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Abstract: Motivated by recent interest in permutation arrays, we introduce and investigate

the more general concept of frequency permutation arrays (FPAs). An FPA of length n ¼ m�
and distance d is a set T of multipermutations on a multiset of m symbols, each repeated with

frequency �, such that the Hamming distance between any distinct x; y 2 T is at least d.

Such arrays have potential applications in powerline communication. In this article, we

establish basic properties of FPAs, and provide direct constructions for FPAs using a range of

combinatorial objects, including polynomials over finite fields, combinatorial designs, and

codes. We also provide recursive constructions, and give bounds for the maximum size of such

arrays. # 2006 Wiley Periodicals, Inc. J Combin Designs 14: 463–478, 2006.
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1. INTRODUCTION

As indicated in [4] and [7], permutation arrays arise in the study of permutation
codes, which in turn have a natural applicability to powerline communications. An
electric power line may be used to transmit information in addition to electric power,
by modulating its frequency to form a set of frequencies, and transmitting the
symbols of codewords in time as the corresponding frequencies. Steps must be taken
to ensure that this information transmission does not interfere with the line’s primary
function of power transmission, and for this reason block coding is used (codewords
of fixed length). A code is a constant composition code if each codeword, of length n,
has precisely ri occurrences of the i-th symbol, where the ri are positive integers

Contract grant sponsor: Royal Society Dorothy Hodgkin Fellowship.

# 2006 Wiley Periodicals, Inc.

463



satisfying
Pm

i¼1 ri ¼ n. (Here, the i-th symbol corresponds to the i-th frequency.)
Various tradeoffs must be made between the competing goals of addressing noise
problems and the requirement of a constant power envelope.

One approach is to choose r1 ¼ r2 ¼ � � � ¼ rn ¼ 1, in which case each codeword is
a permutation on n symbols. An ðn; dÞ permutation array, usually denoted by
PAðn; dÞ, is a set of permutations of n symbols with the property that the Hamming
distance between any two distinct permutations in the set is at least d. Permutation
arrays are important not only in powerline communications as described above; they
have also been applied in the design of block ciphers; see [9].

In this article, we introduce a generalization of permutation arrays, which we call
frequency permutation arrays. These arise from the constant composition codes when
we take r1 ¼ r2 ¼ � � � ¼ rm ¼ �, for some � such that n ¼ m�. When � ¼ 1, this
reduces to the permutation case studied in [4] and [7]. We present various results and
constructions for frequency permutation arrays, many of which have well-known
permutation array results as special cases. There is a strong connection with recent
work on constant composition codes such as [5] and [11].

2. FREQUENCY PERMUTATION ARRAYS

Consider a multiset of size n ¼ m� (m; � 2 N) consisting of m elements, each
occurring � times. We define a �-permutation to be a multipermutation of such a
multiset. When � ¼ 1, the set of all �-permutations is the symmetric group Sn of
permutations on n symbols. In general, we shall take the multiset to be f0; . . . ;
0; 1; . . . ; 1; . . . ;m� 1;. . . ;m� 1g or f1; . . . ; 1; 2; . . . ; 2; . . . ;m; . . . ;mg (each ele-
ment occurring � times).

Definition 2.1. Two distinct �-permutations � ¼ s1 . . . sn, � ¼ t1 . . . tn have distance
dð�; �Þ ¼ d if they disagree in d entries, that is if jfi : si 6¼ tigj ¼ d.

This is the Hamming distance familiar from coding theory. In the case when
� ¼ 1, two permutations �; � 2 Sn have distance d if ���1 has exactly n� d fixed
points.

Definition 2.2. A permutation array of length n and minimum distance d, denoted
by PAðn; dÞ, is a subset T of Sn such that the distance between any two members of T
is at least d. A PAðn; dÞ may be viewed as an s� n array whose rows are the s
permutations of T in image form; taken pairwise, any two distinct rows differ in at
least d positions. The maximum possible size of a PAðn; dÞ is denoted by Mðn; dÞ.

We define a frequency permutation array as follows.

Definition 2.3. Let n ¼ m� and let S be a multiset comprising � occurrences each
of m symbols. A frequency permutation array of length n, frequency �, and minimum
distance d, denoted by FPA�ðn; dÞ, is a set T of �-permutations of the symbols of S,
with the property that the distance between any two members of T is at least d.
Equivalently, an FPA�ðn; dÞ is an s� n array whose s rows consist of m distinct
symbols, each repeated exactly � times, such that taken pairwise any two rows differ
in at least d positions.
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Thus an FPA1ðn; dÞ is simply a PAðn; dÞ. We let M�ðn; dÞ denote the maximum
possible number of rows that can exist in any FPA�ðn; dÞ; then M1ðn; dÞ ¼ Mðn; dÞ.
Example 2.4. An FPA3ð6; 4Þ of size 4 is given by

L1 ¼

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

We first establish basic properties of frequency permutation arrays. Various basic
results on permutation arrays (for example from [4] and [7]) appear as special cases
of these results.

Theorem 2.5. Let n ¼ m�. Then

(i) M�ðn; 2Þ ¼ n!
ð�!Þm;

(ii) M�ðn; nÞ ¼ m;
(iii) M�ðn; dÞ � M�ðn� �; dÞ;M�ðn; d þ 1Þ;
(iv) If n1 ¼ m�1 and n2 ¼ m�2, then

M�1þ�2
ðn1 þ n2; d1 þ d2Þ � minfM�1

ðn1; d1Þ;M�2
ðn2; d2Þg:

In particular, M2�ð2n; 2dÞ � M�ðn; dÞ.
(v) M�ðn; dÞ � n!

�ðd�1Þ!; M�ðn; dÞ � n!
�ðd�1Þ!

Moreover, for any divisor l of �, M�ðn; dÞ � l
�Mlðn; dÞ.

Proof.

(i) Since two distinct multipermutations must differ in at least two entries,
M�ðn; 2Þ is the number of distinct � permutations. There are ðn

y
Þ � ðn��

� Þ � � �
ðn�ðm�1Þ�

�
Þ choices for each �-permutation, that is ðm�� Þ � ð

ðm�1Þ�
�

Þ . . .
ðx
y
Þð��Þ ¼

ðm�Þ!
ð�!Þm such multipermutations in total.

(ii) Since there are at most m choices for the symbol in the first position of a �-
permutation in an FPA�ðn; nÞ, we have M�ðn; nÞ � m. Take m blocks
comprising � copies of each symbol: f0 . . . 0g, f1; . . . ; 1g, . . . ; fm� 1; . . . ;
m� 1g; applying an m-cycle to these blocks yields m � permutations, all of
pairwise distance n.

(iii) Adding � copies of some new symbol to each row of an FPA�ðn� �; dÞ
yields an FPA�ðn; dÞ; the second observation is immediate from the definition.

(iv) Juxtaposing an FPA�1
ðn1; d1Þ and an FPA�2

ðn2; d2Þ yields an FPA�ðn; dÞ with
� ¼ �1 þ �2, n ¼ n1 þ n2, and d ¼ d1 þ d2.

(v) This is proved in Theorem 4.1; from [4], the size of a PAðn; dÞ is bounded
above by n!=ðd � 1Þ!. &

For any �-permutation �, the sphere with centre � and radius r is defined to be the
set of all � permutations with distance at most r from �. We denote its volume by
V�ðn; rÞ.
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Lemma 2.6. Let n ¼ m�. Then

V�ðn; rÞ

¼ 1 þ
Xr

k¼1

X
PðkÞ

m!

r1! . . . rs!ðm� tÞ!
�

k1

� �
�

k2

� �
. . .

�

kt

� �
ð�1Þk

Z 1

0

e�x
Yt
j¼1

LkjðxÞ
( )

dx;

where LkðxÞ is the kth Laguerre polynomial. Here the inner sum runs over
PðkÞ ¼ fðk1; . . . ; kt; r1; . . . ; rsÞg, the set of all partitions k1 þ � � � þ kt of k 2 N into
positive integers 1 � ki � �, where the set fk1; . . . ; ktg consists of rj occurrences of
value kij (j ¼ 1; . . . ; s), with 1 � kij � �, 1 � rj � t, and r1 þ � � � þ rs ¼ t.

Proof. Let � be any �-permutation of length n. The set of � permutations at
distance k from � is obtained by taking each k-entry subset of �, and deranging its
entries. By a result obtained in [12], and reproved in [3], the number of derangements
of a sequence composed of n1 objects of type 1, n2 objects of type 2,. . ., nt objects of
type t (i.e., permutations in which no object occupies a site originally occupied by an
object of the same type) is given by

Dðn1; . . . ; ntÞ ¼ ð�1ÞN
Z 1

0

e�x
Yt
j¼1

LnjðxÞ
( )

dx;

where n1 þ � � � þ nt ¼ N. The result follows upon applying this theorem to each k-
element subset of �. For any �-permutation �, and any partition k1 þ � � � þ kt of
k 2 N into positive integers 1 � ki � � (1 � t � m), we count the number of k
subsets comprising k1 occurrences of symbol s1, k2 occurrences of symbol s2, . . ., kt
occurrences of symbol st. Suppose the set fk1; . . . ; ktg consists of r1 occurrences of
value ki1 , . . ., rs occurrences of value kis , where r1 þ � � � þ rs ¼ t. There are
m
r1

� �
m�r1

r2

� �
� � � m�

Ps�1

i¼1
ri

rs

� �
¼ m!

r1!...rs!ðm�tÞ! choices for symbols s1; . . . ; st. For each

choice, there are �
k1

� �
�
k2

� �
. . . �

kt

� �
subsets of � in which elements occur with

appropriate frequency. &

A covering argument yields the following lower bound for M�ðn; dÞ, an analog of
the Gilbert–Varshamov bound in coding theory, while a sphere-packing argument
yields an upper bound, analogous to the Hamming bound for coding.

Theorem 2.7.

n!

ð�!ÞmV�ðn; d � 1Þ � M�ðn; dÞ �
n!

ð�!ÞmV�ðn; bd�1
2
cÞ
:

A useful upper bound for the maximum size of general constant-composition
codes (CCCs) has recently been presented in [16] and has been further developed in
[11]. For a CCC in which all symbols of a codeword occur with equal frequency �
(corresponding to an FPA), this upper bound reduces to the Plotkin bound.

Proposition 2.8. (Plotkin bound). For � > n� d,

M�ðn; dÞ �
d

d � nþ �
:
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We observe that, since the direct constructions presented in this article have
frequency less than or equal to n� d, the bound is of limited applicability in our
setting. However, the reader is referred to [11] for a construction of CCC’s which
include some FPA�ðn; dÞ’s with � > n� d.

3. DIRECT CONSTRUCTIONS

It is known that permutation arrays may be constructed using latin squares (see [4]
and [13]). Frequency permutation arrays are related to frequency squares as
permutation arrays are to latin squares, and this connection may be exploited to
obtain a construction for FPAs.

Recall that a latin square of order n is an n� n array in which n distinct symbols
are arranged so that each symbol occurs once in each row and column. Two latin
squares L1 and L2 of the same order n are said to be orthogonal if, when
superimposed, each of the possible n2 ordered pairs occurs exactly once. A set
fL1; L2; . . . ;Ltg of t � 2 latin squares is said to be mutually orthogonal (a set of
MOLS) if the squares in the set are pairwise orthogonal. Latin squares have been
generalized to allow repetitions of elements in each row and column.

Definition 3.1. Let n ¼ m�. An Fðn;�Þ frequency square is an n� n array in which
each of m distinct symbols occur exactly � times in each row and column. Moreover
two such squares are orthogonal if when superimposed, each of the m2 possible
ordered pairs occurs �2 times.

The following result in fact contains Proposition 1.2 of [4] as a special case.

Theorem 3.2. If there are E mutually orthogonal frequency squares of type Fðn;�Þ
where n ¼ m�, then M�ðn�; n�� �2Þ � mE. In particular, if q is a prime power and
i � 1 is a positive integer, then

Mqi�1ðq2i�1; q2i�1 � q2i�2Þ � qðqi � 1Þ2=ðq� 1Þ:

Further if i ¼ 1, M1ðq; q� 1Þ ¼ qðq� 1Þ.

Proof. Label the rows and columns of each n� n frequency square by the elements
0; 1; ; n� 1. Then from each of the frequency squares, form a set of n�-tuples as
follows. For each symbol i ¼ 0; 1; ;m� 1, form an n�-tuple by listing the cell
locations ðk; lÞ where i occurs in the given square, proceeding row-by-row as k runs
from 0 to n� 1. Viewed as m blocks, each of size n�, of an affine resolvable design,
these form a parallel class of size m. In total from the E squares, Em such n� tuples
are obtained, corresponding to E parallel classes. The entries of each n�-tuple are
ordered pairs; form new n� tuples by disregarding the first coordinate of each ordered
pair. The resulting n� tuples form the rows of an FPA�ðn�; n�� �2Þ. For, since each
symbol occurs � times in each column of a frequency square, each row of the array
comprises � copies of each of the n column headings. Any two rows of the FPA
arising from the same parallel class will have distance n�. Any two rows derived
from different classes will, due to the orthogonality of the corresponding frequency
squares, agree in at most �2 positions, since agreement in p positions implies that
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some ordered pair occurs p times when the MOFS are juxtaposed. Hence the array
has minimum distance n�� �2. &

For n ¼ m�, it is known that the maximum number of mutually orthogonal
frequency squares (MOFS) of the form Fðn;�Þ is bounded above by
ðn� 1Þ2=ðm� 1Þ. Further, if q is any prime power and i � 1 is a positive integer,
then using linear polynomials in 2i variables over the finite field Fq, a complete set of
Fðqi; qi�1Þ MOFS can be constructed. Specifically, take the polynomials
a1x1 þ � � � þ a2ix2i where neither ða1; . . . ; aiÞ nor ðaiþ1; . . . ; a2iÞ is the zero vector
ð0; . . . ; 0Þ and no two of the vectors are nonzero Fq multiples of each other, that is
ða1

0; . . . ; a2i
0Þ 6¼ eða1; . . . ; a2iÞ for any nonzero e 2 Fq. Further details may be found

in Chapter 4 of [14].
We remark in passing that, while the array obtained from Theorem 3.2 is optimal

in size when i ¼ 1, it is not necessarily optimal for i > 1. This is in some sense
expected because, in using these complete sets of mutually orthogonal frequency
squares to construct error-correcting codes, the resulting codes are maximal distance
separable only in the case when i ¼ 1; see [10]. For example in the case q ¼ i ¼ 2,
Theorem 4.6 yields an FPA2ð8; 4Þ with more than 18 rows (see Example 4.7).

Another way to build frequency permutation arrays utilises finite fields, and may
be considered as extending the approach of Theorem 2.4 of [4].

Theorem 3.3. Let LðxÞ ¼
Pi�1

s¼0 �sx
qs 2 Fqi ½x�. Denote by ql the degree of LðxÞ, and

by r the rank of the matrix

AðLÞ ¼

�0 �q
i�1 �q2

i�2 . . . �qi�1

1

�1 �q
0 �q2

i�1 . . . �qi�1

2

�2 �q
1 �q2

0 . . . �qi�1

3

..

. ..
. ..

. ..
. ..

.

�i�1 �q
i�2 �q2

i�3 . . . �qi�1

0

0
BBBBBB@

1
CCCCCCA
;

so that 1 � r � i. Let 0 < d < qi�l. Then

Mqi�rðqi; qi � dqlÞ �
Xd
j¼1

NjðqiÞ
qi�r

;

where NjðqiÞ denotes the number of permutation polynomials over Fqi of degree j.

Proof. It is a well-known result (see p 361 of [15]) that the linearized polynomial
LðxÞ is a permutation polynomial of Fqi if and only if the determinant of the matrix
AðLÞ is non-zero. More generally, the value set of L has cardinality qr, where r is the
rank of AðLÞ. So the linear transformation on Fqi defined by the polynomial LðxÞ has
image of cardinality qr and kernel of cardinality qi�r. Note that qi�r � ql.

Form an array as follows: for each permutation polynomial f ðxÞ over Fqi, form a
row by taking the images of the function Lðf ðxÞÞ as x runs through the elements of the
field Fqi . Each row is a �-permutation of length qi on m ¼ qr symbols, each occurring
with frequency � ¼ qi�r. If f ðxÞ and gðxÞ are permutation polynomials over Fqi of
degrees at most d, then the polynomial Lðf ðxÞÞ � LðgðxÞÞ has degree at most dql.
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Hence (unless it is the zero polynomial) it has at most dql roots in Fqi , and so
appropriately chosen f ðxÞ and gðxÞ yield distinct rows of distance at least qi � dql.
We must now ensure that Lðf � gÞ is not the zero polynomial. This happens if and
only if the value set of the polynomial f � g lies wholly within the kernel of L, which
has cardinality qi�r. Suppose first that f � g is non-constant. Now, f � g has degree at
most d<qi�l and, since a polynomial of degree d cannot have more than d roots in a
field, its value set has cardinality at least bqi�1

d
c þ 1 > ql � qi�r. So the value set of

f � g cannot be contained entirely within the set of qi�r values mapped by L to zero,
and hence Lðf � gÞ is not the zero polynomial. For the constant case note that, for any
permutation polynomial f ðxÞ, all f ðxÞ þ c with c 2 Fqi are also permutation
polynomials. For f ðxÞ þ c to yield distinct rows, c must run through precisely one
representative for each coset of the kernel of L; there are qr of these. Taking qr=qi of
the total number of permutation polynomials yields the desired number of rows. &

Observe that, in Theorem 3.3, if we take L to be the permutation polynomial xq
i�1

,
we have maximal rank r ¼ i and degree ql ¼ qi�1, so we obtain a PAðqi; qi � dqi�1Þ
of size

Pd
j¼1 NjðqiÞ.

To build an FPA with desired parameters, appropriate linearized polynomials may
be chosen, as illustrated in the following corollaries.

Corollary 3.4. Let q be a prime power and let i and n be positive integers such that
nð< iÞ divides i. Let 0<d<qi�n. Then

Mqnðqi; qi � dqnÞ �
Xd
j¼1

NjðqiÞ
qn

;

where NjðqiÞ denotes the number of permutation polynomials over Fqi of degree j.

Proof. Let LðxÞ ¼ xq
n � x in Theorem 3.3; its roots are precisely the elements of

Fqn . The polynomial L defines a linear transformation on Fqi whose kernel is the
subfield Fqn and whose value set has cardinality qi�n. For permutation polynomials
f ; g of degree at most d< i�n, non-constant f � g has value set of cardinality at least
bqi�1

d
c þ 1 > qn and so identical rows can arise only in the case when gðxÞ ¼ f ðxÞ þ c

with c 2 Fqn . &

Recall that the trace function TR : Fqi ! Fq is defined for � 2 Fqi by
TRð�Þ ¼�þ �q þ �q2 þþ�qi�1

. More generally, letting i ¼ gh and setting E ¼ Fqi

and F ¼ Fqh , the trace function TRE=F : E ! F is defined for � 2 E by

TRE=Fð�Þ ¼ �þ �qh þ �q2h þ :::þ �qðg�1Þh
:

Corollary 3.5. Let q be a prime power and let i and h be positive integers such that h
divides i. Let 0<d<qh. Then

Mqi�hðqi; qi � dqi�hÞ �
Xd
j¼1

NjðqiÞ
qi�h

:

Proof. Let i ¼ gh, let E ¼ Fqi and F ¼ Fqh . Take L to be the generalized trace
function TRE=F defined above; its kernel has cardinality qi�h and its value set has
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cardinality qh. For any two permutation polynomials f ; g over Fqi of degree at most
d<h, the value set of (non-constant) f � g has cardinality at least bqi�1

d
c þ 1 > qi�h

and so TRðf � gÞ is not the zero polynomial. As in the proof of Theorem 3.3 dividing
by qi�h deals with the case when f � g is constant. &

In the next section, we consider how a PA may be converted into an FPA by
appropriate substitutions on its symbols. If q is a prime power, a natural choice
might be to apply the trace function to the rows of a PAðqi; dÞ. However if,
for example, there are two rows in the PAðqi; dÞ which differ by a constant a 2 Fqi

with TRðaÞ ¼ 0, then the resulting two rows in the FPA will be identical and so
the rows will have distance 0. Thus applying the trace function to the elements
of an arbitrary PA does not appear to be a good method to apply in a general
setting.

We refer to [8] for a method for computing the value of NjðqiÞ for any prime power
q and positive integers i and j. Note, however, that the result of [8] requires
considerable computation to compute, and that the corresponding permutation
polynomials which arise from solutions to the system of equations in [8] must be
constructed before the FPA can be built. In the case when d ¼ 1 however, it is clear
that N1ðqiÞ ¼ ðqi � 1Þqi, the number of linear polynomials over Fqi. So,
Mqi�hðqi; qi � qi�hÞ � qhðqi � 1Þ. For example, M3ð9; 6Þ � 24, M4ð8; 4Þ � 14, and
M2ð4; 2Þ � 6. All of these are optimal: the first by known results for ternary codes
(17]), the second by Theorem 5.2 since a Hadamard matrix of order 8 exists, and the
third (trivially) by Theorem 2.5. An alternative construction for an FPA4ð8; 4Þ of size
14 is given in the last section.

Affine resolvable designs can be used to construct FPAs. A balanced incomplete
block design consists of a finite set V of v points, and a collection B of equally sized
subsets of V called blocks, each of size k, such that every pair of distinct points of V
occurs in exactly � blocks. A resolvable design has the additional property that the
collection B of blocks can be partitioned into parallel classes (or resolution classes),
such that every point of V occurs exactly once in each parallel class. An affine
resolvable design (ARD) is a resolvable design with the further property that any two
non-parallel blocks intersect in precisely � points, where � ¼ k2

v
2 N. When � ¼ 1,

the ARD is an affine plane of order k2.

Proposition 3.6.

(i) Given an affine resolvable ðv; k; �Þ design with r parallel classes, an
FPAkðv; v� kÞ may be constructed of size r.

(ii) If there exist m MOLS of order n, then an FPAnðn2; n2 � nÞ may be
constructed of size mþ 2. In particular, if q is a prime power, an
FPAqðq2; q2 � qÞ may be constructed of size qþ 1.

More details of this approach, including a proof of Prop. 3.6(i), may be found in
[5]. In the MOLS case, a standard construction may be used to build mþ 2 parallel
classes of an affine plane from the m MOLS, and these classes then used in part (i) to
form an FPAnðn2; n2 � nÞ. Equivalently, this FPA may be constructed directly by
writing the rows of each of the mþ 2 latin and index squares side-by-side to form
new rows of length n2.
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Example 3.7. Using the following 2 MOLS of order 3

L1 ¼
0 1 2

1 2 0

2 0 1

; L2 ¼
0 1 2

2 0 1

1 2 0

yields the following FPA3ð9; 6Þ:
0 0 0 1 1 1 2 2 2

0 1 2 0 1 2 0 1 2

0 1 2 1 2 0 2 0 1

0 1 2 2 0 1 1 2 0:

Frequency permutation arrays can also be constructed from MDS codes. Recall
that a q-ary ðn; kÞ code is said to be maximal distance separable (MDS) if it satisfies
the Singleton bound with equality, that is if d ¼ n� k þ 1.

Theorem 3.8. Given an ½n; k; d� MDS linear code C over Fq, the array formed by
taking the codewords of C as columns is an FPAqk�1ðqk; qk � qk�1Þ.

Proof. Let C be an ½n; k; d� MDS linear code over Fq. Let G be a k � n generator
matrix for the code C, and write G ¼ ½C1C2 . . .Cn�, where the Ci are the columns of
G. Form an n� qk array A by taking the codewords of C as the columns of A. These
are given by GTxT ¼ CT as x runs through Fk

q; the rows C1
T ; . . . ;Cn

T of GT can be
viewed as generating the rows of A.

Each element of Fq occurs in each row of A with frequency qk�1, that is occurs
qk�1 times as the ith coordinate of the codewords of C. Let g1; :::; gk be the elements
in the i-th column Ci of G, and consider the equation a1g1 þ :::þ akgk ¼ b, where
b; a1; . . . ; ak 2 Fq. Since Ci has at least one non-zero value, say in the j-th row, we
can isolate the term ajgj ¼ b�

P
l 6¼j algl. Then we can arbitrarily assign q values to

each of k � 1 remaining a’s, and uniquely solve the equation for aj since gj 6¼ 0. Thus
there are qk�1 solutions for each value of b in the i-th coordinate.

Consider the distance between the two rows of the FPA corresponding to Ci
T and

Cj
T . We have the system of equations Ci

T � ðx1; . . . ; xkÞ ¼ � and Cj
T � ðx1; . . . ;xkÞ ¼ �

(�; � 2 Fq). For an MDS code, any k columns (in particular, any two columns) of the
generator matrix are linearly independent. Since Ci

T and Cj
T are linearly

independent, this system of two linear equations in k variables will have rank 2,
and thus qk�2 solutions. This means that every ordered pair ð�; �Þ occurs qk�2 times.
Thus, in particular, the q ordered pairs ð�; �Þ; � 2 Fq are obtained qk�2 times, so A is
an FPA with distance qk � qqk�2 ¼ qk � qk�1. &

Note that Example 3.7 may alternatively be obtained by the MDS construction
using the generator matrix

G ¼ 1 0 1 2

0 1 1 1

� �
:

Definition 3.9. An orthogonal array of size v, with r constraints, s levels, and
strength t, denoted OA½v; r; s; t�, is an r � v array with entries from a set of s � 2
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symbols, having the property that in every t � v submatrix, every t � 1 column vector
appears the same number v=st of times.

The frequency permutation arrays constructed in Proposition 3.6 and Theorem 3.8
are in fact orthogonal arrays. This gives rise to the following observation.

Proposition 3.10. Every orthogonal array OA½v; r; s; 2� of strength 2 is an FPAv
s
ðv;

v� v
s
Þ of size r.

Proof. In any row, each of the s symbols occurs with frequency v=s. For any pair of
rows, each of the s2 pairs ði; jÞ of elements occurs v=s2 times. In particular, each of
the s pairs ði; iÞ occurs v=s2 times, and hence two rows agree pairwise in precisely v=s
positions. &

Note that the FPAs obtained in this way are equidistant, in the sense that any two
rows have distance precisely v� v

s
. For construction of orthogonal arrays, see for

example [6]; their connection with affine resolvable designs is explored in [1].

4. CONSTRUCTING NEW FPAS FROM OLD

In this section, we explore how one or more FPAs may be used as ingredients in the
construction of new FPAs.

Theorem 4.1.

(i) Given an FPA�ðn; dÞ of size N, a PAðn; dÞ may be constructed of size �N. In
particular, M�ðn; dÞ � Mðn;dÞ

� .
(ii) Let l divide �. Given an FPA�ðn; dÞ of size N, an FPAlðn; dÞ may be

constructed, of size �
l
N. In particular, M�ðn; dÞ � l

�Mlðn; dÞ.

Proof.

(i) Denote the FPA�ðn; dÞ by A; let the symbol set of A be f0; 1; . . . ;m� 1g.
Using appropriate substitutions, A can be converted to a PAðn; dÞ, A0, of size
N. For a row R of A, moving from left to right, replace the � occurrences of a
g i v e n s y m b o l s b y t h e s e q u e n c e s�þ 1; s�þ 2; . . . ; ðsþ 1Þ�
(0 � s � m� 1). The new row R0 is a permutation of 1; 2; . . . ; n. Since
agreement between any two rows of A0 can occur only at positions of
agreement between the corresponding rows of A, the PA A0 has minimal
distance d. Now perform a cyclic shift on the entries of each substitution set
fs�þ 1; s�þ 2; . . . ; ðsþ 1Þ�g (0 � s � m� 1). This process can be
repeated � times, to obtain � different substitutions for R; all have pairwise
distance n. Apply this process to each row of A; the distance between new
rows corresponding to different rows of A is at least d. Hence we have a
PAðn; dÞ of size �N.

(ii) The proof is analogous to that of part (i). In this case, the substitution set for
a given symbol s of the FPA�ðn; dÞ comprises l copies each of �

l
symbols.
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The generalization of the � cyclic shifts applied to the substitution sets, is the
set of �=l permutations comprising an FPAlð�; �Þ, described in part (ii) of
Theorem 2.5. &

Example 4.2. An FPA6ð12; 6Þ is constructed in Example 5.3. By Theorem 4.1,
this FPA can be converted first to an FPA3ð12; 6Þ and then to a PAð12; 6Þ. We
illustrate the use of the substitutions (without the cyclic shifts) on four sample
rows.

The first four rows of the FPA6ð12; 6Þ are

1 0 1 0 1 1 1 0 0 0 1 0

1 0 0 1 0 1 1 1 0 0 0 1

1 1 0 0 1 0 1 1 1 0 0 0

1 0 1 0 0 1 0 1 1 1 0 0

After substitutions, four rows of the FPA3ð12; 6Þ are

3 1 3 1 3 4 4 1 2 2 4 2

3 1 1 3 1 3 4 4 2 2 2 4

3 3 1 1 3 1 4 4 4 2 2 2

3 1 3 1 1 3 2 4 4 4 2 2

After substitutions, four rows of the FPA6ð12; 6Þ are

7 1 8 2 9 10 11 3 4 5 12 6

7 1 2 8 3 9 10 11 4 5 6 12

7 8 1 2 9 3 10 11 12 4 5 6

7 1 8 2 3 9 4 10 11 12 5 6

Converting a PA to an FPA by substitution is less straightforward in general. The
next result applies, for example, to an FPA arising from an orthogonal array.

Proposition 4.3. Let n ¼ m�. Let A be an FPA�ðn; dÞ such that, between any two
rows, each of the m2 pairs ði; jÞ occurs precisely t times. Then A may be converted, by
reduction mod r (where rjm) to an FPAn

r
ðn; n� tm2

r
Þ.

Proof. Reduce the entries of A mod r. Each row of the new array is a �-permutation
on r symbols with frequency n=r. For any two rows in the new FPA, the pair of entries
ðimod r; jmod rÞ agree, for each of the m=r values of j in the congruence class of i.
This yields tm=r pairs for a given value of i, yielding tm2=r such pairs in total, that is
a minimal distance of n� tm2

r
. &

The substitution technique may also be used on permutation arrays which have been
constructed from latin squares. For example, given a PA obtained from Theorem 3.2
using a set of qi � 1 MOLS of order qi, applying the ðqi � 1Þ=ðq� 1Þ substitutions
from Theorem 9.20 of [14] to its entries, yields an FPA as described in the second
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part of Theorem 3.2. This approach allows the FPA to be built without constructing
the corresponding sets of MOFS.

A useful tool in building new arrays from old is the direct product.

Proposition 4.4. Let X1 be an FPA�ðn1; aÞ of size N1 and let X2 be an FPA�ðn2; bÞ
of size N2. Then an FPA�ðn1 þ n2;minða; bÞÞ may be constructed of size N1N2.

In particular, for even n, given two FPA�ðn; n2Þ, of sizes N1 and N2, respectively an
FPA�ð2n; n2Þ may be constructed of size N1N2, so that

M� 2n;
n

2

� �
� M� n;

n

2

� �2

:

Proof. Relabelling if necessary, construct X1 and X2 on disjoint symbol sets, giving
n1 þ n2=� symbols in total. Take the direct product of X1 and X2, that is
Y ¼ fðu; vÞ : u 2 X1; v 2 X2g, where an ordered pair of codewords is interpreted as
their concatenation. Now, Y is a set of � permutations of length n1 þ n2, with
frequency �. Any pair of � permutations in Y differ in at least minða; bÞ positions,
hence Y is an FPA�ðn1 þ n2;minða; bÞÞ. &

In [7], a permutation array is defined to be r-separable if it is a disjoint union of r
PAðn; nÞ’s of size n. We constructed an example of such a PA in part (i) of Theorem 4.1.
We use this notion of a separable PA, that is a PA which is a disjoint union of other
PA’s, in the next result.

Theorem 4.5.

(i) Given a separable PAðn; dÞ which is the disjoint union of r PAðn; �Þ’s, each of
size N, where 2d � �, an FPA2ð2n; �Þ of size rN2 may be constructed.

(ii) Given r MOLS of order n, an FPA2ð2n; nÞ of size rn2 may be constructed. If n
is a prime power, an FPA2ð2n; nÞ of size ðn� 1Þn2 is obtained.

Proof. Denote the r PAðn; �Þ’s by �1; . . . ;�r. For each i ¼ 1; . . . ; r, form the direct
product of �i with itself, that is Zi ¼ fðu; vÞ : u; v 2 �ig. Then Zi is a set of N2 �
permutations of length 2n, on n symbols, with frequency � ¼ 2, and minimum
distance �. Take the union Z ¼ Z1 [ . . . [ Zr. The � permutations from different Zi
have pairwise distance 2d � �, and hence Z is an FPA2ð2n; �Þ of size rN2.

By a result established in [7] and reproved constructively in [13], r MOLS of order
n may be used to construct an r-separable PAðn; n� 1Þ. When used in the above
construction, this yields an FPA with � ¼ n and 2d ¼ 2n� 2 (> n for n > 2), that is
an FPA2ð2n; nÞ of size rn2. The last part follows by noting that, for a prime power n, a
complete set of n� 1 MOLS of order n is obtainable. &

Example 4.6. By the construction from part (ii) of Theorem 4.6, an FPA2ð8; 4Þ of
size 48 may be obtained from 3 MOLS of order 4. For example, the MOLS

L1 ¼

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

; L2 ¼

0 1 2 3

2 3 0 1

3 2 1 0

1 0 3 2

; L3 ¼

0 1 2 3

3 2 1 0

1 0 3 2

2 3 0 1
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yield an FPA whose first 8 rows are listed below.

0 1 2 3 0 1 2 3

0 1 2 3 1 0 3 2

0 1 2 3 2 3 0 1

0 1 2 3 3 2 1 0

1 0 3 2 0 1 2 3

1 0 3 2 1 0 3 2

1 0 3 2 2 3 0 1

1 0 3 2 3 2 1 0

The next two results generalize the direct product construction of Theorem 4.6. A
similar approach is explored in [5], in the context of constant composition codes;
the reader is referred to [5] for more details, and for proofs of Theorem 4.8 and
Theorem 4.9.

Theorem 4.7. For i ¼ 1; . . . ; b, let Xi be a separable FPA�ðn; diÞ which is a
disjoint union of ri FPA�ðn; �iÞ’s, �i

1; . . . ;�
i
ri , with

P
di � minf�ig. Denote minf�ig

by �, and minfrig by r. Then an FPAb�ðbn; �Þ may be constructed, of sizePr
j¼1ð

Qb
i¼1 j�j

ijÞ.

The direct product construction in Theorem 4.6 and Theorem 4.8 may be adapted
by choosing some subset of the direct product which has special properties. In [4], a
recursive construction of PA’s is given, which uses transversal packings; the next
result indicates one way in which transversal packings may be used to construct an
FPA from separable PAs. This construction may be applied to a set of disjoint
separable PA’s such as those obtainable from the MOLS construction of [13], or to a
single such PA with its subarrays permuted appropriately.

Theorem 4.8. Let X1; . . . ;Xk be k separable PA’s, such that each Xi ¼ PAðn; diÞ is
a disjoint union of r PAðn; di0Þ’s, �i

ð1Þ; . . . ;�i
ðrÞ, and the �i

ðjÞ’s may be ordered such
that �1

ðjÞ; . . . ;�k
ðjÞ are disjoint for each j. Suppose there exist transversal packings

T1; . . . ;Tr , where each Tj has distance � and type j�1
ðjÞj . . . j�k

ðjÞj. Denote
d1 þ � � � þ dk by D, and denote the smallest sum of any � of the di

0 by t. Then an
FPAkðkn; dÞ may be constructed, of size

Pr
j¼1 jTjj, where d ¼ minðt;DÞ.

Theorem 3.2 of [4] may also be generalized to construct an FPA�ðn; dÞ from k
separable FPA�ðni; diÞ’s (1 � i � k). Replacing the PAðni; diÞ’s by the equivalent
FPA’s in this result, an immediate generalization for � > 1 is obtained.

In the proof of Theorem 4.1, a pairwise distance of n is imposed on the set of new
rows derived from any given original row. Relaxing this condition to minimum
distance d, the �-cycle (or its frequency analogue) may be replaced by an
appropriate (frequency) permutation array. This observation underlies our final
recursive result.

Theorem 4.9. Let n ¼ m�, and let F1; . . . ;Fb be b FPA�ðn; dÞ’s (not necessarily
different). Let C be an FPAnðbn; cÞ of size N, where c � bd. Then an FPA�ðbn; bdÞ
may be constructed, of size Nmin1�i�bjFij.
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Proof. Relabelling if necessary, construct F1; . . . ;Fb on disjoint symbol sets, so
there are bn symbols in total. For each row in C, use the entries of the row as column
headings, and place the n columns of each Fi under the n occurrences of the symbol i.
The resulting array is an FPA�ðbn; bdÞ, of size min1�i�bjFij. Take the union of the
arrays arising from each row of C to obtain an FPA of size Nmin1�i�bjFij. Agreement
between rows of this FPA corresponding to different rows of C can occur only at
positions where the rows of C agree, since the symbol sets are disjoint. There are at
most c such positions, so any two rows of the new FPA have distance at least c � bd,
and the array is an FPA�ðbn; bdÞ. &

Applying this theorem with F1;F2 as FPA2ð4; 2Þ’s of size 6 and C as the F4ð8; 4Þ
of size 14 from Corollary 3.5, yields an FPA2ð8; 4Þ of size 84.

5. SPECIAL CASES

An FPA�ðn; dÞ, where n ¼ m�, may be viewed as an m-ary code with constant weight
composition ð�; . . . ; �Þ. In certain special cases, known results for constant weight
codes provide bounds and constructions of relevance to FPAs.

Proposition 5.1. If n ¼ 2�, then an FPA�ðn; dÞ of size M is a binary code ðn;M; dÞ
of length n, minimum (Hammimg) distance d and constant weight �.

In [2], constructions and bounds are given for Aðn; d;wÞ, the maximum possible
number of binary vectors of length n, Hamming distance at least d, and constant
weight w, for values of n up to 28. Observe that Aðn; d; n

2
Þ ¼ Mn

2
ðn; dÞ. The exact value

of Aðn; d;wÞ, and corresponding constructions, is known for all lengths n � 11. If d is
odd, then Mn

2
ðn; dÞ ¼ Mn

2
ðn; d þ 1Þ, so only even distances need be considered. The

following FPAs may be directly constructed, by use of Hadamard matrices and
Steiner systems ([2]).

Recall that a Hadamard matrix is a square matrix with entries þ1, �1 whose rows
are mutually orthogonal. Hadamard matrices of order n can only exist for n ¼ 1; 2
and n ¼ 4k; it is conjectured that they exist for each n ¼ 4k. Hadamard matrix
constructions and properties may be found in Section IV.24 of [6].

Theorem 5.2. (Theorem 10, [2]). Mn
2
ðn; n

2
Þ ¼ 2n� 2 if and only if a Hadamard

matrix Hn of order n � 1 exists.

An (optimal) FPAn
2
ðn; n

2
Þ may be constructed from the Hadamard matrix Hn as

follows. First convert the entries of the ‘half-frame’ of þ1’s bordering Hn into �1’s.
Now take the non-initial rows of Hn and �Hn, and convert the entries þ1 to 0 and �1
to 1 in every row.

Example 5.3. Using the Hadamard matrix of order 12 (unique up to isomorphism)
gives an FPA6ð12; 6Þ of size 22. We list the first few rows.

1 0 1 0 1 1 1 0 0 0 1 0

1 0 0 1 0 1 1 1 0 0 0 1

1 1 0 0 1 0 1 1 1 0 0 0

1 0 1 0 0 1 0 1 1 1 0 0
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Combining Theorem 5.2 with Proposition 4.5 we see that, if n is an even number
such that a Hadamard matrix of order n exists, then Mn

2
ð2n; n

2
Þ � ð2n� 2Þ2

. For
example, M6ð24; 6Þ > 484.

A Steiner system Sðt; k; vÞ is a t � ðv; k; 1Þ design, that is, a collection of k-subsets
(called blocks) of a v-set such that each t-tuple of elements of this v-set is contained
in a unique block. When t ¼ 3 and k ¼ 4, this called a Steiner quadruple system.

Example 5.4. Using the Steiner quadruple system Sð3; 4; 8Þ, an FPA4ð8; 4Þ of size
14 may be constructed. The extended cyclic code fð1011000Þ1; ð0100111Þ0g is one
example; the code is constructed by taking cyclic developments of the vectors in
parenthesis.

We conclude by remarking that, in the study of PAðn; dÞ arrays, one builds the
rows of the array by using permutations on n symbols, and in FPA�ðn; dÞ arrays, one
builds rows by using m distinct symbols, each repeated exactly � times. However,
there is in fact no need for such uniformity of frequency, and one could consider the
following, very general, setting.

Let n ¼ �1 þ � � � þ �r be a partition of n. Then one could consider constructing
arrays with the property that in each row, for i ¼ 1; . . . ; r, the symbol i occurs exactly
�i times. From papers such as [4], there is motivation for studying such a general
setting; in fact the corresponding constant composition codes have been widely
studied; see [2]. Sets of Fðn;�1; . . . ; �rÞ orthogonal frequency squares have been
studied (see Chapter 4 in [14]). However, we do not consider frequency permutation
arrays with an arbitrary frequency vector n ¼ �1 þ � � � þ �r here.
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