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Abstract In this paper we study the special class of equidistant constant composition codes
of type CCC(n, d, µm) (where n = mµ), which correspond to equidistant frequency permu-
tation arrays; we also consider related codes with composition “close to” µm . We establish
various properties of these objects and give constructions for optimal families of codes.
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1 Introduction

Constant composition codes (CCCs) have recently been the subject of much study (see
[4,6,11]). Of particular interest are codes with composition 1n , which correspond to permu-
tation arrays (PAs); these have recently found application in the area of powerline commu-
nication (see for example [3]). More generally, codes with composition µm (where length
n = mµ) are of interest for similar reasons; such codes correspond to frequency PAs (FPAs)
(see [10]).

The situation when these codes (correspondingly, these arrays) are equidistant is of par-
ticular interest. Equidistant PAs (EPAs) have been studied since the 1970s (e.g. [9,14]), so it
is natural to consider equidistant FPAs; moreover in the setting of codes, it is known that any
CCC which is of optimal size with respect to the non-recursive Johnson bound (see [11]) must
be an equidistant code. In this paper, we first obtain bounds for equidistant CCC(n, d, µm)s
with small distances, then give various constructions for families of equidistant CCCs whose
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110 S. Huczynska

compositions are µm or “close to” µm . Wherever the non-recursive Johnson bound is appli-
cable, we show that the constructed codes are optimal in terms of this bound.

1.1 Preliminaries

Let C be an m-ary code of length n and minimum Hamming distance d on the alphabet
{0, 1, . . . , m −1}. The code C has constant weight composition [µ0, µ1, . . . , µm−1] if every
codeword has µi occurrences of symbol i for i = 0, 1, . . . , m − 1. We refer to C as a
CCC, written CCC(n, d, [µ0, µ1, . . . , µm−1]) (here n = ∑m−1

i=0 µi ). The code is said to be
equidistant if the pairwise distance between any two of its codewords is precisely d . For
convenience, when writing these compositions, we may use exponential notation; i.e. a com-
position [a0, . . . , a0, a1, . . . , a1, . . . , ah, . . . , ah] comprising ti occurrences of each ai will
be written as at0

0 at1
1 . . . ath

h .
In the case when µi = 1 for all i = 0, . . . , m − 1, the code corresponds to a PA: a PA of

length n, minimum distance d and size v, defined on the elements of an n-set S, is a v × n
array such that each row is a permutation of the symbols of S and any two rows agree in at
most n − d columns, or precisely n − d columns for an EPA. More generally, the CCCs in
which µ0 = · · · = µm−1 = µ for n = mµ correspond to FPAs ([10]). A FPA of length
n = mµ, frequency µ, distance d and size v, defined on the elements of a m-set S, is a v × n
array in which each row is a multipermutation of the symbols of S each repeated µ times and
any two rows agree in at most n − d columns, or precisely n − d columns for an equidistant
FPA (EFPA).

An important equivalence exists between CCCs and a special kind of combinatorial design
called packings. A design (V, B) consists of a set V of elements (called points) and a collec-
tion B of subsets of V (called blocks). The design is called an (n, λ)-packing if every pair of
distinct points of V occurs in at most λ blocks, and every point occurs in precisely n blocks.
A resolution of a design is a partition of its blocks into classes; a µ-parallel class is a set of
blocks such that each point occurs in precisely µ blocks. Two resolutions are orthogonal if
any class in one resolution intersects every class from another resolution in at most one block.
In [6], generalized doubly resolvable packings are introduced, and their equivalence to CCCs
is established. A GDRP(n, λ; v) with type {µ0, . . . , µm−1} is defined to be an (n, λ)-packing
which admits two orthogonal resolutions, where one of the resolutions forms a partition of
B into a µ0-parallel class, a µ1-parallel class, . . . , a µm−1-parallel class, while the other is
a partition of B into n 1-parallel classes. It is shown that such a GRDP exists if and only if a
CCC[n, n − λ, [µ0, . . . , µm−1]) of size v exists.

In particular, when the code corresponds to an EPA, the equivalent packing may be viewed
in terms of a combinatorial object called a generalized Room square (GRS). A GRS of side
r and index λ defined on a v-set X is an r × r array F such that every cell of F contains a
subset (possibly empty) of X ; each symbol of X occurs once in each row and column of F ;
and any two distinct symbols occur together in exactly λ cells of F . Such a GRS is denoted
by S(r, λ; v), and it is well-known (see [5]) that an EPA of length r , distance r − λ and
size v exists if and only if an S(r, λ; v) exists. When the code corresponds to an equidistant
CCC(n, d, [µ0, . . . , µm−1]), we may define the concept of a generalized Room rectangle as
its packing equivalent.

Definition 1 Let X be a set of cardinality v. Define a generalized Room rectangle (GRR) of
size m × n, frequency composition {µ0, . . . , µm−1} (where n = ∑m−1

i=0 µi ) and index λ on
X to be an m × n array F such that every cell of F contains a subset (possibly empty) of X ;
each symbol of X occurs once in each column of F ; each symbol of X occurs µi times in

123



Equidistant frequency permutation arrays 111

the i th row of F ; and any two distinct symbols occur together in exactly λ cells of F . Denote
such an object by GRR(n, {µ0, . . . , µm−1}, λ; v).

Observe that a GRR(n, {µ0, . . . , µm−1}, λ; v) is an “exact” GDRP(n, λ; v) of type {µ0, . . . ,

µm−1} where every pair of distinct points occurs in precisely λ blocks.
The following relationship is easily established (see [6,7] for a discussion of the general

GDRP case):

Theorem 1 An equidistant m-ary CCC(n, n − λ, [µ0, . . . , µm−1]) of size v exists if and
only if a GRR(n, {µ0, . . . , µm−1}, λ; v) exists.

Given such a code C , list its codewords as c1, . . . , cv; then a GRR can be formed from C
as follows. Label the m rows of a m × n array by {0, . . . , m − 1} and the n columns by
{1, . . . , n}. In the (i, j)th cell, place symbol r if codeword cr has symbol i in position j .
Performing the reverse process yields an equidistant CCC from a GRR.

Our main yardstick for optimality will be the following upper bound for the maximum size
of general CCCs, which first appeared in [11]. It is called the non-recursive Johnson bound.
Observe that, for a CCC in which all symbols of a codeword occur with equal frequency µ

(corresponding to an FPA), this upper bound reduces to the Plotkin bound. As mentioned in
the introduction, an important observation here is that any CCC which achieves equality in
the non-recursive Johnson bound must in fact be equidistant.

Proposition 1 (i) Denote by Am(n, d, [µ0, µ1, . . . , µm−1]) the maximum possible size
of an m-ary CCC(n, d, [µ0, µ1, . . . , µm−1]). Then (if the denominator is positive):

Am(n, d, [µ0, µ1, . . . , µm−1]) ≤ nd

nd − n2 + (µ2
0 + µ2

1 + · · · + µ2
m−1)

(ii) In particular, for d > n − µ,

Am(n, d, µm) ≤ d

d − n + µ

.

2 Preliminary bounds for equidistant CCC(n, d, µm)s

In this section, we consider equidistant codes of the form CCC(n, d, µm) where n = mµ,
and obtain some initial bounds. We shall let Bm(n, d) denote the maximum possible number
of codewords that can exist in any equidistant CCC(n, d, µm) (i.e. the maximum number of
rows in any EFPA with length n, distance d and frequency µ).

Proposition 2 Let n = mµ. Then

(i) Bm(n, d) = 1 if m = 2 and d is odd;
(ii) Bm(n, n) = m;

(iii) Bm(n, 2) = µ + 1.

Since the proof is straightforward, we omit the details.
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112 S. Huczynska

Theorem 2 Let n = mµ. For m > 2, Bm(n, 3) = max{3, m − 1}.
Proof With m ≥ 3, let A be an equidistant CCC(n, 3, µm) of largest possible size. Let ρ1 be
the “standard” µ-permutation written as 01 . . . 0µ11 . . . 1µ . . . (m − 1)1 . . . (m − 1)µ (with
additional subscripts) where we refer to each i1 . . . iµ as a “block” in ρ1. Let ρ2 be the second
row of A; it must be derived from ρ1 by permuting three symbols from different blocks in
a 3-cycle. Clearly, taking all three rotations of this 3-cycle yields the largest possible array
such that two non-identity rows have the same set of non-fixed positions. So let ρ be any
other row which does not have the same non-fixed positions as ρ2. Then ρ2 and ρ must share
two of their non-fixed positions: of these, they must agree on one position and disagree on
the other, forcing the third position of each to correspond to a different block in ρ1 (different
also from those corresponding to the two shared entries). Hence, given a non-identity row ρ2,
there are at most m − 3 choices for the block corresponding to the third non-fixed position of
any other non-identity row, giving an upper bound of m − 1 for the size of the array (position
within a block is not relevant here). Conversely, an array of size m − 1 may be constructed
by taking ρ1 plus (say) the m −2 multipermutations derived from ρ1 by applying the 3-cycle
(0111a1), (a = 2, . . . , m − 1). ��
Theorem 3 Let n = mµ. For n ≥ 4, Bm(n, 4) ≥ � n

2 �.

Proof An equidistant CCC(n, 4, µm) of size � n
2 � can be constructed as follows. Let ρ1 be the

“standard” µ-permutation 01 . . . 0µ11 . . . 1µ . . . (m −1)1 . . . (m −1)µ. Let A be the set of all
“pairs of transpositions” of the form {(0111)(ai b j )} where the set {(ai , b j )} comprises � n−2

2 �
pairs from the set of positions {02, . . . , 0µ, 12, . . . , 1µ, 21, . . . , 2µ, . . . , (m −1)1, . . . , (m −
1)µ} such that all pairs are disjoint and in each pair, a and b are distinct symbols from the
alphabet. Then ρ1 ∪ A is the desired CCC. We show that it is always possible to obtain � n−2

2 �
such pairs.

– For m even, form (µ − 1) pairs (02, 12), . . . , (0µ, 1µ), then (if m > 2) form (m−2)µ
2

pairs (21, 31), . . . , ((m − 2)µ, (m − 1)µ).
– For m odd and µ even, form

– µ
2 pairs (0i , 2 j ) (2 ≤ i ≤ µ

2 + 1 and 1 ≤ j ≤ µ
2 ),

– µ
2 pairs (1i , 2 j ) (2 ≤ i ≤ µ

2 + 1 and µ
2 + 1 ≤ j ≤ µ

2 ),
– µ

2 − 1 pairs (0 j , 1 j ) ( µ
2 + 2 ≤ j ≤ µ),

– If m > 3, form (m−3)µ
2 pairs (21, 31), . . . , ((m − 2)µ, (m − 1)µ).

– For m odd and µ odd, the construction is analogous to the previous construction except
that there are �µ

2 	 pairs of the form (0i , 2 j ), �µ
2 � pairs of the form (1i , 2 j ), and �µ

2 � − 1
pairs of the form (0i , 1 j ). ��

Example 1 An equidistant CCC(12, 4, 34) of size 6 arising from the above construction is

ρ0 0 0 0 1 1 1 2 2 2 3 3 3
ρ1 1 1 0 0 0 1 2 2 2 3 3 3
ρ2 1 0 1 0 1 0 2 2 2 3 3 3
ρ3 1 0 0 0 1 1 3 2 2 2 3 3
ρ4 1 0 0 0 1 1 2 3 2 3 2 3
ρ5 1 0 0 0 1 1 2 2 3 3 3 2

For small values of n, it is possible to construct equidistant CCC(n, 4, µm)s of size larger
than � n

2 �; for example Bm(n, 4) ≥ 7 for µ ≥ 4 and m ≥ 2, since an equidistant CCC(8, 4, 42)

of size 7 may be built from a Hadamard matrix. However, we make the following conjecture:
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Equidistant frequency permutation arrays 113

Conjecture 1 Let n = mµ. For n ≥ 14, Bm(n, 4) = � n
2 �.

Observe that the preceding results generalize those known for EPAs. It is known (see [5])
that Bn(n, 2) = 2; for n > 3, Bn(n, 3) = n − 1 and for n > 9, Bn(n, 4) = � n

2 �.
We conclude this section by summarizing a few basic ways in which new codes can be

obtained from old.

Proposition 3 (i) Let n = mµ. Then Bm(n, d) ≥ Bm−1(n − µ, d).
(ii) Let n1 = mµ1 and n2 = mµ2. Then Bm(n1 + n2, d1 + d2) ≥ min{Bm(n1, d1),

Bm(n2, d2)}.
(iii) If there exists an equidistant CCC(n, n − λ, [µ0, . . . , µm−1]) of size v, then for any

k ∈ N there exists an equidistant CCC(kn, k(n − λ), [kµ0, . . . , kµm−1]) of size v.
Moreover, if the original CCC(n, n −λ, [µ0, . . . , µm−1]) is of optimal size (i.e. satis-
fies the upper bound of Proposition 1) then the CCC(kn, k(n−λ), [kµ0, . . . , kµm−1])
is also of optimal size.

(iv) Let M be the maximum size of an equidistant binary code with length n and distance
d. Then B2(2n, 2d) ≥ M.

Proof Part (i) follows by adjoining columns, part (ii) is immediate by juxtaposition and part
(iii) follows by “inflating” or self-concatenating the words of the original code by a factor
of k. For (iv), let C be an equidistant binary code of size M with length n and distance d .
The required CCC(2n, 2d, n2) may be constructed by changing 0’s to 1’s and 1’s to 0’s in
C , then juxtaposing the resulting array with the original array. ��

3 Codes constructed via GRRs

In this section, we present some constructions for EFPAs and related CCCs via their associ-
ated GRRs. In each case, we demonstrate the optimality of either the CCC(n, d, µm) itself or
(if its parameters do not allow the non-recursive Johnson bound to be applied) of a closely-
related CCC derived from the same construction.

3.1 EFPAs from resolvable BIBDs

We give a construction for producing optimal CCC(n, d, µm)s from any balanced incomplete
block design (BIBD) which possesses the property of being resolvable. This yields various
infinite families of optimal CCC(n, d, µm)s. The construction of equidistant q-ary codes
using resolvable BIBDs dates back to the 1960s (see [13]); our construction is a variation on
this approach.

A balanced incomplete block design (BIBD) is a pair (V, B) where V is a v-set and B is a
collection of b k-subsets (blocks) of V , such that each element of V is contained in exactly r
blocks and any 2-subset of V is contained in exactly λ blocks. Here r = λ(v−1)

k−1 and b = vr
k .

A parallel class is a set of blocks of a BIBD that partition the point set, and a resolvable
BIBD is one whose blocks can be partitioned into parallel classes. Necessary conditions for
the existence of a (v, k, λ)-RBIBD are (k − 1)|λ(v − 1) and k|v. Properties and construction
methods of resolvable BIBDs have been extensively studied; we refer the reader to [5] for
information and further references. Known results on families of RBIBDs may be combined
with Theorem 4 to yield infinite families of optimal CCC(n, d, µm)s. We note that in [7],
a construction method is given for a family of optimal CCC(n, d, µm)s, using RBIBDs in
combination with difference matrices.
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114 S. Huczynska

Theorem 4 If there exists a resolvable (v, k, λ)BIBD, then there exists an optimal (equidis-
tant) CCC(b,

(r−λ)v
k , r

v
k ) of size v.

Proof Denote the design by D. Then D has r parallel classes, each containing v
k blocks.

Label these parallel classes as π1, . . . , πr , where each πi comprises v
k k-sets, which we list

as πi (1), . . . , πi (
v
k ) (the order of the k-sets does not matter here).

Form v
k arrays of cells A1, . . . , A v

k
, as follows: each Ai is a 1 × r array of cells, where

the (1, j)th cell of Ai contains the k-set π j (i) (1 ≤ i ≤ v
k , 1 ≤ j ≤ r ). Now take a latin

square of order v
k on the symbols {1, . . . , v

k }, and create an v
k × b array of cells by arranging

the arrays A1, . . . , A v
k

according to the latin square.
Then every column comprises some parallel class πi for some 1 ≤ i ≤ r , and every row

comprises all the blocks of the design, arranged one per cell. Altogether, the array contains
each block of the design precisely v

k times. So the array is a GRR(b, r
v
k , λv

k ; v), and hence

corresponds to an equidistant CCC(b,
(r−λ)v

k , r
v
k ) of size v. Since this meets the Plotkin

bound (here the expression for the maximum possible size simplifies to λ(v−k)
k−1 · v(k−1)

λ(v−k)
= v),

the CCC so constructed is optimal. ��

Corollary 1 For any k, n∈N with k|n, an optimal (equidistant) CCC
((n

k

)
, n−k

n−1

(n
k

)
,
(n−1

k−1

)n/k
)

of size n can be constructed using the set of k-sets of {1, . . . , n}.

Proof It is clear that the collection of k-sets of an n-set satisfy the conditions of a BIBD.
Moreover, by Baranyai’s Theorem ([2]), if k|n, then there exists a partition π of the set of
k-subsets of {1, 2, . . . , n} into parallel classes, each of which is a partition of {1, 2, . . . , n}.
Hence we have a resolvable BIBD, and so Theorem 4 may be applied. ��

The case when k = 2 in Corollary 1 can be used as input to obtain another infinite family
of optimal codes corresponding to EFPAs.

Theorem 5 For any even h �= 2, 6 ∈ N, an optimal (equidistant) CCC(2h2 − h, 2h2 −
2h, (2h − 1)h) of size 2h can be constructed.

Proof Let A be a GRR
((h

2

)
, (h − 1)

h
2 , h

2 ; h
)

constructed using Corollary 1 with k = 2, and

let a and b denote symbol sets {1, . . . , h} and {h + 1, . . . , 2h} respectively. Denote by A(a)

a copy of A taken on symbol set a (similarly for A(b)). Denote by LS(a, b) the h × h array
formed by taking a pair of mutually orthogonal latin squares of order h, one on symbol set
a and the other on b, and superimposing them. Then a GRR corresponding to an equidistant
CCC(2h2 −h, 2h2 −2h, (2h −1)h) of size 2h is obtained by forming the h ×h(h −1) array
C(a, b) as follows

A(a) A(b)

A(b) A(a)

then juxtaposing C(a, b) with h copies of LS(a, b) to form: C(a, b)|L S(a, b)| · · · |L S(a, b).
This creates an h × (2h2 − h) array in which each symbol of a ∪ b occurs once per column
and 2h − 1 times per row; each pair of distinct elements from a symbol set occurs together h
times in C(a, b) while each pair (i, j) with i and j in different symbol sets occurs together
h times in the h copies of LS(a, b). Optimality follows as the corresponding CCC meets the
bound of Proposition 1 with equality. ��
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Equidistant frequency permutation arrays 115

Example 2 An optimal CCC(28, 24, 74) of size 8 from Theorem 5. Take array C(a, b) as

1, 2 1, 3 1, 4 3, 4 2, 4 2, 3 5, 6 5, 7 5, 8 7, 8 6, 8 6, 7
3, 4 2, 4 2, 3 1, 2 1, 3 1, 4 7, 8 6, 8 6, 7 5, 6 5, 7 5, 8
5, 6 5, 7 5, 8 7, 8 6, 8 6, 7 1, 2 1, 3 1, 4 3, 4 2, 4 2, 3
7, 8 6, 8 6, 7 5, 6 5, 7 5, 8 3, 4 2, 4 2, 3 1, 2 1, 3 1, 4

and take LS(a, b) to be (using two MOLS of order 4 from [5]):

1, 5 2, 6 3, 7 4, 8
4, 7 3, 8 2, 5 1, 6
2, 8 1, 7 4, 6 3, 5
3, 6 4, 5 1, 8 2, 7

Then a GRR(28, {7, 7, 7, 7}, 4; 8) is given by the juxtaposition: C(a, b)|L S(a, b)|L S(a, b)|
LS(a, b)|L S(a, b).

3.2 EFPAs from odd balanced tournament designs

An odd balanced tournament design, OBTD(k), defined on a 2k +1-set V , is an arrangement
of the

(2k+1
2

)
distinct unordered pairs of the elements of V into a k × (2k + 1) array such that

each column of the array contains 2k distinct elements of V , and each element of V occurs
precisely twice in each row. It is known that an OBTD(k) exists for every positive integer
k. Moreover, by appropriate choice of construction methods, it can be ensured that no two
columns of the array are missing the same element of {1, . . . , 2k + 1}.
Theorem 6 For any k ∈ N,

(i) an optimal (equidistant) CCC(2k + 1, 2k, 2k11) of size 2k + 1 can be constructed;
(ii) an equidistant CCC(2k + 2, 2k, 2k+1) of size 2k + 1 can be constructed.

Proof Let A be an OBTD(k); from the remark preceding the theorem, we may assume that
no two columns of the array are missing the same element of {1, . . . , 2k + 1}. Adding an
extra row to A, whose i th cell contains the single symbol not occurring in the i th column
of A, yields a GRR for part (i). Optimal size follows as it satisfies the bound of Proposition
1. Adjoining an additional column whose cells are empty apart from the cell in row k + 1,
which contains a copy of each symbol, yields a GRR equivalent to the desired code for
part (ii). ��

Our next construction uses OBTDs to give an infinite family of EFPAs; the same con-
struction also yields an infinite family of equidistant CCCs with non-uniform composition.
While the optimality of the first cannot be judged by the bound of Proposition 1 (which here
would have negative denominator), the second is of maximum possible size.

Theorem 7 For any k ∈ N,

(i) an equidistant CCC(8k + 8, 8k + 2, 42k+2) of size 4k + 2 can be constructed;
(ii) an optimal (equidistant) CCC(8k + 4, 8k + 2, 42k3111) of size 4k + 2 can be con-

structed.

Proof We construct GRRs corresponding to the required codes. Let O be an OBTD(k), con-
structed so that no two columns are missing the same element of the symbol set, and let a
and b denote symbol sets {1, . . . , 2k + 1} and {2k + 2, . . . , 4k + 2} respectively. Denote by
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O(a) a copy of O taken on symbol set a (similarly for O(b)); note this is a 2k + 1 × k array.
Denote by LS(a, b) the 2k +1×2k +1 array formed by taking a pair of mutually orthogonal
latin squares of order 2k + 1, one on symbol set a and the other on b, and superimposing
them. Then a GRR corresponding to an equidistant CCC(8k + 8, 8k + 2, [4, 4, . . . , 4]) of
size 4k + 2 is obtained as follows. Form the 2k + 2 × 4k + 4 array A(a, b) by:

O(a) O(b)

a all b
O(b) O(a)

b a all

where a represents the 1 × 2k + 1 row described in Theorem 6 which converts O(a) into a
GRR(2k + 1, {2, . . . , 2, 1}, 1; 2k + 1), and “all” denotes a single cell containing a copy of
each symbol in a ∪ b. Form the array B(a, b) by:

LS(a, b) LS(a, b)

all all

Then the juxtaposition A(a, b)|B(a, b) is a 2k + 2 × 8k + 8 array of cells which forms a
GRR(8k+8, {4, . . . , 4}, 6; 4k+2). Clearly each symbol in a ∪ b occurs once per column and
4 times per row; each pair of different elements from a given symbol set occurs together twice
in the copies of O(a) or O(b), while each pair of elements {a, b} with a ∈ a and b ∈ b occurs
together twice in the copies of LS(a, b). To construct a GRR(8k +4, {4, . . . , 4, 3, 1}, 2; 4k +
2), take the above construction and convert the cells labelled “all” into empty cells (then
delete the four resulting empty columns). For the former code, the bound of Theorem 1 is
not applicable. However for the second code, the upper bound evaluates to (8k+4)(8k+2)

2(8k+1)
, and

so 4k + 2 is the largest integer satisfying this bound. ��

Example 3 We apply Theorem 7 with k = 3. First use an OBTD(3) to construct A:

3, 6 4, 7 5, 1 6, 2 7, 3 1, 4 2, 5 10, 13 11, 14 12, 8 13, 9 14, 10 8, 11 9, 12
2, 7 3, 1 4, 2 5, 3 6, 4 7, 5 1, 6 9, 14 10, 8 11, 9 12, 10 13, 11 14, 12 8, 13
4, 5 5, 6 6, 7 7, 1 1, 2 2, 3 3, 4 11, 12 12, 13 13, 14 14, 8 8, 9 9, 10 10, 11
1 2 3 4 5 6 7 all 8 9 10 11 12 13 14

10, 13 11, 14 12, 8 13, 9 14, 10 8, 11 9, 12 3, 6 4, 7 5, 1 6, 2 7, 3 1, 4 2, 5
9, 14 10, 8 11, 9 12, 10 13, 11 14, 12 8, 13 2, 7 3, 1 4, 2 5, 3 6, 4 7, 5 1, 6

11, 12 12, 13 13, 14 14, 8 8, 9 9, 10 10, 11 4, 5 5, 6 6, 7 7, 1 1, 2 2, 3 3, 4
8 9 10 11 12 13 14 1 2 3 4 5 6 7 all

then take B to be (using two MOLS of order 7 from [5]):

1, 8 2, 9 3, 10 4, 11 5, 12 6, 13 7, 14 1, 8 2, 9 3, 10 4, 11 5, 12, 6, 13 7, 14
2, 10 3, 11 4, 12 5, 13 6, 14 7, 8 1, 9 2, 10 3, 11 4, 12 5, 13 6, 14 7, 8 1, 9
3, 12 4, 13 5, 14 6, 8 7, 9 1, 10 2, 11 3, 12 4, 13 5, 14 6, 8 7, 9 1, 10 2, 11
4, 14 5, 8 6, 9 7, 10 1, 11 2, 12 3, 13 4, 14 5, 8 6, 9 7, 10 1, 11 2, 12 3, 13
5, 9 6, 10 7, 11 1, 12 2, 13 3, 14 4, 8 5, 9 6, 10 7, 11 1, 12 2, 13 3, 14 4, 8
6, 11 7, 12 1, 13 2, 14 3, 8 4, 9 5, 10 6, 11 7, 12 1, 13 2, 14 3, 8 4, 9 5, 10
7, 13 1, 14 2, 8 3, 9 4, 10 5, 11 6, 12 7, 13 1, 14 2, 8 3, 9 4, 10 5, 11 6, 12

all all
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4 Direct constructions of EFPAS and related CCCs

In this section, we present constructions which do not involve the use of GRRs. As above, we
demonstrate the optimality of the CCC(n, d, µm) wherever possible, and if the non-recursive
Johnson bound is not applicable, we demonstrate the optimality of a closely-related CCC.

4.1 EFPAs from orthogonal arrays

An orthogonal array OA(k, s) is a k × s2 array with entries from an s-set S such that in
any two rows, each (ordered) pair of symbols from S occurs exactly once. It is clear that
any orthogonal array OA(k, s) is an example of an equidistant CCC(s2, s2 − s, ss). We can
improve upon a basic orthogonal array.

Proposition 4 Given an OA(k, s) with M rows, an equidistant CCC(s2, s2 − s, ss) of size
(s − 1)M can be constructed. In particular, for s = q (a prime power),

(i) an equidistant CCC(q2, q2 − q, qq) of size q2 − 1 can be constructed
(ii) an optimal (equidistant) CCC(q2 − 1, q2 − q, qq−1(q − 1)1) of size q2 − 1 can be

constructed.

Proof Given an OA(k, s) A on symbol set S = {1, . . . , s}, we fix one symbol (say 1) and
perform s − 1 substitutions on the others to obtain a new array B, in which each row of A
yields s − 1 rows of B. More precisely, let π ∈ Ss be the permutation (2 . . . s). Then for
each row ρi = ai,1ai,2 . . . ai,s2 of A (1 ≤ i ≤ M), and for each 1 ≤ j ≤ s − 1, replace ρi

by ρi
j = (π j (ai,1)π

j (ai,2) . . . π j (ai,s2)) to obtain array B of size (s − 1)M . It is clear that
each row of B has the appropriate number and type of symbols; we check that the pairwise
distance between rows is s2 − s. Let α and β be different rows of B. If α and β arise from the
same row of A under different substitutions, i.e. α = ri

j and β = ri
k for some 1 ≤ i ≤ M

and 1 ≤ j �= k ≤ s − 1, then they agree on the s copies of symbol 1 and disagree in all other
positions. If α and β are two distinct rows of A under the same substitution, i.e. α = rh

j and
β = ri

j for some 1 ≤ j ≤ s−1 and 1 ≤ h �= i ≤ M , then all agreements are as in the original
rows. Now let α and β be different rows of A under different substitutions, i.e. α = ri

k and
β = r j

l , some 1 ≤ i �= j ≤ M and 1 ≤ k �= l ≤ s−1. Then it is still the case that each ordered
pair in S×S occurs precisely once in these two rows, and hence pairwise distance is still s2−s.

For the second part, use a set of mutually orthogonal latin squares on symbols {1, . . . , s}
to form the orthogonal array (with the squares in standard form so that the first column of
the orthogonal array is an all-1 column). Perform substitutions as described above; to obtain
the CCC from the resulting array, delete the first (all-1) column. Its optimality follows as it
achieves the bound of Proposition 1. ��
Example 4 An equidistant CCC(9, 6, 33) of size 8 arising from a set of MOLS plus substi-
tutions with π = (23) is given by

1 1 1 2 2 2 3 3 3
1 1 1 3 3 3 2 2 2
1 2 3 1 2 3 1 2 3
1 3 2 1 3 2 1 3 2
1 2 3 2 3 1 3 1 2
1 3 2 3 2 1 2 1 3
1 2 3 3 1 2 2 3 1
1 3 2 2 1 3 3 2 1

Observe that deleting the first column yields a CCC(8, 6, 3221) of optimal size 8.
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We observe that, while it is not possible in general to convert one EFPA to another with a
smaller or larger symbol set by simple maps on the symbols, it can be done in the case where
the EFPA possesses an extra property, which is possessed for example by orthogonal arrays.
(The following result appeared in [10] for general FPAs.)

Proposition 5 Let n = mµ. Let A be an equidistant CCC(n, d, µm) such that, between any
two rows of the corresponding FPA, each of the m2 pairs (i, j) occurs precisely t times. Then A

may be converted, by reduction modulor (wherer |n) to an equidistant CCC(n, n− tm2

r , ( n
r )r ).

4.2 Arrays from Skolem sequences

Skolem sequences may be used to construct equidistant CCCs with compositions of the form
2m or “close to” 2m . A Skolem sequence of order n is a sequence S = (s1, s2, . . . , s2n) of
2n integers such that: for every k ∈ {1, 2, . . . , n} there exist exactly two elements si , s j ∈ S
such that si = s j = k, and if si = s j = k with i < j then j − i = k. An extended Skolem
sequence of order n is a sequence E S = (s1, s2, . . . , s2n+1) of 2n + 1 integers satisfying the
two conditions above plus a third condition: there is exactly one si ∈ E S such that si = 0.
An extended Skolem sequence of order n exists for any n ([1]); some small sequences are
given by (1, 1, 0), (1, 1, 2, 0, 2), (3, 1, 1, 3, 2, 0, 2), (3, 1, 1, 3, 4, 2, 0, 2, 4).

Theorem 8 For any n ∈ N,

(i) an optimal (equidistant) CCC(2n + 1, 2n, 2n11) of size 2n + 1 can be constructed;
(ii) an equidistant CCC(2n + 2, 2n, 2n+1) of size 2n + 1 can be constructed.

Proof For part (i), we will prove: given an extended Skolem sequence S of order n (length
2n +1), the array formed by taking as rows S and all its cyclic shifts is a code of the required
type. For part (ii), we simply take the array from (i) and add a column consisting entirely
of 0’s.

Let S = (s1, s2, . . . , s2n+1), and let A be the (2n + 1) × (2n + 1) array whose rows
are S and all its cyclic shifts. Denote the rows of A by ρ j (0 ≤ j ≤ 2n) where ρ0(i) = si

(1 ≤ i ≤ 2n+1) andρ j is the rightward shift ofρ0 by j positions; more preciselyρk(i) = si−k

if k < i ≤ 2n + 1 and ρk(i) = s2n+1+i−k if 1 ≤ i ≤ k.
Let ρ j and ρk be any two rows of A ( j < k). There are three cases for a position i ,

1 ≤ i ≤ 2n + 1:

Case 1: i > k, i.e. j < i ≤ 2n + 1 and k < i ≤ 2n + 1. Then ρ j (i) = ρk(i) ⇒ si− j =
si−k = x for some symbol x ⇒ x = (i − j)− (i − k) = k − j . Since 1 ≤ x ≤ n,
this case occurs only if k − j ≤ n.

Case 2: j < i ≤ k, i.e. j < i ≤ 2n + 1 and 1 ≤ i ≤ k. Then ρ j (i) = ρk(i) ⇒
si− j = s2n+1+i−k = x for some symbol x ⇒ x = (2n + 1 + i − k) − (i − j) =
2n + 1 + j − k. Since 1 ≤ x ≤ n, this case occurs only if k − j ≥ n + 1.

Case 3: i ≤ j , i.e. 1 ≤ i ≤ j and 1 ≤ i ≤ k. Then ρ j (i) = ρk(i) ⇒ s2n+1+i− j =
s2n+1+i−k = x for some symbol x ⇒ x = (2n + 1 + i − j)− (2n + 1 + i − k) =
k − j . Since 1 ≤ x ≤ n, this case occurs only if k − j ≤ n.

So, if 1 ≤ k − j ≤ n, rows ρ j and ρk can agree only in the symbol k − j , while if
n ≤ k − j ≤ 2n, rows ρ j and ρk can agree only in the symbol 2n + 1 + j − k. In both cases,
any agreement position must contain a symbol uniquely defined by j and k, giving Hamming
distance at least 2n − 1. Arguing as above, it can then be shown (we omit the details) that in
fact ρ j and ρk have precisely one position of agreement, i.e. distance 2n as claimed. ��
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Corollary 2 For n ∈ N, an optimal CCC(2n + 1, 2n, 2n11) of size 2n + 1 is given by:
(r, r − 2, . . . , 3, 1, 1, 3, . . . , r − 2, r, s, s − 2, . . . , 2, 0, 2, . . . , s − 2, s) where r = n and
s = n − 1 if n is odd, and r = n − 1 and s = n if n is even, and the elements within the
brackets are cyclically shifted. An equidistant CCC(2n + 2, 2n, 2n+1) of size 2n + 1 is given
by (r, r − 2, . . . , 3, 1, 1, 3, . . . , r − 2, r, s, s − 2, . . . , 2, 0, 2, . . . , s − 2, s)0.

Proof It is clear that the elements in the brackets form an extended Skolem sequence of
order n. ��
Example 5 An equidistant CCC(10, 8, 25) of size 9 arising from the extended Skolem
sequence S = (3, 1, 1, 3, 4, 2, 0, 2, 4) is given by

ρ0 3 1 1 3 4 2 0 2 4 0
ρ1 4 3 1 1 3 4 2 0 2 0
ρ2 2 4 3 1 1 3 4 2 0 0
ρ3 0 2 4 3 1 1 3 4 2 0
ρ4 2 0 2 4 3 1 1 3 4 0
ρ5 4 2 0 2 4 3 1 1 3 0
ρ6 3 4 2 0 2 4 3 1 1 0
ρ7 1 3 4 2 0 2 4 3 1 0
ρ8 1 1 3 4 2 0 2 4 3 0

5 Binary equidistant frequency permutation arrays

It has been shown that equidistant CCC(n, d, ( n
2 )2)s of size greater than 1 can exist only

for even distances d . Moreover, it is known ([15]) that the maximum size of an equidistant
CCC(n, d, ( n

2 )2) is at most n. Binary FPAs are binary constant weight codes, and have been
much-studied. Below, for reference, we list a few construction methods which are specific to
binary EFPAs: since these are easily derived from known results, we omit details of proofs
(see references such as [12] for further details).

Definition 2 A Hadamard matrix of order n is an n×n matrix with entries +1,−1 satisfying
H Ht = nI , i.e. its rows are pairwise orthogonal. For a Hadamard matrix of order n to exist,
n must be 1, 2 or 4k for some positive integer k.

Construction 1 For any n for which there exists a Hadamard matrix of order n, an equidis-
tant CCC(n, n

2 , ( n
2 )2) can be constructed of size n−1. Method: Take a normalized Hadamard

matrix H(n) (i.e. all entries in its first row and first column are equal to 1) and remove the
first row, then convert each occurrence of −1 to 0.

Definition 3 A Legendre sequence is a binary sequence v = [v0, v1, . . . , vp−1] of length p

(prime), where p−1
2 is odd, such that vi = 0 if i is a quadratic non-residue modulo p, and

vi = 1 if i is a quadratic residue modulo p; the digit v0 can be either 0 or 1.

Construction 2 For a prime p with p−1
2 odd (i.e. p ≡ 3 mod 4), an equidistant CCC(p +

1,
p+1

2 , (
p+1

2 )2) can be constructed of size p. Method: Form a p × p array by taking as
rows a Legendre sequence v, and its (p − 1) rightward cyclic shifts. It can be shown that
the Hamming distance between each row is p+1

2 . To make the EFPA, append a column to the
array consisting entirely of 0’s if v0 = 1, or 1’s if v0 = 0.
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A maximal length feedback shift register sequence (m-sequence for short) is a type of
pseudorandom sequence possessing many useful properties (for more details see [8]). There
exists a binary m-sequence of length 2n − 1 for any integer n > 1.

Construction 3 For a Mersenne prime p (a prime of the form 2n − 1), an equidistant
CCC(p + 1,

p+1
2 , (

p+1
2 )2) can be constructed of size p. Method: Let v be a binary m-

sequence of length p. Then the array obtained from v together with all its (p − 1) cyclic
rightward shifts is equidistant as a code. Each row has p+1

2 1’s, p−1
2 0’s and distance p+1

2 .
To make the EFPA, append a column of 0’s to this array.
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