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Infinity-Norm Permutation Covering Codes
from Cyclic Groups

Ronen Karni and Moshe Schwartz, Senior Member, IEEE

Abstract—We study covering codes of permutations with the
`∞-metric. We provide a general code construction, which com-
bines short building-block codes into a single long code. We focus
on cyclic transitive groups as building blocks, determining their
exact covering radius, and showing a linear-time algorithm for
finding a covering codeword. When used in the general construc-
tion, we show that the resulting covering code asymptotically
out-performs the best known code, while maintaining linear-
time decoding. We also bound the covering radius of relabeled
cyclic transitive groups under conjugation, showing that the
covering radius is quite robust. While relabeling cannot reduce
the covering radius by much, the downside is that we prove the
covering radius cannot be increased by more than 1 when using
relabeling.

Index Terms—covering codes, permutations, rank modulation,
`∞-metric, relabeling, cyclic group

I. INTRODUCTION

CODING over permutations appears in the literature as
early as the works [3], [22]. In a typical setting, the

symmetric group of permutations on n elements, Sn, is en-
dowed with a distance function, d : Sn × Sn →N0, to create
a metric. An error correcting code of length n is then defined
as a set C ⊆ Sn, the elements of which are called codewords,
such that d( f , g) > dmin, for all f , g ∈ C, f 6= g. The largest
such dmin is called the minimum distance of the code. It is
also well known that C induces a packing of the space, Sn,
by disjoint balls of radius b(dmin − 1)/2c, the packing radius,
centered at the codewords.

In this work, we are interested in the dual problem of
covering. Instead of packing balls, we are interested in the
smallest radius of balls, centered at the codewords, such that
their union covers the entire space. This radius is called the
covering radius of the code. Equivalently, we are looking for
the smallest rmin ∈N0 such that every f ∈ Sn has a codeword
g ∈ C with d( f , g) 6 rmin.

In a typical application of covering codes, suppose we
would like to describe any permutation from Sn. To do so,
we may assign a unique integer in the range 1, . . . , n! to each
of the permutations of Sn, calling this integer the encoding of
the permutation. The reverse process of mapping the encoded
integer back to a permutation is called decoding. Suppose now
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we would like to compress the description (i.e., reduce its rate)
by using a smaller range of encoding integers, say, 1, . . . , M,
with M < n!. Then some permutations will be encoded to
the same integer, and the decoding process may recover an
incorrect permutation (i.e., a distorted version of the original
permutation). Covering codes provide such a rate-distortion
scheme: when given a permutation f ∈ Sn, by the properties
of the covering code, C, we know f is contained in a ball
or radius rmin centered around some codeword g ∈ C, i.e.,
d( f , g) 6 rmin. We then encode g instead of f . The shorter
description requires only M = |C| integers, and the decoding
back to g is guaranteed to have a distortion upper-bounded by
rmin. Thus, smaller M = |C| and smaller rmin are better, and
a trade-off exists between the two.

Covering codes over general spaces, mostly with the Ham-
ming metric, have been extensively studied. These solve
various combinatorial covering problems, are connected to
applications in compression and rate-distortion theory, as well
as indirectly providing bounds on the parameters of error-
correcting codes. The reader is referred to [4] and the numer-
ous constructions, bounds, applications, and references therein.

Covering codes over permutations have only recently been
studied in depth, starting with the work of [2], and following
with [14], [20], all of which only use the Hamming distance
over permutations. In [2], the exact size of covering codes over
Sn and covering radius n− 1 is found, and bounds are given
on the size of covering codes with smaller covering radius. In
[14], the authors present a randomized construction for a code
and use a certain frequency parameter to bound the covering
radius of the code. A survey of error-correcting codes and
covering codes over permutations is given in [20].

Motivated by applications to information storage in non-
volatile memories, the rank-modulation scheme was recently
suggested [11], in which information is stored in the form of
permutations. The relevant permutation metrics for this scheme
are mainly the `∞-metric and Kendall’s-τ metric. Thus, we
have works studying error-correcting codes [1], [7], [12], [18],
[19], [23], [24], [28], [30], Gray codes and snake-in-the-box
codes [9], [10], [26], [27], [29], and related combinatorial
questions [16], [17], [21].

Covering codes over permutations with the `∞-metric have
only been studied in [6], [25]. In [25], various connections
between different metrics over permutations were found, thus
enabling code construction in the `∞-metric based on codes in
other metrics. Additionally, bounds on code parameters were
given, which were later improved in [6], together with an
explicit direct code construction.

The main contribution of this paper is a generalization of
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the code construction for the infinity norm from [6], [25]. This
generalization combines short building-block covering codes
into a single long covering code. We study one such building-
block code in detail – a cyclic transitive group of Sn. We
derive the exact covering radius of this group. Additionally,
we provide a linear-time covering-codeword algorithm for
the constructed codes. Finally, it was shown in [24] that
relabeling (i.e., conjugating) a group code in the `∞-metric
can potentially change its minimum distance drastically, while
preserving the group structure. We therefore study the effect of
relabeling on the cyclic transitive group and bound its covering
radius after relabeling.

The paper is organized as follows. In Section II we introduce
formal definitions and notations used throughout the paper.
Section III is devoted to the derivation of the covering radius of
the naturally labeled cyclic transitive group. In Section IV we
describe the generalized code construction, as well as a linear-
time algorithm associated with it. We then turn in Section V
to studying relabeling of the building-block code and finding
bounds on its covering radius. We conclude in Section VI by
discussing the results and suggesting open problems.

II. NOTATIONS AND DEFINITIONS

For m, m′ ∈ N, we denote [m, m′] , {m, m + 1, . . . , m′},
as well as [m] , [1, m]. For ease of notation, we write
m mod+ n to denote the unique r ∈ [n] such that n divides
m− r. We emphasize that m mod n returns an integer from
{0, 1, . . . , n− 1}, whereas m mod+ n return an integer from
[n] = {1, 2, . . . , n}. We then define the cyclic interval

[m, m′] mod+ n

,
{

m mod+ n, (m + 1) mod+ n, . . . , m′ mod+ n
}

.

The symmetric group of permutations is denoted by Sn. As
will be evident later, it is important for us to fix the permuted
elements. Thus, a permutation f ∈ Sn is a bijection between
[n] and itself. We shall use either a one-line notation for
permutations, where f = [ f1, f2, . . . , fn] denotes a permu-
tation mapping i 7→ fi for all i ∈ [n], or a cycle notation
f = ( f1, f2, . . . , fk) where f maps fi 7→ f(i+1) mod+ k for all
i ∈ [k]. If f , g ∈ Sn are two permutations, their composition
is denoted by f g, where ( f g)(i) = f (g(i)) for all i ∈ [n].
The identity permutation is denoted by Id.

The metric of interest in this work is the `∞-metric, some-
times also called the Chebyshev metric. The distance function
in this metric, denoted d∞ : Sn × Sn →N0, is defined for all
f , g ∈ Sn by

d∞( f , g) , max
i∈[n]
| f (i)− g(i)| .

Since this will be the only distance function of interest, we
shall drop the ∞ subscript and use only d. We note that for all
f , g ∈ Sn, we have d( f , g) 6 n− 1. It is well known (e.g.,
see [5]) that d is right invariant (but not left invariant), i.e.,
for all f , g, h ∈ Sn,

d( f h, gh) = d( f , g).

A code C is simply a subset C ⊆ Sn. Sometimes C will
also be a subgroup of Sn, in which case we may refer to C
as a group code. For such a code C ⊆ Sn, and f ∈ Sn, we
define the distance between f and C by

d( f , C) , min
g∈C

d( f , g).

The main object of study in this work is now defined.

Definition 1. An (n, M, r) covering code is a subset C ⊆ Sn,
such that |C| = M and d( f , C) 6 r for all f ∈ Sn, and r is the
minimal integer with this property.

Given an (n, M, r) covering code C, we call r(C) , r
the covering radius of C. In an asymptotic setting it will be
useful to define the rate of the code, R(C), and its normalized
covering radius, ρ(C), by

R(C) ,
log2 M

n
, ρ(C) ,

r
n− 1

.

The main focus throughout this paper involves cyclic
groups. Since the distance function crucially depends on the
permuted elements, we need to define a “natural” description
of these group. Additionally, to avoid degenerate cases, we
shall only examine transitive cyclic groups. We therefore give
the following definition.

Definition 2. For all n ∈N, the natural transitive cyclic group,
denoted Gn ⊆ Sn, is the group generated by the permutation
(1, 2, . . . , n), i.e.,

Gn , 〈(1, 2, . . . , n)〉 =
{
(1, 2, . . . , n)k : k ∈ Z

}
. (1)

It will additionally be helpful to have a notation for per-
mutations that are close enough to the code. If f , g ∈ Sn and
d( f , g) 6 r̃, we say f is r̃-covered by g, and otherwise, we
say f is r̃-exposed by g. If C ⊆ Sn is a code, and f ∈ Sn is
r̃-covered by at least one g ∈ C, i.e., d( f , C) 6 r̃, we say f
is (r̃, C)-covered. Otherwise, f is r̃-exposed by every g ∈ C,
and we say f is (r̃, C)-exposed. In the latter case, for every
g ∈ C, there exists i ∈ [n] such that | f (i)− g(i)| > r̃, and
we say that the mapping i 7→ f (i) is r̃-exposed by g.

III. THE COVERING RADIUS OF THE CYCLIC GROUP

In this section we determine the covering radius of the
natural transitive cyclic group. This will later be used as a
component in a more general construction for covering codes.
We first present two bounds on the covering radius, that nearly
agree. We then close the small gap to obtain the exact covering
radius.

Throughout this section, let Gn ⊆ Sn denote the natural
transitive cyclic group of (1). Since for n = 1, 2, we have
Gn = Sn, we trivially have r(G1) = r(G2) = 0. Thus, in
what follows we focus on n > 3.

If f ∈ Sn is some permutation, H ⊆ Sn a subgroup, and
r̃ ∈N, we define

AH
i 7→ f (i) ,

{
h−1(1) : i 7→ f (i) is r̃-exposed by h ∈ H

}
.

Since we will be mainly interested in the case of H = Gn,
we define

Ai 7→ f (i) , AGn
i 7→ f (i).



0018-9448 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2017.2766296, IEEE
Transactions on Information Theory

3

We also define the two sets

B , [n− r̃− 1] T , [r̃ + 2, n],

for the bottom and top parts of the range [n]. In these
definitions, to keep the notation simple, the dependence of
B and T on n and r̃ is implicit. Some simple observations are
formalized in the next two lemmas.

Lemma 3. Let f ∈ Sn be any permutation, and r̃ ∈ N. If
H ⊆ Sn is a transitive group and |H| = n, then f is (r̃, H)-
exposed if and only if

⋃
i∈[n]

AH
i 7→ f (i) = [n]. (2)

Proof: If (2) holds, since |H| = n, it follows that every
h ∈ H r̃-exposes f , hence f is (r̃, H)-exposed. In the other
direction, if f is (r̃, Gn)-exposed, then every g ∈ Gn r̃-exposes
some mapping i 7→ f (i). Since

⋃
g∈Gn

{
g−1(1)

}
= [n], the

claim follows.

Lemma 4. Let r̃, n ∈ N, r̃ > n
2 − 1, and let H ⊆ Sn be a

transitive subgroup with |H| = n. Then for all i, j ∈ [n],

∣∣∣AH
i 7→j

∣∣∣ =


n− r̃− j, j ∈ B = [n− r̃− 1],
j− r̃− 1, j ∈ T = [r̃ + 2, n],
0 otherwise.

In particular, for H = Gn, for all jB ∈ B, jT ∈ T, and iB, iT ∈
[n],

AiB→jB = [iB + 1, iB + n− r̃− jB] mod+ n,

AiT→jT = [iT − jT + r̃ + 2, iT ] mod+ n.

Proof: Consider the first claim. If i 7→ j, j ∈ B, is r̃-
exposed by some h ∈ H, then h(i) ∈ [j + r̃ + 1, n]. Thus,
since H is transitive and |H| = n, there are exactly n− r̃− j
such h ∈ H, proving the claim regarding the size of AH

i 7→j.

Additionally, when considering H = Gn , 〈(1, 2, . . . , n)〉,
we know h−1(1) = (iB − h(iB) + 1) mod+ n. Combining
this with the range of h(iB) we get

AiB→jB = [iB + 1, iB + n− r̃− jB] mod+ n.

The rest of the claims, involving T, iT , and jT , are proven
symmetrically.

We can now prove an upper bound on the covering radius
of Gn.

Lemma 5. For all n ∈N, n > 3,

r(Gn) 6 n−
⌈√

4n + 1− 1
2

⌉
.

Proof: Let f ∈ Sn be any permutation, and consider any
r̃ ∈N in the range n

2 − 1 6 r̃ 6 n− 1. Using Lemma 4,∣∣∣∣∣∣ ⋃i∈[n] Ai 7→ f (i)

∣∣∣∣∣∣ 6 ∑
i∈[n]

∣∣∣Ai 7→ f (i)

∣∣∣
= ∑

i∈[n]
f (i)∈B

∣∣∣Ai 7→ f (i)

∣∣∣+ ∑
i∈[n]

f (i)∈T

∣∣∣Ai 7→ f (i)

∣∣∣
= ∑

j∈B
(n− r̃− j) + ∑

j∈T
(j− r̃− 1)

= 2
n−r̃−1

∑
i=1

i = (n− r̃− 1)(n− r̃). (3)

By Lemma 3, if

(n− r̃− 1)(n− r̃) < n, (4)

then f is (r̃, Gn)-covered. The smallest value of r̃ that satisfies
(4) is

r̃ = n−
⌈√

4n + 1− 1
2

⌉
,

and since for any r̃ that satisfies (4) we have r(Gn) 6 r̃, we
obtain the desired bound.

We now move on to a lower bound on the covering radius
of Gn.

Lemma 6. For all n ∈N, n > 3,

r(Gn) > n−
⌊√

4n + 1 + 1
2

⌋
.

Proof: By simple inspection, r(G3) = 1, agreeing with
the claim. We therefore focus on the remaining case of n > 4.
For convenience we define

a ,

⌊√
4n + 1 + 1

2

⌋
r̃ , n− a− 1.

The proof strategy is the following: we shall define a
permutation f0 ∈ Sn and show that f0 is (r̃, Gn)-exposed.
It would then follow that r(Gn) > r̃ + 1 = n − a, which
would complete the proof.

We construct a permutation f0 ∈ Sn as follows:

f0(i) ,


n− a + k, i = (k+1

2 ), k ∈ [a],
a− `+ 1, i = 2(a+1

2 )− 1− (`+1
2 ), ` ∈ [a],

arbitrary, otherwise,
(5)

=


jT , i = (a−(n−jT)+1

2 ), jT ∈ T,
jB, i = 2(a+1

2 )− 1− (a−(jB−1)+1
2 ), jB ∈ B,

arbitrary, otherwise,

for all i ∈ [n], and where arbitrary entries are set in a way
that completes f0 to a permutation.

We first contend that f0 is well defined. We note that since
n > 4 we have B ∩ T = ∅, so the values in the range of f0
are distinct. As for the domain, the first two cases of (5) are
disjoint, since otherwise we would have k, ` ∈ [a] such that(

k + 1
2

)
+

(
`+ 1

2

)
= 2

(
a + 1

2

)
− 1.
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This obviously does not hold for k = ` = a, as well as k, ` ∈
[a− 1]. The only remaining case is when {k, `} = {a, a− 1}.
However, it is easy to verify that(

a + 1
2

)
+

(
a
2

)
= 2

(
a + 1

2

)
− 1,

only when a = 1, which is never the case when n > 4. Hence,
f0 is indeed a well defined permutation.

We now proceed with showing that f0 is (r̃, Gn)-exposed.
By examining the first case of (5) and using Lemma 4, we
obtain for all jT ∈ T,⋃

jT∈T
A f−1

0 (jT) 7→jT

=
⋃

k∈[a]

[(
k + 1

2

)
− k + 1,

(
k + 1

2

)]
mod+ n

=

[(
a + 1

2

)]
mod+ n.

Symmetrically, let `′ ∈ [a] be the smallest integer such that

2
(

a + 1
2

)
− 1−

(
`′ + 1

2

)
6 n.

Then by Lemma 4,⋃
jB∈B

A f−1
0 (jB) 7→jB

=
⋃

`∈[`′ ,a]

[
2
(

a + 1
2

)
−
(
`+ 1

2

)
,

2
(

a + 1
2

)
−
(
`+ 1

2

)
+ `− 1

]
mod+ n

=

[(
a + 1

2

)
, 2
(

a + 1
2

)
− 1−

(
`′

2

)]
mod+ n.

We now note that

2
(

a + 1
2

)
− 1

=

⌊√
4n + 1 + 1

2

⌋(⌊√
4n + 1 + 1

2

⌋
+ 1

)
− 1

>

√
4n + 1− 1

2
·
√

4n + 1 + 1
2

− 1

= n− 1,

and since the expression on the left-hand side is an integer,
we get

2
(

a + 1
2

)
− 1 > n.

Additionally, the choice of `′ ensures that also

2
(

a + 1
2

)
− 1−

(
`′

2

)
> n.

It then follows that ⋃
i∈[n]

Ai 7→ f0(i) = [n],

and by Lemma 3, f0 is (r̃, Gn)-exposed.

TABLE I
THE ENTRIES OF f0 THAT ARE EXPLICIT IN THE PROOF OF LEMMA 5, THE

PERMUTATIONS IN G7 BY WHICH THEY ARE 3-EXPOSED, AND THE
RELEVANT Ai 7→ f0(i) SETS.

f0 3-exposed by Ai 7→ f0(i)
1 7→ 5 g0 A1 7→5 = [1] = {1}
3 7→ 6 g5, g6 A3 7→6 = [2, 3] = {2, 3}
6 7→ 7 g2, g3, g4 A6 7→7 = [4, 6] = {4, 5, 6}
5 7→ 1 g0, g1, g2 A5 7→1 = [6, 8] mod+ 7 = {6, 7, 1}

Example 7. For n = 7, from (5) we get

f0 = [5, ?, 6, ?, 1, 7, ?],

where ? represents entries that can be mapped arbitrarily
so as to complete a permutation from S7. Denote g =
(1, 2, 3, 4, 5, 6, 7), so that G7 = 〈g〉. Table I shows the entries
of f0 which were mapped to B ∪ T, and the permutations
gk ∈ G7 by which they are 3-exposed. It also details the
relevant Ai 7→ f0(i) sets. We conclude that r(G7) > 4, since f0
is (3, G7)-exposed. From Lemma 5 we have r(G7) 6 4. Thus
r(G7) = 4. 2

The upper bound of Lemma 5 and the upper bound of
Lemma 6 do not match exactly. The gap between the two is
eliminated in the following theorem, by improving the upper
bound, thus giving the exact covering radius of Gn.

Theorem 8. For all n ∈N,

r(Gn) = n−
⌊√

4n + 1 + 1
2

⌋
.

Proof: For n = 1, 2 we already know that r(Gn) = 0,
agreeing with the claimed expression. Therefore we consider
n > 3. By Lemma 5 and Lemma 6 we have

n−
⌊√

4n + 1 + 1
2

⌋
6 r(Gn) 6 n−

⌈√
4n + 1− 1

2

⌉
.

Using straightforward analysis, one can see that the lower and
upper bounds agree, except when n = t(t + 1), t ∈N, where
there is a gap of 1 between the bounds. To prove the claim we
shall strengthen the upper bound to match the lower bound.

For the remainder of the proof we focus on the case of
n = t(t + 1), t ∈ N. In this case, there is no need for the
floor or ceiling operations, and we would like to prove that

r(Gn) = n−
√

4n + 1 + 1
2

= t2 − 1.

Denote r̃ , t2− 1, and assume to the contrary that there exists
f ∈ Sn that is (r̃, Gn)-exposed. Then,

n
(a)
=

∣∣∣∣∣∣ ⋃j∈[n] A f−1(j) 7→j

∣∣∣∣∣∣ 6 ∑
j∈[n]

∣∣∣A f−1(j) 7→j

∣∣∣
(b)
= (n− r̃− 1)(n− r̃) = t(t + 1) = n,

where (a) follows from Lemma 3, and (b) is taken from (3).
It follows that the sets A f−1(j) 7→j, j ∈ [n], are all disjoint, and
they form a partition of [n].
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Define a B-set to be any set of the form A f−1(jB) 7→jB , with
jB ∈ B, and a T-set to be any set A f−1(jT) 7→jT , with jT ∈ T.
Since r̃ > n

2 − 1, we have B ∩ T = ∅, and thus no B-set is
also a T-set. As noted above, the B-sets and T-sets partition
[n], and therefore there exists some T-set immediately to the
left (cyclically) of a B-set. More precisely, there exist jB ∈ B
and jT ∈ T such that

A f−1(jT) 7→jT = [k, k + `T ] mod+ n,

A f−1(jB) 7→jB = [k + `T + 1, k + `T + `B] mod+ n,

for some k, `B, `T ∈ [n]. But by Lemma 4,

A f−1(jT)→jT = [ f−1(jT)− jT + r̃ + 2, f−1(jT)] mod+ n,

A f−1(jB)→jB = [ f−1(jB) + 1,

f−1(jB) + n− r̃− jB] mod+ n,

implying f−1(jB) = f−1(jT), and therefore jB = jT , but then
B ∩ T 6= ∅, a contradiction.

IV. CODES CONSTRUCTED FROM THE CYCLIC GROUP

Using Gn as a covering code, now that its covering radius
has been determined, has severe limitations. Most notably,
there is just one code of each length, and no flexibility in code
parameters. We overcome this by providing a more general
code construction which uses Gn as an internal building block.
This construction is a generalization of the covering-code
construction of [6], [25]. It enables us to construct a covering
code Cn ⊆ Sn , using existing covering codes Cm ⊆ Sm,
m 6 n.

A. Code Construction and Parameters

Before describing the construction we first define permuta-
tion projections.

Definition 9. Let I = {i1, i2, . . . , im} ⊆ [n] be a subset of
indices, i1 < i2 < · · · < im. For a permutation f ∈ Sn we
define f |I to be the permutation in Sm that preserves the relative
order of the sequence f (i1), f (i2), . . . , f (im), i.e., g = f |I if
for all j, j′ ∈ [m], we have g(j) < g(j′) if and only if f (ij) <
f (ij′). We also define

f |I ,
(

f−1|I
)−1

.

Intuitively, from the definition above, to compute f |I we
take its one-line notation, keep only the coordinates of f from
I, and then rename them to the elements of [m] while keeping
the relative order. In contrast, to compute f |I , we keep only
the one-line notation values of f that are from I, and rename
those to [m] while keeping the relative order.

Example 10. Let n = 6, f = [6, 1, 3, 5, 2, 4] ∈ S6, and I =
{3, 5, 6}. Then

f |I = [2, 1, 3],

since we keep entries 3, 5, and 6 of f , giving us [3, 2, 4], which
we then rename to [2, 1, 3]. Similarly, we have

f |I = [3, 1, 2],

since we keep the values 3, 5, and 6 of f , giving us [6, 3, 5],
which we then rename to [3, 1, 2]. 2

To simplify notation, it will become convenient to define a
projection using the empty set. Thus, for I = ∅ and f ∈ Sn we
define f |I = f |I , [], where [] denotes the unique permutation
over zero elements.

We now present the code construction.

Construction A. Let m, n ∈ N, m 6 n. We define the indices
sets

Ii , [im + 1, (i + 1)m] ∩ [n],

for all i ∈ [0,
⌊ n

m
⌋
]. We construct the code Cn ⊆ Sn defined by

Cn ,
{

f ∈ Sn : f |Ii ∈ C|Ii |, i ∈
[
0,
⌊ n

m

⌋]}
,

where C|Ii | ⊆ S|Ii | are covering codes, called the building-
block codes. 2

We note that in the above construction, all the indices sets
are of size m, except for the last one which is of size n mod
m. Thus, when m|n the last indices set is empty, and C0 ,
{[]} = {Id} ⊆ S0 is degenerate, containing only the unique
empty (identity) permutation. We define r(C0) , 0. We also
mention that a more general construction is possible, in which
the indices sets form an arbitrary partition of [n].

The code construction of [6], [25] is a special case of
Construction A, in which Cm , {Id} ⊆ Sm, and Cn mod m ,
{Id} ⊆ Sn mod m.

Lemma 11. The code Cn from Construction A is an (n, M, r)
code, where

M =
n!

(m!)bn/mc(n mod m)!
|Cm|bn/mc |Cn mod m| ,

and
r = max {r(Cm), r(Cn mod m)} .

Proof: The cardinality of the code, M, is easily obtainable
by noting that we first need to partition the n coordinates into⌊ n

m
⌋

sets of size m, and one set of size n mod m. There are(
n

m, m, . . . , m, n mod m

)
=

n!
(m!)bn/mc(n mod m)!

ways of doing so. We then assign values to each set from the
corresponding set Ii. The number of ways to do so is exactly
|Cm|bn/mc |Cn mod m|.

The covering radius is also straightforward. Given a permu-
tation f ∈ Sn, assume the values of Ii are found in positions
given by Ji ⊆ [n]. By the properties of the code C|Ii |, there
exists a codeword g ∈ Cn, such that the restrictions of f and
g to positions Ji are at most r(C|Ii |) distance apart. Since we
can make this hold for all i ∈ [0,

⌊ n
m
⌋
] simultaneously, we

have
r 6 max {r(Cm), r(Cn mod m)} .

This is met with equality, since we can easily find a permu-
tation f ∈ Sn within this distance from Cn: take f ′ ∈ Sm
such that d( f ′, Cm) = r(Cm). Construct f ∈ Sn such that
f |I0 = f ′ and then d( f , Cn) > r(Cm). If necessary, repeat
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analogously for Cn mod m to obtain a permutation f ∈ Sn
such that d( f , Cn) > r(Cn mod m).

Next, we take a closer look at this code construction using
Gn as the building block code.

Corollary 12. Let m, n ∈ N, m 6 n. Then the code Cn
from Construction A, with building-block codes Cm = Gm and
Cn mod m = Gn mod m, is an (n, M, r) code, where

M =


n!

((m−1)!)
n
m

, n ≡ 0 (mod m),
n!

((m−1)!)b
n
m c((n mod m)−1)!

, n 6≡ 0 (mod m),

and

r = m−
⌊√

4m + 1 + 1
2

⌋
.

Here we use the convention that G0 = {[]}.
Proof: The proof follows from substituting the parameters

of the cyclic group into Lemma 11, and noting that r(Gm) is
monotone non-decreasing in m.

Lemma 13. Let n, m ∈ N, m 6 n. Then the code Cn of
Construction A with Cm = Gm and Cn mod m = Gn mod m,
has the following rate,

R = −ρ

⌊
1
ρ

⌋
log2 ρ

−
(

1− ρ

⌊
1
ρ

⌋)
log2

(
1− ρ

⌊
1
ρ

⌋)
+ o(1), (6)

where ρ , ρ(Cn) is the normalized covering radius of Cn, R ,
R(Cn) is the rate of Cn, and o(1) denotes a function that tends
to 0 as n tends to infinity.

Proof: From Corollary 12

ρ =
r(Cn)

n− 1
=

m−
⌊√

4m+1+1
2

⌋
n− 1

=
m
n
− o(1).

Therefore, m = nρ + o(n). Notice that n mod m = n −
m
⌊ n

m
⌋
, hence, by rewriting |Cn| from Corollary 12 we get

|Cn| = 2Rn

=
n!

(m!)b
n
m c(n mod m)!

mb
n
m c(n mod m)

=
n! · (nρ + o(n))

⌊
n

nρ+o(n)

⌋
((nρ + o(n))!)

⌊
n

nρ+o(n)

⌋

·

(
n− (nρ + o(n))

⌊
n

nρ+o(n)

⌋)
(

n− (nρ + o(n))
⌊

n
nρ+o(n)

⌋)
!
.

It is now a matter of using Stirling’s approximation (e.g., [8]),

n! =
(n

e

)n
2o(n),

and standard analysis techniques, to arrive at the desired form.

We observe that (6) is the same as the rate obtained by
the construction of [6], [25], which uses only Cm = {Id}.

However, the rate is a rather crude measure. Upon closer in-
spection, we shall now show the code parameters of Corollary
12 are superior to those of [6], [25] along certain asymptotics.
We first provide an example.

Example 14. Describing an arbitrary permutation from S24
requires log2(24!) ≈ 79 bits of information. If instead of
describing the arbitrary permutation precisely we allow a dis-
tortion of at most 8 in the `∞-norm, then using the covering-
code construction of [6], [25], a code C′24 of length n = 24 and
covering radius 8 has size∣∣C′24

∣∣ = 24!
9!2 · 6!

,

requiring log2

∣∣C′24

∣∣ ≈ 32.6 bits. However, by choosing n =
24 and m = 12, the code C24 from Construction A using these
parameters also has covering radius

r(G12) = 12−
⌊√

4 · 12 + 1 + 1
2

⌋
= 8,

and size
|C24| =

24!
11!2

.

Thus, only log2 |C24| ≈ 28.5 bits are required. 2

Let us consider the case of n = tm, where t, m ∈ N. We
use Construction A with Cm = Gm to obtain a code we denote
as Ccyc

n . This code has cardinality given by Corollary 12,

Mcyc
n =

(mt)!
((m− 1)!)t .

Its covering radius is

r , r(Ccyc
n ) = m−

⌊√
4m + 1 + 1

2

⌋
.

For a fair comparison with the code of [6], [25], we construct
one with the same length n, and same covering radius r. Such
a code is a special case of Construction A using the building-
block codes Cr+1 = {Id} and Cn mod (r+1) = {Id}. We call
the resulting code CId

n , and its cardinality (see also [6]) is
given by

MId
n =

(mt)!

((r + 1)!)b
n

r+1c(n mod (r + 1))!
.

For the comparison, we first observe that

r 6 m−
√

m + 1. (7)

We also recall Stirling’s approximation in more detail,
√

2πn
(n

e

)n
6 n! 6

√
2πn · e

1
12n

(n
e

)n
. (8)

We now have

Mcyc
n =

(tm)! ·mt

(m!)t

(a)
6

√
2πtm

( tm
e
)tm e

1
12tm ·mt(m

e
)tm

(2πm)
t
2

(b)
6 2
√

t ·mtttm,
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where (a) is obtained by using (8), and (b) is by rearrangement
and noting that e

1
12tm 6 2.

To bound MId we write

n = tm = q(r + 1) + s,

where q, s ∈ Z, s ∈ [0, r]. We then have

MId
n =

(tm)!
((r + 1)!)q · s!

(a)
>

√
2πtm

( tm
e
)tm

(2π(r + 1))
q
2 e

q
12(r+1)

(
r+1

e

)(r+1)q

· 1

(2πs)
1
2 e

q
12(r+1)+

1
12s
( s

e
)s

(b)
>

ttm(
r+1
m

)(r+1)q ( s
m
)s 22t+1(2πtm)t

(c)
>

ttm(
r+1
m

)tm
22t+1(2πtm)t

(d)
>

ttm(
1− 1√

m + 2
m

)tm
22t+1(2πtm)t

(e)
>

ttm(
e−
√

m+2
)t

22t+1(2πtm)t
,

where (a) is due to (8), (b) is by rearrangement and noting
that q 6 2t, (c) is due to s 6 m, (d) is due to (7), and (e) is
due to 1 + x 6 ex. It now follows that

Mcyc

MId 6 22t+2
√

t(2πt)t
(

m2e−
√

m+2
)t

.

Thus, for any fixed t ∈ N, and m tending to infinity, the
codes Ccyc

n are sub-exponentially better than CId
n of [6], [25]

in terms of size.
The comparison may be performed in a more general

setting. Assume Construction A is used with length n and
building-block codes Gm, where m does not necessarily divide
n. Denote the size of the resulting code by Mcyc

n,m (see Corol-
lary 12). For comparison, we take the construction of [6], [25]
of same length n, and same covering radius, m−

⌊√
4m+1+1

2

⌋
,

and denote its size by MId
n,m. Figure 1 shows a comparison

between Mcyc
n,m and MId

n,m. In particular, the dark ridges of
Figure 1(a) along n = tm, t ∈ N, are predicted by our
previous analysis.

As a final note, we mention the fact that we may improve
the parameters of Corollary 12 by picking Cm = Gm, but
Cn mod m = {Id}, whenever (n mod m) − 1 6 r(Gm), as
this would decrease the resulting code size while maintaining
its covering radius.

B. Covering-Codeword Algorithm

A common task associated with covering codes is, given
a covering code C ⊆ Sn and a permutation f ∈ Sn, to find
a codeword g ∈ C such that d( f , g) 6 r(C), i.e., find a

codeword covering f . The code Gn has only few codewords,
and a trivial algorithm measuring the distance between the
given f and each of the n codewords of Gn (returning an
r(Gn)-covering codeword) runs in O(n2) time. However, this
might be improved upon, and we now describe a more efficient
algorithm.

Algorithm 1 Finding a covering codeword g ∈ Gn

Input: any permutation f ∈ Sn
Output: a codeword g ∈ Gn with d( f , g) 6 r(Gn)
Initialization: V is an array of size n, V[i] ← 0, ∀i ∈
[n], a←

⌊√
4n+1−1

2

⌋
for i = 1 to n do

if f (i) 6 a then
for j = i + 1 to i + a− ( f (i)− 1) do

V
[
j mod+ n

]
← 1

end for
else if f (i) > n− a + 1 then

for j = i− (a− (n− f (i))) + 1 to i do
V
[
j mod+ n

]
← 1

end for
end if

end for
for i = 1 to n do

if V[i] = 0 then
return [n− i + 2, . . . , n, 1, . . . , n− i + 1] ∈ Gn

end if
end for

Lemma 15. Let n ∈ N and f ∈ Sn. Algorithm 1 returns a
codeword g ∈ Gn such that d( f , g) 6 r(Gn).

Proof: Let r̃ , r(Gn), which means a = n− r̃− 1. The
inner loops on j assign 1 to the entries of V corresponding to
the elements of Ai 7→ f (i) (see proof of Lemma 6). Hence, at
the end of the first for loop on i,

V[i] = 0 ⇐⇒ i /∈
⋃

i∈[n]
Ai 7→ f (i).

The second for loop on i finds i ∈ [n] such that V[i] = 0.
From Theorem 8, such i must exist. We conclude that the
codeword g ∈ Gn, such that g(i) = 1, r̃-covers f , and we
return it.

Algorithm 1 is more efficient than the trivial brute-force
algorithm. We note that a = O(

√
n), and therefore, each of

the inner loops is entered O(
√

n) times, performing O(
√

n)
iterations each time. Thus, in total, the algorithm runs in O(n)
time.

Having this algorithm for the building-block code Gn, we
may extend it in a natural way to the code studied in Corollary
12 to also run in O(n) time. We omit the tedious details.

V. RELABELING THE CYCLIC GROUP

Following the definition of the natural transitive cyclic
group,

Gn , 〈(1, 2, . . . , n)〉 ⊆ Sn,
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Figure 1. A comparison between Mcyc

n,m and MId
n,m, where (a) shows log10(Mcyc

n,m/MId
n,m) (darker colors imply values of n and m for which Construction A

out-performs the construction of [6], [25]), and (b) shows a black/white quantization of (a), where black positions imply Mcyc
n,m > MId

n,m.

as given in Definition 2, it is tempting to ask what happens
when we take a non-natural transitive cyclic group. Thus, we
are interested in the groups of the form

Gh
n , hGnh−1 ,

〈
h(1, 2, . . . , n)h−1

〉
= 〈(h(1), h(2), . . . , h(n))〉 ⊆ Sn,

for some h ∈ Sn. A similar, more general question, was asked
in [24], where an error-correcting code C ⊆ Sn was relabeled
by conjugation,

Ch , hCh−1 ,
{

hgh−1 : g ∈ C
}

,

h ∈ Sn, and its minimum distance was studied as a function
of C and h. It was shown there that the minimum distance
could drastically change due to relabeling, moving from the
minimum possible 1, to the maximum possible n − 1, for
some codes. Additionally, every error-correcting code could be
relabeled so that its minimum distance is reduced to either 1
or 2. In this section we study the covering radius of relabelings
of Gn.

Definition 16. Let C ⊆ Sn be a covering code. We denote
byLmin(C) (respectively,Lmax(C)) the minimal (respectively,
maximal) achievable covering radius among all relabelings of
C, i.e.,

Lmin(C) , min
h∈Sn

r(Ch),

Lmax(C) , max
h∈Sn

r(Ch).

We first consider Lmax(Gn). Again, the cases of n = 1, 2
are degenerate, and we therefore only consider n > 3.

Theorem 17. For all n ∈N, n > 3,

Lmax(Gn) = n−
⌈√

4n + 1− 1
2

⌉
.

Proof: Let h ∈ Sn be any permutation. We begin by
noting that since Gn is a transitive group, so is Gh

n. Thus,

Lemma 3 and Lemma 4 apply. Now Lemma 5 also holds for
Gh

n since it only relies on the two above-mentioned lemmas.
Thus,

Lmax(Gn) 6 n−
⌈√

4n + 1− 1
2

⌉
.

Additionally, whenever n 6= t(t + 1), t ∈ N, we have by
Theorem 8

Lmax(Gn) > r(Gn)

= n−
⌊√

4n + 1 + 1
2

⌋
= n−

⌈√
4n + 1− 1

2

⌉
.

Let us define

a ,

⌈√
4n + 1− 1

2

⌉
, r̃ , n− a− 1.

To complete this proof, we must show that for values of n
such that n = t(t + 1), t ∈ N, t > 2, there exists h ∈ Sn

such that r(Gh
n) = n− a. Notice that in this case,

√
4n+1−1

2
is an integer, which yields n = a(a + 1).

We contend that the permutation h , (1, 2) ∈ Sn will
suffice, proving it by constructing a permutation f0 ∈ Sn such
that f0 is (r̃, Gh

n)-exposed, giving us

r(Gh
n) > d( f0, Gh

n) > r̃ + 1 = n− a.

We construct a permutation f0 ∈ Sn as follows:

f0(i) ,



1, i = 1,
n, i = 2,
n− a + 1, i = 3,
a− k, i = (k+1

2 ) + a + 2,
k ∈ [0, a− 2],

n− a + 1 + `, i = n− a + 2− (`+1
2 ),

` ∈ [a− 2],
arbitrary, otherwise,

(9)
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for all i ∈ [n], and where arbitrary entries are set in a way
that completes f0 to a permutation.

We first note that f0 is well defined. The domain intervals in
the definition are disjoint since a > 2, n = a(a+ 1) = 2(a+1

2 ),
and (

a− 1
2

)
+ a + 2 < 2

(
a + 1

2

)
− a + 2−

(
a− 1

2

)
.

As for the range intervals, the fourth and fifth cases in (9)
are [2, a] and [n− a + 2, n− 1] respectively, and are clearly
disjoint, and disjoint from the first three cases. These two sets
will be of further interest, so we define

B̃ , B \ {1} = [2, a],

T̃ , T \ {n− a + 1, n} = [n− a + 2, n− 1].

Thus, B̃ ∩ T̃ = ∅.
With g , (1, 2, . . . , n) ∈ Sn, and Gn , 〈g〉, we write the

elements of Gh
n explicitly,

h0 , hg0h−1 = [1, 2, . . . , n],

h1 , hg1h−1 = [3, 1, 4, 5, . . . , n, 2],

h2 , hg2h−1 = [4, 3, 5, 6, . . . , n, 2, 1],

hi , hgih−1 = [i + 2, i + 1, i + 3, i + 4, . . . , n,
2, 1, 3, 4, . . . , i], i ∈ [3, n− 3],

hn−2 , hgn−2h−1 = [n, n− 1, 2, 1, 3, 4, . . . , n− 2],

hn−1 , hgn−1h−1 = [2, n, 1, 3, 4, . . . , n− 1].

To prove that f0 is (r̃, Gh
n)-exposed we shall use Lemma 3.

The mapping 1 7→ f0(1) = 1 is r̃-exposed by
{hn−a−1, hn−a, . . . , hn−2}, hence,

AGh
n

1 7→1 = [4, a + 3].

The mapping 2 7→ f0(2) = n is r̃-exposed by
{h0, h1, . . . , ha−1}, hence

AGh
n

2 7→n = [n− a + 3, n + 2] mod+ n
= {n− a + 3, n− a + 4, . . . , n, 1, 2} .

The mapping 3 7→ f0(3) = n− a + 1 is r̃-exposed solely by
hn−1, thus

AGh
n

2 7→n−a+1 = {3} .

Now consider a mapping iB 7→ f0(iB) = jB, with jB ∈ B̃, and
we get

AGh
n

iB 7→jB
= [iB + 2, iB + 2 + a− jB],

and in total,⋃
jB∈B̃

AGh
n

f−1
0 (jB) 7→jB

=

[
a + 4,

(
a + 1

2

)
+ 3
]

=
[

a + 4,
n
2
+ 3
]

.

Similarly, for iT 7→ f0(iT) = jT such that jT ∈ T̃ we get

AGh
n

iT 7→jT
= [iT + n− jT − a + 2, iT + 1],

and in total,⋃
jT∈T̃

AGh
n

f−1
0 (jT) 7→jT

=

[
n−

(
a + 1

2

)
+ 4, n− a + 2

]
=
[n

2
+ 4, n− a + 2

]
.

In conclusion, taking the union of all the above we obtain⋃
j∈[n]

AGh
n

f−1
0 (j) 7→j

= [n],

and by Lemma 3 we have that f0 is (r̃, Gh
n)-exposed.

We now move on to studying Lmin. Unlike Lmax, we
provide only a weak lower bound on Lmin, which depends
only on the size of the code. We recall the definition of a ball
of radius r and centered at g ∈ Sn,

Bn,r(g) , { f ∈ Sn : d( f , g) 6 r} .

Since the `∞-metric is right invariant, the size of a ball does
not depend on the choice of center, and thus we denote its
size as |Bn,r|.
Lemma 18. Let C ⊆ Sn be a code. If r̃ ∈N is such that

|C| · |Bn,r̃−1| < |Sn| , (10)

then
Lmin(C) > r̃.

Proof: The claim is quite trivial. Inequality (10) simply
states that |C| balls of radius r̃ − 1 cannot cover Sn, hence
r(C) > r̃. For all h ∈ Sn we have |C| =

∣∣∣Ch
∣∣∣, hence r(Ch) >

r̃.
Specializing Lemma 18 to |C| = n, gives us the following

corollary, which applies to Gn as well.

Corollary 19. For all large enough n ∈ N, if C ⊆ Sn with
|C| = n, then

Lmin(C) > n−
⌈√

2n ln n + 2n
⌉

.

Proof: The following upper bound on the size of a ball
is given in [15],

|Br,n| 6
{
((2r + 1)!)

n−2r
2r+1 ∏2r

i=r+1(i!)
2
i , 0 6 r 6 n−1

2 ,

(n!)
2r+2−n

n ∏n−1
i=r+1(i!)

2
i , n−1

2 6 r 6 n− 1,

and whose proof is an immediate application of Bregman’s
upper bound on the permanent. We contend that only the
second case of this bound is of relevance to us, as we will
prove shortly. Thus, if we find r̃ > n+1

2 such that

|C| · |Bn,r̃−1|
|Sn|

=
|Bn,r̃−1|
(n− 1)!

6
1

(n− 1)!
(n!)

2r̃−n
n

n−1

∏
i=r̃

(i!)
2
i < 1, (11)

then by Lemma 18 we will have Lmin(C) > r̃.
Let us therefore define the auxiliary function,

F(n, r̃) ,
1

(n− 1)!
(n!)

2r̃−n
n

n−1

∏
i=r̃

(i!)
2
i .
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As a first step we show that for all n > 11,

F
(

n,
⌈

n + 1
2

⌉)
< 1.

Due to parity, we consider the cases of even n and odd n
separately. We shall prove the former, and omit the proof for
odd n since it is similar. For the case of even n, we prove the
claim for n = 12, and then show the function is monotonically
decreasing in n.

For n = 12 we have,

F(12, 7) ≈ 0.9644 < 1.

Next, we consider

F
(
n, n+2

2
)

F
(

n + 2, n+4
2

) =
n · (n!)

2−n
n ·∏n−1

i= n+2
2
(i!)

2
i

(n + 2) · ((n + 2)!)−
n

n+2 ·∏n+1
i= n+4

2
(i!)

2
i

=
n(n + 1) ·

(( n+2
2
)
!
) 4

n+2

((n + 2)!)
2

n+2 · ((n + 1)!)
2

n+1

>
e2

4
· n

(n + 1) · (π(n + 2))
1

(n+1)(n+2)

· 1

e
1
6

(
1

(n+1)2
+ 1

(n+2)2

)

where for the inequality we used (8) and trivial bounding tech-
niques. We now note that exp( 1

6
(
(n + 1)−2 + (n + 2)−2))

and (π(n + 2))
1

(n+1)(n+2) are monotonically decreasing in n,
and n

n+1 is monotonically increasing. Hence,

F
(
n, n+2

2
)

F
(

n + 2, n+4
2

) >
F (12, 7)
F (14, 8)

≈ 1.649 > 1,

and so F
(

n,
⌈

n+1
2

⌉)
is monotonically decreasing in n for

even n. A similar proof holds for odd n.

Thus far we showed there exists r̃ > n+1
2 that satisfies (11)

(in particular, r̃ = d(n + 1)/2e does). We would now like
to find such r̃ as large as possible. We observe the following
sequence of inequalities, where we take n > 1, and n+1

2 6

r̃ 6 n− 1.

F(n, r̃) ,
1

(n− 1)!
(n!)

2r̃−n
n

n−1

∏
i=r̃

(i!)
2
i

(a)
6 n ·

(n
e

)2r̃−2n
·

n−1

∏
i=r̃

(2πi)
1
i e

1
6i

(
i
e

)2

(b)
6 n · n2r̃−2n · (2πr̃)

n−r̃
r̃ e

n−r̃
6r̃

(
(n− 1)!
(r̃− 1)!

)2

(c)
6 n · n2r̃−2n · πne

1
6 ·
(
(n− 1)!
(r̃− 1)!

)2

(d)
6 πe

1
6 e

1
6(n−1) e2r̃−2nn2 ·

(
n−1

n

)2n 1
n−1(

r̃−1
n

)2r̃ 1
r̃−1

(e)
6 πe−

109
60 e2r̃−2nn2 · 1(

r̃−1
r̃

)2r̃ ( r̃
n
)2r̃

(f)
6 πe−

109
60

(
6
5

)12
· e2r̃−2nn2

(n
r̃

)2r̃
, (12)

where (a) follows from (8), (b) follows by noting that (2πi)
1
i

and e
1
6i are decreasing in i and then replacing i by r̃, (c) follows

by noting that (2πr̃)
n−r̃

r̃ and e
n−r̃
6r̃ are decreasing in r̃ and

replacing r̃ by n
2 , (d) follows again by use of (8), (e) follows

by noting that exp( 1
6(n−1) ) is decreasing in n and substituting

n = 11, that ((n− 1)/n)2n 6 e−2, and that r̃−1
n−1 < 1, and

finally, (f) follows by noting that ((r̃− 1)/r̃)2r̃ is increasing
in r̃ and replacing r̃ (since n > 11 and r̃ > n

2 ) by r̃ = 6.
We note that taking r̃ = n−

√
2n ln n + 2n, by (12) we get

lim
n→∞

F(n, n−
√

2n ln n + 2n) 6 πe−
109
60

(
6
5

)12 1
e2 < 1.

It now follows that for large enough n,

F(n, n−
√

2n ln n + 2n) < 1,

and then

Lmin(C) > n−
⌈√

2n ln n + 2n
⌉

,

as claimed.

VI. DISCUSSION

In this paper we studied covering codes over permutations
with the `∞-metric. We presented a general construction
for such codes, Construction A, which uses short building-
block codes and combines them into a single longer covering
code. This construction is a generalization of the construction
appearing both in [6] and [25], noted by choosing the building-
block code to be the trivial {Id}.

To improve the overall code parameters, we studied a new
building-block code, the naturally labeled transitive cyclic
group Gn. This building-block code has length n, size |Gn| =
n, and covering radius

r(Gn) = n−
⌊√

4n + 1 + 1
2

⌋
,
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which was determined in Theorem 8. At this point, it is
interesting to ask whether the covering radius of Gn may
be changed by relabeling, following the example set in [24]
for error-correcting codes. It turns out, by Theorem 17 and
Corollary 19, that for all large enough n, and all h ∈ Sn,

n−
⌈√

2n ln n + 2n
⌉
6 r(Gh

n) 6 n−
⌈√

4n + 1− 1
2

⌉
,

implying that the covering radius of Gn is robust under
relabeling, in contrast to the volatility of the minimum distance
of Gn under relabeling (see [24]). In particular, relabeling does
not increase the covering radius of Gn by more than 1.

Finally, we described in Construction A a method of com-
bining short building-block codes into a single longer covering
code, Cn. The construction uses a parameter 1 6 m 6 n,
and results in a code of length n. When used with triv-
ial building-block codes {Id}, Construction A becomes the
construction described in [6], [25], with resulting code size
|Cn| = n!

(m!)bn/mc(n mod m)!
, and covering radius r(Cn) =

m− 1. However, when replacing the building-block code with
Gm, Construction A provides a code of size

|Cn| =


n!

((m−1)!)
n
m

, n ≡ 0 (mod m),
n!

((m−1)!)b
n
m c((n mod m)−1)!

, n 6≡ 0 (mod m),

and covering radius r(Cn) = m−
⌊√

4m+1+1
2

⌋
, as shown in

Corollary 12. Additionally, the code of Construction A admits
a linear-time algorithm for decoding.

The methods we described may be extended to larger
groups, e.g., the dihedral group, though at a cost of a growing
gap between the lower and upper bounds on the covering
radius. Thus, in the case of the naturally labeled dihedral
group, Dn ⊆ Sn, defined by,

Dn ,

〈
(1, 2, . . . , n),

bn/2c

∏
i=1

(i, n− i)

〉
,

we can obtain

n−
⌊√

4n + 1 + 1
2

⌋
> r(Dn)

>


n−

⌈√
288n+297−3

16

⌉
, n ∈ [4, 9],

n−
⌈√

288n+737−1
16

⌉
, n ∈ [10, 911],

n−
⌈√

18n−18
4

⌉
, n > 912.

The tedious proof follows the same logic as that presented in
Section III, and the interested reader may find it in [13]. We
believe a more elegant treatment is needed.

Another gap exhibited in this work is between Lmin(Gn)
and Lmax(Gn). First, we note an interesting contrast with the
case of error-correcting codes (as described in [24]). When
relabeling error-correcting codes, the minimum distance of
any code, including Gn, may be reduced to either 1 or 2.
The minimum distance of Gn is dn/2e, and the best possible

minimum distance after relabeling is n−
⌈√

4n−3−1
2

⌉
, which

bears a striking resemblance to r(Gn).
In light of Section III and Section V, it appears that the cov-

ering radius of Gn and its conjugate, has much less variance.
This is evident from the small gap between Lmin(Gn) and
Lmax(Gn), not to mention the fact that r(Gn) = Lmax(Gn)
in most cases. We ran brute-force computer search, checking
all possible relabelings of Gn, n ∈ [3, 10]. For this range,

Lmin(Gn) = r(Gn) = Lmax(Gn),

for all n ∈ [3, 10] \ {6}, and

Lmin(G6) = r(G6) = Lmax(G6)− 1,

where of the 6! labeling permutations, 264 give covering radius
3 = r(Gn), and 456 give covering radius 4 = Lmax(Gn).
The gap between r(G6) and Lmax(G6) is a consequence of
Theorem 17. It is now tempting to conjecture that for all n ∈
N, Lmin(Gn) = r(Gn). We leave this conjecture, and the
determination of the covering radius of other groups, as open
questions for future work.
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