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a b s t r a c t

We replace the usual setting for error-correcting codes (i.e. vector spaces over finite
fields) with that of permutation groups. We give an algorithm which uses a combinatorial
structure which we call an uncovering-by-bases, related to covering designs, and construct
some examples of these. We also analyse the complexity of the algorithm.
We then formulate a conjecture about uncoverings-by-bases, for which we give some

supporting evidence and prove for some special cases. In particular, we consider the case of
the symmetric group in its action on 2-subsets, where we make use of the theory of graph
decompositions. Finally, we discuss the implications this conjecture has for the complexity
of the decoding algorithm.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction: Groups as codes

In this paper, we discuss the possible use of permutation groups as error-correcting codes, where the codewords are
permutationswritten in list form andwith the usual Hamming distance. The use of sets (rather than groups) of permutations
in coding theory has been studied since the 1970s (see Blake, Cohen and Deza (1979) [7] for instance); often sets of
permutations are referred to as permutation arrays in this context. Permutation arrays have attracted recent interest, partly
due to a potential application to so-called ‘‘powerline communications’’, where electrical power cables are used to transmit
data aswell as electricity. The 2004paper by Chu, Colbourn andDukes [11] gives a description of this, and some constructions
for permutation arrays suitable for this purpose, while the 2006 paper by Huczynska [15] gives an introductory survey.
Groups have received less attention; however, the algebraic structure of the group is there to be exploited, for instance in

determining properties of the group when viewed as a code. The main focus of this paper is to present a decoding algorithm
which works for arbitrary permutation groups when used as codes in this manner; as a result, this paper takes a rather
broad viewpoint. We also analyse the complexity of this algorithm, then give a conjecture which (if true) helps to bound
this complexity. We conclude by giving some supporting evidence for the conjecture, and by proving some special cases.
The results in this paper are taken from the author’s Ph.D. thesis [1].
Recall that theminimum distance of a code C is
d(C) = min

x,y∈C
x6=y

dH(x, y),

i.e. the least value of dH over all pairs of words in C . Consequently, if a received word contains at most r = b d(C)−12 c errors,
there will be a unique nearest neighbour in C and we can decode correctly. We call this parameter r the correction capability
of C .
If the codeC is a set of permutations of {1, . . . , n}, then it iswell known that theHammingdistance betweenpermutations

g, h ∈ C ⊆ Sn is simply
dH(g, h) = n−

∣∣Fix(gh−1)∣∣ ,
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where Fix(g) denotes the set of fixed points of g . (By applying h−1 to both g and h, dH(g, h) = dH(gh−1, 1) is the number of
places gh−1 differs from the identity, which is n−

∣∣Fix(gh−1)∣∣.) Thus the minimum distance of such a set C is equal to
min
g,h∈C
g 6=h

n−
∣∣Fix(gh−1)∣∣ = n− max

g,h∈C
g 6=h

∣∣Fix(gh−1)∣∣ .
When a set of permutations forms a group G, this becomes

n−max
g∈G
g 6=1

|Fix(g)| ,

which is known to group theorists as theminimum degree of G. There is an analogy here to the theory of linear codes, in that
the minimum distance of a linear code is equal to its minimum weight, i.e. the distance from the all-zero codeword, which
plays the role of the identity permutation in that setting.
The family of groups that appear in Blake’s original paper [6] are the sharply k-transitive groups. A group G acting on a set

Ω is sharply k-transitive if for any two ordered k-tuples of distinct elements ofΩ , there is a unique group element mapping
the first to the second. These were an obvious starting point for this theory, as the minimum distance of such a group is easy
to calculate. As Blake observed in [6], the minimum distance is simply n− k+ 1 (only the identity element can fix k points,
so the maximum number of fixed points of a non-identity element is k− 1).
The symmetric group Sk is both sharply k-transitive and sharply (k − 1)-transitive, while the alternating group Ak is

sharply (k − 2)-transitive. Thus the minimum distance of Sn is n − (n − 1) + 1 = 2, and the minimum distance of An is
n− (n− 2)+ 1 = 3. Consequently, the correction capability of the symmetric group is 0, and that of the alternating group
is 1. So Sn is of no use as an error-correcting code, but An is a 1-error-correcting code. For k > 5, there are no others, but
there are infinite families for k = 2 and 3, as well as the Mathieu groups M11 (for k = 4) and M12 (for k = 5): Bray and the
author [3] consider M12 viewed as a code in detail. The method we present in the next section is completely general.

2. A decoding algorithm: Uncoverings-by-bases

In order to use a permutation group as an error-correcting code, it is necessary to have a suitable decoding algorithm. To
this end, the following definition, originally due to Sims [19], is fundamental.

Definition 1. Let G be a group acting on a finite set Ω . A base for G in this action is a sequence of points (x1, . . . , xb)
from Ω such that G(x1,...,xb) = 〈1〉, i.e. the pointwise stabiliser is the identity. An irredundant base is a base where
G(x1,...,xi,xi+1) 6= G(x1,...,xi) for i = 1, . . . , b− 1.

Example 2. Suppose G is sharply k-transitive. Then any sequence of k points forms a base, as the stabiliser of any k points
is trivial.

Example 3. Suppose G is the general linear group GL(n, q) acting on Fnq \ {0}. Then any basis for the vector space Fnq is a base
for G.

Bases have the following property.

Proposition 4. For any group G, the action of an element g ∈ G on a base (x1, . . . , xb) uniquely determines that element; that
is, if (x1, . . . , xb)g = (x1, . . . , xb)h, then g = h.

Proof. Suppose g, h ∈ G, (x1, . . . , xb) is a base for G and that x
g
i = xhi for each i. Then x

gh−1
i = xi for each i, that is

gh−1 ∈ G(x1,...,xb) = 〈1〉. Hence gh
−1
= 1, i.e. g = h. �

This is not only a theoretical result: there exist algorithms in computational group theory which will actually compute
g ∈ G from the image of a base; see Butler [9], Chapter 10, for details. So, if a group G is to be used as a code, if the received
word contains errors in positions outside those labelled by a base, we can decode successfully. However, as it is possible for
r errors to lie in any r positions, we need the following.

Definition 5. Suppose G is a group acting onΩ , where |Ω| = n, with correction capability r . Then an uncovering-by-bases
for G is a set of bases for G such that any r-subset ofΩ is disjoint from at least one base.

In the case where G is sharply k-transitive, this reduces to a set of k-subsets ofΩ , which we call an (n, k, r)-uncovering.
This is equivalent to finding a set of (n − k)-subsets of Ω , with the property that any r-subset is contained in at least one
(n − k)-set, which is precisely the definition of an (n, n − k, r) covering design. Consequently, the extensive literature on
covering designs is of use to us in finding uncoverings. For instance, there is a large internet database of covering designs
with small parameters maintained by Gordon, the ‘‘La Jolla Covering Repository’’ [13]. Many of the constructions featured in
the database are described in the paper of Gordon, Kuperberg and Patashnik [14], while a more general survey can be found
in Mills and Mullin [18].
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Example 6. For the sharply 3-transitive group PGL(2, 7), we have n = 8, k = 3, r = b 8−32 c = 2, so we need an (8, 3, 2)-
uncovering, as shown below.

1 2 3
4 5 6
2 3 7
1 7 8

The above example was obtained from an (8, 5, 2) covering design in Gordon’s database [13]. It is small enough for the
‘‘uncovering’’ property to be verified easily by hand.
While it is trivial that (n, k, r)-uncoverings always exist (by taking the set of all k-subsets), it is not immediately obvious

that for an arbitrary group in a given action an uncovering-by-bases should exist. However, we are saved by the next result.

Proposition 7. For any finite group G acting on a set Ω with |Ω| = n, there always exists an uncovering-by-bases.

Proof. Let d be the minimum distance of G in this action, so r = b d−12 c. We show that for an arbitrary r-subset ofΩ , there
exists a base for G disjoint from it, arguing by contradiction.
Suppose there exists an r-subset R ⊆ Ω that meets every base for G. Then the pointwise stabiliser of R̄ = Ω \ R

is non-trivial, as R̄ does not contain a base. Therefore there exists a non-identity element g that fixes R̄ pointwise, so
|Fix(g)| ≥ |R̄| = n − r . But the maximum number of fixed points of a non-identity element is n − d < n − r , giving a
contradiction. �

We remark that the definition of uncovering-by-bases, and indeed the proof of Proposition 7, is vacuous in the case r = 0.
Although groups with zero correction capability are, of course, useless as error-correcting codes, an uncovering-by-bases
for such a group consists of a single base only.
Once an uncovering-by-bases for a given group in a given action has been obtained, we can then use it with the following

decoding algorithm.

Algorithm 1. Suppose we have a permutation group G and an associated uncovering-by-basesU = {B1, . . . , Bu}, and that
we have transmitted the permutation g = g1g2 · · · gn ∈ G and received the word w = w1w2 · · ·wn, which is assumed to
have at most r errors. Set i := 1.
The iterative step is as follows. Take Bi, and look at the entries wj for j ∈ Bi. If there are no repeated symbols in those

positions, then we can determine if there is an element g ′ ∈ G (i.e. a codeword) agreeing with w in those positions. If not,
then set i := i+ 1 and repeat. If g ′ does exist, we compute dH(w, g ′); if this is at most the correction capability r , we must
have that g ′ = g and return g ′. If the distance is more than r , we set i := i+ 1 and repeat.

We make some remarks about this algorithm. First, the fact that U is an uncovering-by-bases guarantees that the
algorithm will succeed. Next, we know that we can ignore cases where there are repeated symbols, as we know there must
be an error among them. Themethod for finding g ′ is described in Algorithm2 below; ifG is sharply k-transitive, the element
g ′ is guaranteed to exist, so this step will always succeed. Finally, we remark that the algorithm can be implemented in the
computer system GAP [12] (see [1] for details).

Example 8. We continue with the example of PGL(2, 7), which is generated by the permutations (3 8 7 6 5 4) and
(1 2 6)(3 4 8) (in disjoint cycle form). As a code, the word length is 8, minimum distance 6, correction capability 2, and
there are 336 codewords. Suppose we transmit the permutation

g = 1 2 3 4 5 6 7 8

and that the following word is received:

w = 4 2 3 6 5 6 7 8.

(This has two errors, in positions 1 and 4.) Using the uncovering in Example 6, we first identify the element of PGL(2, 7)
which maps the base (1, 2, 3) to (4, 2, 3), which is

4 2 3 6 8 7 5 1.

This is distance 4 from w, so is rejected. Then we look at the next base in the uncovering, which is (4, 5, 6). In w, these
positions contain the symbols (6, 5, 6), so clearly no permutation can exist here. So we move to the next 3-tuple, (2, 3, 7);
these positions contain the symbols (2, 3, 7). Thus we find the element which maps the first to the second, which is

1 2 3 4 5 6 7 8.

This is distance 2 fromw, so is accepted, and the algorithm terminates.
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In the author’s paper [2], uncoverings-by-bases are constructed for certain families of base-transitive groups. These
are groups which act transitively on their irredundant bases, so the fact that all irredundant bases have the same
structure simplifies the construction of an uncovering-by-bases. Some examples of groups which are not base-transitive
are considered in Sections 7 and 8 below. In another paper [5], Prellberg and the author describe an alternative (and faster)
algorithm which works for the family of groups Cm o Sn in their imprimitive action onmn points.

3. Parallels with linear codes

In this section we mention some of the analogies between linear codes (i.e. vector spaces over finite fields) and
permutation groups when viewed as codes. To begin with, we compare their rates.
The rate of an error-correcting code is defined as 1n logqM , where n is the word length, q the alphabet size, and M the

number of codewords. For a linear code of length n and dimension k over Fq, this works out simply as kn . For a permutation
group of degree n, we have 1n logn |G|. Now, if G has an irredundant base of length k, it is known that 2

k
≤ |G| ≤ nk (see [10],

Section 4.13); the closest to reaching the upper bound are the sharply k-transitive groups of order n(n− 1) · · · (n− k+ 1).
Consequently, an upper bound on the rate of kn is obtained. Since the base size is the permutation group analogue of the
dimension of a vector space, this is not a coincidence.
It is thought that for primitive permutation groups, the order tends to bemuch closer to the upper bound than the lower.

Consequently, for many permutation groups (should the assertion be true) the rates of such groups (viewed as codes) would
be comparable with linear codes.
Next, we consider distance enumerators. For any code, we can define a polynomial which ‘‘counts’’ the number of

codewords at each distance from a fixed codeword, which is as follows.

Definition 9. Let C be a code of fixed length, and choose c ∈ C . The distance enumerator, is defined to be

∆c(x) =
∑
w∈C

xdH (c,w).

Clearly, the coefficient of xi gives the number of codewords at distance i from c. In the case where C is a permutation
group, we obtain the same polynomial regardless of the choice of c (because each codeword can be mapped to any other
by a permutation), so we can take c to be the identity permutation and call the polynomial ∆(x). In the case where C is a
linear code, we take c to be the zero vector and obtain the weight enumerator. Weight enumerators for linear codes have
been studied extensively (any text on coding theory should mention them), while the distance enumerator for permutation
groups is studied by Dixon and the author in [4].
Finally, we mention that our decoding algorithm is similar to the method of permutation decoding. This method, which is

attributed to F.J.MacWilliams, is a decodingmethod used for linear codes, and involves finding a subset of the automorphism
group of the code to move any set of errors out of the ‘‘information positions’’. It is also related to covering designs, with the
analogue of an uncovering-by-bases being known as a PD-set. A full description is given in the survey article by Huffman [16]
in the Handbook of Coding Theory.

4. Complexity issues

An important part of the decoding algorithm (Algorithm 1) is where a group element is reconstructed from a set of base
images. In order to determine the complexity of that algorithm, we need to know exactly what this entails. Supposewe have
a group G acting on a setΩ of size n, and suppose that (x1, . . . , xb) is a base for G in this action. Let Gi denote the pointwise
stabiliser in G of (x1, . . . , xi), with the convention that G0 = G. The following definition is due to Sims [19].

Definition 10. The set S = S1 ∪ S2 ∪ · · · ∪ Sb, where Si is a set of coset representatives for Gi in Gi−1, is called a strong
generating set for G.

This set is indeed a set of generators forG; furthermore, any element ofG can bewritten uniquely as a product sbsb−1 · · · s1,
where each si ∈ Si (see Butler [9], Chapter 10). This enables us to use the following algorithm.

Algorithm 2. Suppose thatwe have a groupGwhichwe are using as an error-correcting code. Suppose that B = (x1, . . . , xb)
is a base for G and that S is a corresponding strong generating set, and that we have a received word w which has symbols
(y1, . . . , yb) in the positions labelled by B. Then we want an answer to the following question:

Does there exist g ∈ Gwith xgi = yi for all i, and if yes, what is it?
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At the first stage, we have that the set {xs1 | s ∈ S1} is the G0-orbit on x1, and see if y1 appears in it. If not, then no such
g can exist, and the algorithm stops. If it does appear, we let s1 be the element that maps x1 to y1, then replace (y1, . . . , yb)

with (y
s−11
1 , . . . , y

s−11
b ), and iterate as follows.

At step i, we check if there exists some si ∈ Si such that x
si
i = y

s−1i−1···s
−1
1

i . If not, then the algorithm stops; if some si does

exist, we replace (y
s−1i−1···s

−1
1

1 , . . . , y
s−1i−1···s

−1
1

b )with (y
s−1i ···s

−1
1

1 , . . . , y
s−1i ···s

−1
1

b ), then repeat the iteration.
When we reach step b, if we succeed we take the element sbsb−1 · · · s1 to be our required element g . This works because

for each iwe have

xgi = x
sb···s1
i

= xsi···s1i (since sb, sb−1, . . . , si+1 all lie in Gi)

= (yis
−1
1 ···s

−1
i−1)si−1···s1

= yi.

Calculating the element g = sbsb−1 · · · s1 concludes the algorithm.

Now that we knowwhat the procedure is, we are able to answer the questions, ‘‘how long does it take?’’ and ‘‘howmuch
space is required?’’. The latter question has two parts, as there are two kinds of space needed: storage space for any look-
up tables (ROM), and space needed for performing the actual computation (RAM). For the sake of simplicity, we make the
following assumptions:

• finding the image of a point under a permutation takes one unit of time;
• the composition of two permutations of length n takes n units of time;
• the storage of a single symbol requires one unit of space.

We also use the convention where g(n) = O(f (n))means that g(n) is bounded above by some constant multiple of f (n).

Lemma 11. The time required by the element reconstruction algorithm (Algorithm 2) is O(bn).

Proof. At step i we look through {xsii | si ∈ Si} to see if yi
s−11 ···s

−1
i−1 appears there. Since |Si| = |Gi−1 : Gi| ≤ n, there are at

most n operations to be made here. If we succeed here, we replace b symbols with their images under s−1i , and as acting on
a point by a permutation requires one operation, this gives b operations, so there are at most n+ b operations per step. As
there are at most b steps, this gives a maximum of b(n+ b).
If all b steps are completed successfully, we then have to compose b permutations, which requires (b− 1)n operations.

Overall, the maximum number of operations required will be b(n+ b)+ (b− 1)n, so this is O(bn). �

Lemma 12. The storage space required by the element reconstruction algorithm (Algorithm 2) is O(bn2), and the space required
to perform the algorithm is O(n).

Proof. With the convention that a single symbol requires one unit of space, a permutation needs n units. Our look-up table
comprises a strong generating set and the corresponding set of inverses. Now, a strong generating set has size bounded by
bn, as each Si has size at most n. As we also need to store the inverse of each element, the overall number of storage units
required is at most 2bn2, which is O(bn2).
When performing the algorithm, at each stage iwe need to store the position in the look-up table of the element si, which

requires one unit of space, giving us a total of b units. Also, when performing the composition of permutations at the end,
we need a further n units for this. So we have a total of n+ b units, which is O(n). �

Recall that our decoding algorithm (Algorithm 1) works by working through a set of bases and applying the element
reconstruction algorithm repeatedly until the correct permutation is obtained. Let U be the uncovering-by-bases being
used. Then we have the following results.

Theorem 13. The time required by the decoding algorithm (Algorithm 1) is |U|O(bn).

Proof. We apply the element reconstruction algorithm (Algorithm 2), which by Lemma 11 needs at most b(n+b)+bn time
units. After this, we check the Hamming distance between the reconstructed permutation and the received word to see if it
is within the correction capability, so there are n checks here. We then may have to repeat this procedure until it has been
carried out |U| times, so the total number of steps is bounded by |U|(b(n+ b)+ bn+ n), which is |U|O(bn). �

Theorem 14. The storage space required by the decoding algorithm (Algorithm 1) is |U|O(bn2), and the space required to perform
the algorithm is O(n).
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Fig. 1. Parameters of various groups when viewed as codes.

Proof. For the look-up table, each base inU requires its own strong generating set, so by Lemma 12, we will need 2|U|bn2
storage units, which is |U|O(bn2). To perform the algorithm, whilst applying the reconstruction algorithm we need b + n
units of space. The same n units are then used for the comparison with the received word, meaning that the space required
here is still O(n). �

So, ultimately, both the time complexity and the amount of storage space required are dependent on the size of U. In
Section 9, we investigate some possible bounds for this.

5. The single-orbit conjecture

We have already seen (in Proposition 7) that, for any permutation group G of degree n and minimum distance
(i.e. minimum degree) d and correction capability r , there exists an uncovering-by-bases for G. In [2], the author constructs
uncoverings-by-bases for certain base-transitive groups, so in that situation it follows that an uncovering-by-bases contains
irredundant bases from one orbit only. It is this particular property that interests us in this section.

Definition 15. We say that a permutation group G has the single-orbit property if there exists an orbit on irredundant bases
for G that contains an uncovering-by-bases.

Furthermore, we make the following conjecture.

Conjecture 16 (The Single-orbit Conjecture). Any permutation group has the single-orbit property.

While we do not offer a proof of this conjecture, we have various pieces of evidence that it should be true, such as the
following.

• It holds trivially for base-transitive groups (as there is only one orbit) and for groups with r = 0 (as we only need one
base).
• The single-orbit property is preserved by taking direct and wreath products: see Section 6.
• The conjecture holds for the action of Sm on 2-subsets (Section 7) and for some further examples of groups (Section 8).
• Computer searches (see below) show that the conjecture holds for transitive groups of degree at most 19, and primitive
groups of degree at most 30.

Using the GAP libraries of transitive and primitive groups, it is relatively easy to verify the conjecture for groups of low
degree. For each group, one has to determine the correction capability, then for a given base construct the orbit of the group
on that base, and then check that this orbit forms an uncovering.GAP programswere used to test transitive groups of degree
at most 19 and primitive groups of degrees 20 to 30 for the single-orbit property, and did not find any counterexample.
In practice, it is important to know not just that an uncovering-by-bases exists, but also what size it should be. Thus we

make the following, stronger, conjecture.

Conjecture 17. Let G be a permutation group of degree n. The G has the single-orbit property, and furthermore, there exists such
an uncovering-by-bases with size polynomial in n.

This conjecture is likely to be much harder to prove than the single-orbit conjecture. However, the evidence we have
suggests that it should be true. Consider Fig. 1 below, and in particular compare the degreeswith the sizes of the uncoverings-
by-bases (UBBs). (With the exception of the last two examples, constructions for the others appear in [2].)
In each case, we observe that the size of the uncovering-by-bases is bounded above by the degree of the group. This leads

us to the next conjecture, possibly the most optimistic so far.
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Conjecture 18. Let G be a permutation group of degree n. The G has the single-orbit property, and furthermore, the uncovering-
by-bases obtained has size bounded above by n.

A computer search (using GAP) has demonstrated that Conjecture 18 holds for all transitive groups of degree up to 15.
This computer search involves, for each group, randomly constructing uncoverings-by-bases until one of size less than the
degree is found. (For most groups, only one attempt was necessary.)
The various versions of the single-orbit conjecture are not entirely unmotivated; they have implications for the time and

space complexity of the decoding algorithm, as discussed in Section 9 below.

6. The single-orbit property for direct and wreath products

In this section, we show that the single-orbit property is preserved by taking direct products (in the intransitive action)
and wreath products (in the imprimitive action).

Theorem 19. Suppose that G acting onΩ and H acting on∆ have the single-orbit property. Then G× H acting onΩ ∪̇∆ also
has this property.

Proof. We take suitable orbits for G and H , then use them to form an orbit for G × H , and show that this satisfies our
requirements. Suppose G acting on Ω has degree n, minimum distance d and correction capability r = b d−12 c, and that
x = (x1, . . . , xk) is a base for G in this action, such that the orbit xG forms an uncovering-by-bases. Suppose also that H
acting on∆ has degree m, minimum distance e and correction capability s, and that y = (y1, . . . , yl) is a base such that yH
forms an uncovering-by-bases.
Now consider the action of G × H acting on Ω ∪̇ ∆. Clearly |Ω ∪̇ ∆| = n + m, and the minimum distance of G × H is

min{d, e}. Consequently, the correction capability of G× H is min{r, s}.
To construct a base for G × H , we define z = (x1, . . . , xk, y1, . . . , yl). Since G acts on Ω only and H acts on ∆ only, we

have

z(g,h) = (x(g,h)1 , . . . , x(g,h)k , y(g,h)1 , . . . , y(g,h)l ) = (xg1, . . . , x
g
k , y

h
1, . . . , y

h
l )

for any (g, h) ∈ G × H . In particular, if z(g,h) = z (i.e. if (g, h) ∈ StabG×H(z)), we have that xg = x and yh = y, so because
x and y are bases we have g = 1G and h = 1H , so (g, h) = 1G×H . Hence the pointwise stabiliser of z is trivial, so z forms a
base for G× H .
Now, we have that zG×H = {(xg1, . . . , x

g
k , y

h
1, . . . , y

h
l ) | g ∈ G, h ∈ H}. We show that z

G×H forms an uncovering-by-bases
for G×H . Suppose without loss of generality that r ≤ s. We need to show that given an arbitrary r-subset R ⊂ Ω ∪̇∆, there
exists an element of the orbit zG×H that is disjoint from R. Suppose that R = A ∪̇ B, where A ⊂ Ω , B ⊂ ∆ and |A| + |B| = r
(note that one of A, B may be empty). Since |A| ≤ r , there exists a base (xg1, . . . , x

g
k) for G disjoint from A. Similarly, since

|B| ≤ r ≤ s, there exists a base (yh1, . . . , y
h
l ) for H disjoint from B. Thus the base (x

g
1, . . . , x

g
k , y

h
1, . . . , y

h
l ) ∈ zG×H is disjoint

from R = A ∪̇ B, so we are done. �

Theorem 20. Suppose G acting on Ω has the single-orbit property, and that H is an arbitrary permutation group of degree m.
Then G o H acting on m copies of Ω also has the single-orbit property.

Proof. As in Theorem 19 above, we take a suitable orbit for G and use it to find a suitable orbit for G o H . Suppose G acting
onΩ has degree n, minimum distance d and correction capability r . Recall that G o H has the form Gm o H (often written as
Gm : H), where Gm is the direct product ofm copies of G.
Now, a non-identity element of G o H with the maximum number of fixed points will be an element of Gm, as any non-

trivial action of H will reduce the number of fixed points. But a non-identity element of Gm with the maximum number of
fixed points will fixm− 1 copies ofΩ , and have n− d fixed points in the remaining copy. Hence it has (n− 1)m+ (n− d)
fixed points in total, and so the minimum distance of G o H is d. Consequently the correction capability of G o H is r .
Next, we need a base for G oH . Suppose x is an irredundant base for G such that xG forms an uncovering-by-bases. Now, by

the proof of Theorem 19 above (and a straightforward induction),m copies of x (one from each copy ofΩ) forms a base for
Gm. We denote this base bymx. Clearlymx is also a base for G oH , as the only elements of G oH that fix each block blockwise
are elements of Gm.
Finally, we observe that the orbit (mx)Gm is contained in the orbit (mx)GoH . By Theorem 19 above, (mx)Gm forms an

uncovering-by-bases, so therefore (mx)GoH also does. �

7. The single-orbit property for Sm acting on 2-subsets

Consider the symmetric group Sm acting on the 2-subsets of {1, . . . ,m}. In this section we demonstrate that the single-
orbit conjecture holds for this group in this action. Throughout, we assumem ≥ 4, as the casesm = 1 and 2 aremeaningless,
and form = 3we have the usual action of S3. In this action the group is acting on a set of size

(m
2

)
, so as a code the codewords

have length
(m
2

)
, and clearly there arem! codewords. The minimum distance and correction capability are as follows.
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Fig. 2. Minimal bases for Sm acting on the edges of Km .

Fig. 3. An irredundant base of a different size.

Proposition 21. The minimum distance of Sm acting on 2-subsets is 2(m− 2) and the correction capability is r = m− 3.

Proof. Themaximum number of fixed points is
(
m−2
2

)
+1, corresponding, for example, to a transposition (1 2), which will

fix the remaining 2-sets chosen from {3, . . . ,m} and also the pair {1, 2}. Thus the minimum distance is(m
2

)
−

(
m− 2
2

)
− 1 = 2(m− 2).

Consequently the correction capability is r = b 2(m−2)−12 c = m− 3. �

The 2-subsets of {1, . . . ,m} can be thought of as the edge set of the complete graph Km. Thinking in this way enables
us to use graph-theoretic methods, which we shall exploit to construct uncoverings-by-bases. For instance, a base for Sm in
this action will consist of a subset of these edges.

Lemma 22. A base for Sm acting on the edge set of Km consists of the edges of a spanning subgraph of Km which has (i) at most
one isolated vertex and (ii) no isolated edges.

Proof. Let Γ denote such a spanning subgraph. To show that Γ is base, we have to show that the edgewise stabiliser, G(EΓ ),
of Γ in G = Sm is trivial. First we suppose that Γ contains no isolated vertex. Let e1 = {i, j} be an edge in Γ . Since e1 is not
isolated, there exists another edge e2 that is incident with e1. We can suppose without loss of generality that e2 = {j, k}.
Now choose some g ∈ G(EΓ ), so g fixes e1 and e2, i.e.

{i, j}g = {i, j} and {j, k}g = {j, k}.

The onlyway this can happen is if g fixes the vertex j, which then forces g to fix both i and k as well. But sinceΓ is a spanning
subgraph, and there are no isolated vertices, every vertex must lie in such a configuration, so must be fixed by g . Hence all
m vertices are fixed by g , and so g = 1.
If there is a single isolated vertex, we have by the same argument as above that the remaining m − 1 vertices are fixed,

which forces the remaining vertex to be fixed. So in this case we also have g = 1.
The converse is easy: clearly a graph violating condition (i) or (ii) cannot be base, as the edgewise stabiliser would not

trivial. �

Aminimal base for Sm in this action obtained from the bases described above will be such a graph with the least number
of edges. Thus a graph of one of the three forms shown in Fig. 2 will form a minimal base for this action (according to
congruence classes modulo 3).
We call a base of this form a V-graph. Clearly such a base is irredundant, as removing any edge will leave a graph with

an isolated edge or two isolated vertices, which will have non-trivial edge stabiliser. We note that Sm acts transitively on
V-graphs, so they form a single orbit. There are, however, other graphs which form irredundant bases, such as Fig. 3. The
V-graphs are irredundant bases of size∼ 2

3m, but the ‘‘star’’ bases are irredundant bases of sizem− 2.
Recall that a Hamilton circuit in a graph Γ is a circuit in Γ containing each vertex exactly once, and that Γ is said to be

Hamiltonian if it contains such a circuit. Now, we observe that any V-graph is contained inside a Hamilton circuit of Km, as
is shown in Fig. 4 (for m ≡ 0 mod 3). From a V-graph, by adding extra edges (shown as s s) we can obtain a Hamilton
circuit; conversely, if we have a Hamilton cycle we can remove those edges to obtain a V-graph.
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Fig. 4. A V-graph inside a Hamilton circuit.

In order to prove that Sm in this action has the single-orbit property (where the orbit on bases is the set of V-graphs), we
show that for an arbitrary r-subset of edges, there exists a V-graph disjoint from it. To do this, we need the following result
on Hamiltonicity. (The notation deg(v) denotes the degree of the vertex v.)

Theorem 23 (Ore’s Theorem, 1960). If Γ is a simple graph with m ≥ 3 vertices, and where deg(v)+ deg(w) ≥ m for all pairs
of non-adjacent vertices v,w, then Γ is Hamiltonian.

Proof. See Wilson [20], Theorem 7.1. �

We apply this in the following theorem.

Theorem 24. There exists an uncovering-by-bases for the action of Sm on 2-subsets, contained in a single-orbit on irredundant
bases.

Proof. Let R denote an arbitrary r-set of edges of Km. Choose two vertices v, w which are non-adjacent in Γ = Km \ R, so
therefore the edge e = {v,w} ∈ R. Suppose s further edges of R are incident with v and t further edges are incident withw,
so we have 0 ≤ s+t ≤ r−1. In Km, both v andw have degreem−1, so inΓ , we have deg(v) = (m−1)−(s+1) = m−s−2
and deg(w) = m− t − 2. Consequently, we have

deg(v)+ deg(w) = (m− s− 2)+ (m− t − 2)
≥ 2(m− 2)− (r − 1)
= 2(m− 2)− (m− 4)
= m,

so by Ore’s Theorem (Theorem 23), Γ is Hamiltonian. Therefore Γ contains a V-graph (so Km contains a V-graph disjoint
from R), and we are done. �

Of course, this is only an existence proof: it does not give us a way of constructing an uncovering-by-bases, or give us an
idea of its size. We resolve this problem below.

7.1. A construction of uncoverings-by-bases

We continuewith our graph-theoretic approach from above. A decomposition of a graphΓ is a partition of the edge-set of
Γ ; a Hamiltonian decomposition of Γ is a decomposition into disjoint Hamilton circuits. In the 1890s, Walecki showed that
whenm is odd, Km has a Hamiltonian decomposition. Clearly ifm is even, this cannot happen; however, in this case Km can
be decomposed into Hamilton circuits and a 1-factor (i.e. perfect matching). This is also due to Walecki: see Lucas [17] or
the survey by Bryant [8] for details. We will use Walecki’s decompositions to construct uncoverings-by-bases for the action
of Sm on the edges of Km, as follows.

Construction 25. For m odd, take a Hamiltonian decomposition of Km. Then in each Hamilton circuit, take the set of all
V-graphs contained in it. For m even, we take the Hamilton circuits in the decomposition described above, and for each of
those take the set of all V-graphs contained in that.

In order to prove that these constructions do indeed yield uncoverings-by-bases, we need to show that for an arbitrary
set R of r edges, there is a V-graph disjoint from Rwhich is contained in one of the specified Hamilton circuits. First we need
two lemmata.

Lemma 26. Let π be a partition of the integer n into k parts. Then if n < 2k, π contains a part of size 1.

Proof. Suppose not, i.e. suppose that π has k parts, each of which has size at least 2. Then clearly n ≥ 2k. �

Lemma 27. Suppose that R contains a single edge e within a Hamilton circuit C. Then there is a V-graph contained in C which
avoids e.

Proof. Recall from Fig. 4 how a V-graph, say B, is obtained from a Hamilton circuit. Then by choosing B such that e is one of
the edges in C \ B, we have that B avoids e. �

We can now proceed with the proof. Not surprisingly, we consider the casesm odd andm even separately.
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Fig. 5. Arranging V-graphs form ≡ 1 mod 3.

Theorem 28. Let H denote a Hamiltonian decomposition of Km, for m odd. Let U denote the set of V-graphs contained in the
Hamilton circuits of H . ThenU avoids any r-edge subset of the edges of Km.

Proof. Recall that r = m− 3 from Proposition 21. Also note thatH contains c = 1
2 (m− 1) Hamilton circuits.

Let R denote an arbitrary set of r edges of Km. This may contain edges frommany Hamilton circuits. However, if it meets
strictly less than c of them, we are done, as we can choose a V-graph from one of the remaining circuits. So we assume that
Rmeets every circuit inH .
If this is so, then there exists a circuit which contains only one edge of R for the following reason. We have r edges,

partitioned into c parts (one for each circuit). Now, we have r = m − 3 and c = 1
2 (m − 1), so therefore r = 2c − 2. By

Lemma 26, a partition of 2c − 2 into c parts must have a part of size 1, so there must be a circuit containing just one edge
of R. Let C denote such a circuit, containing a single edge e ∈ R. Then by Lemma 27, there exists a V-graph contained in C
which avoids e and therefore avoids the rest of R. �

The case wherem is even works similarly.

Theorem 29. Let F denote a decomposition of Km, m even, into Hamilton circuits and a 1-factor. LetU denote the set of V-graphs
formed from the Hamilton circuits in F . ThenU avoids any r-edge subset of the edges of Km.

Proof. Again, we recall that r = m−3.We regard the parts of the decompositionF as colour classes; we have c = 1
2 (m−2)

Hamiltonian colour classes (corresponding to the Hamilton circuits) and a single distinguished colour class (corresponding
to the 1-factor), which we label as ‘‘black’’.
Let R denote an arbitrary set of r edges of Km. If it contains edges from strictly less than c of the Hamiltonian colour

classes, then we are done, as we can choose a V-graph from inside the remaining classes. So we assume that Rmeets every
Hamiltonian colour class.
Suppose that this happens, and that R also contains b ≥ 0 ‘‘black’’ edges. Ignoring these b edges, we have a partition of

r−b edges into c colour classes. Now, since r = m−3 and c = 1
2 (m−2), we have that r = 2c−1, so r−b = 2c−b−1 < 2c.

By Lemma 26, this partition must contain a part of size 1. Hence there is a Hamiltonian colour class (i.e. Hamilton circuit)
which contains a single edge e ∈ R. Then by Lemma 27, there exists a V-graph contained in C which avoids e and therefore
avoids the rest of R. �

In fact, in the cases where m 6≡ 0 mod 3, it is possible to refine our construction in order to reduce the size: it is not
actually necessary to take all V-graphs from inside each Hamilton circuit. Recall from Lemma 27 that for each edge e in a
given Hamilton circuit C , we need to provide a V-graph contained in C that is disjoint from e. The next result tells us how
many V-graphs we need inside each circuit.

Lemma 30. Let m ≥ 6. Then the number of V-graphs inside a Hamilton circuit of length m needed to avoid any single edge
is 3 when m ≡ 0 mod 3 or m ≡ 1 mod 3, or 4 when m ≡ 2 mod 3.

Proof. When m ≡ 0 mod 3, a V-graph has every third edge of the circuit removed, so that circuit only contains three
V-graphs. For m ≡ 1 mod 3 (with m ≥ 7), again we have a circuit with every third edge removed, except at one point
where we remove two edges and leave an isolated vertex. Now, we can write m = 3s + 7. Over the 3s edges, we arrange
three V-graphs missing every third edge, so that all these edges are avoided by one of these. This leaves us with seven edges
remaining, overwhichwe arrange our three V-graphs as shown in Fig. 5. As can be seen from this, all seven edges are avoided
by at least one of the three V-graphs.
Now we consider m ≡ 2 mod 3 (where m ≥ 8). This time, the V-graphs have the repeating pattern of every third edge

omitted, except at the end, where there is a path of length 3 then two missing edges. This time, we can write m = 3s + 8.
Over 3s edges of the circuit, we arrange three V-graphs as before, so that all these edges are avoided. We then add a fourth
V-graph which is a duplicate of one of the first three. Over the remaining eight edges, we arrange the V-graphs as shown in
Fig. 6. As can be seen, each of the eight edges is avoided by at least one V-graph. �

This proof leaves us with the cases m = 4 and m = 5 outstanding, which can both be handled easily. K4 can be
decomposed into one Hamilton circuit and a 1-factor, while a V-graph consists of two adjacent edges, andwe have r = 1. So
we split the Hamilton circuit into two V-graphs, and we are done. K5 has a Hamiltonian decomposition into two Hamilton
circuits, a V-graph is a path of length three and r = 2. In each of the two circuits, we arrange three V-graphs as shown in
Fig. 7, giving us a total of six V-graphs.
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Fig. 6. Arranging V-graphs form ≡ 2 mod 3.

Fig. 7. Arranging V-graphs form = 5.

We can now determine the sizes of these uncoverings. Observing that we are using 12 (m−1)Hamilton circuits form odd,
and 12 (m− 2) Hamilton circuits form even, and combining this with the result of Lemma 30 above, we obtain the following
result. As the size is dependent on congruence classes modulo 3 and on whether m is odd or even, we can phrase this in
terms of congruence classes modulo 6.

Theorem 31. Let m ≥ 6. Then the sizes of an uncovering-by-bases for the action of Sm on 2-subsets, as described above, are as
follows:

m ≡ 0 mod 6 :
3
2
(m− 2)

m ≡ 1 mod 6 :
3
2
(m− 1)

m ≡ 2 mod 6 : 2(m− 2)

m ≡ 3 mod 6 :
3
2
(m− 1)

m ≡ 4 mod 6 :
3
2
(m− 2)

m ≡ 5 mod 6 : 2(m− 1).

We conclude this section with an example demonstrating our construction.

Example 32. Consider the symmetric group S7 acting on the edges of the complete graph K7. This graph has a Hamiltonian
decomposition into threeHamilton circuits, as shown in Fig. 8(a). Applying our construction to these threeHamilton circuits,
we obtain the nine V-graphs in Fig. 8(b).

8. The single-orbit property for some ‘‘dihedral-like’’ groups

Let G be a finite permutation group with a transitive, abelian normal subgroup A and an irredundant base of size 2. For
instance, G could be a transitive subgroup of a sharply 2-transitive group, or could be a dihedral group. (For this reason we
describe such groups as ‘‘dihedral-like’’.) Now, a transitive, abelian group is regular (see Cameron [10], Exercise 1.5), so G is
acting on A and therefore has degree |A| = n. As A is abelian we write it additively.
Suppose {0, a} is a base for G, where a ∈ A. We have the following theorem.

Theorem 33. For G as above, the orbit of G on {0, a} contains an uncovering-by-bases for G, and thus G has the single-orbit
property.

Proof. The set

U = {{x, x+ a} | x ∈ A}

is the A-orbit on {0, a}, so therefore is contained in the G-orbit on {0, a}. Suppose that a has orderm. We have two cases to
consider.
First, supposem = 2. Then {x, x+ a} = {x+ a, x+ 2a}, soU consists of 12n disjoint bases, which cover all n points. Since

the correction capability of G is r < 1
2n, we have thatU forms an uncovering-by-bases.
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(a) A Hamiltonian decomposition of K7 .

(b) An uncovering-by-bases for S7 acting on the edges of K7 .

Fig. 8.

Second, supposem > 2. ThenU is formed of k disjointm-cycles (where n = km), such as

{x, x+ a}, {x+ a, x+ 2a}, . . . , {x+ (m− 1)a, x}.

So |U| = n, and all n points are covered twice. Now choose R to be an arbitrary r-subset of the n points. These will be
contained in at most 2r bases. But 2r < n, so there exists a base inU disjoint from R, soU forms an uncovering-by-bases.
In both cases,U is contained in a single-orbit of G on irredundant bases, so G has the single-orbit property. �

In the second case of the above proof, whenm is evenwe can take every other base in eachm-cycle to form an uncovering,
as this gives us 12n disjoint bases which is quite sufficient.

Example 34. Let G be the dihedral group of order 12, acting on six points. This contains a cyclic group of order 6, which we
will regard as (Z6,+). Then {0, 1} is a base for G, and as 1 has order 6 in Z6, we can take every second translate of {0, 1}.
Thus

{0, 1}, {2, 3}, {4, 5}

forms an uncovering-by-bases for G.
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9. Implications for complexity

In this section we suggest some improvements which will reduce the complexity from that described in Section 4. It is
here that the single-orbit conjecture from Section 5 comes into its own.
The benefit gained from having an uncovering-by-bases contained within a single orbit is that the space complexity is

reduced. Instead of storing a list of all the bases and, more importantly, a list of several strong generating sets, we only need
to store one base and one strong generating set, along with a list of group elements that map the first base to each of the
others, and to the corresponding strong generating set. As such, we have the following.

Theorem 35. Assuming the truth of Conjecture 16, then the storage space required by Algorithm 1 is O(bn2)+ |U|O(n).
Proof. Recall from Theorem 14 that without the single-orbit property, the space required is |U|O(bn2). This was because
each strong generating set required O(bn2), andwe had to store |U| of them. Now, if we assume Conjecture 16, we only need
to store one, so the factor of |U| can be removed. However, we now need to store a list of |U| permutations, which map the
first base to each of the others. As a permutation requires n units, and we have |U| permutations, this gives us |U|O(n). So
altogether we have a space complexity of O(bn2)+ |U|O(n). �

This is a reduction in complexity, although by how much is dependent on the size of |U| when compared with O(bn).
However, Conjectures 17 and 18 assist with this, as they assert the existence of bounds on |U|.

Theorem 36. Assuming the truth of Conjecture 17, then the storage space required by Algorithm 1 isO(bn2)+O(nk+1). Assuming
the truth of Conjecture 18, then the required space is O(bn2).
Proof. Conjecture 17 asserts that |U| = O(nk) for some k, while the stronger version (Conjecture 18) asserts that |U| =
O(n). Substituting these results into Theorem 35 completes the proof. �

Note that if the size of the uncovering-by-bases is O(n2), then this gives the same space complexity as having an
uncovering-by-bases of size O(n).
In its weakest form, the single-orbit conjecture does not affect the time complexity. Recall that the amount of time

needed to performAlgorithm1 is boundedby |U|O(bn). Now, byusing themodified versiondescribed above (which assumes
Conjecture 17), at the final step we must compose the reconstruct group element with the ‘base change’ element; this is
another composition of permutations, so requires anothern steps. This thenneeds a total timeof |U|(O(bn)+n) = |U|O(bn),
so there is no change. However, if the stronger conjectures are true, we have the following.

Theorem 37. Assuming the truth of Conjecture 17, then the time required by Algorithm 1 is O(bnk+1). Assuming the truth of
Conjecture 18, then the required time is O(bn2).
Proof. By the above discussion, the time required is |U|O(bn). Conjectures 17 and 18 give sizes for |U|; substituting these
sizes gives the required results. �

So, as far as time is concerned, the single-orbit property on its own does not affect the time complexity, but the stronger
versions which include a bound on the size of the uncovering-by-bases reduces it.
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