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a b s t r a c t

We show that Han’s bijection when restricted to permutations can
be carried out in terms of the cyclic major code and the cyclic
inversion code. In other words, it maps a permutation π with
cyclic major code (s1, s2, . . . , sn) to a permutation σ with cyclic
inversion code (s1, s2, . . . , sn). We also show that the fixed points
of Han’s map can be characterized by the strong fixed points of
Foata’s second fundamental transformation. The notion of strong
fixed points is related to partial Foata maps introduced by Björner
and Wachs.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In his combinatorial proof of the fact that the Z-statistic introduced by Zeilberger and Bressoud [16]
is Mahonian, Han [8] constructed a Foata-style bijection on words which maps the major index
onto the Z-statistic. Since the Z-statistic and the inversion number coincide when restricted to
permutations, Han’s bijection maps the major index to the inversion number for permutations. Let
H denote Han’s bijection when restricted to permutations. Throughout this paper, by Han’s bijection
we alwaysmean themapH . We shall show that themapH can be carried out by the cyclic major code
and the cyclic inversion code.

The cyclic major code of a permutation can be described in terms of cyclic intervals, a notion also
introduced by Han [9] in his study of the joint distribution of the excedance number and Denert’s
statistic. It should be noted that the cyclic inversion code in the context of this paper is the classical
Lehmer code, but the cyclic major code is different from the well-studied major code as introduced
by Rawlings [14]; see also [3,5,10,15].

Using the code representation, we show that the fixed points of Han’s map can be characterized
by the strong fixed points of Foata’s second fundamental transformation. The notion of strong fixed
points is related to partial Foata maps introduced by Björner and Wachs [1].

Let us give an overview of the background and definitions. Let X = {1m1 , 2m2 , . . . , kmk} be a
multiset with mi i’s and m1 + m2 + · · · + mk = n. The set of rearrangements of X is denoted by
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R(X). When m1 = m2 = · · · = mk = 1, R(X) reduces to the set Sn of permutations on [n]. For a
word w = w1w2 · · · wn ∈ R(X), the descent set Des(w), the descent number des(w), the major index
maj(w), the inversion number inv(w) and the Z-statistic Z(w) are defined by

Des(w) = {i|1 ≤ i ≤ n − 1, wi > wi+1},

des(w) = #Des(w),

maj(w) =

−
i∈Des(w)

i,

inv(w) = #{(i, j)|1 ≤ i < j ≤ n, wi > wj},

Z(w) =

−
i<j

maj(wij),

where wij is a word obtained from w by deleting all elements except i and j and #S stands for the
cardinality of a set S. For example, let w = 211324314 ∈ R(13, 22, 32, 42). We have Des(w) =

{1, 4, 6, 7}, des(w) = 4,maj(w) = 18, inv(w) = 9, and Z(w) can be computed as follows

maj(21121) + maj(11331) + maj(11414) + maj(2323) + maj(2244) + maj(3434) = 16.

A statistic is said to beMahonian on R(X) if it has the same distribution as themajor index on R(X).
MacMahon [12,13] introduced the major index and proved that the major index is equidistributed
with the inversion number for R(X). Foata [4] found a combinatorial proof of this classical fact by
constructing a bijection Φ , called the second fundamental transformation, which maps the major
index to the inversion number, namely,

maj(w) = inv(Φ(w)) for any w ∈ R(X).

For completeness, we give a brief description of Foata’s bijection [4]; see also [7,11]. Let w =

w1w2 · · · wn be a word on a multiset X as defined above, and let x be an element in X . If wn ≤ x,
the x-factorization of w is defined as w = v1b1 · · · vpbp, where each bi is less than or equal to x, and
every element in vi is greater than x. Note that vi is allowed to be empty. Similarly, when wn > x, the
x-factorization ofw is defined asw = v1b1 · · · vpbp, where each bi is greater than x, and every element
in vi is less than or equal to x. In either case, set

γx(w) = b1v1 · · · bpvp, w′
= w1w2 · · · wn−1.

Then the second fundamental transformation Φ can be defined recursively by setting Φ(a) = a for
each a ∈ X and setting

Φ(w) = γwn(Φ(w′)) · wn

if w contains more than one element.
As an extension of the theorem of MacMohan, Björner and Wachs [1] considered the problem of

finding subsets U of Sn for which the major index and inversion number are equidistributed. They
introduced the kth partial Foata bijection φk: Sn −→ Sn for 1 ≤ k ≤ n. Let σ = σ1σ2 · · · σn ∈ Sn.
Define φ1(σ ) = σ and for k > 1 define

φk(σ ) = γσk(σ1σ2 · · · σk−1) · σkσk+1 · · · σn.

It is easily seen that

Φ = φn ◦ φn−1 · · · ◦ φ1.

A subset U of Sn is said to be a strong Foata class if

φk(U) = U

for 1 ≤ k ≤ n. A permutation σ is said to be a strong fixed point of Foata’s map if

φk(σ ) = σ

for 1 ≤ k ≤ n. As will be seen, the strong fixed points of Foata’s map are closely related to the fixed
points of Han’s map.
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The paper is organized as follows. In Section 2, we recall the construction of Han’s map, and give
a description of the cyclic major code and the cyclic inversion code. Then we give a reformulation of
Han’s map in terms of these two codes. In Section 3, we give a characterization of the fixed points of
Han’s map H . It turns out that a permutation is fixed by H if and only if it is a strong fixed points of
Foata’s map Φ .

2. Han’s bijection via permutation codes

In this section, we are concernedwith a reformulation of Han’s bijection for permutations in terms
of the cyclic major code and the cyclic inversion code. For completeness, let us give an overview of
the map H .

Let x ∈ [n] and σ = σ1σ2 · · · σn−1 be a permutation on {1, 2, . . . , x−1, x+1, . . . , n}. Define Cx(σ )
as τ1τ2 · · · τn−1, where τi = σi − x(mod n), i.e.,

τi =


σi − x + n, if σi < x;
σi − x, if σi > x,

and define Cx(w) as the standardization of σ , i.e., Cx(w) = ν1ν2 · · · νn−1 ∈ Sn−1 with

νi =


σi, if σi < x;
σi − 1, if σi > x.

Evidently, both Cx and Cx are bijections between permutations on {1, 2, . . . , x − 1, x + 1, . . . , n} and
Sn−1. So (Cx)−1 and (Cx)

−1 are well defined. Han’s bijection H can be defined by H(1) = 1 and

H(σ ) = C−1
σn

(H(Cσn(σ ′))) · σn,

where σ ∈ Sn with n > 1 and σ ′
= σ1σ2 · · · σn−1.

We proceed to give the definition of cyclic intervals. Let X = {1m1 , 2m2 , . . . , kmk} be amultiset. For
x, y ∈ X , the cyclic interval ]]x, y]] is defined by Han [9] as

]]x, y]] =


{z|z ∈ [k], x < z ≤ y}, if x ≤ y;
{z|z ∈ [k], z > x or z ≤ y}, otherwise.

Set ]]x, ∞]] = {z|z ∈ [k], z > x}.
For any word w = w1w2 · · · wn on X and 1 ≤ i ≤ n, define

ti(w) = #{j|1 ≤ j ≤ i − 1, wj ∈]]wi, ∞]]},

and

si(w) = #{j|1 ≤ j ≤ i − 1, wj ∈]]wi, wi+1]]},

where wn+1 = ∞.
For example, let w = 312432143. Then

(t1(w), t2(w), . . . , t9(w)) = (0, 1, 1, 0, 1, 3, 5, 0, 2),

and

(s1(w), s2(w), . . . , s9(w)) = (0, 0, 1, 3, 3, 4, 5, 6, 2).

The notion of cyclic intervals plays an important role in the proof of the fact that the bi-statistic
(exc,Den) is equidistributed with (des,maj) on R(X), where exc is the excedance number and Den is
Denert’s statistic; see [2,6,9].

We now give the definition of the cyclic major code also in terms of cyclic intervals. Meanwhile,
the traditional inversion code can be described in this way. Let

En = {(a1, a2, . . . , an) ∈ Zn
|0 ≤ ai ≤ i − 1, i = 1, 2, . . . , n}.

Keep inmind that the above definitions of ti(σ ) and si(σ ) apply to permutations. It is well known that
the map I: Sn −→ En defined by

σ −→ (t1(σ ), t2(σ ), . . . , tn(σ ))
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is a bijection known as the Lehmer code, which is often referred to as the inversion code. Note that
n−

i=1

ti(σ ) = inv(σ ).

On the other hand, it is easy to see that the mapM: Sn −→ En defined by
σ −→ (s1(σ ), s2(σ ), . . . , sn(σ ))

is also a bijection. We call M(σ ) the cyclic major code of σ . To recover σ from its cyclic major code
(s1, s2, . . . , sn), first let σn = n− sn. Suppose that σk+1, . . . , σn have been determined by sk+1, . . . , sn.
Then delete the elements in the sequence

σk+1, σk+1 − 1, . . . , 1, n, (n − 1), . . . , (σk+1) + 1
that are equal to σj for some j ≥ k+1 and set σk to be the (sk+1)th element in the resulting sequence.
It has been shown by Han [9] that

n−
i=1

si(σ ) = maj(σ ).

For example, I(38516427) = (0, 0, 1, 3, 1, 3, 5, 1) and M(38516427) = (0, 1, 1, 2, 3, 4, 4, 1).
The relation between these two codes is described below.

Proposition 2.1. Let σ ∈ Sn. Suppose that I(σ ) = (t1, t2, . . . , tn) and M(σ ) = (s1, s2, . . . , sn). Then
we have sn = tn, and for 1 ≤ i < n, si = ti − ti+1(mod i), that is,

si =


ti − ti+1, if ti ≥ ti+1;

ti − ti+1 + i, if ti < ti+1.

Proof. It is clear that sn = tn. For 1 ≤ i ≤ n − 1, by the definition of ti(σ ), we see that ti ≥ ti+1 if and
only if σi < σi+1. In this case,

si = #{j|1 ≤ j ≤ i − 1, σi < σj < σi+1}

= #{j|1 ≤ j ≤ i − 1, σi < σj} − #{j|1 ≤ j ≤ i − 1, σj > σi+1}

= ti − ti+1.

If ti < ti+1, then σi > σi+1. Hence

si = #{j|1 ≤ j ≤ i − 1, σi < σj or σj < σi+1}

= #{j|1 ≤ j ≤ i − 1, σi < σj} + #{j|1 ≤ j ≤ i − 1, σj < σi+1}

= ti + #{j|1 ≤ j ≤ i − 1, σj < σi+1}

= ti + i − #{j|1 ≤ j ≤ i, σj > σi+1}

= ti − ti+1 + i.

This completes the proof. �

The following theorem states that Han’s bijection H can be carried out in terms of the cyclic major
code and the inversion code.

Theorem 2.2. For each n ≥ 1, we have

H = I−1
◦ M.

In other words, H is a bijection on Sn with the property that

M(σ ) = I(H(σ )).

Proof. We use induction on n. For n = 1, the theorem is obvious. Assume that n > 1. Let σ =

σ1σ2 · · · σn ∈ Sn, and let M(σ ) = (s1(σ ), s2(σ ), . . . , sn(σ )). By definition, sn(σ ) = #{σn + 1, σn +

2, . . . , n} = n − σn. By the construction of H , we have

H(σ ) = C−1
σn

(H(Cσn(σ ′))) · σn,
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which implies tn(H(σ )) = n − σn. Since the standardization of a permutation preserves the relative
order, we find that

I(Cσn(σ1σ2 · · · σn−1)) = (t1(σ ), t2(σ ), . . . , tn−1(σ )).

By induction, it suffices to show that

M(Cσn(σ1σ2 · · · σn−1)) = (s1(σ ), s2(σ ), . . . , sn−1(σ )). (2.1)

Suppose that Cσn(σ1σ2 · · · σn−1) = τ1τ2 · · · τn−1. For the sake of presentation, let τn = ∞. For
1 ≤ i ≤ n − 1 and 1 ≤ k ≤ i − 1, we claim that σk ∈]]σi, σi+1]] if and only if τk ∈]]τi, τi+1]]. If it
is true, then (2.1) follows immediately. This claim can be verified as follows.

(1) If i ≠ n − 1, there are two cases each of which has three subcases, namely,

(1a) σn < σi < σi+1;

(1b) σi < σn < σi+1;

(1c) σi < σi+1 < σn;

and

(2a) σn > σi > σi+1;

(2b) σi > σn > σi+1;

(2c) σi > σi+1 > σn.

We only give the proof of case (1b), the other cases can be justified by the same argument. Let us
assume that σi < σn < σi+1. By definition, τi = n + σi − σn, τi+1 = σi+1 − σn, so we have τi+1 < τi.
Suppose that σk ∈]]σi, σi+1]]. Then we deduce that σi < σk < σi+1 and

τk =


σk − σn + n, if σk < σn < σi+1;

σk − σn, if σi < σn < σk.

If σk < σn < σi+1, then τk = σk − σn + n > σi − σn + n = τi, it follows that τk ∈]]τi, τi+1]]; if
σi < σn < σk, then τk = σk − σn < σi+1 − σn = τi+1, which implies τk ∈]]τi, τi+1]]. Conversely, if
τk ∈]]τi, τi+1]], then we deduce that τk > τi or τk < τi+1. Assume that σk ∉]]σi, σi+1]], then we have
σk < σi or σk > σi+1. Consequently,

τk =


σk − σn + n, if σk < σi < σn;

σk − σn, if σk > σi+1 > σn.

If σk < σi, then τk = σk − σn + n < σi − σn + n = τi. However, τk = σk + n− σn > σi+1 − σn = τi+1,
which is a contradiction. If σk > σi+1, then τk = σk − σn > σi+1 − σn = τi+1, but now
τk = σk − σn < σi − σn + n = τi, a contradiction too. So we reach the conclusion that σk ∈]]σi, σi+1]].

(2) If i = n − 1, there are two cases, namely σn−1 > σn and σn−1 < σn. For the first case, by
definition we have τn−1 = σn−1 − σn. It follows that

σk ∈]]σn−1, σn]] ⇒ σk > σn−1 or σk < σn

⇒ τk =


σk − σn, if σk > σn−1;

σk − σn + n, if σk < σn.

⇒ τk > τn−1

⇒ τk ∈]]τn−1, ∞]].

Conversely, assume that τk ∈]]τn−1, ∞]], i.e., τk > τn−1 = σn−1 − σn. Suppose that σk ∉]]σn−1, σn]],
namely, σn < σk < σn−1. Then we have

τk = σk − σn < σn−1 − σn = τn−1,

a contradiction. This yields σk ∈]]σn−1, σn]]. Similarly, one can verify the assertion for the case σn−1 <
σn. This completes the proof. �
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Table 2.1
The procedures to compute H(σ ) and M(σ ).

σ = 392648517 I(H(σ )) = (0, 0, 1, 3, 1, 4, 3, 5, 2)
↓ ⇑

C0(σ ) = 392648517 C−1
7 (48617253) · 7 = 496182537

↓ ↑

C1(σ ) = 52486173 C−1
3 (3751624) · 3 = 48617253

↓ ↑

C2(σ ) = 2715364 C−1
4 (364152) · 4 = 3751624

↓ ↑

C3(σ ) = 534162 C−1
2 (25314) · 2 = 364152

↓ ↑

C4(σ ) = 31254 C−1
4 (2431) · 4 = 25314

↓ ↑

C5(σ ) = 4231 C−1
1 (132) · 1 = 2431

↓ ↑

C6(σ ) = 312 C−1
2 (12) · 2 = 132

↓ ↑

C7(σ ) = 12 C−1
2 (1) · 2 = 12

↓ ↑

C8(σ ) = 1 C−1
1 (∅) · 1 = 1

↓ ↑

(1, 2, 2, 1, 4, 2, 4, 3, 7) ∅

⇓

M(σ ) =

(0, 0, 1, 3, 1, 4, 3, 5, 2)
The construction of H(σ )

The following corollary provides an alternative way to compute the cyclic major code.

Corollary 2.3. For any permutation σ = σ1σ2 · · · σn ∈ Sn, define

C (σ ) = Cσn(σ1σ2 · · · σn−1)

and define L(σ ) = σn. Then we have

si(σ ) = i − L(C n−i(σ )),

for 1 ≤ i ≤ n, where C 0(σ ) = σ and C k(σ ) = C (C k−1(σ )).

Proof. First we see that C n−i(σ ) ∈ Si. By the definition of sn(σ ), we find

sn(σ ) = #{σn + 1, . . . , n} = n − σn = n − L(σ ) = n − L(C 0(σ )).

By the proof of Theorem 2.2, we deduce that

M(C n−i(σ )) = (s1(σ ), . . . , si(σ )),

which implies that si(σ ) = i − L(C n−i(σ )) for i = 1, 2, . . . , n. �

The sequence

L(C n−1(σ )), L(C n−2(σ )), . . . , L(C 0(σ ))

gives an alternative way to compute the cyclic major code. It also facilitates the computation of H(σ ).
For example, let σ = 392648517. We have

M(σ ) = (0, 0, 1, 3, 1, 4, 3, 5, 2), H(σ ) = 496182537,

(see Table 2.1).
The following corollary shows that Han’s bijection H commutes with the complementation

operator c , a property also satisfied by Foata’s partial maps and thus by Foata’s map Φ . For a
permutation σ ∈ Sn, we define cσ as τ1τ2 · · · τn, where τi = n+1−σi. For a code a = (a1, a2, . . . , an)
∈ En, we define ca = (b1, b2, . . . , bn), where bi = i − 1 − ai.
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Corollary 2.4. For σ ∈ Sn, we have

H(cσ) = cH(σ ).

The above corollary can be easily verified by induction on n. It also follows from Theorem 2.2 and
the relations

M(cσ) = c(M(σ )),

I(cσ) = c(I(σ )).

3. A characterization of fixed points

In this section, we give a characterization of the fixed points of Han’s map H . As will be seen,
the fixed points of Han’s map are related to the strong fixed points of Foata’s second fundamental
transformation which are easier to characterize.

The notion of strong fixed points of Foata’s map is related to the strong Foata classes introduced
by Björner and Wachs [1]. A labeling w of a poset P is called recursive if every principal order ideal
of P is labeled by a set of consecutive numbers. In particular, if P is a chain with n elements and
w : P −→ [n] is a labeling of P . Reading the labels from bottom to top, the labels form a permutation
σ = σ1σ2 · · · σn ∈ Sn. It is easily seen that w is a recursive labeling of P if and only if for each
i ∈ [n], {σ1, σ2, . . . , σi} forms a set of consecutive numbers. By Theorem 4.2 in [1], we deduce that a
permutation σ ∈ Sn is a strong fixed point of Foata’smap if and only if for each i ∈ [n], {σ1, σ2, . . . , σi}

forms a set of consecutive numbers. For example, σ = 45367281 ∈ S8 is a strong fixed point of Foata’s
map, while π = 34125678 is not, since {π1, π2, π3} = {1, 3, 4} is not a set of consecutive numbers.

Theorem 3.1. For each σ ∈ Sn, σ is a fixed point of H, i.e. H(σ ) = σ , if and only if σ is a strong fixed
point of Foata’s map.
Proof. Suppose that H(σ ) = σ . By Theorem 2.2, we see that I(σ ) = M(σ ). In particular, we have
sn−1(σ ) = tn−1(σ ). If σn−1 > σn, by Corollary 2.3 we have

sn−1(σ ) = n − 1 − L(C (σ )) = n − 1 − (σn−1 − σn) = n − 1 + σn − σn−1,

and by definition tn−1(σ ) = n−σn−1. It follows thatσn = 1. Ifσn−1 < σn, then sn−1(σ ) = σn−σn−1−1
and tn−1(σ ) = n − σn−1 − 1. Hence σn = n. Using relation (2.1), we get

M(C (σ )) = (s1(σ ), s2(σ ), . . . , sn−1(σ )). (3.2)

Moreover, when σn = 1 or σn = n, we have

C (σ ) = Cσn(σ1 · · · σn−1). (3.3)

Combining (3.2), (3.3) and the fact that

I(Cσn(σ1 · · · σn−1)) = (t1(σ ), t2(σ ), . . . , tn−1(σ )),

we obtain

M(C (σ )) = I(C (σ )).

By induction, we deduce that C (σ ) is a strong fixed point of Foata’s map. Consequently, by relation
(3.3), we have

{σ1, σ2, . . . , σi} =


{(C (σ ))1 + 1, (C (σ ))2 + 1, . . . , (C (σ ))i + 1}, if σn = 1;
{(C (σ ))1, (C (σ ))2, . . . , (C (σ ))i}, if σn = n,

which is a set of consecutive integers. Thus σ is a strong fixed point of Foata’s map.
Conversely, suppose that σ ∈ Sn is a strong fixed point of Foata’s map. So {σ1, . . . , σn−1} is a set of

consecutive integers with n − 1 numbers in [n]. This implies that σn = 1 or σn = n. Hence

Cσn(σ ′) = Cσn(σ
′) =


(σ1 − 1) · · · (σn−1 − 1), if σn = 1;
σ1 · · · σn−1, if σn = n,
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where σ ′
= σ1σ2 · · · σn−1. It follows that Cσn(σ ′) is a strong fixed point of Foata’s map. By induction,

we deduce that

H(Cσn(σ ′)) = Cσn(σ ′).

Hence

H(σ ) = C−1
σn

(H(Cσn(σ ′))) · σn

= C−1
σn

(Cσn(σ ′)) · σn

= C−1
σn

(Cσn(σ
′)) · σn = σ ′

· σn = σ ,

as desired. This completes the proof. �

The following corollary gives another characterization of the fixed points ofH in terms of the cyclic
major code and the inversion code.

Corollary 3.2. Let σ ∈ Sn. The following statements are equivalent:

(1) M(σ ) = I(σ ), that is, σ is a fixed point of H.
(2) I(σ ) = (t1(σ ), t2(σ ), . . . , tn(σ )) such that ti(σ ) = 0 or i − 1 for each i ∈ [n].

Proof. It is easy to check that σ satisfies Condition (2) if σ is a strong fixed point of Foata’s map.
Conversely, suppose that I(σ ) = (t1(σ ), t2(σ ), . . . , tn(σ )) with ti(σ ) = 0 or i − 1 for each i ∈ [n].
We proceed by induction on n to show that σ is a strong fixed point of Foata’s map. The statement
is obvious for n = 1. Now we assume that the assertion holds for any permutation of length n − 1
satisfying Condition (2). It is clear that

I(Cσn(σ
′)) = (t1(σ ), . . . , tn−1(σ )).

The inductive hypothesis implies that Cσn(σ
′) is a strong fixed point of length n − 1. Since tn = 0 or

tn = n − 1, we have σn = 1 or σn = n, and hence

Cσn(σ
′) =


(σ1 − 1) · · · (σn−1 − 1), if σn = 1;
σ1 · · · σn−1, if σn = n.

It follows that σ is also a strong fixed point of Foata’s map. Now the corollary is a consequence of
Theorem 3.1. �

Corollary 3.3. For any n ≥ 1, Han’s map H has 2n−1 fixed points.

By Theorem 3.1, we see that every fixed point of H is a fixed point of Φ , but the converse is not
true. For example, let σ = 14235 ∈ S5. Then σ is a fixed point of Φ , but it is not a fixed point of H .
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