons when the data is read. It should be
noted also that the technology is improving all the time,
and with the advancing time the number of possible
charge level is increased. A large number of charge
levels can be also achieved and solved by using a careful
programming. Such a careful programming can reduce
the gaps between consecutive charge levels. This is a
natural topic for future research. Hence, advance in
both hardware and software can achieve a large number
of charge levels [12]. Moreover, it can be shown that
the number of codewords with high charge levels is
relatively small. Hence, the related codewords can be
removed and be neglected, but this will cause a much
more difficult analysis.

The rest of this paper is organized as follows. The
encoding and decoding of the (1, 3, n)-LRM scheme is
presented in Section II. Enumeration technique for the
(1, t, n)-LRM scheme, t ≥ 3, is given in Section III. In
Section IV conclusion and problems for future research
are presented.

II. THE (1, 3, n)-LRM SCHEME

In the (1, 3, n)-LRM scheme the size of each sliding
window is 3. Therefore, an alphabet of size 3! is required
to represent the demodulated sequences of permutations.

θ1 = [1, 2, 3] θ2 = [1, 3, 2]
θ3 = [2, 1, 3] θ4 = [3, 1, 2]
θ5 = [2, 3, 1] θ6 = [3, 2, 1]

The alphabet of the base-words is Σ = {1, 2, . . . , 6},
where the symbol ` represents the permutation θ`. Let
α = (α0, α1, . . . , αn−1) be a base-word. Note that the

0018-9448 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2018.2859403, IEEE
Transactions on Information Theory

3

last two cells which determine αi, 0 ≤ i < n, are the
first two cells which determine αi+1, i.e., the permutation
related to αi+1 is obtained from αi by the following
way. The symbol 1 in the permutation related to αi
is omitted, the symbols 2, 3 in the permutation are
replaced with 1, 2, respectively, and a new symbol 3
is inserted before 1, 2, between them, or after both of
them, depending on the new charge level ci+3 compared
to ci+1 and ci+2. Therefore, given αi, there are exactly
3 options for αi+1.

Let Σ1 = {1, 3, 5} and Σ2 = {2, 4, 6} be a partition
of Σ into the even and the odd symbols, respectively.
Note that for each Σi, i ∈ {1, 2}, the permutations
related to the symbols in Σi agree on the order of
cells 2 and 3. Therefore, they also agree on the three
possibilities of their succeeding permutation. Denote the
set of symbols of these succeeding permutations by Σ̃i. It
is readily verified that Σ̃1 = {1, 2, 4} and Σ̃2 = {3, 5, 6}.

The base-word α is mapped to a codeword g =
(g0, g1, . . . , gn−1) over the alphabet {0, 1, 2}. Given
the charge levels ci, ci+1, ci+2, the permutation αi is
uniquely determined. If we are given now also the charge
level ci+3, then its rank among ci+1, ci+2 uniquely
determines gi+1. Therefore, αi+1 can be deduced from
αi and gi+1 instead of ci+1, ci+2, ci+3. The relations
between αi−1, αi, and gi are presented in Table I. This
table induces a mapping from the realizable base-words
to the codewords. As mentioned before, given αi−1,
there are three options for αi. In all these options the
sub-permutation of {1, 2} is the same, and the difference
is the index of the symbol 3 in the permutation related
to αi. Thus, gi represents the index of the symbol 3 in
this permutation and it is equal to the number of symbols
which are to the right of the symbol 3 in the permutation
related to αi. In other words, gi represents the relation
between ci+2, the charge level in cell i + 2, and the
charge levels in the two cells which proceed it, i.e., ci
and ci+1.

αi−1 ∈ Σ1 αi = 1 αi = 2 αi = 4
αi−1 ∈ Σ2 αi = 3 αi = 5 αi = 6

gi = 0 gi = 1 gi = 2

TABLE I: The encoding key of the (1, 3, n)-LRM scheme.

Note that there might exist non-realizable base-words
which are mapped to codewords by this method. A base-
word α, which can be mapped to a codeword by this
method, satisfies the dependencies between αi and αi+1

for all i, but it can still be non-realizable. The n cells
are viewed cyclically, i.e., the charge levels of the last
two cells, cn−2 and cn−1, are compared with the charge
level in the first cell, c0, to determine αn−2. The same
works for the three charge levels cn−1, c0, and c1 to
determine αn−1. Therefore, there might exists a non-
realizable dependency between the charge levels in the
last two cells and the charge levels in the first two

cells. Such a non-realizable base-word will be called a
cyclically non-realizable base-word.

Example 1. The following base-words are cyclically
non-realizable. Recall, that a codeword is called legal
if there exists a realizable base-word which is mapped
to it.
• (6, 6, . . . , 6︸ ︷︷ ︸

n times

) - the charge levels are increased

cyclically, which is impossible. This base-word is
mapped to the illegal codeword (2, 2, . . . , 2︸ ︷︷ ︸

n times

).

• (2, 5, 2, 5 . . . , 2, 5︸ ︷︷ ︸
n/2 times

) where n is even - the charge

level of each cell is between the charge levels of the
two cells which proceed it, where the charge levels
are taken cyclically. This base-word is mapped to
the illegal codeword (1, 1, . . . , 1︸ ︷︷ ︸

n times

).

• (1, 1, . . . , 1︸ ︷︷ ︸
n−2 times

, 2, 3) - the prefix (1, 1, . . . , 1︸ ︷︷ ︸
n−2 times

) means

that the charge levels always decrease, and there-
fore cn−1 < cn−2 < c1 < c0. Hence, in this case
the only possible permutations for αn−2 and αn−1
are [3, 1, 2] = θ4 and [2, 3, 1] = θ5, respectively.
That is, the only realizable base-word which com-
pletes the prefix (1, 1, . . . , 1︸ ︷︷ ︸

n−2 times

) is (1, 1, . . . , 1︸ ︷︷ ︸
n−2 times

, 4, 5).

Thus, (1, 1, . . . , 1︸ ︷︷ ︸
n−2 times

, 2, 3) is a non-realizable base-

word, which is mapped by Table I to the illegal
codeword (0, 0, . . . , 0︸ ︷︷ ︸

n−2 times

, 1, 0). The realizable base-

word (1, 1, . . . , 1︸ ︷︷ ︸
n−2 times

, 4, 5) is mapped to the legal code-

word (0, 0, . . . , 0︸ ︷︷ ︸
n−2 times

, 2, 1).

Theorem 1. Table I provides a one-to-one mapping be-
tween the realizable base-words and the legal codewords.

Proof. Obviously, each base-word is mapped to exactly
one codeword since the rules to determine a codeword
are deterministic and unique. Now, we prove that the
other direction is also true, i.e. given a legal codeword g,
there is a unique base-word which is mapped to g. By
Example 1, (1, 1, . . . , 1︸ ︷︷ ︸

n times

) is an illegal codeword. Hence,

given a legal codeword g = (g0, g1, . . . , gn−1), there
exists 0 ≤ j < n, such that gi ∈ {0, 2}. If gj = 0
then by Table I we have that αj ∈ {1, 3}, i.e., αj
is odd. Therefore, given gj+1, the permutation αj+1 is
determined by an entry in the first row of Table I, where
the column is chosen by the value of gj+1. Similarly, if
gj = 2 then αj ∈ {4, 6}, i.e., αj is even. Hence, αj+1

is determined by an entry in the second row of Table I,
where the column is chosen by the value of gj+1. Now,
it is easy to determine the symbols of the base-word

0018-9448 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2018.2859403, IEEE
Transactions on Information Theory

4

αj+2, αj+3, . . . , αj+n−1, αj+n = αj one by one from
the rules given in Table I in this cyclic order.

Theorem 1 implies a decoding algorithm for a code-
word of length n in the (1, 3, n)-LRM scheme. Given
a codeword g it produces a base-word α of length n
which implies the rankings between the n charge levels.
Algorithm 1 presents the formal steps of the decoding.

Algorithm 1 : Decoding for the (1, 3, n)-LRM scheme

Input: A codeword g ∈ [3]n.
Output: A base-word α ∈ [6]n.

Let T1(row, col), row = 1, 2 and col = 0, 1, 2, be
the values for Σr and gi = col in Table I.
if g = 1n then return NIL {g is not legal}
Let j ∈ [n] such that gj 6= 1.
if gj = 0 then start row ← 1 else start row ← 2
rowj ← start row
for k := 0 . . . (n− 1) do
colj+k ← gj+k+1 {all the indices are taken modulo
n}
αj+k+1 ← T1(rowj+k, colj+k).
{the rows are indicated by αj+k and the columns
by gj+k+1}
if αj+k+1 ∈ Σ1 then rowj+k+1 ← 1 else
rowj+k+1 ← 2

end for
if rowj 6= start row then return NIL {g is not
legal}
return α = (α0, . . . , αn−1)

Note that decoding a given codeword g to a base-
word α does not guarantee that g is legal. For some
illegal codewords the decoding procedure fails, while
for the others it succeeds without a notification about
the illegality of the input g. Let j be the starting point
of the decoding algorithm as described in the proof of
Theorem 1 and in Algorithm 1. At the first step of the
algorithm, αi has two options ({1, 3} if gj = 0 or
{4, 6} if gj = 2, as implied by Table I). At the last
step, if αj is not equal to one of these two optional
initial values, which was chosen in the first step, then
we conclude that the given codeword is illegal. However,
the algorithm may decode some cyclically non-realizable
base-words without realizing that it is an illegal code-
word. For example, the procedure decodes the cyclically
non-realizable base-word α = (1, 1, . . . , 1︸ ︷︷ ︸

n times

) from the

illegal codeword g = (0, 0, . . . , 0︸ ︷︷ ︸
n times

). Therefore, given

such a codeword g, it would be interesting to decide
efficiently whether it is legal or not. First, we apply
the decoding algorithm to obtain a base-word α which
corresponds to g. If the decoding algorithm fails, then g
is an illegal codeword. However, the decoding algorithm
might produce a cyclically non-realizable base-word α.
Note, that by the decoding algorithm, the dependencies

between αi and αi+1 are preserved for all i. Thus, the
only case in which α is non-realizable is related to the
dependencies of the first two charge levels and the last
two charge levels. These dependencies are implied by
considering the consecutive permutations from α0, α1,
α2, and so on up to αn−4 and αn−3. These dependencies
can be inconsistent when we continue and consider the
dependencies of the charge levels implied by the consec-
utive permutations αn−2 and αn−1, i.e. α is cyclically
non-realizable base-word. Thus, the question is how to
indicate that a base-word is cyclically non-realizable.
This question will be considered in the next section after
a new concept of states will be defined. The formal steps
to decide if a codeword g is legal by a decision if the
related base-word α is cyclically realizable, are presented
in Algorithm 3.

III. THE (1, t, n)-LRM SCHEME FOR t ≥ 3

In this section we will consider the enumeration of
the number of the legal codewords in the (1, t, n)-LRM
Scheme, t ≥ 3. The ideas will be described in details
in this section, where the examples will be given for
t = 3. It should be emphasized that for other concepts,
some generalizations from the (1, 3, n)-LRM scheme,
are more complicated for t = 4 and become impractical
as t increases. One of the concepts which are presented
in this section are the states which also help to determine
non-realizable base-words for the (1, 3, n)-LRM scheme.

In the (1, t, n)-LRM scheme the size of each sliding
window is t. Therefore, to present the demodulated
sequences of permutations, the alphabet of the base-
words is of size t!. The n charge levels form a se-
quence c = (c0, c1, . . . , cn−1). Given t consecutive
charge levels, ci, ci+1, . . . , ci+t−1, the corresponding
permutation αi, from St, is uniquely determined by the
order of these t consecutive charge levels. Therefore,
the n charge levels define a sequence of permutations
α = (α0, α1, . . . , αn−1). The position of the symbol t
in the permutation αi determines the value of gi, i.e.,
gi = j, 0 ≤ j < t, if t is in position t − j
in the permutation. In other words, gi is the ranking
of ci+t−1 among ci, ci+1, . . . , ci+t−1, i.e. gi = 0 if
ci+t−1 is the lowest charge level, gi = 1 if only
one charge level is below ci+t−1, and so on, where
finally gi = t − 1 if ci+t−1 is the highest charge level.
The consecutive values g0, g1, etc. define the codeword
g = (g0, g1, . . . , gn−1). This means that given the last
t− 1 charge levels ci+1, ct+2, . . . , ci+t−1, a new charge
level ci+t combined with these t − 1 charge levels,
define the permutation αi+1 and the new symbol gi+1 in
the codeword g. Therefore, the base-word α defined by
the charge levels’ sequence c, uniquely determines the
related codeword g. Clearly, given a permutation αi−1,
not all the t! permutations of St can follow αi−1 to serve
as αi. Only t permutations can be used for αi based
on αi−1, including α0 which follows αn−1. The formal

0018-9448 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2018.2859403, IEEE
Transactions on Information Theory

5

steps to produce a legal codeword g from a realizable
base-word α are presented in Algorithm 2.

Algorithm 2 : Encoding algorithm from a base-word to
a codeword
Input: A realizable base-word α = (α0, . . . , αn−1) ∈

[t!]n).
Output: A codeword g ∈ [t]n.

for k := 0 . . . (n− 1) do
π ← θαk

(π ∈ St is the permutation represented by
αk)
m← the position of t in π (1 ≤ m ≤ t)
gk ← t−m.

end for
return g = (g0, . . . , gn−1)

Recall that a base-word α might not be realizable,
even if it meets the dependencies between αi−1 and αi.
This might happen if there is no possible sequence of
charge levels that can be demodulated from α due to
the dependencies between the first t − 1 charge levels
and the last t − 1 charge levels. If αi can follow αi−1
for all i, then the base-word α can be mapped to a
codeword g, but g might be illegal since the base-word
α is not realizable by a sequence of charge levels. Given
the suggested mapping between the base-words and the
codewords, we are mainly interested in three related
questions concerning the legal codewords of the (1, t, n)-
LRM scheme:

1) Given a legal codeword g over the alphabet
{0, 1, . . . , t−1}, present an efficient method to find
the base-word α mapped to g.

2) Given a codeword g over the alphabet
{0, 1, . . . , t− 1}, present an efficient method
to decide whether g is legal.

3) Find the number of legal codewords in the (1, t, n)-
LRM scheme.

The rest of this section will be devoted to solve some
of these questions.

To obtain the original base-word from the given code-
word would be easy if for some i, αi is given or known
(in fact the permutation related to t − 1 consecutive
cells is sufficient to figure out the entire base-word
from a known codeword, either legal or illegal). If
no such permutation is known then the task becomes
more complicated and we have to analyse the codeword
based only on the mapping from the base-words to the
codewords.

To enumerate the number of legal codewords in the
(1, t, n)-LRM scheme, t ≥ 3, we need another concept
which describes the permutation defined by the current
last t − 1 charge levels ci−t+2, ci−t+3, . . . , ci and the
rank of each one of them among the first t − 1 charge
levels c0, c1, . . . , ct−2.

Given a prefix of a codeword (g0, g1, . . . , gi−t+1),
2t− 3 ≤ i < n, obtained by the unknown charge levels

c0, c1, . . . , ci, the ranking among the charge levels in the
jth cell, cj , i − t + 2 ≤ j ≤ i, and the first t − 1 cells,
c0, c1, . . . , ct−2, might have a few options (at most t).
These options will be denoted by 0, 1, up to t−1, where
0 represents that ci is lower than c0, c1, . . . , ct−2, 1 rep-
resents that ci is higher than exactly one of them, and so
on. For each i, 2t − 3 ≤ i < n, consider the following
two properties regarding ci−t+2, ci−t+3, . . . , ci:
(Q.1) the permutation πi induced by

ci−t+2, ci−t+3, . . . , ci ((t − 1)! possible
permutations).

(Q.2) the set of all possible (t − 1)-tuples of rankings
of the charge level cj , for each j, i− t+ 2 ≤ j ≤ i,
among the charge levels c0, c1, . . . , ct−2.

The elements of the set defined in (Q.2) will be
denoted by (t − 1)-tuples (xi−t+2, xi−t+3, . . . , xi),
xj ∈ {0, 1, . . . , t− 1}, i − t + 2 ≤ j ≤ i, where xj
represents the ranking of the charge level cj among
the charge levels c0, c1, . . . , ct−2. Note, that for a given
permutation defined by (Q.1), not all the tt−1 possible
(t − 1)-tuples can be obtained. We call a pair defined
by the permutation of (Q.1) and the set of (t − 1)-
tuples defined by (Q.2) a state. The state at index i (for
ci−t+2, ci−t+3, . . . , ci) will be denoted by Pi. For the
computation of the states, only the codeword g is known,
while neither the charge levels nor the permutations
defined by them, from which it was computed, are
known. Lets denote by πi, t−2 ≤ i < n, the permutation
defined by ci−t+2, . . . ci−1, ci.

Lemma 1. A maximum of
(
2t−2
t−1
)

possible (t−1)-tuples
can be obtained in (Q.2) for a given state.

Proof. A state Pi is first identified by the permutation
πi defined by ci−t+2, ci−t+3, . . . , ci (see (Q.1)). The
highest rank among ci−t+2, ci−t+3, . . . , ci can be ranked
in t different ways among c0, c1, . . . , ct−2. If it has rank `
then the next highest rank among ci−t+2, ci−t+3, . . . , ci
can be ranked in ` different ways among c0, c1, . . . , ct−2.
If it has rank m then the next highest rank among
ci−t+2, ci−t+3, . . . , ci can be ranked in m different ways
among c0, c1, . . . , ct−2. We continue in the same manner,
and hence the maximum number of possibilities in
(Q.2) is exactly the number of possible (t − 1)-tuples
(b1, b2, . . . , bt−1) over {1, 2, . . . , t} such that bj+1 ≤ bj ,
1 ≤ j ≤ t−2. By using simple enumeration combinato-
rial arguments we have that the number of such (t− 1)-
tuples is

(
2t−2
t−1
)
.

Example 2. For the (1, 3, n)-LRM scheme, assume that
the prefix of the codeword is g′ = (g0, g1, . . . , gn−3) =
(2, 2, . . . , 2︸ ︷︷ ︸
n−2 times

), i.e. the charge levels are increased between

any two consecutive charge levels (with a possible ex-
ception between c0 and c1 and a cyclic exception since
cn−1 > c0), that is, c0 or c1 are the smallest charge
levels, cn−2 and cn−1 are the largest, and cn−2 < cn−1.
Hence, πn−1 = [2, 1], and both cn−2 and cn−1 are larger

0018-9448 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2018.2859403, IEEE
Transactions on Information Theory

6

than c0 and c1. Therefore, Pn−1 = ([2, 1], {(2, 2)}).
There are two possible base-words depending on the
ranking between c0 and c1. If c1 < c0, i.e. π1 = [1, 2],
then the base-word is α = (6, 6, . . . , 6︸ ︷︷ ︸

n−2 times

, 3, 2) and the

codeword is g = (2, 2, . . . , 2︸ ︷︷ ︸
n−2 times

, 0, 1). If c1 > c0, i.e. π1 =

[2, 1], then the base-word is α = (4, 6, 6, . . . , 6︸ ︷︷ ︸
n−3 times

, 3, 1) and

the codeword is g = (2, 2, . . . , 2︸ ︷︷ ︸
n−2 times

, 0, 0).

Example 3. For the (1, 3, n)-LRM scheme, assume that
the prefix of the codeword is g′ = (1, 1, . . . , 1︸ ︷︷ ︸

i−3 times

, 0, 2)

which implies that for all j, 2 ≤ j ≤ i − 2, the charge
level cj is between cj−1 and cj−2. Therefore, with a
simple induction on j, we conclude that ci−3 and ci−2
are between c0 and c1. Thus, gi−3 = 0 implies that ci−1
might be between c0 and c1 or smaller than both of
them, and gi−2 = 2 implies that ci might be between c0
and c1 or larger than both of them. We conclude that
Pi = ([2, 1], {(0, 1), (0, 2), (1, 1), (1, 2)}).

Recall that if the ranking between the charge lev-
els ci−t+1, ci−t+2, . . . , ci is known then gi−t+1 can
be computed based on the ranking of the charge
level ci among the t − 1 preceding charge levels
ci−t+1, ci−t+2, . . . , ci−1. Recall also that the state Pi
is defined by two properties (Q.1) and (Q.2). By
(Q.1) we know the ranking between the charge levels
ci−t+2, ci−t+3, . . . , ci and by (Q.2) we know the ranking
of each one of these last t− 1 charge levels among the
first t− 1 charge levels. The state Pi is now determined
based on these two properties.

Lemma 2. If Pi and gi−t+2, for some 2t−3 ≤ i < n−1,
are given, then Pi+1 is uniquely determined.

Proof. Pi is characterized by the permutation πi in
(Q.1) and the (t − 1)-tuples in (Q.2). The permuta-
tion πi is defined by the sequence of charge levels c′ =
(ci−t+2, ci−t+3, . . . , ci) and gi−t+2 defines the ranking
of ci+1 among the set of charge levels in c′. Hence, the
permutation defined by c′′ = (ci−t+3, ci−t+4, . . . , ci+1)
is uniquely determined and property (Q.1) for Pi+1 is
well defined.

Let y = (y0, y1, . . . , yt−2) be a possible (t− 1)-tuple
in (Q.2) of Pi+1, that is, y represents a possible ranking
of each charge level in c′′ among (c0, c1, . . . , ct−2),
where yj , 0 ≤ j ≤ t − 2, represents the ranking of
ci−t+3+j among the charge levels of the first t−1 cells.
Then, there exists a possible (t−1)-tuple in (Q.2) of Pi,
x = (x0, x1, . . . , xt−2), where xj = yj−1, 0 < j ≤ t−2,
since xj represents a ranking of ci−t+2+j among the
charge levels of the first t−1 cells in one possible (t−1)-
tuple in (Q.2) of Pi.

Thus, to complete the proof, it is sufficient to show,

that πi, πi+1, and x, determine all possibilities for yt−2.
Recall, that yt−2 relates to the ranking possibilities of
ci+1 among the first t− 1 charge levels.

The permutation πi+1 determines the ranking of ci+1

among c′ = (ci−t+3, ci−t+4, . . . , ci+1). Denote by cj1
and cj2 the two charge levels in c′ which are adjacent
to ci+1 in their value, where cj1 < ci+1 < cj2 . (that is,
j1−(i+1)+t−1 and j2−(i+1)+t−1 are adjacent to t−1
in πi+1.) Note that if t−1 is the first or the last symbol in
πi+1 then only one of j1, j2 exists. Then, xj1−i+t−2 and
xj2−i+t−2 represent a possible ranking of cj1 and cj2
among the charge levels of the first t − 1 cells. These
possible rankings of cj1 and cj2 , with the only constraint
on ci+1 to be between cj1 and cj2 , determine the possible
rankings of ci+1 among the first t−1 cells, and therefore
determine the possible values for yt−2.

Corollary 1. If Pi = Pj for some 2t−3 ≤ i < j < n−1
and gi−t+2 = gj−t+2 then Pi+1 = Pj+1.

A state which has all
(
2t−2
t−1
)

possible (t − 1)-tuples
in property (Q.2) will be called a complete state. In
other words, Pi is a complete state if each one of the
ranks ci−t+2, ci−t+3, . . . , ci is independent of the ranks
c0, c1, . . . , ct−2. An immediate consequence is that

Lemma 3. If Pi is a complete state then also Pi+1 is a
complete state.

Lemma 4. In the (1, t, n)-LRM there are (t − 1)!
complete states.

Proof. Each permutation on the ranks
ci−t+2, ci−t+3, . . . , ci induces

(
2t−2
t−1
)

possible rankings
among c0, c1, . . . , ct−2 as explained in the proof of
Lemma 1.

Example 4. The two complete states in the (1, 3, n)-
LRM scheme are:

1) S1 : ([1, 2], {(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2)}).
2) S2 : ([2, 1], {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)}).

We are only interested in complete states since non-
complete states might lead to a relatively small number
of legal codewords. The non-complete states and their
related codewords will be omitted in the computations
of the number of legal codewords which follows.

Given πt−2, the permutation defined by the first t− 1
charge levels and g′ = (g0, g1, . . . , gn−4, gn−t), we
have to determine the sub-base-word (α0, α1, . . . , αn−t),
of a realizable base-word which corresponds to πt−2
and g′. This sub-base-word is determined unambigu-
ously. But, there are a few possible assignments for
αn−t+1, αn−t+2, . . . , αn−1, which correspond to pos-
sible assignments for gn−t+1, gn−t+2, . . . , gn−1. These
assignments are determined by the state Pn−1 and
the permutation πt−2. Each assignment provides a dis-
tinct realizable base-word which is represented by the
state Pn−1 and the permutation πt−2.

0018-9448 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2018.2859403, IEEE
Transactions on Information Theory

7

Example 5. For the (1, 3, n)-LRM scheme, given gi−1,
the succeeding state Pi+1 of a state Pi which is a
complete state, is given in Table II. Recall that if Pi
is a complete state then also Pi+1 is a complete state
(see Lemma 3).

Pi

gi−1 0 1 2

S1 S1 S2 S2
S2 S1 S1 S2

TABLE II: Succeeding states for complete states in the
(1, 3, n)-LRM scheme.

Recall, that only complete states will be considered in
the computations. We generate a table G with (t− 1)!
rows indexed by the number of complete states and
(t− 1)! columns indexed by the possible assignments
of πt−2. In entry G(i, j), 1 ≤ i, j ≤ (t − 1)!, we have
the number of realizable base-words that can be obtained
from Pn−1 which is the ith complete state when πt−2 is
the jth permutation of St−1.

Example 6. For the (1, 3, n)-LRM scheme, Table III
presents the number of possible pairs (gn−2, gn−1)
which can complete a given prefix of a codeword
(g0, . . . , gn−3) to a legal codeword, corresponds to a
complete state Pn−1 and to the permutation π1 in the
(1, 3, n)-LRM scheme. The enumeration of the first row
in the table is provided in the next two examples.

Pn−1

π1 [1, 2] [2, 1]

S1 5 4
S2 4 5

TABLE III: The number of possible pairs (gn−2, gn−1) which
can complete a given prefix of a codeword (g0, . . . , gn−3) to
a legal codeword, correspond to a complete state Pn−1, given
π1, in the (1, 3, n)-LRM scheme.

Example 7. For the (1, 3, n)-LRM scheme, let π1 =
[1, 2] and Pn−1 = S1, i.e. c1 < c0 and πn−1 = [1, 2],
which implies that cn−1 < cn−2. We distinguish now
between the six possible pairs (x, y) of (Q.2) related
to S1.

1) If (x, y) = (0, 0) then cn−1 < cn−2 < c1 <
c0 which implies that αn−2 = [3, 1, 2] = θ4,
αn−1 = [2, 3, 1] = θ5, gn−2 = 2, and gn−1 = 1.

2) If (x, y) = (1, 0) then cn−1 < c1 < cn−2 <
c0 which implies that αn−2 = [3, 1, 2] = θ4,
αn−1 = [2, 3, 1] = θ5, gn−2 = 2, and gn−1 = 1.

3) If (x, y) = (1, 1) then c1 < cn−1 < cn−2 <
c0 which implies that αn−2 = [3, 1, 2] = θ4,
αn−1 = [2, 1, 3] = θ3, gn−2 = 2, and gn−1 = 0.

4) If (x, y) = (2, 0) then cn−1 < c1 < c0 <
cn−2 which implies that αn−2 = [1, 3, 2] = θ2,
αn−1 = [2, 3, 1] = θ5, gn−2 = 1, and gn−1 = 1.

5) If (x, y) = (2, 1) then c1 < cn−1 < c0 <
cn−2 which implies that αn−2 = [1, 3, 2] = θ2,
αn−1 = [2, 1, 3] = θ3, gn−2 = 1, and gn−1 = 0.

6) If (x, y) = (2, 2) then c1 < c0 < cn−1 <
cn−2 which implies that αn−2 = [1, 2, 3] = θ1,
αn−1 = [1, 2, 3] = θ1, gn−2 = 0, and gn−1 = 0.

Thus, the 5 possible pairs (αn−2, αn−1) and
(gn−2, gn−1) are given in the following table

(x, y) (αn−2, αn−1) (gn−2, gn−1)

(0, 0), (1, 0) (4, 5) (2, 1)
(1, 1) (4, 3) (2, 0)
(2, 0) (2, 5) (1, 1)
(2, 1) (2, 3) (1, 0)
(2, 2) (1, 1) (0, 0)

Example 8. For the (1, 3, n)-LRM scheme, let π1 =
[2, 1] and Pn−1 = S1, i.e. c0 < c1 and πn−1 = [1, 2],
which implies that cn−1 < cn−2. We distinguish now
between the six possible pairs (x, y) of (Q.2) related
to S1.

1) If (x, y) = (0, 0) then cn−1 < cn−2 < c0 <
c1 which implies that αn−2 = [3, 1, 2] = θ4,
αn−1 = [3, 2, 1] = θ6, gn−2 = 2, and gn−1 = 2.

2) If (x, y) = (1, 0) then cn−1 < c0 < cn−2 <
c1 which implies that αn−2 = [1, 3, 2] = θ2,
αn−1 = [3, 2, 1] = θ6, gn−2 = 1, and gn−1 = 2.

3) If (x, y) = (1, 1) then c0 < cn−1 < cn−2 <
c1 which implies that αn−2 = [1, 2, 3] = θ1,
αn−1 = [3, 1, 2] = θ4, gn−2 = 0, and gn−1 = 2.

4) If (x, y) = (2, 0) then cn−1 < c0 < c1 <
cn−2 which implies that αn−2 = [1, 3, 2] = θ2,
αn−1 = [3, 2, 1] = θ6, gn−2 = 1, and gn−1 = 2.

5) If (x, y) = (2, 1) then c0 < cn−1 < c1 <
cn−2 which implies that αn−2 = [1, 2, 3] = θ1,
αn−1 = [3, 1, 2] = θ4, gn−2 = 0, and gn−1 = 2.

6) If (x, y) = (2, 2) then c0 < c1 < cn−1 <
cn−2 which implies that αn−2 = [1, 2, 3] = θ1,
αn−1 = [1, 3, 2] = θ2, gn−2 = 0, and gn−1 = 1.

Thus, the 4 possible pairs (αn−2, αn−1) and
(gn−2, gn−1) are given in the following table

(x, y) (αn−2, αn−1) (gn−2, gn−1)

(0, 0) (4, 6) (2, 2)
(1, 0), (2, 0) (2, 6) (1, 2)
(1, 1), (2, 1) (1, 4) (0, 2)
(2, 2) (1, 2) (0, 1)

Lemma 5. The sum of elements in the ith row of G is
tt−1.

Proof. Let Pn−1 be the ith complete state. If there are
no constraints then clearly the possible assignments for
gn−t+1, gn−t+2, . . . , gn−1 is at most tt−1 since there are
t distinct assignments for each gj . Given the permuta-
tion πn−1, any assignment to gn−t+1, gn−t+2, . . . , gn−1
yields a unique permutation π of the first t − 1

0018-9448 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2018.2859403, IEEE
Transactions on Information Theory

8

charge levels. Such an assignment is feasible since
cn−t+1, cn−t+2, . . . , cn−1 and c0, c1, . . . , ct−2 are in-
dependent when Pn−1 is a complete state. For this
assignment we have πt−2 = π (assume now that π is
the jth permutation of St−1) and a contribution of one
to G(i, j) and to the ith (which corresponds to πn−1)
row of G. Thus, we have total contributions of tt−1 to
the ith row of G and the lemma follows.

As a consequence we also have a conclusion which
was illustrated in the last three examples.

Corollary 2. Each complete state allows a legal code-
word for arbitrary choices of gn−t+1, gn−t+2, . . . , gn−1.

Theorem 2. If Mt is the number of legal codewords in
the (1, t, n)-LRM scheme then lim

n→∞
Mt

tn = 1.

Proof. Consider a prefix of a codeword
g′ = (g0, g1, . . . , gn−t) which contains the substring of
length 2(t− 1), β = (gi−2t+3, gi−2t+4, . . . , gi−1, gi) =
(t− 1, t− 1, . . . , t− 1︸ ︷︷ ︸

t−1 times

, 0, 0, . . . , 0︸ ︷︷ ︸
t−1 times

). We will prove

now that for this subsequence the charge levels
ci+1, ci+2, . . . , ci+t−1 are independent of the charge
levels c0, c1, . . . , ct−2. This implies that Pi+t−1 is one
of the (t − 1)! complete state in the (1, t, n)-LRM
scheme. For this, we have to prove that each one of the
charge levels ci+1, ci+2, . . . , ci+t−1 can be lower than
c0, c1, . . . , ct−2, between them (t − 2 distinct possible
options), or higher than all of them.

The substring β starts with gi−2t+3 = t − 1 which
imposes that ci−t+2 is higher than the t − 1 charge
levels before it, and implies that ci−t+2 might be higher
than the first t − 1 charge levels. The sub-codeword
(gi−2t+4, . . . , gi−t+1) = (t− 1, t− 1, . . . , t− 1︸ ︷︷ ︸

t−2 times

) im-

poses that ci−t+2 < ci−t+3 < · · · < ci. Fur-
thermore, gi−t+2 = 0 implies ci+1 < ci−t+2, and
(gi−t+3, . . . , gi) = (0, 0, . . . , 0︸ ︷︷ ︸

t−2 times

) imposes the constraint

ci+1 > ci+2 > · · · > ci+t−1. Hence, we have that

ci+t−1 < ci+t−2 < · · · < ci+2 < ci+1

< ci−t+2 < ci−t+3 < · · · < ci,

where ci−t+2 might be higher than the first t − 1
charge levels, and there does not exist any addi-
tional constraint on the possible values of the charge
levels ci+1, ci+2, . . . , ci+t−1 regarding their ranking
among the previous charge levels. This implies that
there is no dependency between the charge levels
ci+1, ci+2, . . . , ci+t−1, and the first t − 1 charge levels,
i.e., Pi+t−1 is a complete state. Moreover, the permu-
tation πi+t−1 of the property (Q.1) for this state is
[1, 2, . . . , t−1]. As a consequence Lemma 3 implies that
also Pn−1 is a complete state.

Let B be the set of sequences of length n − t + 1,
over the alphabet {0, 1, . . . , t−1}, which include β as a

substring. We partition each sequence of length 2`(t−1)
into ` consecutive disjoint segments of length 2(t − 1)
and one segment (the last) of length n−t+1−2`(t−1).
Let A be a subset of B which consists of the sequences
which contain a segment equals to β. Let Ac be the
complimentary set of A, i.e. the set of all sequences of
length n−t+1, over the alphabet {0, 1, . . . , t−1}, which
do not contain a segment which equals to β. Now, we
have

|B| ≥ |A| = tn−t+1 − |Ac|
= tn−t+1 − (t2(t−1) − 1)`tn−t+1−2`(t−1).

By Lemma 5 we have that Mt ≥ tt−1|B| and therefore

lim
n→∞

Mt

tn
≥ lim
n→∞

tn − tn−2`(t−1) · (t2(t−1) − 1)`

tn

= lim
`→∞

(
1− (t2(t−1) − 1)`

t2(t−1)`

)
= lim
`→∞

(1− µ`) = 1,

where clearly µ is a constant since t is a constant.

By using the Perron-Frobenius Theorem [4], [11] we
can prove that for t = 3, |B| tends to 3n−2 − 2.777n−2

when n tends to infinity. This improves the rate of
convergence of lim

n→∞
M3

3n . Similar computation can be
done for larger t, but the computations become more
messy as t increases.

To end this section, we return to the question how to
indicate that a base-word is cyclically non-realizable in
the (1, 3, n)-LRM scheme. To answer this question, we
use the states defined in this section. Given a codeword
g = (g0, g1, . . . , gn−1), and α0 (which is computed by
the decoding procedure), we can determine P3. Then,
by Lemma 2, we can compute Pn−1. Note, that α0

determines the permutation of the first three cells and
Pn−1 (see (Q.1)) determines the permutation of the last
two elements. Additionally, Pn−1 (see (Q.2)) determines
exactly all the possible rankings for the charge levels of
each one of the last two cells among the first two cells.
Thus, from α0 and Pn−1 we can determine whether α is
cyclically realizable, i.e., if g is legal. The complexity of
this procedure is O(n). Algorithm 3 presents the formal
steps of this procedure.

IV. CONCLUSIONS AND OPEN PROBLEMS

In this paper, encoding, decoding, and enumeration of
the (1, t, n)-LRM scheme are studied. A complete solu-
tion was given for the (1, 3, n)-LRM scheme. A simple
encoding for the (1, t, n)-LRM scheme for any t ≥ 3
is presented. For the (1, 3, n)-LRM scheme a related
decoding was presented. We also proved that if Mt is the
number of legal codewords in the (1, t, n)-LRM scheme
then lim

n→∞
Mt

tn = 1. We conclude with several problems
for future research raised in our discussion.

1) Find an efficient algorithm to determine if a given
codeword in the (1, t, n)-LRM scheme, for t ≥ 4,
is legal or not.

0018-9448 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2018.2859403, IEEE
Transactions on Information Theory

9

Algorithm 3 : Legality of a codeword and realizability
of a base-word in the (1, 3, n)-LRM scheme

Input: A codeword g ∈ [3]n.
Output: Is g legal?
α ← Algorithm 1(g) {the decoding algorithm is
applied on g}
if α =NIL then return NO
π ← the permutation of {1, 2, . . . , (t−1)} implied by
α2.
(Q.2)← the possibilities of c2 and c3 regarding the
first two charge levels (determined by α0 and α1)
P3 ← π,(Q.2)
for k := 4 . . . (n− 1) do
Pk ← the kth state determined by Pk−1 and gk−2
(see Lemma 2).

end for
if αn−2 or αn−1 can not be obtain by Pn−1 and α0

then return NO
return YES

2) Prove that the encoding algorithm for the (1, t, n)-
LRM scheme, t ≥ 4, induces a bijection between
the realizable base-words and the legal codewords.

3) Find an efficient decoding algorithm for the
(1, t, n)-LRM scheme, t ≥ 4.

4) Improve the lower bound on the asymptotic behav-
ior and non-asymptotic behavior of the number of
codewords in the (1, t, n)-LRM scheme, t ≥ 3.
Note, that one such improvement is done by using
the Perron-Frobenius Theorem.

5) How would the results in the paper change if the
largest values of the charge levels were bounded?

ACKNOWLEDGEMENT

The authors would like to thank Ronny Roth for
helpful discussions. The authors are also indebted to the
anonymous reviewers for their important comments.

REFERENCES

[1] A. Barg, A. Mazumdar, and G. Zémor, “Constructions of rank
modulation codes,” IEEE Trans. on Inform. Theory, vol. 59,
pp. 1018–1029, February 2013.

[2] S. Buzaglo and T. Etzion, “Bounds on the Size of Permutation
Codes with the Kendall’s τ -Metric,” IEEE Trans. on Inform.
Theory, vol. 61, pp. 3241–3250, June 2015.

[3] S. Buzaglo, T. Etzion, E. Yaakobi, and J. Bruck, “Sys-
tematic Error-Correcting Codes for Permutations and Multi-
permutations,” IEEE Trans. on Inform. Theory, vol. 62, pp. 3113–
3124, June 2016.

[4] G. Frobenius, “Uber Matrizen aus nicht negativen Elementen,”
S.-B. Preuss Acad. Wiss. Berlin pp. 456–477, 1912.

[5] E. E. Gad, M. Langberg, M. Schwartz, and J. Bruck, “Constant-
weight Gray codes for local rank modulation,” IEEE Trans. on
Inform. Theory, vol. 57, pp. 7431–7442, November 2011.

[6] A. E. Holroyd, “Perfect snake-in-the-box codes for rank modu-
lation,” IEEE Trans. on Inform. Theory, vol. 63, pp. 104–110,
January 2017.

[7] M. Horovitz and T. Etzion, “Constructions of snake-in-the-box
codes for rank modulation,” IEEE Trans. on Inform. Theory,
vol. 60, pp. 7016–7025, November 2014.

[8] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modula-
tion for flash memories,” IEEE Trans. on Inform. Theory, vol. 55,
pp. 2659–2673, June 2009.

[9] A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-
constrained errors in the rank-modulation scheme,” IEEE Trans.
on Inform. Theory, vol. 56, pp. 2112–2120, May 2010.

[10] A. Mazumdar and A. Barg, “Coded in permutations and error
correction for rank modulation,” IEEE Trans. on Inform. Theory,
vol. 56, pp. 3158–3165, July 2010.

[11] O. Perron, “Zur theorie der matrizen,” Math. Ann. vol. 64, pp.
248–263, 1907.

[12] A. S. Spinelli, C. M. Compagnoni, and A. L. Lacaita, “Reliability
of NAND Flash Memories: Planar Cells and Emerging Issues
in 3D Devices,” Computers, vol. 6, no. 2, pp. 16, 2017, [online]
Available: http://www.mdpi.com/2073-431X/6/2/16.

[13] I. Tamo and M. Schwartz, “Correcting limited-magnitude errors
in the rank-modulation scheme,” IEEE Trans. on Inform. Theory,
vol. 56, pp. 2551–2560, June 2010.

[14] Z. Wang, A. Jiang, and J. Bruck, “On the capacity of bounded
rank modulation for flash memories,” in Proc. IEEE Int. Symp.
on Inform. Theory, Seoul, Korea, pp. 1234–1238, June 2009.

[15] Y. Yehezkeally and M. Schwartz, “Snake-in-the-box codes for
rank modulation,” IEEE Trans. on Inform. Theory, vol. 58, no. 8,
pp. 5471–5483, August 2012.

[16] Y. Yehezkeally and M. Schwartz, “Limited-magnitude error-
correcting Gray codes for rank modulation,” IEEE Trans. on
Inform. Theory, vol. 63, pp. 5774–5792, September 2017.

[17] Y. Zhang and G. Ge, “Snake-in-the-box codes for rank modula-
tion under Kendalls τ -metric,” IEEE Trans. on Inform. Theory,
vol. 62, pp. 151–158, January 2016.

[18] H. Zhou, M. Schwartz, A. Jiang, and J. Bruck, “Systematic error-
correction codes for rank modulation,” IEEE Trans. on Inform.
Theory, vol. 61, pp. 17–32, January 2015.

Michal Horovitz was born in Israel in 1987. She received the B.Sc.
degree from the departments of Mathematics and Computer Science
at the Open University, Ra’anana, Israel, in 2009, and the Ph.D.
degree from the Computer Science Department at the Technion - Israel
Institute of Technology, Haifa, Israel, in 2017. She is currently a
Lecturer in the Department of Computer Science, Tel-Hai College,
Israel and she is also a researcher in The Galilee Research Institute
- Migal, Upper Galilee, Israel. Her research interests include coding
theory with applications to non-volatile memories, information theory,
and combinatorics.

Tuvi Etzion (M’89–SM’94–F’04) was born in Tel Aviv, Israel, in 1956.
He received the B.A., M.Sc., and D.Sc. degrees from the Technion -
Israel Institute of Technology, Haifa, Israel, in 1980, 1982, and 1984,
respectively.

From 1984 he held a position in the Department of Computer
Science at the Technion, where he now holds the Bernard Elkin Chair
in Computer Science. During the years 1985-1987 he was Visiting
Research Professor with the Department of Electrical Engineering -
Systems at the University of Southern California, Los Angeles. During
the summers of 1990 and 1991 he was visiting Bellcore in Morristown,
New Jersey. During the years 1994-1996 he was a Visiting Research
Fellow in the Computer Science Department at Royal Holloway
University of London, Egham, England. He also had several visits to
the Coordinated Science Laboratory at University of Illinois in Urbana-
Champaign during the years 1995-1998, two visits to HP Bristol during
the summers of 1996, 2000, a few visits to the Department of Electrical
Engineering, University of California at San Diego during the years
2000-2017, and several visits to the Mathematics Department at Royal
Holloway University of London, during the years 2007-2017.

His research interests include applications of discrete mathematics
to problems in computer science and information theory, coding theory,
network coding, and combinatorial designs.

0018-9448 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2018.2859403, IEEE
Transactions on Information Theory

10

Dr. Etzion was an Associate Editor for Coding Theory for the IEEE
Transactions on Information Theory from 2006 till 2009. From 2004
to 2009, he was an Editor for the Journal of Combinatorial Designs.
From 2011 he is an Editor for Designs, Codes, and Cryptography. and
from 2013 an Editor for Advances of Mathematics in Communications.

